RV'03,

ENTCS 89, issue 2, pp 108 - 127. 2003.

Towards Monitoring-Oriented Programming:
A Paradigm Combining Specification and
Implementation

Feng Chen and Grigore Rogu !?

Department of Computer Science
University of Illinois at Urbana-Champaign
Urbana IL, USA

Abstract

With the explosion of software size, checking conformance of implementation to
specification becomes an increasingly important but also hard problem. Current
practice based on ad-hoc testing does not provide correctness guarantees, while
highly confident traditional formal methods like model checking and theorem prov-
ing are still too expensive to become common practice. In this paper we present a
paradigm for combining formal specification with implementation, called monitoring-
oriented programming (MoP), providing a light-weighted formal method to check
conformance of implementation to specification at runtime. System requirements
are expressed using formal specifications given as annotations inserted at various
user selected places in programs. Efficient monitoring code using the same tar-
get language as the implementation is then automatically generated during a pre-
compilation stage. The generated code has the same effect as a logical checking
of requirements and can be used in any context, in particular to trigger user de-
fined actions, when requirements are violated. Our proposal is language- and logic-
independent, and we argue that it smoothly integrates other interesting system de-
velopment paradigms, such as design by contract and aspect oriented programming.
A prototype has been implemented for Java, which currently supports requirements
expressed using past time and future time linear temporal logics, as well as extended
regular expressions.

1 Introduction

Most engineering disciplines nowadays consider and accept monitoring as a
major design principle to increase safety, reliability and dependability of their
products. This is not only true in the context of classical engineering branches,
such as building or bridge construction, but also in more recent ones. For

1 This material is based upon work supported by the joint NSF/NASA grant CCR-0234524.
2 Email: (fengchen, grosu)@uiuc.edu

Preprint submitted to Elsevier Preprint 9 August 2006

RV'03,

ENTCS 89, issue 2, pp 108 - 127. 2003.

example, almost all electronics today have one or more fuses, which will rapidly
put the device in a safe state if "something wrong happens”, to either protect
the humans using the device or to protect other more expensive parts which
could be damaged by cascading effects. In hardware engineering it is common
practice to monitor a hardware device or part of it using another, typically
much simpler device, such as a watchdog, which would reset or restart the main
device whenever it seems to misbehave. In aircraft and spacecraft, automatic,
rather fancy controllers are typically monitored to ensure that their predicted
state stays within a ”"stability envelope”, from where the system can be safely
and timely controlled using better understood but slower techniques.

In this paper we advocate the idea that monitoring can and should also be
a design principle in software engineering. Unlike in many other engineering
branches, software engineers tend to not be responsible when their products,
the software programs, fail. All of us got used with rebooting our Windows
machines when ”something wrong happens”. The situation is actually much
worse, because our lives in hospitals or aircraft as well as our privacy and
security on the internet depend on huge software systems. Formal program
verification [2] techniques, such as theorem proving and model checking, rig-
orously and systematically check that a software or hardware product satisfies
its intended requirements specification. The main problem with these tech-
niques is that they do not always scale up well, so they often are not usable
in common software practice. In this paper we propose that specification and
implementation should together form a system, and that they should have a
dual role: specification is checked at runtime against the execution trace gen-
erated by the implementation. Moreover, they can and should interact to each
other by design; for example, recovery code can be provided to be executed
when a safety specification is violated.

The proposed paradigm is simply called monitoring-oriented programming,
and is abbreviated MoP. The general paradigm is language and specification
formalism independent. However, a prototype MoP environment has been im-
plemented and is also presented. Practice has shown that there is no universal
logical framework to express requirements. Certain requirements can be best
expressed using a certain logic formalism, for example temporal logics, while
others can be best expressed using others. On the other hand, programming
languages are intended to be universal. For these reasons, we believe that
any MoP environment should provide the ability to define monitoring logical
frameworks on top of a target programming language. Based on experience
with monitoring logics, we provide a formal abstraction of the informal notion
of "monitoring logic”. Essentially one can add a new logic to a MoP environ-
ment by providing a program which takes as input a formula and returns an
output in a pre-defined format (See Section []). One can regard MoP from at
least three viewpoints:

RV'03,

ENTCS 89, issue 2, pp 108 - 127. 2003.

e As a discipline by which one increases the reliability and dependability of a

system by monitoring its requlrements against its implementation.
* As an extension of programming languages with logics. One can add logical

statements anywhere in the program, that can refer to past or future states
of the program. These special statements are like any other programming
language boolean expressions, so they give the user a lot of flexibility in
how to use them: to terminate the program, guide its execution, add new

functionality, throw exceptions, etc.
e As a light-weighted formal method that complements the more traditional

formal methods such as theorem proving and model checking. The idea here
is that MoP avoids verifying an implementation against its specification
statically, but rather does not let it go wrong at runtime.

Section [2] discusses several factors that we find important in motivating and
designing an MoP environment. Section [3] describes our MoP environment
at a high level, Section [presents three monitoring logics that are currently
supported, and then Section B presents our current prototype for Java, called
Java-MoP. Section [Blrelates MoP with other paradigms in system development
and analysis, such as design by contract, aspect oriented programming and
runtime verification, and then Section [7] concludes the paper.

2 Advantages and Desirable Characteristics of MoP

This section discusses advantages and necessary features of MoP.
2.1 Separation of Roles

An MoP environment facilitates separation of responsibilities, making the
project development process more effective. It is natural in an MoP appli-
cation to consider several phases and assign specific roles to specific individu-
als. These can include logic experts, domain experts, requirement analyzers,
software designers and programmers. Logic experts and domain experts work
together to find out the logics which best meet the application domain needs.
Domain experts and requirement analyzers work together to formally spec-
ify the requirements of applications. Requirement analyzers help designers
to design application’s architecture, assuring the requirements are correctly
obeyed. At this phase, formal specifications can be integrated into the design
as additional information. Designers help the programmers understand and
implement the design, including appropriate specifications as annotations into
the code. Programmers do not necessarily need to understand these specifi-
cations; they only need to provide the basic ingredients in order for those
specifications to be transformable into real monitors, namely the atomic pred-
icates.

