
Certifying Measurement Unit Safety Policy

Grigore Roşu
Department of Computer Science,

University of Illinois at Urbana-Champaign
grosu@uiuc.edu

Feng Chen
Department of Computer Science,

University of Illinois at Urbana-Champaign
fengchen@uiuc.edu

Abstract

Measurement unit safety policy checking is a topic in
software analysis concerned with ensuring that programs
do not violate basic principles of units of measurement.
Such violations can hide significant domain-specific errors
which are hard or impossible to find otherwise. Measure-
ment unit analysis by means of automatic deduction is ad-
dressed in this paper. We draw general design principles for
measurement unit certification tools and discuss our proto-
type for the C language, which includes both dynamic and
static checkers. Our approach is based on assume/assert
annotations of code, which are properly interpreted by our
deduction-based tools and ignored by standard compilers.
We do not modify the language in order to support units.
The approach can be extended to incorporate other safety
policies without great efforts.

1 Introduction and Motivation
Correctness of a software application often involves as-

pects beyond the syntax and semantics of the programming
language(s) in which it is implemented. Detecting viola-
tions of safety policies specific to a domain of interest can
reveal deep errors, which are very hard, if not impossible,
to find by just analyzing programs within their language se-
mantics. Checking software for measurement unit consis-
tency, e.g., that one does not add or compare meters and
feet, is the topic of this paper. We describe an integrated tool
supporting a segment of C, which contains both dynamic
and static checkers, and explain their trade-offs. The user
interacts with our prototype via code annotations, which
are special comments, and via safety policy violation warn-
ing reports. Although we focus on measurement unit safety
here, this work falls under what call domain-specific safety
policy certification [18], whose main idea is to axiomatize a
specific domain of interest, and then to define an appropri-
ate abstraction from programming language constructs into
that abstract domain.

There has been much work on incorporating measure-
ment units in programming languages. The earliest seems to
be [3]. An intuitive approach is to enrich programming lan-

guages with measurement units. Mechanisms that allowed
units to meaningfully occur in programs were suggested in
[14] and [13], and support for measurement unit within ex-
isting languages, like Pascal [7, 8] and Ada [9], were also
proposed. Based on the belief in [21] that type checking
can and should be supported by semantic proof and theory,
[22] associated numeric types with polymorphic dimension
parameters, hereby avoiding measurement unit errors, and
a formally verified method to add, infer and check dimen-
sion types in ML-style languages was proposed in [16, 15].
Unfortunately, these approaches have not been accepted by
mainstream programmers. One reason may be the reluc-
tance of software developers to use/learn new programming
languages just to ensure unit safety. Rewriting existing pro-
grams in a new language is even more inconvenient, not to
mention having to give up a favorite trusted compiler. An-
other important reason may be the limitation of using type
checking front end interfaces to languages: programs which
do not type check are rejected.

A more practical solution is to develop packages
or libraries for measurement unit analysis and integrity.
Reusable Ada packages are discussed in [12, 19]. A simi-
lar approach was taken by the Mission Data System (MDS)
team at NASA JPL, who developed a large C++ library
incorporating a few hundred classes representing typical
units, like MeterSecond, together with appropriate meth-
ods to replace the arithmetic operators when measurement
unit objects are involved. A package called “Measurement
unit Analysis” [17] introduces measurement unit variables
in the Computer Algebra system of Mathematica. These ap-
proaches avoid changing the underlying programming lan-
guages. However, they add unnecessary runtime overhead
due to additional method calls, and cannot handle simple
situations like the product of elements in a vector. Another
problem here is how to support the legacy systems and sys-
tem migration, which involves rewriting all the related pro-
grams. That is unacceptable in practice.

