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Abstract

We show that for any behavioral Σ-specification B there is an ordinary algebraic
specification B̃ over a larger signature, such that a model behaviorally satisfies B iff
it satisfies, in the ordinary sense, the Σ-theorems of B̃. The idea is to add machinery
for contexts and experiments (sorts, operations and equations), use it, and then hide
it. We develop a procedure, called unhiding, which takes a finite B and produces
a finite B̃. The practical aspect of this procedure is that one can use any standard
equational inductive theorem prover to derive behavioral theorems, even if neither
equational reasoning nor induction is sound for behavioral satisfaction.

1 Introduction

Information hiding is an important technique in modern programming. Pro-
grammers and software engineers agree that a crucial feature of the imple-
mentation languages they use, e.g. C++, Java, etc., is the support that these
languages provide for both public and private entities (types, functions). The
public part is often called interface and is visible to all the other modules
(classes, packages), while the private one can only be internally used to im-
plement the interface. Hiding implementation features allows not only an
increased level of abstraction, but also an increased potential to improve a
given data representation without having to search through all of a large pro-
gram for each place where details of the representation are used. Parnas [35]
discusses in depth the practical importance of hiding implementation details.

Information hiding is important not only in software development and
modern programming, but also in algebraic specification. Majster [31] sug-
gested that algebraic specifications are practically limited because certain
Σ-algebras cannot be specified as an initial Σ-algebra of a finite set of Σ-
equations, but later, Bergstra and Tucker [2] (see also [32]) showed that in
fact any computable Σ-algebra can be specified as the Σ-restriction of an ini-
tial Σ′-algebra of a finite set of Σ′-equations, for some finite Σ′ larger than Σ.
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Therefore, there are some Σ-theories of interest that do not admit finite Σ-
specifications but are Σ-restrictions of finitely presented Σ′-theories for some
Σ ⊆ Σ′. Diaconescu, Goguen, Stefaneas [15] present logic paradigm indepen-
dent (or institutional [18]) approaches to information hiding and integration
of it with other operations on modules. Work on module algebra by Bergstra,
Heering and Klint [1] also investigates information hiding formally.

Behavioral abstraction is another development in algebraic specification
which appears under various names in the literature such as hidden algebra in
works by Goguen, Diaconescu and many others [17,19,23,22,40,25], observa-
tional logic in works by Hennicker, Bidoit and many others [28,8,4,3], coherent
hidden algebra in Diaconescu [14], hidden logic in Roşu [38], and so on. Most of
these approaches appeared as a need to extend algebraic specifications to ease
the process of specifying and verifying designs of systems and also for various
other reasons, such as, to naturally handle infinite types 1 , to give semantics
to the object paradigm, to specify finitely otherwise infinitely axiomatizable
abstract data types, etc. The main characteristic of these approaches is that
sorts are split into visible (or observational) for data and hidden for states,
and the equality is behavioral, in the sense that two states are behaviorally
equivalent if and only if they appear to be the same under any visible experi-
ment. The intuitions for behavioral abstraction go back at least to Montanari
1976 [16], Reichel 1981 [36,37], Goguen and Meseguer 1982 [24], and to San-
nella and Tarlecki 1987 [41]. A closely related and elegant subject is coalgebra
(for example see Jacobs and Rutten [29]): in many situations of interest, but
certainly not in all interesting ones, bisimulation becomes a special case of
behavioral equivalence, the coalgebraic coinduction proof principle extends to
general behavioral specifications and, together with behavioral rewriting, it
yields a powerful proof technique for behavioral equivalence [20,21,22,40]. We
suggest [38], which is publicly available on the web, for an extensive study
of behavioral specification in the hidden algebraic style, including algorithms
for automated behavioral proving and references to related work. From now
on in this paper we’ll use the terminology of hidden logic as in [38], mention-
ing that the results apply to all approaches to behavioral abstraction based
on behavioral equivalence that we are aware of. A behavioral Σ-specification,
usually written B,B′,B1, ..., is a triple (Σ, Γ, E) where Γ, the set of behavioral
operations, is a subsignature of the S-sorted signature Σ and S = V ∪H (V
for visible and H for hidden sorts). The models of a behavioral specification
are special algebras called hidden algebras.

The main theoretical goal of the present work is to relate the two impor-
tant extensions of algebraic specification, namely information hiding and be-
havioral abstraction. We show that any equational behavioral Σ-specification
is semantically equivalent to the Σ-restriction of an ordinary algebraic speci-
fication over a larger signature, thus emphasizing once more the definitional

1 I.e., types whose values are infinite structures.
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power of information hiding. More precisely, we show that for any behavioral
Σ-specification B = (Σ, Γ, E) there is some specification B̃ = (Σ′, E ′) for some
Σ ⊆ Σ′, called the unhiding of B, such that a hidden Σ-algebra behaviorally
satisfies B iff it strictly satisfies Σ�B̃, which is the Σ-theory of all Σ-theorems
of B̃. Moreover, E ′ is finite whenever E is finite, and B̃ can be generated au-
tomatically from B. Even further, B̃ is generated in such a way that inductive
equational theorem provers can be used to prove behavioral equivalence in B.