The major advantage here is that individuals do not need to know much
beyond their own area of expertise. For instance, it is unnecessary for pro-
grammers to know about logics; all they need to know is what the atomic
predicates they need to provide represent with respect to the state of the pro-

RV'03,

ENTCS 89, issue 2, pp 108 - 127. 2003.

Programmer Requirement Analyzer Domain Expert Mathematician

[— e e

NN

Annotated Formal/Informal Domain-Specifi
T VS S S——
Programs Specifications Logic

D:SoﬂwareAnifacts —= :Impacts of Roles on Artifacts “ : Inter-Communication Between Roles
Fig. 1. Separation of Roles.
gram they implement. On the other hand, logic experts and domain experts

do not need to know programming, not even what particular programming
language is used. Figure [Il shows the needed interaction between individuals
involved in an MoP application development process.

2.2 Language and Logic Independence

A major thought in our design is to not modify the host programming lan-
guage, so the users can keep on their favorite development tools and compilers.
The mechanism by which one can add formal specifications to the program
is through annotations, a special kind of comments, which can be processed
by MoP tools but ignored by other language tools. An MoP tool synthesizes
host language code from these annotations.

Besides, one should keep the annotation language simple and generic.
Our specifications are as simple as possible, they consist of only two enti-
ties, namely atomic predicates and formulae. The predicates usually have
clear intuitive meaning for programmers, and formulae are defined using the
predicates plus the syntax of the underlying logic of the specification under
consideration. As discussed above, the formulae are extracted from require-
ments, as defined by domain experts. Programmers only need to understand
the meaning of the atomic predicates, implement them in the host language,
e.g., Java, and reasonably handle the possible violation.

2.3 Automation, Extensibility and Flexibility

One would like to add new monitoring logics to an MoP environment modu-
larly, like plug-ins. Once a new logic is added, then one would like to simply
allow formal specifications in those logics in a ”push-button” fashion. Moni-
toring logic plug-ins can be stored in WWW data-bases, so users do not have
to implement already existing logics. A general architecture, which enables
the use of logics as plug-ins, needs therefore to be designed. Within such an
architecture, primary modules are clearly separated and communication pro-
tocols between modules need to be standardized. Tools will specialize this
architecture to support specific programming languages and logics. However,
although the tools are usually language-specific, an important observation is
that the result of transformations of logic specifications can be abstract and
language independent. By separating the logic transformation modules from

RV'03,

ENTCS 89, issue 2, pp 108 - 127. 2003.

the code generation, we can reuse the transformation modules (what we call
code generators in Subsection B]) for different languages. Besides, the result
of the logic engines is hard and unnecessary to be standardized, due to the
distinct natures of logics. We thus do not restrict the protocol between the
logic engines and the code generators, hereby giving the logic designers the
maximum of flexibility.

2.4 Inline Monitoring versus Offline Monitoring

Depending on where the monitoring code is executed, one can distinguish be-
tween inline monitoring and offline monitoring. In inline monitoring, the mon-
itoring code replaces the annotation containing the specification from which
it was generated. That means that monitoring is being performed using the
resources of the monitored program. In particular, an inline monitor can-
not detect whether the program gets deadlocked or is stopped unexpectedly.
However, it has the advantage that the real program’s state is available, so
communication overhead is significantly reduced.

On the other hand, in offline monitoring the monitoring code is executed
within a different process, potentially on a different machine. The annotation
is then replaced by instrumentation code which emits relevant events to the
monitoring process. One advantage of offline monitoring is that it allows the
centralized computation model, namely one monitor server can be used to
monitor multiple programs. Due to advantages and disadvantages of inline
versus offline monitoring, we believe that a good MoP environment should
allow the users to also specify the desired type of the generated monitor.

2.5 A Light-Weighted Formal Method

Formal methods provide high confidence, but they are not always practical
due to state explosion or invariant discovery problems. Testing is widely
used in practice but often in an adhoc manner and it is unable to guarantee
correctness. In MoP, one merges testing and formal specification in order to
achieve the benefits of both approaches, while avoiding some of the pitfalls
of adhoc testing and the complexity of full-blown theorem proving and model
checking. Of course there is a price to pay in order to obtain a scalable
technique: the loss of coverage. The suggested framework can only be used
to examine single execution traces, and can therefore not be used to prove a
system correct. MoP is based on the belief that software engineers are willing
to trade coverage for scalability. With respect to error discovery, MoP can
therefore be regarded as a framework implementing efficient algorithms to
find many errors in programs, but admittedly not all of them.

3 The Architecture of an MoP Environment

Figure 2] shows the general architecture and Figure [3] shows the workflow
of the MoP environment that we have implemented so far, which is further
instantiated to Java in Section Bl There are three levels of modules, namely

RV'03,

ENTCS 89, issue 2, pp 108 - 127. 2003.

Interface Level J ‘ l

{Process Comroller} [Process Comroller} {Process Comroller}

Language
Level

{ Code Generator } { Code Generator } { Code Generator } { Code Generator }

Logic Level
Logic Engine Logic Engine

Fig. 2. Architecture of an MoP environment
the interface level, the language level and the logic level. Modules on a lower
level can be reused by those on the adjacent upper level. The modules of the
interface level are called process controllers, those on the language level are
called code generators, and those on the logic level are called logic engines.
The process controllers have three major functions. The first is to ex-
tract the formal specifications from the annotations and dispatch them to
corresponding code generators. The second is to collect the outputs of code
generators and transform them into host language executable code. The third
is to provide an interfaces to users, text- or graphic-based.

Code generators play an intermediate role between the process controllers
and the logic engines. They take formal specifications from main modules,
turn them into specific formats recognizable by the logic engines, and then
send them to the corresponding logic engines. In the other direction, they
read the results produced by logic engines and translate them into fragments
of real programs which are sent to the process controllers to be transformed
into real monitoring code. Both the process controllers and the code generators
are host language specific.