Most of these related work is based on type checking,
defining a type system with physical units on top of a pro-
gramming paradigm, and then using the compiler to catch

ASE'03, IEEE, pp. 304 - 309. 2003.



inconsistencies. Using code annotations instead of types,
our approach does not modify the underlying languages,
thus facilitating system migration and evolution, and sup-
ports highly abstract unit invariants (see Subsection 4.3),
which helps one in developing portable library functions.
Besides, unlike in type-based techniques, our approach is
based on warnings that users can choose to ignore or not.
Past efforts focus on dimensional analysis, whose purpose
is to catch inconsistencies among dimensions, i.e., differ-
ent units belonging to the same dimension are viewed as
compatible, such as meter and inch, and conversions are
applied automatically between different units in the same
dimension. Our approach is to consider all units unrelated
and to do no unit conversion automatically. Unit conver-
sion computations can be done in different ways and in-
volve roundoff errors, so we believe that the users should
be entirely responsible for unit conversions. However, our
warnings can have different levels of importance; an incon-
sistency involving units of different dimensions is more se-
rious than one between units of same dimension.

2 Measurement Units in Maude
Maude [4] is a high performance specification and ver-

ification system in the OBJ family [11] that supports both
equational and rewriting logics. It provides a good frame-
work to create executable environments for different log-
ics, theorem provers, programming languages and models
of computation. We use Maude to specify the C program-
ming language and also its extension with units of measure-
ment. The following is a Maude specification of units of
measurement, which is crucial to our application:
fmod BASICUNITS is
sorts BUnit .
ops mile kg meter second Celsius : -> BUnit .

endfm
fmod UNITS is protecting RAT . extending BASICUNITS .
sorts SpecialUnit Unit UnitList .
subsorts BUnit SpecialUnit < Unit < UnitList .
ops noUnit any fail : -> SpecialUnit .
op _ˆ_ : Unit Rat -> Unit [prec 10] .
op __ : Unit Unit -> Unit [assoc comm prec 15] .
op nil : -> UnitList .
op _,_ : UnitList UnitList -> UnitList [assoc id: nil] .
vars U U’ : Unit . vars N M : Rat .
eq U noUnit = U . eq U any = U .
eq U fail = fail . eq fail ˆ N = fail .
eq any ˆ N = any . eq noUnit ˆ N = noUnit .
eq U ˆ 0 = noUnit . eq U ˆ 1 = U .
eq U U = U ˆ 2 . eq U (U ˆ N) = U ˆ (N + 1) .
eq (U ˆ N) (U ˆ M) = U ˆ (N + M) .
eq (U U’) ˆ N = (U ˆ N) (U’ ˆ N) .
eq (U ˆ N) ˆ M = U ˆ (N * M) .

endfm

Keywords sort and op refer to the types of data and the op-
erations on these data. In the above modules, we have dif-
ferent sorts of data: BUnit for basic units, SpecialUnit,
Unit and UnitList. Units like mile have been declared
as constants of sorts BUnit. The unit any can be dynami-
cally converted to any other unit, depending on the context;
e.g., in x+=1, the increment 1 is interpreted to have the unit
any and dynamically converted to the unit of x. The special

unit noUnit is used to distinguish a cancelled unit (for ex-
ample after calculating meter meterˆ(-1)) from any, in
order to report appropriate warnings. The special unit fail
is attached to a variable in case its unit cannot be computed
due to safety violations. The result sort of an operation is
listed after -> and the argument sorts between : and ->.
e.g., the power operator op _ˆ_ : Unit Rat -> Unit

takes a unit and a rational number and returns another unit.
Maude allows attributes like associativity (A),

commutativity (C), precedence and identity to
be associated with binary operators. For exam-
ple, op _ _ : Unit Unit -> Unit is declared
AC, So Maude finds second meter second and
meter secondˆ2 equivalent. In fact the above module
terminates and is Church-Rosser modulo AC, thus enabling
an automated deduction approach to measurement unit
analysis. The equations in the above module, introduced
via the keyword eq, define the power operator. In Maude,
one module can extend other modules and inherit their
sorts, operations and equations. The above unit specifica-
tion is split into the BASICUNITS module, which defines a
series of basic units, and the UNITS module, which defines
the main operations on units together with their calculus.
This separation is based on the observation that the set of
basic units varies from application to application, while
the calculus of units is always the same. Our prototype
allows users to define their own basic unit set through a
configuration file, and then generates the BASICUNITS

module automatically. Nonstandard units, such as currency,
can also be defined this way.