The general idea of unhiding in this paper is taken from [25], which was
inspired from [6], but the technical constructions are radically changed. That
is because we want to illustrate an important practical aspect of unhiding,
namely its relationship to proving behavioral properties inductively, in partic-
ular to Hennicker’s context induction proof principle [27]. Previous work by
Bidoit, Hennicker [7] and Mikami [33] was also a great source of inspiration.

This paper contains algebraic definitions and proofs. We assume the reader
familiar with general notions of algebra and many-sorted equational logics,
such as initial algebra, morphism, satisfaction. If Σ is an S-sorted signature,
V ⊆ S and A is a Σ-algebra, then Σ�V is the V -reduct of Σ and A�V is the V -
reduct of A, i.e., the V -sorted set obtained from A by forgetting its algebraic
structure. If ϕ : Σ → Σ′ is a signature morphism and A′ is a Σ′ algebra, then
A′ �ϕ denotes the ϕ-reduct of A′ to a Σ-algebra. If e is a Σ-equation then
ϕ(e) is its translation to a Σ′-equation. It is known as “satisfaction condition
property” that in the context above, A′ |=Σ′ ϕ(e) iff A′�ϕ |=Σ e.

We use Maude [12] equational notation in the two examples that we follow
in the paper. We find it very intuitive so we don’t describe it here, mentioning
that it is almost identical to the OBJ notation [26].

2 Reachability and Induction

Induction is not sound for all the models of a specification, but only for the
reachable ones, that are, those for which the unique morphism from the initial
model is surjective. We need a more general approach to reachability and
induction in this paper because of the special structure of our models.

Definition 2.1 Let (S, Σ) be a many-sorted signature. Given S ′ ⊆ S and an
(S − S ′)-indexed set Z of variables 2 , a Σ-algebra A is (S ′, Z)-reachable iff
for all s′ ∈ S ′ and a′ ∈ As′ there is θ : Z → A and t′ ∈ TΣ,s′(Z) s.t. θ(t′) = a′.

The usual notion of reachability is a special case of the above when S ′ = S.
The importance of (S ′, Z)-reachability is captured by the following

Proposition 2.2 In the context of Definition 2.1, if A is (S ′, Z)-reachable
and if PT and PA are S ′-indexed predicates on TΣ(Z)�S′ and A�S′, respectively,
s.t. for any s′ ∈ S ′ and t′ ∈ TΣ,s′(Z) it is the case that PT (t′) implies PA(θ(t′))
for any θ : Z → A, then PT = TΣ(Z)�S′ implies PA = A�S′.

2 By abuse of language, Z also denotes the S-indexed set with Zs = ∅ for all s ∈ S′.
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In practice, PA is a property that one wants to show for all elements of sorts
S ′ of a model A. The proposition above says that if A is (S ′, Z)-reachable
then one can just find a “similar” property on the term model over variables
in Z and prove the new property for all the terms of sorts in S ′. This proof
can be done by induction or by any other proof technique on term algebras.

3 Hidden Logics and Behavioral Abstraction

Hidden algebra extends algebraic specification to handle states in a natural
way, using behavioral equivalence. Systems need only satisfy their require-
ments behaviorally, in the sense of appearing to satisfy them under all possi-
ble experiments. Hidden algebra was introduced in [17] and developed further
in [19,9,23,39,40,14,11,22,25,30,20,21,38] among other places. Two systems,
CafeOBJ [13] and BOBJ [20,21,38], supporting behavioral specification and
reasoning have been implemented, both extending OBJ [26]. A comprehensive
presentation of hidden algebra can be found in [38]. One distinctive feature
of hidden algebra logics is to split sorts into visible for data and hidden for
states. A model, or hidden algebra, is an abstract implementation, consist-
ing of the possible states, with functions for operations. The restriction of a
model to the visible subsignature is called data. Hidden logics [38] refer to
close relatives of hidden algebra.

Definition 3.1 Given disjoint sets V, H called visible and hidden sorts, a
loose data hidden (V, H)-signature is a many sorted (V ∪H)-signature. A
fixed data hidden (V, H)-signature is a pair (Σ, D) where Σ is a loose data
hidden (V, H)-signature and D, called the data algebra, is a many sorted
Σ �V -algebra. A loose data hidden subsignature of Σ is a loose data
hidden (V, H)-signature Γ with Γ ⊆ Σ and Γ�V = Σ�V . A fixed data hidden
subsignature of (Σ, D) is a fixed data hidden (V, H)-signature (Γ, D) over
the same data with Γ ⊆ Σ and Γ�V = Σ�V . The operations in Σ with one
hidden argument and visible result are called attributes, those with one
hidden argument and hidden result are called methods, those with two hidden
arguments and hidden result are called binary methods, and those with only
visible arguments and hidden result are called hidden constants.

Hereafter we may write “hidden signature” instead of “loose data hidden
(V, H)-signature” or “fixed data hidden (V, H)-signature,” and Σ for (Σ, D).