The logic engines are those which give the power of the MoP approach.
Each yields an efficient monitoring algorithm for a specific monitoring logic.
They take formulae as inputs. The outputs of the engines consist of abstract
pseudocode, which is host-language independent. Thus the logic engines can

AN

Annotated™) Logic Formulae ™)

Programs Specificationg
[

Process Controller Code Generator Logic Engine

-~

Monitored™) Code D) Abstract D

Programs Fragments Computatiol

D : Software Artifacts [:I : System Modules — : Dataflow

Fig. 3. Workflow in an MoP environment

RV'03,

ENTCS 89, issue 2, pp 108 - 127. 2003.

be reused across different languages. More precisely, a code generator module
will be implemented to wrap a logic engine for a specific language, while a
logic engine can serve multiple code generators for different languages.

The communication protocols between modules should answer two ques-
tions, how they interact with each other and what is the format of the in-
formation transferred between them. To achieve the maximum of flexibility,
the modules are implemented as individual programs whose inputs and out-
puts consist of just ASCII text. The formats of modules inputs/outputs are
standardized to make the MoP environment easily extensible. The input of
code generators is directly extracted from code annotations, containing the
language-specific definition of the predicates and the monitoring formulae de-
fined using predicates. The output may include several parts according to
the requirements of the underlying logics. Section M discusses the output for-
mat in more detail. We do not restrict the formats of the logical engines’
inputs/outputs, since there is no uniform, effective solution to all logics. For
example, DFAs are enough for some logics, such as future time linear tem-
poral logic, but other logics need more complex procedures, e.g., dynamic
programming for past time linear temporal logic (see Section []).

Each code annotation is divided into three parts: the annotation head
contains a keyword identifying uniquely a logic; the logic specification contains
the definitions of the predicates and the formula to monitor; the failure handler
contains the user defined code which will be triggered when the formula is
violated. Subsection (.3 gives a concrete example of using the Past Time
Linear Temporal Logic in Java.

4 Logical Frameworks for Monitoring

Different requirements can be best expressed using different underlying log-
ics, so one would ideally like to attach new logical frameworks for expressing
requirements in a modular way to an MoP environment. Since formal require-
ments need to be translated into executable code, logical frameworks should
provide a standardized interface in order to facilitate extensibility of MoP.
The input of a logic module is clearly a logical formula, but the format of its
output is less obvious.

We propose five dimensions that the output of any monitoring logic module
should consider in order to be attachable to an MoP environment. These are
listed below and will be instantiated in the sequel for the three logics discussed:

Declarations. This part lists as variables those program states which should
be maintained for the next step of monitoring. These variables need to be
inserted by the MoP environment at appropriate places, which depend upon
the target programming language.

Initialization. The initialization phase prepares the variables for starting
the monitoring and is executed only once, the first time the monitoring

RV'03,

ENTCS 89, issue 2, pp 108 - 127. 2003.

breakpoint is encountered during the execution of the program.

Monitoring body. The monitoring body is the main part of the monitor,
which is being executed any time the monitor breakpoint is reached, ex-
cept the first time. Depending on the type of monitoring desired for the
requirement in question, such as inline versus offline, or synchronous versus
asynchronous, the monitoring body is executed before the program is al-
lowed to continue, or is executed in parallel via forking, or even as a process
on a different machine.

Success condition. This gives the condition stating that the monitoring re-
quirement has been fulfilled, so there is no reason to monitor it anymore. In
the context of future time temporal logic, as an example, a successful condi-
tion becomes true when a requirement of the form “eventually F” is being
monitored and F' has been observed to hold. In the context of an execution
environment supporting self-modifying code, the monitor can be entirely
removed when the success condition becomes true, to eliminate entirely the
runtime overhead.

Failure condition. This gives the condition that shows when the trace vi-
olates the requirements. When this condition becomes true, user provided
recovery code will be executed. “Recovery” should be taken with a grain
of salt here, because such code can not only throw an exception or put the
system in a safe state, but also attach new functionality to the program.

We have implemented these for past time and future time linear temporal
logics (ptLTL) [I6J13], as well as for extended regular expressions (ERE), so
these three logics are supported by our current MoP prototype. We briefly
present our implementations of these three logics next, mentioning that we are
currently designing implementing modules for real-time temporal logic (RTL)
[17] and for metric temporal logic (MTL) [18] following the same structure.
4.1 Past Time Linear Temporal Logic

Past time linear temporal logic (ptLTL) formulae are routinely used to express
safety requirements. In this section we show how the dynamic programming
based monitor generator presented in [7] can be organized as a logic engine in
our MoP environment.

4.1.1 Syntax and Semantics

We allow the following constructors for ptLTL formulae, where A is a set of
“atomic propositions”:

F == true| false | A| -F | F op F Propositional operators
oF |[oF |gF |F S F|F S, F Standard past time operators
TFI|LF|[F,F)s|[F,F)y Monitoring operators

The propositional binary operators, op, are the standard ones, that is, disjunc-
tion, conjunction, implication, equivalence, and exclusive disjunction. The

RV'03,

ENTCS 89, issue 2, pp 108 - 127. 2003.

standard past time and the monitoring operators are called “temporal opera-
tors”, because they refer to other (past) moments in time. The operator o F
should be read “previously F”; its intuition is that F' held at the immediately
previous step of execution. [should be read “eventually in the past F”,
with the intuition that there is some past moment in time when F' was true.
0F" should be read “always in the past F”, with the obvious meaning. The
operator Fy Ss F5, which should be read “F) strong since F,”, reflects the
intuition that F5 held at some moment in the past and, since then, Fi held
all the time. F} Sw F; is a weak version of “since”, read “Fj weak since Fy”,
saying that either F} was true all the time or otherwise F} Ss F5.

The monitoring operators T, |, [,)s, and [, _),, were inspired by work
in runtime verification in [10]. We found these operators often more intu-
itive and compact than the usual past time operators in specifying runtime
requirements, despite the fact that they have the same expressive power as the
standard ones. The operator T F should be read “start F”; it says that the
formula F' just started to be true, that is, it was false previously but it is true
now. Dually, the operator | F' which is read “end F”, carries the intuition
that F" ends to be true, that is, it was previously true but it is false now. The
operators [Fy, Fy)s and [F}, F3),, are read “strong/weak interval Iy, F»” and
they carry the intuition that F; was true at some point in the past but F» has
not been seen to be true since then, including that moment. For example, in
the phone system application which is presented later in Subsection 5.3], the
formula, B(7 (dialing) — — e(busyTone V connected)), states that one cannot
dial when the phone is busy or connected.