3 Executable Semantics of C
Equational logic is an important paradigm in computer

science. It admits complete deduction and is efficiently
mechanizable by rewriting: CafeOBJ [6], Maude [4] and
Elan [1] are equational specification systems that can per-
form millions and tens of millions of rewrites per second
on standard PC platforms. Goguen and Malcolm [10],
Wand [23], Broy, Wirsing and Pepper [2], and many others,
showed that equational logic is essentially strong enough to
easily describe virtually all programming language features.

We have defined the semantics of a segment of C as
an algebraic specification in Maude of about 1,000 equa-
tions. This specification supports a significant subset of
the C language by carefully simulating the running environ-
ment. The union data type and the arithmetic computation
on pointers are the only features left out. Since Maude spec-
ifications can be executed by rewriting, we were able to run
dozens of non-trivial, often recursive, C programs directly
within the mathematical definition of C. Equational speci-
fications of programming languages, as well as extensions
of them, usually can be developed rapidly because they just
reflect a rigorous, formal definition of the language. Be-
sides obvious advantages in programming language design,

2

ASE'03, IEEE, pp. 304 - 309. 2003.



a major benefit of having a language defined formally is that
one can also reason formally about programs, using deduc-
tive techniques. This is what we do in this paper: we extend
C’s specification with support for units of measurement, and
then analyze C programs both dynamically (by “executing”
them with the semantics of C) and statically, by equational
reasoning as implemented in Maude via term rewriting.

4 Design Conventions and Annotations
Our approach is based on annotations, which are ignored

by compilers as comments, but regarded as special state-
ments by our tool. The design of our application has been
mainly influenced by three factors: correctness, unchanged
programming language, and low amount of annotations.
4.1 Correctness

By “correctness” we mean that there are no possible vi-
olations of safety policy that our tool does not report. We
consider correctness a crucial aspect because, unlike other
tools like ESC [5] being mainly intended to help users find
some bugs in their programs, our application is intended
to be used in the context of safety critical software, such
as air/space craft and navigation, where software develop-
ers want to be aware of any inconsistency in their code.
Our tool is composed of a dynamic checker and a static
checker; the former generates accurate warnings while the
latter warns users of all possible conflicts.
4.2 Unmodified Programming Language

A major influencing factor in the design of our prototype
was the decision to not modify the underlying programming
language at all, for example by adding new types. Our rea-
son for this decision is multiple. First, we do not want to
worry about providing domain specific compilers; one can
just use the state of the art optimized compilers for the lan-
guage under consideration. Second, by enforcing an aux-
iliary typing policy on top of a programming language in
order to detect unit inconsistencies via type checking, one
must pay the price of some runtime overhead due to method
calls that would replace all the normal arithmetic opera-
tors; our static prototype does not add any runtime over-
head. Third and perhaps most importantly, we do not put
the user in the unfortunate situation of having a correct pro-
gram rejected because it cannot be type checked, which is
in our view the major drawback of typed approaches to unit
safety; instead, our users has the option to either add more
auxiliary unit specific information to help the checker or to
ignore some of the warning messages.
4.3 Annotation Schemas

Code annotations, which are special comments, have
been proved to be very useful and necessary in the practi-
cal software development, especially in large-scale applica-
tions. Today, it is not surprising to see even more comments
than instructions in a commercial program. There are many
practices to develop reliable software based on assertions,
such as Design By Contract (DBC) [20].

The unit-related annotations are introduced with the syn-
tax /*U _ U*/ and are of two kinds: assumptions and as-
sertions. Our annotation schemas are general and can be
applied to any domain-specific safety policy checker, but
in this paper we focus on unit safety policy. The next is
an example showing some of the complex unit expressions
that can be manipulated by our tool; it also emphasizes the
importance of annotations. This program has functions to
calculate distances, convert energy and calculate the angle
under which a projectile of a given weight and acting en-
ergy should be launched in order to travel a given distance:

float lb2kg(float w)
/*U assert unit(w) = lb U*/ /*U assume returns kg U*/
{ return 10 * w / 22; }
float distance(float x1, float y1, float x2, float y2)
{ return sqrt((x2-x1)ˆ2 + (y2-y1)ˆ2); }
float energy2speed(float energy, float weight)
{ return sqrt(2 * energy / weight); }
float projectiletan(float dist,float speed,float g)
/*U assert unit(speed)ˆ2 = unit(dist) unit(g) U*/