Example 3.2 Set. The hidden signature of sets of natural numbers is de-
fined as follows: Σ�V is the signature of natural numbers, including visible sorts
Nat and Bool; H has one sort, Set; Σ adds the hidden constant empty :→ Set,
the attribute ∈ : Nat× Set → Bool, the method add : Nat× Set → Set for
adding a new element to a set, and the binary methods ∪ , ∩ : Set×Set →
Set for union and intersection, respectively. In the fixed-data approach, a fixed
algebra of natural numbers is also considered.
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Example 3.3 Stream. The hidden signature of infinite streams of numbers
is as follows: Σ�V is the signature of natural numbers providing a visible sort
Nat; H has one sort, Stream; Σ adds an attribute head : Stream → Nat for
the head of a stream, methods tail, odd, even : Stream → Stream for the tail
stream, the streams of elements on odd and even positions, respectively, a
method & : Nat× Stream → Stream putting a number at the beginning of a
stream, and a binary merging method zip : Stream× Stream → Stream.

Definition 3.4 A loose data hidden Σ-algebra A is a Σ-algebra, and a
fixed data hidden (Σ, D)-algebra A is a Σ-algebra A such that A�Σ�V

= D.

The first definition of hidden algebra was fixed-data [17], reason for which
we call the other one loose-data. One may argue that one should only focus
on loose-data hidden algebra and thus simplify all the remaining definitions
in the paper. However, fixed-data hidden algebra has interesting theoretical
and practical applications. For example, under certain monadicity restrictions
with respect to the number of hidden arguments of operations, the category of
fixed-data hidden algebras over a given fixed-data hidden signature is isomor-
phic to a category of coalgebras; on the other hand, a protocol like alternating
bit protocol cannot be shown correct unless data is assumed distinct, in partic-
ular 0 different from 1. We therefore prefer to develop our results in a general
setting that include both loose-data and fixed-data approaches.

Example 3.5 Set (Continued). A typical hidden algebra for sets of natural
numbers has sets of numbers as elements of sort Set, and defines the operations
as expected. However, another interesting model has lists of numbers as hidden
elements, implements union as append and intersection by taking the list of
those elements in the first list that occur in the second. This is how sets are
implemented in LISP; note that multiple occurrences of elements are allowed.

Example 3.6 Stream. (Continued). The intended stream hidden algebra
has infinite lists as hidden elements and defines the four operations in the
obvious way. However, there also are less standard models, which, for example,
view streams as infinite trees and implement the operations accordingly.

Unless specified otherwise, for the rest of the paper we fix a hidden sig-
nature Σ and a subsignature of it, Γ. A Σ-algebra should be regarded as
a universe of possible states of a system. A system can be regarded as a
“black-box,” the inside of which is not seen, one being only concerned with
its behavior under “experiments” with operations in Γ. Informally, an experi-
ment is an observation of an attribute of a system after it has been perturbed,
using the concept of context; the symbol • below is a placeholder for the state
being experimented upon. The use of only a subset Γ of operators in Σ, often
called behavioral, was a major decision in both behavioral specification and
verification systems CafeOBJ and BOBJ, due not only to the natural desire
to generate contexts using a reduced set of operators, but especially to the
necessity of providing support for nondeterminism in these systems.
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Definition 3.7 An (appropriate) Γ-context for sort s is a term in TΓ({• :
s}∪Z) having exactly one occurrence of a special variable 3 • of sort s, where
Z is an S-indexed set of special variables s.t. for each s ∈ S, Zs is infinite. Let
CΓ[• : s] denote the set of all Γ-contexts for sort s, and var(c) the finite set of
variables in a context c except •. A Γ-context with visible result sort is called
a Γ-experiment; let EΓ[• : s] denote the set of all Γ-experiments for sort s, let
CΓ,s′ [• : s] denote the Γ-contexts of sort s′ for sort s, and let EΓ,v[• : s] denote
all the Γ-experiments of sort v for sort s. If c ∈ CΓ,s′ [• : s] and t ∈ TΣ,s(X),
then c[t] denotes the term in TΣ,s′(var(c)∪X) obtained from c by substituting
t for •. Further, c generates a map Ac : As → [Avar(c) → As′ ] on each Σ-
algebra A, defined by Ac(a)(θ) = a∗θ(c), where a∗θ is the unique extension of
the map (denoted aθ) that takes • to a and each z ∈ var(c) to θ(z).

The interesting experiments are those of hidden sort, i.e., with s ∈ H.

Example 3.8 Set (Continued). Let Γ contain only the operation ∈ . The
experiments on sets have the form N ∈ •, where N is any variable of sort Nat.

Example 3.9 Stream. (Continued). If Γ contains only the operations head
and tail, then the Γ-experiments on streams have the form head(tailn(•)) for
all n ≥ 0, where tailn is a short-hand for n applications of tail.

We now define a distinctive feature of hidden logics. Two states are equiv-
alent iff they are indistinguishable under Γ-experiments. Notice that it can be
quite possible that the generated behavioral equivalence relation is not pre-
served by some operators in Σ− Γ. In fact, as argued in [13,38] among other
places, it is desired that some operators are not Γ-behaviorally congruent in
order to elegantly deal with nondeterminism in behavioral specifications and
to effectively use automated equational reasoning:

Definition 3.10 Given a hidden Σ-algebra A and a hidden subsignature Γ
of Σ, the equivalence a ≡Γ

Σ a′ iff Aγ(a)(θ) = Aγ(a
′)(θ) for all Γ-experiments

γ and all maps θ : var(γ) → A is called Γ-behavioral equivalence on A.
We may write ≡ instead of ≡Γ

Σ when Σ and Γ can be inferred from context,
and we write ≡Σ when Σ = Γ. Given any equivalence ∼ on A, an operation
σ in Σs1...sn,s is congruent for ∼ iff Aσ(a1, ..., an) ∼ Aσ(a′1, ..., a

′
n) whenever

ai ∼ a′i for i = 1...n. An operation σ is Γ-behaviorally congruent for A iff it
is congruent for ≡Γ

Σ. We often write just “congruent” instead of “behaviorally
congruent” 4 . A hidden Γ-congruence on A is an equivalence on A which
is the identity on visible sorts and for which each operation in Γ is congruent.