4.1.2 Algorithm

An observation of crucial importance is that the semantics of ptLTL can be
defined recursively, in such a way that the satisfaction relation for a formula
and a trace can be calculated along the execution trace looking only one step
backwards. For example, according to the formal, nonrecursive, semantics, a
trace t = $182...5, satisfies the formula [_, _),, if and only if either F;, was false
all the time in the past or otherwise F; was true at some point and since then
Fy was always false, including that moment. Therefore, in the case of a trace
of size 1, i.e., when n = 1, it follows immediately that ¢t &= [F1, F3),, if and
only if not t = F». Otherwise, if the trace has more than one event then first
of all not t |= F5, and then either ¢ |= F or else the prefix trace satisfies the
interval formula, that is, t,_1 &= [F1, F2),. Similar reasoning applies to the
other recurrences.

Based on the recursive semantics of ptLTL, efficient monitors can be gen-
erated from ptLTL formulae. For example, let T p — [q,] (rVs))s be a ptLTL-
formula that we want to generate code for. The formula states: “whenever p
becomes true, then ¢ has been true in the past, and since then we have not
yet seen the end of r or s”. The code translation depends on an enumeration

RV'03,

ENTCS 89, issue 2, pp 108 - 127. 2003.

of its subformulae that satisfies the enumeration invariant. any formula has
an enumeration number smaller than the numbers of all its subformulae. Let
Yo, 1, ---, g be such an enumeration:

¥o :T p— [q7l (T \ 8))87

®1 :T b,

Y2 =D,

Y3 = [qal (71 \ S))S:
Y41 = (q,

w5 =1 (rVvs),

pe =1V S,

Y7 =T,

Ysg = S.

The input to the generated program will be a finite trace t = s1s5...5,
of n events. The generated program will maintain a state via a function
update : State x Fvent — State, which updates the state with a given event.
According to the recursive semantics, one can use two boolean arrays, now|8|
and pre[8], to record the current and previous states respectively, with the
meaning that now(i] is true if and only if the current ¢; is true. The algorithm
in [7] implemented as a logical engine generates the following output for the
formula above:

Declarations. boolean now[8], pre[§]

Initialization. The following list of assignments:

state «— update(state, s1)

pre[8] «— s(state); pre[7] < r(state); pre[6] «— pre[7] or pre[§];
pre|b| « false; pre[d] «— q(state); pre[3] < pre[d] and not pre[5]
pre|2] < p(state); pre[l] < false; pre[0] < not pre[l] or pre[3

Monitoring Body. The following list of assignments:

state < update(state, s;
now(8] « s(state); now|7] < r(state)

now|6] < now(7] or now[8]; now[5] < not now[6] and pre[6]
now|4| <« q(state); now[3| < (pre[3] or now[4]) and not now[5|
now|2| < p(state); now|l] «— now(2| and not pre|2]

now|0] < not now[1l] or now[3]; pre < now

Failure Condition. now[0] = false

ptLTL formulae are meant to be always satisfied, so there is no success
condition for ptLTL. The above program can be further optimized, considering
that there are only three formulae need to be remembered to calculate the
next states, namely pre[6], pre[3] and pre[2]. Then we can get the following
optimized monitor body, which is the real output of our logic module:

state < update(state, s;)

now[3| < r(state) or s(state)

now|2| <« (pre[2] or q(state)) and (now[3] or not pre[3])
now(l] < p(state)

if (now[1] and not pre[l] and not now[2|)

10

RV'03,

ENTCS 89, issue 2, pp 108 - 127. 2003.

then output(‘‘property violated’’)

Given a fixed ptLTL formula, the analysis of this algorithm is straightfor-
ward. Each time the monitoring body is executed, it takes time ©(m), where
m is the number of temporal operators in the ptLTL formula. The space
required is also very reduced, 2m bits.

4.2 Future Time Linear Temporal Logic

Future time linear temporal logic (ftLTL) is sometimes more convenient to
express safety properties than ptLTL. We next show how the ftLTL moni-
tors based on binary transition tree finite state machines (BTT-FSM) [5] are
generated by an appropriate logic engine in our MoP environment.

4.2.1 Syntaz and Semantics

ftLTL has the following constructors:

F = true| false| A| —~F | F op F Propositional operators

OF |oF | FU F | oF Future time operators
ftLTL provides in addition to the propositional logic operators the temporal
operators O(always), o(eventually), U (until), and o(next). An ftLTL stan-
dard model is a function t : Nat™ — 27 for some set of atomic propositions
P, i.e., an infinite trace over the alphabet 27, which maps each time point
(a natural number) into the set of propositions that hold at that point. The
operators have the following interpretation on such an infinite trace. Assume
formulae X and Y. The formula 0X holds if X holds in all time points, while
©X holds if X holds in some future time point. The formula X ¢ Y (X until
Y') holds if Y holds in some future time point, and until then X holds (so we
consider strict until). Finally, oX holds for a trace if X holds in the suffix
trace starting in the next (the second) time point. The propositional opera-
tors have their obvious meaning. As an example illustrating the semantics,
the formula O(X — oY) is true if for any time point (O) it holds that if X is

true then eventually (¢) Y is true.
4.2.2 Algorithm

It is shown in [BJ6] how an efficient data-structure, called binary transition
tree finite state machine (BTT-FSM), can be generated from a future time
LTL formula. A BTT-FSM is a finite state machine in which transitions are
enabled by executing a series of conditionals organized as binary transition
trees, whose role is to minimize the amount of computation needed in order to
make a transition; BTT-FSMs are specifically tuned for monitoring purposes,
to reduce the monitoring overhead. BTT-FSMs generated from ftLTL formu-
lae have initial states and two special states, called true and false, with special
meanings: true means that the sequence of states observed so far validates the
ftLTL formula, in the sense that any subsequent sequence of states would form
a model satisfying the formula; false means the opposite, that is, that there is
no possible continuation of the observed sequence of states which would form
a model satisfying the formula.