{ float dx, dy;
dx = speed * speed + sqrt(speedˆ4 - (dist * g)ˆ2);
dy = dist * g; return dx/dy;}

main() {
float projectilex, projectiley, targetx, targety,

dist, projectilewight, energy, speed, g;
projectilex = 0;
/*U assume unit(projectilex) = meter U*/
projectiley = 0;
/*U assume unit(projectiley) = unit(projectilex) U*/
targetx = 17;
/*U assume unit(targetx) = unit(projectilex) U*/
targety = 21;
/*U assume unit(targety) = unit(projectiley) U*/
dist=distance(projectilex,projectiley,targetx,targety);
projectileweight = 5;
/*U assume unit(projectileweight) = lb U*/
energy = 2560;
/*U assume unit(energy) = kg meterˆ2 secondˆ-2 U*/
speed = energy2speed(energy, projectileweight);
g = 10; /*U assume unit(g) = meter secondˆ-2 U*/
printf("%f\n", projectiletan(dist, speed, g));}

The first function converts lb to Kg. The next one computes
the distance between two points. No annotations are given,
but a warning will be generated anyway if the arguments
do not have the same unit. The third function computes the
speed of an object, given the energy acting on it. The last
function computes the tangent of the angle of a projectile,
given a certain distance it wants to reach, an initial speed
and a gravitational acceleration. This function is annotated
with an assertion describing a unit invariant among its ar-
guments. This allows one to use such functions in various
contexts, such as under metric or English system conven-
tions, as well as for other possible combinations of units.

The above code contains a unit safety violation, when
the function projectiletan is called, because the unit of
speed is Kgˆ(1/2) meter secondˆ-1 lbˆ(-1/2) so
the assertion is violated. To correct this problem, the user
should first properly convert the projectile weight to Kg us-
ing the function lb2kg.

There are two types of assumptions supported by our
application, namely /*U assume unit(_) = _ U*/ and

3

ASE'03, IEEE, pp. 304 - 309. 2003.



/*U assume returns _ U*/. The first can appear any-
where in the program and takes as arguments a variable and
a unit expression. For the static checker, if the variable is
not a simple one then it will be automatically replaced by
its simple root, e.g., s[10][i] will be replaced by just s.
The unit expression can be any combination of basic units
and unit(Expr), the second being evaluated in the current
execution environment(s). We can see some examples of
assumptions in the main function of the above example.

The second kind of assumption annotation is used only
for functions, to enforce returning a specific unit. It can
be used within unit conversion functions, such as the func-
tion lb2kg, or simply to state the result unit of a function
when it cannot or is not desired to be inferred (e.g., in the
case of library functions ). It is placed just before the body
of the function and takes a unit expression as a sole argu-
ment, which will be evaluated before the body of the func-
tion but after the arguments of the function are instantiated.
The body of the function will still be analyzed and warn-
ings will be appropriately given, but the assumed unit will
be returned and used in callee’s context.

Assertions have the syntax /*U assert _ U*/, the ar-
gument being any boolean expression on units, using the
boolean connectors and, or, implies, not, over equali-
ties of unit expressions. Assertions can be highly unit in-
variant. For example, in the assertion for projectiletan,
the variables can be represented either in the metric or in the
English system. Assertions can be anywhere in a program,
including just before the body of a function, as shown in the
previous example. All assertions are treated the same way
by the dynamic checker: the boolean expression is evalu-
ated and a warning is reported when the result is false.
The static checker, however, interprets the assertions in
three different ways, depending on where they appear. As-
sertions which appear just before the body of a function,
like in the above example, are used to check the consis-
tency of the input arguments; together with return assump-
tions, these give the tool the ability to handle library func-
tions. Assertions which appear within the body of a loop are
treated as loop invariants (Subsection 5.2 gives more details
on these). The remaining assertions are handled like the
dynamic checker: they are evaluated in the corresponding
environment and warnings are generated if false.

4.4 Reducing the Amount of Annotations.
Another major factor influencing our design was the

overall observed and sometimes openly declared reluctance
of modifying or inserting annotations in programs. There-
fore, we paid special attention to reducing the amount of
needed annotations. As a consequence, each variable is con-
sidered to have a default unique unit, which is different from
any other existing unit. Thus, our tool will output a warning
on the simple code segment x = 10; y = 10; r=x+y if
x and y have not been assumed to have any units before.