Example 3.11 Set (Continued). Two sets are Γ-behaviorally equivalent iff
they have the same elements (they cannot be distinguished by experiments
of the form N ∈ •). In the list model of sets, two lists are Γ-behaviorally

3 These are assumed different from any other variables in a given situation.
4 A similar notion was given by Padawitz in [34].
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equivalent iff they have the same elements, in any order and with any number
of multiple occurrences. All the operations are congruent.

Example 3.12 Stream. (Continued). Two streams are Γ-behaviorally equiv-
alent in the standard model of streams if and only if they have the same
elements in the same order. Notice that all the operations on lists are also
behaviorally congruent.

The following supports several important results in hidden logics, general-
izing [23] to operations with more than one hidden argument or that are not
behavioral; see [40,38] for a proof. Since final algebras need not exist in this
setting [10], existence of a largest hidden Γ-congruence does not depend on
them, as it does in coalgebra.

Theorem 3.13 Given a hidden subsignature Γ of Σ and a hidden Σ-algebra
A, then Γ-behavioral equivalence is the largest hidden Γ-congruence on A.

This result, in its special form when Γ = Σ, generalizes the more broadly
known (behavioral) equivalence of states in automata and existence of a largest
bisimulation in deterministic transition systems (see [23,22] for more details).
A first version of such maximality result for behavioral equivalence that we
are aware of, but in the restricted case where all the operators in Σ are Γ-
behaviorally congruent, can be found in [5].

Definition 3.14 Given hidden Σ-algebra A and Σ-equation (∀X) t = t′, say
e, A Γ-behaviorally satisfies e, written A |≡Γ

Σ e, iff θ(t) ≡Γ
Σ θ(t′) for all

θ : X → A. A |≡Γ
Σ E iff A Γ-behaviorally satisfies each Σ-equation in E.

When Σ and Γ are clear, we may write ≡ and |≡ instead of ≡Γ
Σ and |≡Γ

Σ,
respectively. We only consider unconditional equations in this paper, but most
of the theory of hidden algebra also allows conditional equations [23,25,38].
However, some results only allow conditional equations of visible conditions.
It would be interesting to know whether the main results presented in this
paper could be generalized to arbitrary conditional equations.

Definition 3.15 Given a Σ-equation (∀X) t = t′, say e, EΓ[e] is either the
set {(∀X, var(γ)) γ[t] = γ[t′] | γ ∈ EΓ[• : h]} when the sort h of t, t′ is hidden,

or the set {e} when the sort of t, t′ is visible. EΓ[E] is the set
⋃
e∈E

EΓ[e].

The following result saying that behavioral satisfaction of an equation can
be reduced to strict satisfaction of a potentially infinite set of equations is
already considered folklore among behaviorists. [38] presents a proof tuned to
our setting, where equations with visible conditions are also considered:

Proposition 3.16 A |≡Γ
Σ E if and only if A |=Σ EΓ[E].

Definition 3.17 A behavioral (or hidden) Σ-specification (or -theory)
is a triple (Σ, Γ, E) where Σ is a hidden signature, Γ is a hidden subsignature
of Σ, and E is a set of Σ-equations. The operations in Γ − Σ�V are called

7
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behavioral. We usually let B, B′, B1, etc., denote behavioral specifications.
A hidden Σ-algebra A behaviorally satisfies (or is a model of) a behavioral
specification B = (Σ, Γ, E) iff A |≡Γ

Σ E, and in this case we write A |≡ B; we

write B |≡ e if A |≡ B implies A |≡Γ
Σ e. An operation σ ∈ Σ is behaviorally

congruent for B iff σ is behaviorally congruent for every A |≡ B.

All behavioral operations and all hidden constants are behaviorally con-
gruent [40,38], but of course, depending on E, other operations may also be
congruent; in fact, all operations are congruent in many practical situations.

Example 3.18 Set (Continued). The following visible equations added to
the hidden signature presented before give a behavioral specification of sets:

• (∀N : Nat) N ∈ empty = false,

• (∀N, M : Nat; S : Set) N ∈ add(M, S) = (N == M) or (N ∈ S),

• (∀N : Nat; S, S ′ : Set) N ∈ (S ∪ S ′) = (N ∈ S) or (N ∈ S ′), and

• (∀N : Nat; S, S ′ : Set) N ∈ (S ∩ S ′) = (N ∈ S) and (N ∈ S ′).