11

RV'03,

ENTCS 89, issue 2, pp 108 - 127. 2003.

Briefly, optimal BTT-FSMs are generated in two steps. A finite state
machine whose transitions are activated by boolean propositions is generated
first, and then the transitions out of each state are organized in a BTT. The
latter can be done by generating all possible BTTs correctly implementing the
transitions from each state, and then selecting the minimal one. The former is
rather technical and we do not discuss it here; the interested reader is refered
to [5] for more details. An example of a BTT-FSM for a traffic light controller
requirements formula D(green — —red U yellow), saying that "after green
yellow comes” can be seen in Figure 4l The logic module implemented in our

State | BTT for non-terminal events | BTT for terminal events

1
2
true false

Fig. 4. A BTT-FSM for the formula O(green — —red U yellow)

current MoP environment generates the following output for this formula:

Declarations. integer state
Initialization. state =1

Monitoring Body. The following case statement:

case(state)
1 : state =yellow ? 1 : green? (red? —1 : 2) : 1;
2 . state =yellow 71 : red? —1 : 2;

Failure Condition. state = —1

There is no success condition for this formula, but that may exist for some
formulae, such as oF. The size of these monitors can be exponential (as a
function of the size of the ftLTL formula) but they only need to evaluate at
most all the atomic state predicates in order to proceed to the next state
when a new event is received, so the runtime overhead is actually linear at
worst. The size of these monitors can become a problem when storage is a
scarce resource, SO we pay special attention to generating optimal BTT-FSMs.
Interestingly, the number of state predicates to be evaluated tends to decrease
with the number of states, so the overall monitoring overhead is also reduced.

12

RV'03,

ENTCS 89, issue 2, pp 108 - 127. 2003.

4.3 Eztended Regular Ezpression
Ordinary software engineers and programmers can understand easily regular

patterns, as shown by the immense interest in and the success of scripting
languages like Perl, based essentially on regular expression pattern matching.
We believe that regular expressions provide an elegant and powerful specifica-
tion language also for monitoring requirements, because an execution trace of
a program is in fact a string of states. Extended regular expressions (EREs)
add complementation to regular expressions, which brings additional benefits
by allowing one to specify patterns that must not occur during an execu-
tion. Complementation gives one the power to express patterns on strings
non-elementarily more compactly.

4.8.1 Syntax and Semantics

The EREs have the following constructors:

Ri:=R+R|R-R|RONR|R"|-Rl|ale|0.

The language defined by a R, denoted by L(R), is defined inductively as
L(0) =0,L(e) = {e}, L(A) = {A}, L(R1 + Ra) = L(I1) U L(Ry),

[,(Rl . RQ) = {’LUl * Wo ‘ wy € ﬁ(Rl) and Wy € [,(RQ)},
L(R*) = (L(R))*, L(R. N Ry) = L(Ry) N L(Rs), L(=R) = £\ L(R).

Given an ERE, as defined above using union, concatenation, Kleene Closure,
intersection and complementation, one can translate it into an equivalent ex-
pression that does not have any intersection operation, by applying De Mor-
gan’s Law: Ry N Ry = =(—Ry + —Ry). The translation only results in a linear
blowup in size.

4.8.2 Algorithm

A simple, straightforward, and practical approach to monitor EREs is to gen-
erate optimal deterministic finite automata (DFA) from EREs [9]. The typical
procedure involves the conversion of each negative sub-component of the ERE
to a non-deterministic finite automaton (NFA), determinization of the NFA
into a DFA, complementation of the DFA, and then its minimization. The
algorithm runs in a bottom up fashion starting from the innermost negative
ERE sub components. This method, although generates the minimal au-
tomata, is too complex and cumbersome in practice. Its space requirements
can be non-elementarily larger than the initial regular ERE, because negation
involves an NFA-to-DFA translation, which implies an exponential blow-up;
since negations can be nested, the size of such NFAs or DFAs could be highly
exponential.

Our approach is to generate a minimal BTT-FSM instead (see the pre-
vious subsection) from an ERE using coinductive techniques. Briefly, in our
approach we use the concept of derivatives of a regular expression which is
based on the idea of “event consumption”, in the sense that an extended regu-

13

RV'03,

ENTCS 89, issue 2, pp 108 - 127. 2003.

lar expression R and an event a produce another extended regular expression,
denoted R{a}, with the property that for any trace w, aw € R if and only
if w € R{a}. Let’s consider an operation _{_} which takes an ERE and an
event, then we give several equations which define its operational semantics
recursively, on the structure of regular expressions:

(By + Ry){a} = Rifa} + Rofa} (1)
(Ry - Ry){a} = (Ri{a}) - Ry + if (¢ € Ry) then Ry{a} else) fi (2)
(R*){a} = (R{a}) - R (3)
(=R){a} = ~(R{a}) (4)
b{a} = if (b ==a) then c else () fi (5)

cfa} =0 (6)

)

0{a} =10 (7

For a given ERE one generates all possible derivatives that the ERE can
generate for all possible sequences of events. This set of derivatives is finite
and its size depends on the size of the initial ERE. However a number of these
derivative EREs can be equivalent to each other. We check the equivalence
of EREs using an automatic procedure based on coinduction, getting a set
of equivalence classes of derivatives. These equivalence classes form distinct
states in the optimal BTT-FSM. The BTTs are then generated in a similar
fashion to those for ftLTL described in the previous section.

Experiments with this logic engine are very encouraging. Our implemen-
tation, which is also available graphically on the internet via a CGI server
reachable from http://fsl.cs.uiuc.edu/rv, rarely took longer than one sec-
ond to generate a BTT-FSM. For example, the optimal BTT-FSM for the
ERE — ((— empty) (green red) (— empty)) stating a similar traffic light con-
troller safety policy to the one in the previous section using ERE notation is
generated as in Figure Bl The output of our ERE logic engine is:

yellow

~((green + red + yellow)* (green red) (green + red + yellow)*) ﬁ green
Qw0
yellow

Fig. 5. The optimal BTT-FSM for — ((— empty) (green red) (— empty))

Declarations. integer state
Initialization. state =0

Monitoring Body. The following case statement:

case(state)
0 : state = (yellowVred) 70 : green?1 : —1;
1 : state =green 71 : yellow 70 : —1;

14

RV'03,

ENTCS 89, issue 2, pp 108 - 127. 2003.

