
Synthesizing Dynamic Programming Algorithms

from Linear Temporal Logic Formulae

Grigore Roşu

Klaus Havelund

RIACS Technical Report 01.15

May 2001

Synthesizing Dynamic Programming Algorithms

from Linear Temporal Logic Formulae

Grigore Roşu, RIACS

Klaus Havelund, Kestrel Technology

RIACS Technical Report 01.15
May 2001

The problem of testing a linear temporal logic (LTL) formula on a finite execution
trace of events, generated by an executing program, occurs naturally in runtime
analysis of software. We present an algorithm which takes an LTL formula and
generates an efficient dynamic programming algorithm. The generated algorithm
tests whether the LTL formula is satisfied by a finite trace of events given as
input. The generated algorithm runs in linear time, its constant depending on
the size of the LTL formula. The memory needed is constant, also depending on
the size of the formula.

Synthesizing Dynamic Programming Algorithms
from Linear Temporal Logic Formulae

Grigore Roşu1 and Klaus Havelund2

1 Research Institute for Advanced Computer Science
2 QSS / Recom Technologies

http://ase.arc.nasa.gov/{grosu,havelund}
Automated Software Engineering Group

NASA Ames Research Center
Moffett Field, California, 94035, USA

Abstract. The problem of testing a linear temporal logic (LTL) for-
mula on a finite execution trace of events, generated by an executing
program, occurs naturally in runtime analysis of software. We present
an algorithm which takes an LTL formula and generates an efficient dy-
namic programming algorithm. The generated algorithm tests whether
the LTL formula is satisfied by a finite trace of events given as input. The
generated algorithm runs in linear time, its constant depending on the
size of the LTL formula. The memory needed is constant, also depending
on the size of the formula.

1 Introduction

The work presented in this paper is part of an ambitious project at NASA Ames
Research Center, called PathExplorer, that aims at developing a practical
testing environment for NASA software developers. The basic idea of the project
is to extract an execution trace of a concurrent program and then analyze it to
detect errors. The errors we are considering at this stage are deadlocks, data
races, and non-conformance with linear temporal logic specifications. Only the
later issue is addressed in this paper.

Linear Temporal Logic (LTL) [17] is a logic for specifying properties of re-
active and concurrent systems. The models of LTL are infinite execution traces,
reflecting the behavior of such systems as ideally always being ready to respond
to requests, operating systems being a typical example. LTL has been mainly
used to specify properties of concurrent and interactive down-scaled models of
real systems, so that fully formal correctness proofs could subsequently be car-
ried out, for example using theorem provers or model checkers (see for example
[12, 9]). However, such formal proof techniques are usually not scalable to real
sized systems without a substantial effort to abstract the system more or less
manually to a model which can be analyzed. Model checking of programs has
received an increased attention from the formal methods community within the
last couple of years, and several systems have emerged that can directly model

check source code, such as Java and C [10, 21, 4, 14, 3, 16]. Stateless model check-
ers [20] try to avoid the abstraction process by not storing states. Although
these systems provide high confidence, they scale less well because most of their
internal algorithms are NP-complete or worse.

Testing scales well, and is by far the most used technique in practice to
validate software systems. The merge of testing and temporal logic specification
is an attempt to achieve the benefits of both approaches, while avoiding some of
the pitfalls of adhoc testing and the complexity of full-blown theorem proving
and model checking. Of course there is a price to pay in order to obtain a
scalable technique: the loss of coverage. The suggested framework can only be
used to examine single execution traces, and can therefore not be used to prove
a system correct. Our work is based on the belief that software engineers are
willing to trade coverage for scalability, so our goal is to provide tools that are
completely automatic, implement very efficient algorithms and find many errors
in programs. As mentioned previously, the work presented in this paper is part
of larger effort to develop a set of dynamic analysis algorithms and to integrate
these into a single tool named PathExplorer. Of particular additional interest
are for example algorithms that can detect deadlock and data race potentials in
a program, by examining a single arbitrary execution trace of the program, even
though these errors do not occur in that trace. This can be achieved by analyzing
the way locks are acquired and released. A deadlock potential can for example
be detected by observing that two threads take two locks in different order.
A collection of commercial tools already provide this kind of analysis: Visual
Threads [7], which uses the Eraser algorithm [18] for detecting data races, and
which works on C and C++ programs using Pthreads; Assure [1], which works on
C++ programs using Pthreads; and finally Jprobe [19] for Java. In earlier work,
we implemented data race detection and deadlock detection algorithms for Java
in Java PathFinder [8]. It’s our intention to extend this kind of technology by
identifying other error patterns that can be detected this way. A major goal is to
make PathExplorer adjustable to various programming languages and thus
eventually deliver a Java PathExplorer as well as a C++ PathExplorer
that share the same core algorithms but have different front ends. A longer term
goal is to explore the use of conformance with a formal specification to achieve
fault tolerance. The idea is that the failure may trigger a recovery action in the
monitored program.