Example 3.19 Stream. (Continued). The visible and hidden equations be-
low added to the signature of streams, give a behavioral specification:

• (∀N : Nat; S : Stream) head(N&S) = N ,

• (∀N : Nat; S : Stream) tail(N&S) = S,

• (∀S : Stream) head(odd(S)) = head(S),

• (∀S : Stream) tail(odd(S)) = even(tail(S)),

• (∀S : Stream) head(even(S)) = head(tail(S)),

• (∀S : Stream) tail(even(S)) = even(tail(tail(S))),

• (∀S, S ′ : Stream) head(zip(S, S ′)) = head(S), and

• (∀S, S ′ : Stream) tail(zip(S, S ′)) = zip(S ′, tail(S)).

4 Unhiding

Ordinary algebraic specifications can be associated to behavioral specifica-
tions, and special many-sorted algebras can be built from hidden algebras.
This section presents all these technical constructions that we generically call
“unhiding,” and some of their basic properties. We will use mix-fix-like syn-
tactic notation (underscores stay for arguments) to increase the readability
of our specifications. We have implemented and experimented with the next
concepts and procedures in Maude [12] (see also the next section), but any
equational environment could have been used.

4.1 Unhiding a Hidden Signature

A hidden signature can be “unhidden” by associating it the specification of its
“experiments” as shown below. It is worth mentioning that unhiding can be
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done in different ways and that the major challenge is to get it done right in
order to not only prove the theoretical result relating behavioral abstraction
with information hiding but also to explain how inductive proofs can be used
in practice to show behavioral equivalences. Our first tentative to unhide a
behavioral specification was presented in [25] and it essentially tuned a similar
construction previously presented in [6] to our hidden logic framework. The
construction in [25] was sufficiently good to show the theoretical result, but
not to show the practical one. Consequently, we fully agreed with the authors
of [6] who stated “however, it should be clear that the encoding of contexts
is so complex that this result is of purely theoretical interest.” It is the new
unhiding procedure presented next that motivated writing the current paper,
because it not only allows one to show the information hiding theoretical
result, but also gives a mechanical way by which inductive equational proof
engines can be used to perform behavioral proofs.

Definition 4.1 If Γ is a hidden signature, let S̃ be the set S ∪ (H _ V ),
where S is the set V ∪H and H _ V is a set of new sorts of the form h _ v
where h ∈ H and v ∈ V . Let Γ̃ be the S̃-signature adding to Γ the operations:

• σ : s → h _ v for all 5 σ : s h → v in Γ with h ∈ H,

• [σ ] : (h′ _ v) s → h _ v for all v ∈ V , σ : s h → h′ in 6 Γ s.t. h, h′ ∈ H,

• [ ] : (h _ v) h → v for each h ∈ H and v ∈ V .

Furthermore, let EΓ be the set of equations:

• (∀Y ; x : h) σ(Y )[x] = σ(Y, x) for each σ : s h → v, and

• (∀Y ;Exp : h′ _ v; x : h) Exp[σ(Y )][x] = Exp[σ(Y, x)], for each σ : s h → h′.

The equational specification (Γ̃, EΓ) is called the unhiding of Γ.

The sorts h _ v stay for “experiments of sort v for sort h”. Operations σ :
s → h _ v are curried versions of operations σ : s h → v in Γ, their role being
to produce elementary experiments σ(Y ), where Y : s is an appropriate set
of variables; the operations [σ ] : (h′ _ v) s → h _ v generate experiments
for sorts h from experiments for sorts h′ by composition with operations σ :
s h → h′; operations [ ] : (h _ v) h → v apply experiments. The first Γ̃-
equation says that one-operation experiments evaluate as the operation itself,
while the second Γ̃-equation shows how a composed experiment Exp[σ(Y )]
works: the state is first plugged into σ and then the whole thing into Exp.
Despite its apparently technical formulation, the construction above is very
intuitive: it defines experiments and their semantics equationally in a minimal
way, avoiding even the occurrence of the artificial variables •.

Example 4.2 Set (Continued). The unhiding specification of the specifica-

5 Since σ can have more than one hidden argument, actually an operation σk : sk → (hk _
v) is added for each σ : sk hk → v in Γ and each k = 1, ..., n s.t. hk ∈ H.
6 Same observation as in footnote 5.
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tion of sets (which contains only the membership attribute) is the following:

fmod GAMMA-SET~ is protecting NAT .
sort Set .
sort Set->Bool .
op _in_ : Nat Set -> Bool .
op _in : Nat -> Set->Bool .
op _[_] : Set->Bool Set -> Bool .
var N : Nat . var S : Set .
eq N in [S] = N in S .

endfm

The sort Set->Bool stays for experiments on sets, and _in : Nat -> Set->Bool

is the curried version of the membership attribute. Since there is no operation
of hidden result, there is no operation of the form [σ ] added to Γ̃. There-
fore, there is only one more operation, the “application” [ ], and one equation
which should be parenthesized like (N in) [S] = (N in S).

Example 4.3 Stream. (Continued). The unhiding specification of the spec-
ification Γ = {head, tail} of streams presented before is the following:

fmod GAMMA-STREAM~ is protecting NAT .
sort Stream .
sort Stream->Nat .
op head : Stream -> Nat .
op tail : Stream -> Stream .
op head : -> Stream->Nat .
op _[tail] : Stream->Nat -> Stream->Nat .
op _[_] : Stream->Nat Stream -> Nat .
var Exp : Stream->Nat . var S : Stream .
eq head[S] = head(S) .
eq Exp[tail][S] = Exp[tail(S)] .

endfm

4.2 Unhiding a Hidden Algebra

Unhiding of a hidden algebra is executed by adding experiments to it. We
first need to define experiments locally to a hidden algebra.