This brings us to a major design convention, called the
locality principle, which says that one is assumed to know
and understand what one is doing locally, within a single
instruction, with respect to constants. For example, if one
writes x++, then one means to increase the value of x by 1,
and this 1 has exactly the same unit as x at that particular
moment during the execution of the program. There is
no difference between the statements x++ and x = x +

1, so we apply the same locality principle to numerical
constants. Therefore, a constant assignment to a variable,
such as x = 5, will not change the unit of x. Conservative
users can avoid the locality principle by attaching a unit
to numerical values via appropriate assumptions, e.g.,
tmp = 5 ; /*U assume unit(tmp) = second U*/,
and then execute x = x + tmp; a warning will be reported
in this case if the unit of x cannot be shown to be second.

Based on these conventions, the following sorting code
needs only one assumption to satisfy the safety policy:

int n = 25, i, j, a[25] ; /*U assume unit(i) = any U*/
for (i = 1 ; i <= n ; i = i + 1) a[i] = n - i + 1 ;
for (i = 1 ; i < n ; i = i + 1)

for (j = i + 1 ; j <= n ; j = j + 1)
if (a[j] < a[i]) { temp=a[i]; a[i]=a[j]; a[j]=temp; }

The only assumption needed, assigning the universal unit
any to the counter i, guarantees the compatibility of i and
n when they are compared later, within the loop conditions.
The first loop assigns the unit of n to each of the 25 elements
of a. In the case of the static analyzer, the array a will be
assigned the unit of n by executing the loop body symbol-
ically only twice, regardless of the value of n (because the
environment set stabilizes; see next section). Then the sec-
ond loop is analyzed and no warning is reported because the
nested loop assigns the unit of i, any, to j, so any subse-
quent comparisons of j are safe; the environment set also
stabilizes in two iterations of the loop. Without the assump-
tion, 5 warnings would be reported.

5 A Measurement Unit Prototype Certifier
Our prototype certifier includes both dynamic and static

checkers, built on the Maude executable semantics of C, to-
gether with a formatting tool which adjusts the format of the
input C programs into well-formed Maude terms, and a con-
sole program that puts all the components together, hiding
the details of Maude and providing the users a friendly inter-
face. A preprocessing tool is under development to support
include and define statements in C. The architecture of
our certifier is shown in Figure 1.

The interested reader is encouraged to check the URL
http://fsl.cs.uiuc.edu, where links to a latest ver-
sion of the certifier with documents.

5.1 Dynamic Checker.
Our dynamic checker essentially interprets the annotated

C program within its enriched executable semantics. This is
done by properly extending the executable semantics of C

4

ASE'03, IEEE, pp. 304 - 309. 2003.



Control Console

Preprocessing
Tool

Static Checker

Dynamic CheckerFormatting
Tool

Figure 1. Architecture of a C Unit Checker

discussed in Section 3. A major extension concerns execu-
tion environments. The value data of every numeric vari-
able stored in the environment is now a pair, consisting of
a numeric value and a unit of measurement. When expres-
sions are evaluated, their variables’ units are used to check
the safety policy. For example, if x + y is encountered at
line 15 and the corresponding value data are [7, second]

and [3, second], 10 is correctly assigned to the sum but
a warning will be issued of the form 15 : x + y.

Another major extension of C’s semantics, needed also
by the static checker, is w.r.t. annotations: they act like new,
domain-specific instructions. An assumption /*U assume

unit(Var) = UnitExp U*/ is interpreted as follows: 1)
evaluate UnitExp in the current environment; 2) modify
the environment by associating the calculated unit to the
variable Var, without changing its current numeric value; if
UnitExp fails to evaluate to a correct unit due to violations
of the safety policy, then the unit fail will be assigned to
Var. Due to its precision in analysis (because of the exact
execution path and environment), the dynamic checker can
allow the user to assign a unit to any numerical, abstract
memory location. Assumptions /*U assume returns

UnitExp U*/ are interpreted as follows: UnitExp is eval-
uated when the function is called and returned as unit asso-
ciated to the returned number; the function is also executed
to report all additional warnings. Assertions of boolean
unit expressions are simply evaluated to boolean values and
warnings are returned if they evaluate to false.
5.2 Static Checker.