Following encouraging results using rewriting-based algorithms [11] imple-
mented in Maude [2], in this paper we investigate more efficient algorithms for
testing whether finite execution traces conform to LTL formulae. The idea of
using LTL in program testing is not new. It has already been pursued in com-
mercial tools such as TempRover (TR) [5], which has admittedly motivated us
in a major way to start this work. In TR, one states LTL properties as anno-
tations of the program, these being then replaced by appropriate code, that is
executed whenever reached1. Thus, TR can be seen as an extension of a conven-
tional programming language with LTL instructions. Inspired by the MaC [15]

1 The implementation details of TR are not public.

tool, we decided to rather automatically instrument the bytecode or the object
code of a program to generate events of interest during the execution. Such an
event-based framework is well suited for program tracing in general, and has
also been used to detect race conditions and deadlocks in the Visual Threads
[7, 18] and Java PathFinder [8] tools. The trace of events can then be analyzed
using a different tool which can even run on a different platform. One can also
save various execution traces of a program and then have someone else analyze
them at a different time, in a different place. We were thus rapidly faced with
the following challenge:

Given a finite execution trace t of events and an LTL formula ϕ, how effi-
ciently can one test whether t satisfies ϕ?

A potential solution would be to translate the formula into an automaton and
then take the synchronized product of the automaton and the execution trace.
This is for example how Büchi automata are used in explicit-state model checkers
for representing formulae [13, 6]. A Büchi automaton is a special automaton
which accepts infinite traces (words): certain states are designated as acceptance
states, and an infinite trace is in the language of the automaton if and only if
it brings the automaton through an acceptance state infinitely often. A model
checker can detect such infinite traces by hashing states and detect cycles that
include acceptance states. We have decided not to use Büchi automata for a
number of reasons.

– First, the translation of LTL formulae to Büchi automata is not trivial,
especially if one strives for small automata. It is worth mentioning that
other similar systems like Temporal Rover [5] and MaC [15] do not use
Büchi automata either.

– Second, at a semantic level, Büchi automata are interpreted over infinite
traces and it is not clear how to interpret them on finite traces. Consider for
example a property such as 2(p → 3q), the automaton A generated from
the formula, and a finite trace t that, according to the semantics, satisfies the
formula. The naive suggestion would be to drive the automaton A by t until
the end of the trace, and then observe whether the automaton is in an ac-
ceptance state or not. This will, however, generally not work. In experiments
made using the LTL-to-Büchi automata translator in the SPIN system [13],
such a trace may bring the automaton to a state that is not an acceptance
state. Hence, one can generally not conclude anything from the resulting
state. A potential solution would be to pretend that an infinite sequence of
stuttering transitions is appended to the trace, where a stuttering transition
does not satisfy any proposition. One could then examine whether such a
stuttering sequence would bring the automaton from the state(s) resulting
from the finite trace, through an acceptance state infinitely often. Hence, the
stuttering should be shown to “finish off” the automaton correctly. However,
even though such an interpretation is possible, a different issue is that our
finite trace semantics of the always operator 2 is different from the infinite
trace semantics implied by Büchi automata.

– Third, we think that the dynamic programming methodology that we suggest
yields more efficient testing tools than ones based on Büchi automata. In fact,
we claim that it is hard, if not impossible, to find more efficient algorithms
than those presented in this paper.