Definition 4.4 Given a hidden subsignature Γ of Σ and a hidden Σ-algebra
A, a (Γ, A)-context for sort s is a term in TΓ∪A({• : s}) with exactly one
occurrence of •. A (Γ, A)-experiment is a (Γ, A)-context of visible result.
CA

Γ [• : s] and EA
Γ [• : s] are the sets of (Γ, A)-contexts and (Γ, A)-experiments.

Notice that the elements in A are added as constants, thus being allowed
to be used in contexts and experiments. Obviously, any hidden Σ-algebra A
can be regarded as a (Γ∪A)-algebra where the operations in Γ are interpreted
as in A �Γ and each constant a ∈ A is interpreted as the element a ∈ A.
Conceptually, the contexts in Definition 4.4 are instances of those in Definition
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3.7, by replacing their variables different from • with concrete values in A. As
expected, the (Γ, A)-experiments generate the behavioral equivalence on A:

Proposition 4.5 Given a hidden Σ-algebra A and a, a′ ∈ As, then a ≡Γ
Σ,s a′

if and only if Aγ(a) =v Aγ(a
′) for each γ ∈ EA

Γ,v[• : s] and each v ∈ V .

One can now unhide any hidden Σ-algebra A into a Σ∪Γ̃-algebra by adding
(Γ, A)-experiments of sort v for sort h to each carrier Ãh_v. Formally,

Definition 4.6 Given a hidden subsignature Γ of Σ and a hidden Σ-algebra
A, let Ã be the (Σ ∪ Γ̃)-algebra 7 defined by:

• Ã|Σ = A, that is Ã extends A,

• Ã(h_v) = EA
Γ,v[• : h],

• Ãσ : As → Ã(h_v) is defined by Ãσ (a) = σ(a, •), for each σ : s → (h _ v),

• Ã [σ ] : Ã(h′_v) × As → Ã(h_v) is defined by Ã [σ ](γ, a) = γ(σ(a, •)), for
each σ : s h → h′, and

• Ã [ ] : Ã(h_v) × Ah → Av is defined by Ã [ ](γ, a) = Aγ(a), for each v ∈ V ,
h ∈ H, γ ∈ EA

Γ,v[• : h], and a ∈ Ah.

The (Σ ∪ Γ̃)-algebra Ã is called the Γ-unhiding of A.

The following proposition says that the Γ-unhiding of a hidden Σ-algebra
is a model of the unhiding specification of Γ:

Proposition 4.7 Given Γ ⊆ Σ and a hidden Σ-algebra A, then Ã |=Σ∪Γ̃ EΓ.

The following proposition is very important because, by Proposition 2.2
via some further results presented in the next sections, it essentially allows
one to soundly use inductive proofs on the newly added sorts by unhiding:

Proposition 4.8 Ã is (H _ V, Z)-reachable, for any (H ∪ V )-indexed set of
variables Z.

4.3 Unhiding a Behavioral Specification

In this subsection we show how a behavioral specification can be automatically
unhidden, generating an ordinary specification which is finite whenever the
original behavioral specification is finite. Moreover, we show how behavioral
proof obligations translate into ordinary equational ones. This is particularly
interesting because equational reasoning is not sound in general for behavioral
satisfaction because of the behaviorally non-congruent operators.

The following constructions are similar to those in Definition 3.15:

Definition 4.9 If e is a Σ-equation (∀X) t = t′ then let ẽ denote either the
set of (Σ∪Γ̃)-equations {(∀X;Exp : h _ v) Exp[t] = Exp[t′] | v ∈ V } when the

7 To keep the notation simple, Γ does not occur in the notation of Ã.
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sort h of t, t′ is hidden, or the set {e} when the sort of t, t′ is visible. Similarly,

let Ẽ be the set
⋃
e∈E

ẽ; then B̃ = (Σ ∪ Γ̃, Ẽ ∪ EΓ) is the unhiding of B.

Notice that B̃ is finite whenever B is finite.

Example 4.10 Set (Continued). The unhiding of the behavioral sets is:

fmod SET~ is extending GAMMA-SET~ .
op empty : -> Set .
op add : Nat Set -> Set .
ops (_U_) (_&_) : Set Set -> Set .
vars N M : Nat . vars S S’ S’’ : Set .
eq N in empty = false .
eq N in (S U S’) = (N in S) or (N in S’) .
eq N in add(M, S) = (N == M) or (N in S) .
eq N in (S & S’) = (N in S) and (N in S’) .

endfm

Notice that the unhiding of Γ, GAMMA-SET~, was imported. Since all the equa-
tions are of visible sort, they are left unchanged.