Failure Condition. state = —1

5 An MoP Prototype for Java

We have implemented an MoP environment prototype, together with the
three logic engines presented in the previous section. The prototype works
in command-line style, but also provides a graphic user interface (GUI). This
prototype will be soon available to download at http://fsl.cs.uiuc.edu.
Currently, all the logic engines are implemented in Maude. The command
line version is implemented in Perl and the GUI version on top of the Eclipse
platform using Java.

5.1 Owverview

The main advantage of the command-line version is that it provides the ability
to process the code generation in batch. Basically, the command-line tool
is invoked simply by typing in “generate [-1] [-r] pathname”, where the
"pathname” is the path to a properly annotated java file or a list file or a
directory. The simplest scenario is that the input is a Java file. The prototype
processes the file and outputs the result program directly to the standard
output. If the input path is a directory then all Java files in that directory
are processed. The option -r tells the tool to recursively apply the monitor
generation procedure to all subdirectories. The option -/ gives the users a more
controllable way to run the batch process, with a text file containing a list of
Java files as the input file. The tool will read the list file and process all the
listed Java files. When the tool carries out the batch processing, it will backup
the source files and then modify those original files directly. The batch file
option may be desirable when lots of monitors need to be generated or when
they involve large logical formulae which need a long time to be processed.

On the other hand, the GUI tool gives the users a more friendly interface
to the MoP environment. Our GUI tool is implemented as plug-ins to the
Eclipse platform [I5], which contains a powerful and extensible Java IDE.
Having Eclipse and our plug-ins installed, the users can choose to open a Java
file with our editor, namely the Annotated Java Editor (AJE), in the Eclipse
workbench when working on a Java project. Figure [6] shows a snapshot of
an AJE session. The annotations containing logic specifications, as well as
the generated codes, are highlighted, while other parts of the source file are
greyed. Users can navigate through annotations, generate monitoring code
or remove generated codes by simple clicks or hot keys. Along with other
features provided by Eclipse, users can integrate this MoP environment into
their development work, interactively editing annotations, instantly checking
and debugging the generated code, and so on.

5.2 Implementation

The architecture of our prototype, shown in Figure [7is a specialization of the
general architecture in Figure 2l The process controllers and code generators

15

RV'03, ENTCS 89, issue 2, pp 108 - 127. 2003.

b Java - Eclipse Platorm EIE
Fils [dit Hseigsts Sesrch Progsct m,.-.[nm”mlumdm sl
- BR 2| kS|t % e |mf[s 25
& [Pockocirer » = m %
= F = - P 1 T
' L he. rasd 1ne () T 1
= B IE Eawen J oothar Bulionsz
L T whale (| = equals(esa=]) MEOL Commands !
5 E fdsmult p i
- LY et A . s
= i So0 pELTL [axsEic] nﬂ{‘
1) w2 g pradicats dialing l % miuale{~d-) ; Annotation
B[e, g [:ate BiuayTone o % aqualad-h) ;
-) pet . jmus Peodicnbe connect - % aquals{ c-) ;
e Peedicobe discomest ; ® ai-de")
un
A T Formuls - [#] (skare(dinlingh=3il {[%} {busyTone' /eanneckl}}]
= code
F- L throw new INException(formals violated! =)
] ﬂ-am’ -
Alrs (fos #sssacesssssscs Ganacnbed by the foal +esssssssssssanes . T
s iF [ELTL_1_nit)i Manitaring
2 PELTL L new]2] = [% squals("B°) 1 |1 { % squals{e=) 3
il PILTL_L_newil] = [% equala(-d) 1; Cade
L PILTL_ 1 nowil] = Ecwe:
= W L Sustan PELTL_1_init = false ;
| else (
PELTL_1 pre(0] = pelfL_1_now(d]
PLLTL_1 pre(l]| = pHUTL_1_now(l] :
PEETL_1_pre(2| = praL_i_now(Z]
PEETL 1 now]2] = [= aquals(*b*) § || [= aquals{c*) };
PEETL 1 nowll] = [= aquals(~4") 1;
E T = | PHUTL L newi0] = pELTL_L_pesl0] BB (1 pUTL_1 pealZ] || 0 primi_1 mew(l]| |
Pocksiaes HiBM8.aa E] =
[Hritsble [Ingert 30 ; :-?]

Fig. 6. Snapshot of an AJE session.

GUI Controller

Interface Level
Batch Controller

Language
Level Java File Processor
Java Generator Java Generator
For ptLTL For ftLTL
Logic Level

Logic Engine Logic Engine
For ptLTL For ftLTL

Fig. 7. The Architecture of the current MoP prototype

are specific to Java. Since their functions are mainly text-related, the batch
processor, a file processor and the code generators are written in Perl. Since
Maude is a very elegant and efficient meta-logic development environment, all
the logic engines are implemented by rewriting in Maude. The main module
of the GUI tool is implemented in Java.

A configuration mechanism is provided to facilitate extensibility. In this
prototype, the Java property file is utilized for configuration, since its format
is simple and easy to handle. Each property file is a multiple-line text file,
each line containing a (name, value) pair of the form name = value. Every
line in the configuration file associates an annotation keyword to an executable
program; e.g., ftLTL = /bin/ftLTL. The users can change the code generators
or add new ones by directly editing the configuration file with any text editor.

16

RV'03,

ENTCS 89, issue 2, pp 108 - 127. 2003.