In spite of their efficiency and elegance, the generated algorithms have a
serious drawback: the execution trace needs to be visited backwards. This is
a typical phenomenon in dynamic programming algorithms which, taking into
account the continuously decreasing price of storage media, doesn’t seem to be
a practical problem if one wants to first generate the events and then analyze
them. However, we admit that it can be a crucial issue when one wants to analyze
the events as they are generated, warning the programmer of errors or potential
errors while his/her program is being executed. We were not able to find a
dynamic programming algorithm that travels the trace forwards, but we are
confident that it can be done and post it as a challenge for the interested reader,
mentioning that it would have a great impact on testing methodologies and tools.
It is worth mentioning here that we did find and implement an algorithm that
visits the events in the order they were generated [11], but it is not as efficient
as the dynamic programming algorithms presented in this paper.

We’d like to warmly thank Rance Cleaveland, Dimitra Giannakopoulou and
Willem Visser for interesting and productive technical discussions directly re-
lated to the effort in this paper, as well as Edmund Clarke, David Dill and
Doron Drusinsky for general discussions on dynamic analysis of programs and
its potential impact on computer aided verification.

2 Finite Trace Linear Temporal Logic

We briefly remind the reader the basic notions of finite trace linear temporal
logic, including a recursive definition of the satisfaction relation between a finite
trace and an LTL formula. The interested reader can check [11] for more on this
subject.

We regard a trace as a finite sequence of events emitted by the program that
we want to observe. Such events could indicate when variables are changed or
when locks are acquired or released. Note that this view is slightly different from
the traditional view where the trace is a sequence of program states, each state
denoting the set of propositions that hold at that state. This view is consistent
with our goal to define an LTL observer as a process that is detached from the
program to be analyzed, receiving only observed events. To keep the presenta-
tion simple and our results general, we abstract away from the concrete contents
of events and just define events as atoms. Similarly, we consider the basic propo-
sitions as simple as possible, also atoms, and say that a proposition a is satisfied
by an event b if and only if a = b. In practice, one should necessarily consider
appropriate notions of satisfaction of propositions by events or states generated
by events. We consider that this is an interesting but too concrete problem de-
pending upon the events that one wants to observe, so we do not approach it
here.

Formulas. Assume that Prop is a set of atoms, called atomic propositions.
Then Formula is the free extension of Prop under the standard propositional
constants and operators true, false, ¬ , ∨ , ∧ , → , ↔ , together with
the classical temporal logic operators ◦ , 2 , 3 , and U whose meaning
will be given later.

Events and Traces. Suppose that Event is a set of events. As we previously
mentioned, for the time being we consider that Event = Prop is just a set
of atoms. The set of finite traces is Event∗ which we’ll denote Trace, where
ε denotes the empty trace. Assume two partial functions head : Trace →
Event and tail : Trace → Trace for taking the head and the tail of a trace,
respectively, and a total function length returning the length of a finite trace.
That is, head(e t) = e, tail(e t) = t, and length(ε) = 0 and length(e t) =
1 + length(t). Assume further for any trace t = e1e2...en that ti, for some
natural number 1 ≤ i ≤ n, denotes the suffix trace eiei+1...en that starts at
position i, and that tn+1 = ε; if t = ε then n = 0 and t1 = ε.

Satisfaction. The satisfaction relation |= ⊆ Trace × Formula defines when a
trace t satisfies a formula ϕ, written t |= ϕ, and is defined inductively over
the structure of the formulae as follows, where p ∈ Prop is any atomic
proposition and ϕ and ψ are any formulae:

t |= true is always true,
t |= false is always false,
t |= p iff t 6= ε and head(t) is p,
t |= ϕ ∨ (∧,→,↔) ψ iff t |= ϕ and (or, implies, iff) t |= ψ,
t |= ◦ϕ iff t 6= ε and tail(t) |= ϕ,
t |= 2ϕ iff (∀ 1 ≤ i ≤ length(t)) ti |= ϕ,
t |= 3ϕ iff (∃ 1 ≤ i ≤ length(t) + 1) ti |= ϕ,
t |= ϕ U ψ iff (∃ 1 ≤ i ≤ length(t) + 1) ti |= ψ and

(∀ 1 ≤ j < i) tj |= ϕ.