Example 4.11 Stream (Continued). The unhiding of behavioral streams is:

fmod STREAM~ is extending GAMMA-STREAM~ .
op _&_ : Nat Stream -> Stream .
ops odd even : Stream -> Stream .
op zip : Stream Stream -> Stream .
var N : Nat . vars S S’ : Stream . var Exp : Stream->Nat .
eq head(N & S) = N .
eq Exp[tail(N & S)] = Exp[S] .
eq head(odd(S)) = head(S) .
eq Exp[tail(odd(S))] = Exp[even(tail(S))] .
eq head(even(S)) = head(tail(S)) .
eq Exp[tail(even(S))] = Exp[even(tail(tail(S)))] .
eq head(zip(S,S’)) = head(S) .
eq Exp[tail(zip(S,S’))] = Exp[zip(S’,tail(S))] .

endfm

The last equation, for example, intuitively says that for any experiment Exp

and any streams S and S’, the experiment Exp returns the same element when
evaluated on the streams tail(zip(S,S’)) and zip(S’,tail(S)).

Proposition 4.12 Given a behavioral specification B = (Σ, Γ, E), a Σ-equation
e, and a hidden Σ-algebra A, then
(i) A |≡Γ

Σ e iff Ã |=Σ∪Γ̃ ẽ,

(ii) A |≡ B iff Ã |= B̃, and

(iii) B̃ |= ẽ implies B |≡ e.

This proposition suggests that in order to show that e is a behavioral
consequence of B, it suffices to show that ẽ is an equational consequence of B̃.
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As shown next, this simple proof technique is too weak in practical situations.
Note that (iii) cannot be an equivalence because it would otherwise provide a
complete calculus for behavioral satisfaction, which is incomplete [10].

5 Practical Importance: Context Induction

If one wants to prove SET |≡ (∀S,S’:Set) S U S’ = S’ U S by (iii) in Proposi-
tion 4.12, then one is stuck since one has to prove by ordinary equational rea-
soning SET~ |= (∀S,S’:Set; Exp:(Set->Bool)) Exp[S U S’] = Exp[S’ U S],
which is impossible. Some kind of induction on contexts is needed.

Definition 5.1 Given behavioral specification B = (Σ, Γ, E) and Σ-equation
e, then B̃ (H _ V, Z)-inductively satisfies e, written B̃ |=Ind(H_V,Z) ẽ, if
and only if TΣ∪Γ̃(Z)/Ẽ∪EΓ

|= ẽ.

The definition above weakens satisfaction to only a special model of B̃.
However, this model has good properties. First, since it is a free model and
there are no variables of sorts (h _ v) in Z, proofs by induction on sorts in
H _ V are valid in TΣ∪Γ̃(Z)/Ẽ∪EΓ

; in particular, one can prove statements
like TΣ∪Γ̃(Z)/Ẽ∪EΓ

|=Σ∪Γ̃ (∀z : (h _ v), X) z[t] = z[t′] by structural induction

on z : (h _ v). Second, for any other model A′ of B̃, it is the case that any
map τ : Z → A′ uniquely extends to a morphism τ : TΣ∪Γ̃(Z)/Ẽ∪EΓ

→ A′.

Proposition 5.2 B̃ |=Ind(H_V,Z) ẽ implies B |≡ e.

Proposition 5.2 suggests the following procedure to do behavioral proofs:
1) generate B̃ and ẽ; 2) show B̃ |=Ind(H_V,Z) ẽ either manually or using an
inductive theorem prover; 3) conclude B |≡ e. We next analyze examples.

Example 5.3 Set (Continued). According to proposition above, distributiv-
ity of intersection and union reduces to showing that SET~ inductively satisfies
(∀S,S’,S’’:Set;Exp:Set->Bool) Exp[S&(S’ U S’’)] = Exp[(S & S’)U(S & S’’)],
which can be shown with the Maude proof score

fmod DISTRIBUTIVITY-PROOF is protecting SET~ .
ops s s’ s’’ : -> Set .
op exp : -> Set->Bool .
op n : Nat .
eq exp = n in .

endfm
red exp[s & (s’ U s’’)] == exp[(s & s’) U (s & s’’)] .
***> should be true

using the theorem of constants and (degenerated) induction on experiments.

Example 5.4 Stream (Continued). The behavioral proofs for sets are sim-
ple because of the oversimplified structure of experiments. However, proofs by
context induction become much harder, often impractical, when experiments
are complex. The next proof shows how nontrivial the task can be even for
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relatively simple contexts, such as those of streams. The reader is encouraged
to compare this with the elegant and completely automatic proofs by circular
coinductive rewriting of the same property and many others in [20,38].

We next prove that zip(odd(S), even(S)) is behaviorally equivalent to S, for
any stream S. As before, it suffices to show that STREAM~ inductively satisfies
(∀S:Stream; Exp:Stream->Nat) Exp[zip(odd(S), even(S))] = Exp[S].