5.3 FEzample

In this section we further discuss our MoP prototype by means of a simple
example. This example is part of a program which can control a phone call
process. The annotation here describes a safety property, namely that one
cannot dial when the phone is busy or connected.
static String x ;
;i; phone.getStatus() ;
/*@ PTLTL [static]
Predicate dialing : x.equals("d") ;
Predicate busyTone : x.equals("b") ;
Predicate connected : x.equals("c") ;
Formula :
[*] (start(dialing)->(!((*) (busyTone\/connected))))
Exception Handler:
throw new Exception("Formula Violated");
Qx/

Code annotations are marked by /*@ ... @*/. The past time operators, @
and ¢ , are presented as [*] and (*) correspondingly. The MoP-Java handles
two kinds of variables in Java classes, namely field variables and static vari-
ables. As to the local variables in methods, since they are destroyed once the
method invocation is finished, they are not suitable for the monitoring. If the
specified logic formula to be monitored is intended to refer to the behavior of
a class instead of a particular object, then the generated code should declare
static variables; this cannot be inferred from the specification itself, so an op-
tion called static is available for use in the head of annotations, following the
logic-name keyword.

Optimization is always crucial in monitoring, since the monitoring code
will inevitably add runtime overhead to the program. Most optimizations
are accomplished by efficient algorithms generated by the logic engines and
code generators, but some optimization can also be achieved by careful im-
plementation of the modules, such as the elimination of redundant evaluation
of atomic predicates. Most of these are handled by BTTs; others are handled
by compilers.

A counter is used to track the annotations, and produce appropriate vari-
able declarations to avoid name clashes. Hence, one gets the following mon-
itoring Java code for the annotation in this example, assuming that it is the
first monitoring annotation occurring in the program.

/*+ skkkkkkkkkkkkkk Generated by the tool ki /
static boolean PTLTL_1_pre[] = new boolean[3];

static boolean PTLTL_1_now[] = new boolean[3];

static boolean PTLTL_1_init = true ;

[Hxkkrkkkokkkokkkkkx Generated code ends kkkkkiokkikokkkokkk +k/

/*+ kxxkkkkkkkkkkkkk Generated by the tool ok ok ok ok ok ok ok ok ok ok ok ok ok k /
if (PTLTL_1_init){
PTLTL_1_now[2]
PTLTL_1_now[1]
PTLTL_1_now[0]

(x.equals("b")) || (x.equals("c"));
(x.equals("d"));
true;

17

RV'03, ENTCS 89, issue 2, pp 108 - 127. 2003.

PTLTL_1_init = false ;
} else {
PTLTL_1_pre[0]
PTLTL_1_pre[1]
PTLTL_1_pre[2]
PTLTL_1_now[2]

PTLTL_1_now[0] ;

PTLTL_1_now[1] ;

PTLTL_1_now[2] ;

(x.equals("b")) || (x.equals("c"));

PTLTL_1_now[1] (x.equals("d"));

PTLTL_1_now[0] PTLTL_1_pre[0] && (! PTLTL_1_pre[2] ||
! PTLTL_1_now[1] || PTLTL_1_pre[1]);

}
if (! PTLTL_1_now[01){

throw new Exception("formula violated!");
}

/Fkkksokkokkkkokkokkkk Generated code ends kkkokskskskkkokkkkk +k/

6 Related Work

In this section we discuss relationships between our approach and other related
paradigms, such as design by contract, runtime verification and aspect oriented
system development.

6.1 Design by Contract

Design by Contract (DBC) [14] is a technique allowing one to add semantic
information to a program by specifying assertions regarding the program’s
runtime state, and then checking the specification at runtime. It was first
introduced by Meyer as a built-in feature of the Eiffel language [19], allow-
ing specification code to be associated with a class in the form of assertions
and invariants which can be compiled into runtime checks. There are also
some DBC extensions proposed for a number of other languages. Jass [3] and
jContractor [I] are two Java-based approaches.

Jass is a precompiler which turns the assertion comments into Java code.
Besides the standard DBC features such as pre-/post- conditions and class
invariants, it also provides refinement checks. The design of trace assertions
in Jass is mainly influenced by CPS [§], and the syntax is more like a pro-
gramming language. jContractor is implemented as a Java library which allows
programmers to associate contracts, consisting of precondition, postcondition,
and invariant, with any Java classes or interfaces. Contract methods can be
included directly within the Java class or written as a separate contract class.
Before loading each class, jContractor detects the presence of contract code
patterns in the Java class bytecodes and performs on-the-fly bytecode instru-
mentation to enable checking of contracts during the program’s execution.
jContractor also provides a support library for writing expressions using pred-
icate logic quantifiers and operators such as Forall, Exists, suchThat, and
implies. Using jContractor, the contracts can be directly inserted into the
Java bytecodes even without the source code.

We believe that the logics of assertions/invariants used in DBC approaches
fall under the uniform format of our logic engines, so that an MoP environment
following the principles described in this paper would naturally support DBC

18

RV'03,

ENTCS 89, issue 2, pp 108 - 127. 2003.

as a special methodological case. However, our MoP design also supports
offline monitoring which we find crucial in assuaring software reliability, which
is not provided by any of the current DBC approaches that we are aware of.

6.2 Runtime Verification

MaC [12] and PathExplorer (PaX) [5] are two logic based monitoring tools,
both of which generate monitoring systems from formal specifications. These
are general frameworks for logic based monitoring, within which specific tools
for Java, Java-MaC and Java PathExplorer, are implemented. MaC uses a
special interval temporal logic based language to specify the program behav-
iors, while JPaX supports just LTL. In order to send the application’s states
to the monitor, these systems need to instrument the Java bytecodes, which
is hard to achieve in some other languages such as C++. Both these run-
time verification systems are based on offline monitoring and have hardwired
languages for requirements. Besides, the Mac requires less user intervention,
namely the user does not need to know where properties are in the code. Our
approach supports both inline and offline monitoring, and allows one to add
any monitoring formalism to the system.

Temporal Rover [4] is a commercial code generator based on future time
temporal logic specifications. It allows programmers to insert formal specifi-
cations in programs via annotations and then generates verification code from
those specifications, similarly to MoP. Besides generating monitoring code,
an Automatic Test Generation (ATG) component is also provided, which can
generate test sequences from logic specification. Temporal Rover and its fol-
lower, DB Rover, support both inline and offline monitoring. However, these
systems also have their requirements logics hardwired.