The LTL operators have a slightly different interpretation in the context of finite
traces, though similar in spirit to their standard semantics in classical LTL with
infinite traces. The formula ◦ϕ (next ϕ) holds for a finite trace iff the trace is
nonempty and ϕ holds in the suffix trace starting in the next (the second) time
point. The formula 2ϕ (always ϕ) holds if ϕ holds in all time points, while 3ϕ
(eventually ϕ) holds if ϕ holds in present or in some future time point. The
formula ϕ U ψ (ϕ until ψ) holds if ψ holds in present or in some future time
point, and until then ϕ holds. As an example illustrating the semantics, the
formula 2(ϕ→ 3ψ) holds for a finite trace iff for any time point in the trace it
holds that if ϕ is true then eventually ψ is true.

The reader probably noticed that i ranges from 1 to length(n) in the definition
of the semantics of 2, while it ranges from 1 to length(n) + 1 in the case of 3.
This discrepancy is not a typo; it is because of the intended semantics of the two
operators on the empty trace, that is, ε |= 2ϕ for any formula ϕ while ε |= 3ϕ
if and only if ε |= ϕ. We still don’t know exactly if this is the most appropriate
semantics of the two operators; it should be taken just as a subjective choice at
this incipient stage, but we are certainly going to clarify this issue soon as we

get more practical experience with this new technology. However, the algorithms
presented in this paper do not essentially depend on this choice.

An important observation which is crucial to the development of the dynamic
programming generic algorithms presented later is that the relation |= can be
defined recursively in the context of finite traces. We only need to consider the
temporal operators:

ε |= ◦ϕ is false , e t |= ◦ϕ iff t |= ϕ,
ε |= 2ϕ is true , e t |= 2ϕ iff e t |= ϕ and t |= 2ϕ,
ε |= 3ϕ iff ε |= ϕ , e t |= 3ϕ iff e t |= ϕ or t |= 2ϕ,
ε |= ϕ U ψ iff ε |= ψ , e t |= ϕ U ψ iff e t |= ψ or (e t |= ϕ and t |= ϕ U ψ).

3 An Example

In this section we show how to generate dynamic programming code for a con-
crete LTL formula. We think that this example would practically be sufficient
for the reader to foresee our general algorithm presented in the next section.

Let 2((p U q) → 3(q → ◦r)) be an LTL formula and let ϕ1, ϕ2, ..., ϕ10 be
its subformulae, in breadth-first order:

ϕ1 = 2((p U q)→ 3(q → ◦r)),
ϕ2 = (p U q)→ 3(q → ◦r),
ϕ3 = p U q,
ϕ4 = 3(q → ◦r),
ϕ5 = p,
ϕ6 = q,
ϕ7 = q → ◦r,
ϕ8 = q,
ϕ9 = ◦r,
ϕ10 = r.

Given any finite trace t = e1e2...en of n events, one can recursively define a
matrix s[1..n+1, 1..10] of boolean values {0, 1}, with the meaning that s[i, j] = 1
iff ti |= ϕj as follows:

s[i, 10] = (ei == r)
s[i, 9] = s[i+ 1, 10]
s[i, 8] = (ei == q)
s[i, 7] = s[i, 8] implies s[i, 9]
s[i, 6] = (ei == q)
s[i, 5] = (ei == p)
s[i, 4] = s[i, 7] or s[i+ 1, 4]
s[i, 3] = s[i, 6] or (s[i, 5] and s[i+ 1, 3])
s[i, 2] = s[i, 3] implies s[i, 4]
s[i, 1] = s[i, 2] and s[i+ 1, 1],

for all i ≤ n, where and, or, implies are ordinary boolean operations and == is
the equality predicate, where s[n+ 1, 1..10] are defined as below:

s[n+ 1, 10] = 0
s[n+ 1, 9] = 0
s[n+ 1, 8] = 0
s[n+ 1, 7] = s[n+ 1, 8] implies s[n+ 1, 9]
s[n+ 1, 6] = 0
s[n+ 1, 5] = 0
s[n+ 1, 4] = s[n+ 1, 7]
s[n+ 1, 3] = s[n+ 1, 6]
s[n+ 1, 2] = s[n+ 1, 3] implies s[n+ 1, 4]
s[n+ 1, 1] = 1.