The main idea behind our static checker is to cover all
the execution paths rather than just one. A simplifying ab-
straction is to ignore all numerical values and only consider
the domain-specific, abstract values (units of measurement)
of variables. Due to the loss of precision, at each point one
has to consider a set of environments in parallel, namely
all those in which a potential execution of the program can
be. Each statement is abstractly evaluated in all the envi-
ronments. If the unit safety policy is violated in any of the
environments then a warning is output. A new set of envi-
ronments will be computed after each statement. Figure 2
shows how this is done for a conditional statement if (i

< 0) then Stmt else Stmt’.
What makes this approach tractable in practice is the fact

that most conditional statements change the units of vari-

Environment

Set A2

Environment

Set A1
Environment

Set B1

Environment

Set B2

Environment

Set B
Environment

Set A

i < 0

! (i < 0)

Figure 2. Calculating Environment Sets

ables the same way, so we are rarely faced with the problem
of analyzing an exponential number of possibilities.

Reusing existing libraries is a dominant tendency in cur-
rent software development. However, the code of reused
libraries is often unaccessible except for the interfaces to
the library functions, resulting in the inapplicability of the
dynamic checker. But for the static checker it is not neces-
sary to have the code of every function used to perform the
analysis. All what is needed is to know how the units are
changed after the function call, which can be associated to
the function declaration via the return assumption and as-
sertions. The static checker will verify the assertions of the
arguments, apply the return assumption and then continue
to check the rest of the program. If the source code is avail-
able, the static checker can also check the function’s body.

The most complicated part is the treatment of loops. The
general solution involves loop invariants, but, due to the
lack of their understanding by ordinary programmers, we
would like to avoid them as much as possible. Our solution
is based on loop patterns that one can easily and efficiently
analyze statically. One such pattern, e.g. is one in which
the body of a loop does not change the set of environments;
in this case the loop can be safely ignored. Another pattern
is when the set of environments stabilizes after several iter-
ations; this pattern, for example, is triggered to analyze the
sorting algorithm in Subsection 4.4.

For those loops that do not fall under any of the pro-
vided patterns, loop invariants are needed. They are in-
serted into the body of the loop by the programmers as as-
sertions. When the static checker encounters such asser-
tions, it proves them, collects them and then uses them in
certifying other parts of the programs. Let us explain how
it works on a simple example:

for (i = 1 ; i < n ; i = i + 1) {
x = x * s[i];/*U assert unit (x) = meter ˆ i U*/}
x = x ˆ (1 / n);

The assertion will be attempted to be symbolically proved
by induction on the loop counter. After the loop, there will
be two pieces of information collected, namely !(i < n)

and unit(x) = meter ˆ i. Furthermore, this loop falls
under the pattern stating that the control variable’s incre-
ment is 1. The condition can thus be modified to i ==

n. Later, when x = x ˆ (1/n) is evaluated, the above
is used and unit(x) = meter is inferred.

5

ASE'03, IEEE, pp. 304 - 309. 2003.



5.3 Comparing the Two Checkers
The main advantage of the dynamic checker is the cor-

rectness of its reported warnings: any reported warning
represents a violation of the unit safety policy. The user
should therefore consider these reports very seriously. The
main drawback of the dynamic checker is its coverage: it
only covers the path that was generated by the particular
test case. Therefore, other errors might exist in the ana-
lyzed program which were not revealed and which can ap-
pear when the program is executed with different numeri-
cal values as input. Another drawback of the dynamic unit
safety checker is that its execution time consists of the ana-
lyzed program’s execution time plus the runtime overhead.
Therefore, if a program calculates a computationally com-
plex function or does not terminate in a reasonable time,
then so does the unit safety prototype, which can be a seri-
ous drawback in some applications. Another problem with
the dynamic checker is that it does not support library func-
tions whose source code is not accessible.

