
Monitoring Algorithms for Metric Temporal
Logic Specifications

Prasanna Thati Grigore Roşu

Department of Computer Science
University of Illinois at Urbana Champaign, USA

{thati,grosu}@cs.uiuc.edu

December 2003

Abstract

Program execution traces can be so large in practical testing and monitoring appli-
cations that it would be very expensive, if not impossible, to store them for detailed
analysis. Monitoring execution traces without storing them, can be a nontrivial
matter for many specification formalisms, because complex formulae may require a
considerable amount of information about the past. Metric temporal logic (MTL) is
an extension of propositional linear temporal logic with discrete-time-bounded tem-
poral operators. In MTL, one can specify time limits within which certain temporal
properties must hold, thus making it very suitable to express real-time monitoring
requirements. In this paper, we present monitoring algorithms for checking times-
tamped execution traces against formulae in MTL or certain important sublogics
of it. We also present lower bounds for the monitoring problem, showing that the
presented algorithms are asymptotically optimal.

1 Introduction

Runtime verification and monitoring have been proposed as lightweight formal
verification methods [13] with the explicit goal of checking systems against
their formal requirements while they execute. In most monitoring applications,
execution traces are available only incrementally and they are much larger than
the formulae against which they are checked. Storing an entire execution trace
and then performing the formal analysis by having random access to the trace
is very expensive and sometimes even impossible. For example, the monitor
may lack resources, e.g., if it runs within an embedded system, or the monitor
may be expected to react promptly when its requirements are violated, in
order for the system to safely take a recovery or a shutdown action.

In this paper, we adopt the position that a monitoring algorithm does
not store execution traces, but rather consumes the events as they are re-
ceived from the monitored program. The problem of checking execution traces

Preprint submitted to Elsevier Preprint December 2003

against temporal specifications is known to have very simple and efficient al-
gorithms for several temporal logics, as shown for example in [19], but most
of these algorithms assume that the entire execution trace is available before-
hand, so they violate the assumptions for a monitoring algorithm.

In this paper, we investigate monitoring algorithms for the metric tempo-
ral logic (MTL) [1,15] and its sublogics. MTL is an extension of propositional
linear temporal logic (LTL) that can refer to discrete-timed properties, and
its models are timestamped state-sequences, thus making it an appealing for-
malism for expressing monitoring requirements in real-time systems. Besides
the propositional operators, MTL allows future and past time linear temporal
operators which are bounded by discrete-time intervals. For example, φU[3,7]ψ
states that ψ should hold between 3 and 7 time units from now, and until then
φ should hold. One or both of the ends of an interval can be 0 or ∞. LTL can
be seen as a special case of MTL where every interval is [0,∞). As introduced
in [1], MTL also provides congruences that allow one to state that a formula
should hold periodically with respect to an absolute time. We call these abso-
lute congruences and support them in our MTL specifications as well, but in
addition we introduce a novel variant that we call relative congruence. Rela-
tive congruences allow one to refer to moments that occur periodically starting
with the current time.

We first present a general MTL monitoring algorithm based on the idea of
transforming the MTL formula as each time-stamped observation (or event,
for short) is received from the monitored program. The underlying principle
of the algorithm is “resolve the past and derive the future”. By “resolving
the past” we mean that the MTL formula is transformed into an equivalent
formula with the property that it has no past time operator rooted subformulae
which are not guarded by other temporal operators. By “deriving the future”
we mean that the MTL formula is transformed into a new MTL formula
with the property that the current formula holds before processing the newly
received event if and only if the derived formula holds after processing the
event. We show that this MTL monitoring algorithm runs in space O(m2m)
and takes time O(m323m) for processing each event, where m equals |φ| plus
the sum of all the numeric constants occurring in φ, and φ is φ with all the
timing subscripts dropped. The reader may note that although exponential,
these bounds are independent of the size of execution trace which is typically
much larger than the formula being monitored 1 . We also show that the
algorithm has better bounds for certain sublogics of MTL, including LTL.
In fact, the bounds for past and future time LTL match the previously best
known monitoring algorithms for these logics [11,12]. Finally, we derive lower
bounds for monitoring MTL and its sublogics, which show that our algorithm
is close to optimal.

In the interest of space, proofs of all the claims have been moved to appendix.

1 If the integer constants in φ are represented in binary notation, then the bounds are
doubly exponential on |φ|

2

Related Work. MTL was introduced in [1], where its complexity of expres-
siveness is investigated. MTL is just one amongst a variety of extensions of
linear temporal logics for specifying real-time systems (see [2] for a survey).
Our idea of deriving an MTL formula with an observed event is an adaptation
of the classical tableaux construction for temporal logics [21,9], where formu-
las in the current state represent constraints on the remainder of the input
trace and are systematically propagated from the current state to the next.
Drusinski [6] implements monitors for MTL formulae in his commercial Tem-
poral Rover system, but the implementation and algorithmic details of this
implementation are not available.