We need some auxiliary lemmas. First, let us show the congruence of zip.
Let P be the predicate on experiments such that P(Exp) if and only if STREAM~
satisfies (∀Exp:Stream->Nat) Exp[zip(s1,s2)] = Exp[zip(s1’,s2’)] for any
behaviorally equivalent streams s1 and s1’, and any behaviorally equivalent
streams s2 and s2’. We show that P(Exp) holds for all experiments Exp by
structural induction. P(head) holds because head(s1) is equal to head(s1’) for
any behaviorally equivalent s1 and s2. Assume P(exp) for some experiment
exp, and let us fix some s1, s1’, s2 and s2’ as above; then exp[zip(s2,

tail(s1))] equals exp[zip(s2’, tail(s1’))] because tail is congruent, and
further one can easily show now by rewriting that exp[tail][zip(s1, s2)]

equals exp[tail][zip(s1’, s2’)]; so P(exp[tail]) also holds. The following
is the Maude proof score:

fmod ZIP-CONG-PROOF is protecting STREAM~ .
ops s1 s1’ s2 s2’ : -> Stream .
ops exp : -> Stream->Nat .
eq head(s1) = head(s1’) .
eq exp[zip(s2, tail(s1))] = exp[zip(s2’, tail(s1’))] .

endfm
red head[zip(s1, s2)] == head[zip(s1’, s2’)] .
red exp[tail][zip(s1, s2)] == exp[tail][zip(s1’, s2’)] .
***> should both be true

Therefore, zip preserves the behavioral equivalence, in particular the equa-
tions of the initial behavioral specification of streams. We only need three
instances:

fmod LEMMAS is protecting STREAM~ .
vars S S’ : Stream . var Exp : Stream->Nat .
eq Exp[zip(S’,tail(odd(S)))] = Exp[zip(S’,even(tail(S)))] .
eq Exp[zip(tail(odd(S)),S’)] = Exp[zip(even(tail(S)),S’)] .
eq Exp[zip(S’,tail(even(S)))] = Exp[zip(S’,even(tail(tail(S))))] .

Notice that STREAM~ is not a Church-Rosser rewriting system because the
term head[tail(odd(S))] admits the normal forms head(tail(odd(S))) and
head(tail(tail(S))). Therefore, if one uses a rewriting based equational
prover like Maude, then one may need to add some auxiliary lemmas 8 . We
need only one in our proof:

eq Exp[tail(tail(zip(S,S’)))] = Exp[tail(zip(S’,tail(S)))] .
endfm

8 Or alternatively, run a Church-Rosser completion procedure, such as Knuth-Bendix.
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There is one more lemma needed, relating zip and even, which we first prove:

fmod ZIP-EVEN-LEMMA-PROOF is protecting LEMMAS .
op s : -> Stream .
op exp : -> Stream->Nat .
var S : Stream .
eq exp[zip(even(S), even(tail(S)))] = exp[tail(S)] .

endfm
red head[zip(even(s), even(tail(s)))] == head[tail(s)] .
red exp[tail][zip(even(s), even(tail(s)))] == exp[tail][tail(s)] .
***> should both be true

and then append to the other lemmas:

fmod ZIP-EVEN-LEMMA is protecting LEMMAS .
var S : Stream . var Exp : Stream->Nat .
eq Exp[zip(even(S), even(tail(S)))] = Exp[tail(S)] .

endfm

We can now inductively prove the initial result:

fmod ZIP-LEMMA-PROOF is protecting ZIP-EVEN-LEMMA .
op s : -> Stream .
op exp : -> Stream->Nat .

endfm
red head[zip(odd(s), even(s))] == head[s] .
red exp[tail][zip(odd(s), even(s))] == exp[tail][s] .
***> should both be true

The inductive technique used in the examples above was nothing but what
is called context induction [27] (see also [4] for related work). In fact, any proof
technique for the ordinary algebraic specification B̃ is allowed, as far as it is
sound at least for the models Ã associated to hidden algebras. As the reader
probably guesses, the inductive proof in the example above needed significant
human intervention. Even if the whole inductive proof can be automated in
some complicated way, we encourage the readers interested in automation of
behavioral reasoning to also check out circular coinductive rewriting, which is
implemented in BOBJ [38]. We have not encountered any behavioral prop-
erty that can be proved by context induction but not by circular coinductive
rewriting automatically yet.

6 Behavioral Abstraction is Information Hiding

We now introduce the main theoretical result of the paper, namely that, se-
mantically, behavioral abstraction is a special case of information hiding:

Theorem 6.1 Given a behavioral specification B = (Σ, Γ, E) and a hidden
Σ-algebra A, if Σ�B̃ is the ordinary equational Σ-theory consisting of all the
Σ-theorems of B̃ then
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(i) A |≡ B iff A |= Σ�B̃, and

(ii) In the loose-data hidden algebra case, B and Σ�B̃ have the same models.

The proof of Theorem 6.1 follows by induction on experiments, using the fact
that the unhiding models Ã are (H _ V, Z)-reachable (see Proposition 4.8).

7 Conclusion

By adding machinery for experiments, use it and then hide it, we showed how
any behavioral Σ-specification B can be “unhidden” to an ordinary algebraic
specification B̃ over a larger signature, such that a model behaviorally satisfies
B if and only if it satisfies, in the ordinary sense, the Σ-theorems of B̃. The
construction of B̃ is algorithmic and finite when B is finite. The practical as-
pect of our procedure is that we have developed a technique by which one can
safely use induction and equational deduction in B̃ to reason about behavioral
equality in B, despite the fact that neither of those is sound in B. An inter-
esting direction of future work is to use automated inductive theorem provers
to show behavioral equivalences and to compare their results to BOBJ’s cir-
cular coinductive rewriting. On the theoretical side, the relationship between
the two extensions of algebraic specifications can lead to Craig interpolation
results for hidden logics.
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[39] G. Roşu. Equational axiomatizability for coalgebra. Theoretical Computer
Science, 260(1-2):229–247, 2001.
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