The main advantage of the static checker is that it covers
all the reachable code, so it does not miss any unsafe expres-
sion: a careful analysis of the reported warnings can reveal
all the unit safety leaks. Another advantage is its relative ef-
ficiency, because it does not execute the programs, so non-
termination of the program does not imply non-termination
of the checker. However, depending on the amount of au-
tomated deduction that one wants to put in such a static
certifier, it can actually become rather inefficient. A ma-
jor drawback of the static certifier is the potentially long list
of false alarms that it reports. The user can reduce their
number using assume annotations, but one should be care-
ful when using assumptions because they can be wrong and
thus present a safety threat.

6 Conclusion and Future Work
An automated deduction approach to measurement unit

safety was presented, in the form of dynamic and static
unit safety checkers. Future work includes incorporating
other domain-specific policies and supporting other major
languages.

References

[1] P. Borovanský, H. Cı̂rstea, H. Dubois, C. Kirchner,
H. Kirchner, P.-E. Moreau, C. Ringeissen, and M. Vit-
tek. ELAN. User manual – http://www.loria.fr.

[2] M. Broy, M. Wirsing, and P. Pepper. On the algebraic
definition of programming languages. ACM Trans. on
Prog. Lang. and Systems, 9(1), 1987.

[3] T. Cheatham. Handling fractions and n-tuples in alge-
braic languages. Presented at the 15th ACM Annual
Meeting, Aug. 1960.

[4] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-
Oliet, J. Meseguer, and J. Quesada. Maude: Specifi-
cation and Programming in Rewriting Logic. Theoret-
ical Computer Science, 285, 2002.

[5] Compaq. ESC for Java, 2000. URL:
www.research.compaq.com/SRC/esc.

[6] R. Diaconescu and K. Futatsugi. CafeOBJ Report.
World Scientific, 1998. AMAST Series in Comput-
ing, volume 6.

[7] A. Dreiheller, M. Moerschbacher, and B. Mohr.
Physcal - programming Pascal with physical units.
ACM SIGPLAN Notices, 21(12), 1986.

[8] N. Gehani. Units of measure as a data attribute. Comp.
Lang., 2, 1977.

[9] N. H. Gehani. Ada’s derived types and units of mea-
sure. Software: Practice and Experience, 15(6), 1985.

[10] J. Goguen and G. Malcolm. Alg. Semantics of Imper-
ative Programs. MIT, 1996.

[11] J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and
J.-P. Jouannaud. Introducing OBJ. In Software Engi-
neering with OBJ. Kluwer, 2000.

[12] P. N. Hilfinger. An Ada package for dimensional anal-
ysis. ACM Transactions on Programming Languages
and Systems, 10(2), April 1988.

[13] R. T. House. A proposal for the extended form of
type checking of expressions. The Computer Journal,
26(4), 1983.

[14] M. Karr and D. B. L. III. Incorporation of units
into programming languages. Communications of the
ACM, 21(5):385–391, 1978.

[15] A. J. Kennedy. Relational parametricity and units of
measure. In Proceedings of POPL’97. ACM, 1997.

[16] A. J. Kennedy. Programming Languages and Dimen-
sions. PhD thesis, St. Catherine’s College, University
of Cambridge, November 1995.

[17] R. Khanin. Dimensional analysis in Computer Alge-
bra. In Proceedings of ISSAC’01. ACM, 2001.

[18] M. Lowry, T. Pressburger, and G. Roşu. Certifying
domain-specific policies. In Proceedings of ASE’01.
IEEE, 2001.

[19] G. W. Macpherson. A reusable Ada package for scien-
tific dimensional integrity. ACM Ada Letters, XVI(3),
1996.

6

ASE'03, IEEE, pp. 304 - 309. 2003.



[20] B. Meyer. Object-Oriented Software Construction,
2nd edition. Prentice Hall, 2000.

[21] R. Milner. A theory of type polymorphism in pro-
gramming languages. Journal of Computer and Sys-
tem Sciences, 17, 1978.

[22] M. Rittri. Dimensional inference under polymorphic
recursion. In Proceedings of Functional Programming
Languages and Computer Architecture. ACM, 1995.

[23] M. Wand. First-order identities as a defining language.
Acta Informatica, 14, 1980.

7

ASE'03, IEEE, pp. 304 - 309. 2003.