An important observation is that, like in many other dynamic programming
algorithms, one doesn’t have to store all the table s[1..n+ 1, 1..10], which would
be quite large in practice; in this case, one needs only two lines, s[i, 1..10] and
s[i + 1, 1..10], which we’ll write now and next from now on, respectively. It is
now only a simple exercise to write up the following algorithm:

Input: trace t = e1e2...en
next[10]← 0;
next[9]← 0;
next[8]← 0;
next[7]← next[8] implies next[9];
next[6]← 0;
next[5]← 0;
next[4]← next[7];
next[3]← next[6];
next[2]← next[3] implies next[4];
next[1]← 1;
for i = n downto 1 do {

now[10]← (ei == r);
now[9]← next[10];
now[8]← (ei == q);
now[7]← now[8] implies now[9];
now[6]← (ei == q);
now[5]← (ei == p);
now[4]← now[7] or next[4];
now[3]← now[6] or (now[5] and next[3]);
now[2]← now[3] implies now[4];
now[1]← now[2] and next[1];
next← now }

output(next[1]);

Given a fixed LTL formula, the analysis of this algorithm is straightforward.
Its time complexity is Θ(n) where n is the length of the input trace, the constant
being given by the size of the LTL formula. The memory required is constant,
since the length of the two arrays is the size of the LTL formula. However, one
may want to also include the size of the formula, say m, into the analysis; then

the time complexity is obviously Θ(n · m) while the memory required is 2 · m
bits. The authors think that it’s hard to find an algorithm running faster than
the above in practical situations.

4 The Main Algorithm

We now formally describe our algorithm that synthesizes a dynamic program-
ming algorithm from an LTL formula. Our synthesizer is generic, the potential
user being expected to adapt it to his/her desired target language. The algorithm
consists of three main steps:

Breadth First Search. The LTL formula should be first visited in breadth-
first order to assign increasing numbers to subformulae as they are visited.
Let ϕ1, ϕ2, ..., ϕm be the list of all subformulae in BFS order. Because of the
semantics of finite trace LTL, this step insures us that the truth value of
ti |= ϕj can be completely determined from the truth values of ti |= ϕj′

for all j < j′ ≤ m and the truth values of ti+1 |= ϕj′ for all j ≤ j′ ≤ m.
This recurrence gives the order in which one should generate the code.

Loop Initialization. Before we generate the “for” loop, we should first ini-
tialize the vector next[1..m], which basically gives the truth values of the
subformulae on the empty trace. According to the semantics of LTL, one
should fill the vector next backwards. For a given m ≥ j ≥ 1, next[j] is
calculated as follows:
– If ϕj is a variable then next[j] = 0. Notice that ϕm is always a variable.

In a more complex setting of LTL, containing more complex propositions
than just propositional variables, one would have to evaluate ϕj in the
context of the empty trace or of the final state generated by the trace of
events;

– If ϕj is ¬ϕj′ for some j < j′ ≤ m, then next[j] = not next[j′], where not
is the negation operation on booleans (bits);

– If ϕj is ϕj1 Op ϕj2 for some j < j1, j2 ≤ m, then next[j] = next[j1] op next[j2],
where Op is any propositional operation and op is its corresponding
boolean operation;

– If ϕj is ◦ϕj′ then clearly next[j] = 0 according to the semantics of finite
trace LTL;

– If ϕj is 2ϕj′ then next[j] = 1 because the empty trace satisfies “always”
everything;

– If ϕj is 3ϕj′ then next[j] = next[j′] because there are no further events
that could make ϕj′ hold in the future: it must hold now;

– If ϕj is ϕj1 U ϕj2 for some j < j1, j2 ≤ m, then next[j] = next[j2] for the
same reason as above.

Loop Generation. Because of the dependences in the recursive definition of
finite trace LTL satisfaction relation, one is expected to visit the trace back-
wards, so the loop index will vary from n downto 1. The loop body will
update/calculate the vector now and in the end will move it into the vector
next to serve as basis for the next iteration. At a certain iteration i, the
vector now is updated also backwards as follows:

– If ϕj is a variable then now[j] only depends on the event ei. In our
simplified version of LTL, now[j] is 1 if and only if ei = ϕj . In a more
complex finite trace LTL where ϕj was a proposition, one would be
expected to evaluate ϕj in a state at moment i.