6.3 Aspect Oriented Software Development

Aspect Oriented Software Development (AOSD) [I1] was proposed to support
the advanced separation of concerns [20] and has proven that there are nu-
merous advantages to extract and address cross-cutting features separately. In
AOSD, cross-cutting features of the applications are developed as stand-alone
fragments, and then merged into a whole program with the help of some mech-
anism, such as compilers or pre-processors. This approach aims at making
the structure of the software clearer and at maintaining a better mapping be-
tween the requirements specification and the implementation. Current AOSD
approaches introduce new language entities to implement aspects and utilize
configuration files to combine them together. Usually, the implementation of
aspects is still based on the host language. In our opinion, however, there
are some important aspects that can be better specified by domain-specific
knowledge or logics rather than the host programming language. With the
support of automatic code generation, the mapping from specification to im-
plementation is straightforward and can be formally verified.

19

RV'03,

ENTCS 89, issue 2, pp 108 - 127. 2003.

7 Conclusion and Future Work

Monitoring-oriented programming has been introduced in this paper, as a
light-weight formal methods paradigm in software development facilitating
the combination of specification and implementation. System properties are
expressed using formal specifications given as annotations inserted at various
user selected places in programs, and then efficient monitoring code is auto-
matically generated. Our proposal is language- and logic- independent, and
we argue that it smoothly integrates other interesting system development
paradigms, such as design by contract and aspect oriented programming. A
prototype has been implemented for Java. Future work includes incorporat-
ing more kinds of formal specifications which have been accepted in current
software practice, such as DBC, as well as supporting more languages.

References

[1] Parker Abercrombie and Murat Karaorman. jeontractor: Bytecode
instrumentation techniques for implementing design by contract in java. In
Electronic Notes in Theoretical Computer Science, volume 70. Elsevier Science
Publishers, 2002.

[2] Edmund M. Clarke and Jeannette M. Wing. Formal methods: state of the
art and future directions. ACM Computing Surveys, 28(4):626-643, December
1996.

[3] Michael Moller Detlef Bartetzko, Clemens Fischer and Heike Wehrheim. Jass
- java with assertions. In Electronic Notes in Theoretical Computer Science,
volume 55. Elsevier Science Publishers, 2001.

[4] Doron Drusinsky. Temporal rover. http://www.time-rover.com.

[5] Klaus Havelund and Grigore Rosu. Monitoring java programs with java
pathexplorer. In Klaus Havelund and Grigore Rosu, editors, Proceedings of
the First Workshop on Runtime Verification (RV’01), Paris, France, July
2001, volume 55 of Electronic Notes in Theoretical Computer Science. Elsevier
Science, 2001.

[6] Klaus Havelund and Grigore Rosu. Monitoring programs using rewriting.
In Proceedings, International Conference on Automated Software Engineering
(ASE’01), pages 135-143. Institute of Electrical and Electronics Engineers,
2001. Coronado Island, California, 26-29 November 2001.

[7] Klaus Havelund and Grigore Rosu. Synthesizing monitors for safety properties.
In Tools and Algorithms for Construction and Analysis of Systems (TACAS’02),
pages 342-356. Springer, 2002. Grenoble, France, 812 April 2002, Lecture
Notes in Computer Science, Volume 2280.

[8] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall
International, New York, 1985.

20

RV'03, ENTCS 89, issue 2, pp 108 - 127. 2003.

[9] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages
and Computation. Addison Wesley, 1979.

[10] Sampath Kannan Insup Lee, Moonjoo Kim, Oleg Sokolsky, and Mahesh
Viswanathan. Runtime Assurance Based on Formal Specifications. In
Proceedings of the International Conference on Parallel and Distributed
Processing Techniques and Applications, 1999.

[11] Gregor Kiczales and John Lamping. Aspect-oriented programming. In Mehmet
Aksit and Satoshi Matsuoka, editors, Proceedings European Conference on
Object-Oriented Programming, volume 1241, pages 220-242. Springer-Verlag,
Berlin, Heidelberg, and New York, 1997.

[12] Moonjoo Kim, Sampath Kannan, Insup Lee, Oleg Sokolsky, and Mahesh
Viswanathan. Java-mac: a run-time assurance tool for java programs. In
Electronic Notes in Theoretical Computer Science, volume 55. Elsevier Science
Publishers, 2001.

[13] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent
Systems. Springer, New York, 1992.

[14] B. Meyer. Object-Oriented Software Construction, 2nd edition. Prentice Hall,
Upper Saddle River, New Jersey, 2000.

[15] Eclipse Org. Eclipse project. http://www.eclipse.org.

[16] Amir Pnueli. The Temporal Logic of Programs. In Proceedings of the 18th
IEEE Symposium on Foundations of Computer Science, pages 4677, 1977.

[17] R. Alur and T.A. Henzinger. Real-Time Logics: Complexity and
Expressiveness. In Fifth Annual IEEE Symposium on Logic in Computer
Science, pages 390—401, Washington, D.C., 1990. IEEE Computer Society Press.

[18] R. Koymans. Specifying Real-Time Properties with Metric Temporal Logic.
RealTime Systems, 2(4):255-299, 1990.

[19] Eiffel Software. Eiffel language. http://www.eiffel.com/.

[20] Peri L. Tarr, Harold Ossher, William H. Harrison, and Stanley M. Sutton
Jr. N degrees of separation: Multi-dimensional separation of concerns. In
International Conference on Software Engineering, pages 107-119, 1999.

21

	Introduction
	Advantages and Desirable Characteristics of MoP
	Separation of Roles
	Language and Logic Independence
	Automation, Extensibility and Flexibility
	Inline Monitoring versus Offline Monitoring
	A Light-Weighted Formal Method

	The Architecture of an MoP Environment
	Logical Frameworks for Monitoring
	Past Time Linear Temporal Logic
	Future Time Linear Temporal Logic
	Extended Regular Expression

	An MoP Prototype for Java
	Overview
	Implementation
	Example

	Related Work
	Design by Contract
	Runtime Verification
	Aspect Oriented Software Development

	Conclusion and Future Work
	References