– If ϕj is ¬ϕj′ for some j < j′ ≤ m, then now[j] = not now[j′];
– If ϕj is ϕj1 Op ϕj2 for j < j1, j2 ≤ m, then now[j] = now[j1] op now[j2],

where Op is any propositional operation and op is its corresponding
boolean operation;

– If ϕj is ◦ϕj′ then now[j] = next[j′] since ϕj holds now if and only if ϕj′

hold at the previous step (which treated the next event, the i+ 1-th);
– If ϕj is 2ϕj′ then now[j] = now[j′] and next[j] because ϕj holds now if

and only if ϕj′ holds now and ϕj hold at the previous iteration;
– If ϕj is 3ϕj′ then now[j] = now[j′] or next[j] because of similar reasons

as above;
– If ϕj is ϕj1 U ϕj2 for some j < j1, j2 ≤ m, then because of the recursion

at the end of Section 2, now[j] = now[j2] or (now[j1] and next[j]).

After each iteration i, next[1] tells whether the initial LTL formula is validated
by the trace eiei+1...en. Therefore, the desired output is next[1] after the last
iteration. Putting all the above together, one can now write up the generic pseu-
docode presented in the appendix which can be implemented very efficiently on
any current platform. Since the BFS procedure is linear, the algorithm synthe-
sizes a dynamic programming algorithm from an LTL formula in linear time
with the size of the formula.

References

1. Kuck & Associates. Assure, 2000. http://www.kai.com/parallel/assuret.

2. Manuel Clavel, Francisco J. Durán, Steven Eker, Patrick Lincoln, Narciso Mart́ı-
Oliet, José Meseguer, and José F. Quesada. Maude: Specification and Pro-
gramming in Rewriting Logic, March 1999. Maude System documentation at
http://maude.csl.sri.com/papers.

3. James Corbett, Matthew B. Dwyer, John Hatcliff, Corina S. Pasareanu, Robby,
Shawn Laubach, and Hongjun Zheng. Bandera : Extracting Finite-state Models
from Java Source Code. In Proceedings of the 22nd International Conference on
Software Engineering, Limerich, Ireland, June 2000. ACM Press.

4. Claudio Demartini, Radu Iosif, and Riccardo Sisto. A Deadlock Detection Tool
for Concurrent Java Programs. Software Practice and Experience, 29(7):577–603,
July 1999.

5. Doron Drusinsky. The Temporal Rover and the ATG Rover. In Klaus Havelund,
John Penix, and Willem Visser, editors, SPIN Model Checking and Software Ver-
ification, volume 1885 of Lecture Notes in Computer Science, pages 323–330.
Springer, 2000.

6. Rob Gerth, Doron Peled, Moshe Vardi, and Pierre Wolper. Simple On-the-fly Au-
tomatic Verification of Linear Temporal Logic. In Proceedings of the 15th Workshop
on Protocol Specification, Testing, and Verification. North-Holland, 1995.

7. Jerry Harrow. Runtime Checking of Multithreaded Applications with Vi-
sual Threads. In Klaus Havelund, John Penix, and Willem Visser,
editors, SPIN Model Checking and Software Verification, volume 1885
of Lecture Notes in Computer Science, pages 331–342. Springer, 2000.
http://www5.compaq.com/products/software/visualthreads.

8. Klaus Havelund. Using Runtime Analysis to Guide Model Checking of Java Pro-
grams. In Klaus Havelund, John Penix, and Willem Visser, editors, SPIN Model
Checking and Software Verification, volume 1885 of Lecture Notes in Computer
Science, pages 245–264. Springer, 2000.

9. Klaus Havelund, Michael R. Lowry, and John Penix. Formal Analysis of a Space
Craft Controller using SPIN. In Proceedings of the 4th SPIN workshop, Paris,
France, November 1998. To appear in IEEE Transactions of Software Engineering.

10. Klaus Havelund and Thomas Pressburger. Model Checking Java Programs using
Java PathFinder. International Journal on Software Tools for Technology Transfer,
2(4):366–381, April 2000. Special issue of STTT containing selected submissions
to the 4th SPIN workshop, Paris, France, 1998.

11. Klaus Havelund and Grigore Roşu. Testing linear temporal logic for-
mulae on finite execution traces, 2000. Submitted for publication.
http://ase.arc.nasa.gov/people/grosu.

12. Klaus Havelund and Natarajan Shankar. Experiments in Theorem Proving and
Model Checking for Protocol Verification. In Marie Claude Gaudel and Jim Wood-
cock, editors, FME’96: Industrial Benefit and Advances in Formal Methods, volume
1051 of Lecture Notes in Computer Science, pages 662–681. Springer, 1996.

13. Gerard J. Holzmann. The Model Checker SPIN. IEEE Transactions on Soft-
ware Engineering, 23(5):279–295, May 1997. Special issue on Formal Methods in
Software Practice.

14. Gerard J. Holzmann and Margaret H. Smith. A Practical Method for Verifying
Event-Driven Software. In Proceedings of ICSE’99, International Conference on
Software Engineering, Los Angeles, California, USA, May 1999. IEEE/ACM.

15. Insup Lee, Sampath Kannan, Moonjoo Kim, Oleg Sokolsky, and Mahesh
Viswanathan. Runtime Assurance Based on Formal Specifications. In Proceedings
of the International Conference on Parallel and Distributed Processing Techniques
and Applications, 1999.

16. David Y.W. Park, Urlich Stern, and David L. Dill. Java Model Checking. In
Proceedings of the First International Workshop on Automated Program Analysis,
Testing and Verification, Limerick, Ireland, June 2000.

17. Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th IEEE
Symposium on Foundations of Computer Science, pages 46–77, 1977.

18. Stefan Savage, Michael Burrows, Greg Nelson, Patrik Sobalvarro, and Thomas
Anderson. Eraser: A Dynamic Data Race Detector for Multithreaded Programs.
ACM Transactions on Computer Systems, 15(4):391–411, November 1997.

19. Sitraka Software. Jprobe, 2000. http://www.sitraka.com/software/jprobe.

20. Scott D. Stoller. Model-Checking Multi-threaded Distributed Java Programs. In
Klaus Havelund, John Penix, and Willem Visser, editors, SPIN Model Checking
and Software Verification, volume 1885 of Lecture Notes in Computer Science,
pages 224–244. Springer, 2000.

21. Willem Visser, Klaus Havelund, Guillaume Brat, and SeungJoon Park. Model
Checking Programs. In Proceedings of ASE’2000: The 15th IEEE International
Conference on Automated Software Engineering. IEEE CS Press, September 2000.

A Generic Pseudocode for the Synthesizer

The following generic program implements the technique discussed in the paper.
It takes as input an LTL formula and generates a for loop which traverses the
trace of events backwards, thus validating or invalidating the formula.

Input: LTL formula ϕ
output(“Input: trace t = e1e2...en”);
let ϕ1, ϕ2, ..., ϕm be all the subformulae of ϕ is BFS order
for j = m downto 1 do {

output(“next[”, j, “]← ”);
if ϕj is a variable then output(“0;”);
if ϕj = ¬ϕj′ then output(“not next[”,j′, “];”);
if ϕj = ϕj1 Op ϕj2 then output(“next[”,j1, “] op next[”, j2, “];”);
if ϕj = ◦ϕj′ then output(“0;”);
if ϕj = 2ϕj′ then output(“1;”);
if ϕj = 3ϕj′ then output(“next[”,j′, “];”);
if ϕj = ϕj1 U ϕj2 then output(“next[”,j2, “];”); }

output(“for i = n downto 1 do {”);
for j = m downto 1 do {

output(“ now[”, j, “]← ”);
if ϕj is a variable then output(“(ei ==”, ϕj , “);”);
if ϕj = ¬ϕj′ then output(“not now[”,j′, “];”);
if ϕj = ϕj1 Op ϕj2 then output(“now[”,j1, “] op now[”, j2, “];”);
if ϕj = ◦ϕj′ then output(“next[”, j′, “];”);
if ϕj = 2ϕj′ then output(“now[”, j′, “] and next[”, j, “];”);
if ϕj = 3ϕj′ then output(“now[”, j′, “] or next[”, j, “];”);
if ϕj = ϕj1 U ϕj2 then output(“now[”, j2, “] or (now[”, j1, “] and

next[”, j, “]);”); }
output(“ next ← now; }”);
output(“output next[1];”);

where Op is any propositional connective and op is its corresponding boolean
operator.

The boolean operations used above are usually very efficiently implemented
on any microprocessor and the vectors of bits next and now are small enough to
be kept in cache. Moreover, the dependencies between instructions in the gener-
ated “for” loop are simple to analyze, so a reasonable compiler can easily unfold
or/and parallelize it to take advantage of machine’s resources. Consequently, the
generated code is expected to run very fast.