Java PathExplorer (JPaX) [10] is a NASA runtime verification system pro-
viding monitoring algorithms for past and future time LTL. MTL non-trivially
generalizes LTL, and the motivation for generalizing the LTL monitoring al-
gorithms to MTL is clear - one would often like to monitor not only qualitative
specifications such as those that can be expressed in LTL, but also quantita-
tive specifications that refer to timing constraints. The algorithms we present,
when used on LTL specifications, are as efficient or more efficient than the
corresponding specialized algorithms in JPaX. Eagle [4,3] is a fix-point based
logic formalism designed around and for JPaX, combining temporal aspects
and data, thus allowing one to define temporal operators and support time;
however, its generality and lack of complexity analysis makes it hard to com-
pare with our approach.

The complexity of checking a path against temporal formulas has been
discussed in the context of “model-checking a path” in [19], but metric tem-
poral logic was not covered there. We describe a dynamic programming based
procedure in the style of [19], but argue that it is not a monitoring procedure
because it has to store the entire execution trace. A tableaux based-simply
exponential method to detect “bad prefixes” for a subset of LTL formulae is
presented in [8]. We show that our general algorithm, when used on LTL
formulae, not only has a better complexity than the algorithm in [8], but also
works on any LTL formula, including both future and past operators. Us-
ing alternating automata in monitoring is also an appealing approach, started
with [7] for LTL, but it is not clear how easily it can be used in the context
of timed sequences of events.

2 Metric Temporal Logic

In this section, we briefly recap MTL; the reader is referred to [1] for more
details. Given a finite set P of propositions, the set of MTL formulas is
inductively defined as follows.

φ := true | false | p | φ1 ∧ φ2 | φ1 ⊕ φ2 | ◦Iφ | φ1UIφ2 | ◦·Iφ | φ1SIφ2

where p ∈ P , and I is one of the following:

(1) An interval of the non-negative real line whose left and right end-points

3

are natural numbers or ∞. For a number n, the expression ±I ± n denotes
the interval {±y ± n | y ∈ I} ∩ [0,∞).

(2) A relative congruence expression ≈d c for integers d ≥ 2 and c ≥ 0.
y ∈ ≈d c denotes y = c mod d, and ±I ± n the set {y | y = ±c± n mod d}.
(3) An absolute congruence expression =d c for integers d ≥ 2 and c ≥ 0. The
expression y ∈ =d c denotes y = c mod d and ±I±n the set {y | y = c mod d}.

We use exclusive disjunction instead of negation to simplify certain tech-
nicalities in the Section 3.

We assume that the integer constants that occur in a formula are encoded
in binary format. We interpret MTL formulas over finite timed state sequences.
A timed state sequence ρ = (π, τ) is a pair consisting of a finite sequence π of
states πi ⊆ P , and a finite sequence of natural numbers τ with |π| = |τ | and
τi ≤ τi+1 for each i. Define |ρ| = |π|. Intuitively, a sequence ρ represents a
timed execution of a system and is understood as follows: at time τi the system
was observed to be in state πi. Let π[i, j] denote πiπi+1 . . . πj, and similarly
for τ [i, j], and let ρ[i, j] = (π[i, j], τ [i, j]). Given a timed state sequence ρ and
a position 1 ≤ i ≤ |ρ|, we define what it means for (ρ, i) to satisfy a formula
φ, written (ρ, i) � φ, as follows:

(ρ, i) � true is always true
(ρ, i) � false is always false
(ρ, i) � p iff p ∈ πi
(ρ, i) � φ1 ∧ φ2 iff (ρ, i) � φ1 and (ρ, i) � φ2

(ρ, i) � φ1 ⊕ φ2 iff exactly one of (ρ, i) � φ1 and (ρ, i) � φ2 holds
(ρ, i) � ◦Iφ iff i < |ρ|, (ρ, i+ 1) � φ, and τi+1 ∈ τi + I
(ρ, i) � φ1UIφ2 iff (ρ, j) � φ2 for some j ≥ i with τj ∈ τi + I and

(ρ, k) � φ1 for all i ≤ k < j
(ρ, i) � ◦·Iφ iff i > 1, (ρ, i− 1) � φ, and τi−1 ∈ τi − I
(ρ, i) � φ1SIφ2 iff (ρ, j) � φ2 for some j ≤ i with τj ∈ τi − I and

(ρ, k) � φ1 for all j < k ≤ i

We write ρ � φ as shorthand for (ρ, 1) � φ. Note that intervals and relative
congruences express timing constraints relative to the “current” time, while
absolute congruences refer to the absolute time. For example, at position i,
◦[m,n]true holds if τi+1 − τi ∈ [m,n], and ◦≈dctrue holds if τi+1 − τi = c mod d,
while ◦=dctrue holds if τi+1 = c mod d. MTL as originally defined in [1]
contains only absolute congruences as primitives, but we introduce relative
congruences since they naturally arise in many specifications. The following
are some useful abbreviations:

¬φ = true ⊕ φ φ1 ∨ φ2 = φ1 ⊕ φ2 ⊕ (φ1 ∧ φ2)
�
Iφ = true UIφ

�
Iφ = ¬ �

I¬φ
� ·Iφ = true SIφ æIφ = ¬ � ·I¬φ

We write U for U[0,∞), U≤m for U[0,m], U>m for U(m,∞), Um for U[m,m], and
similarly for the other temporal operators. Note that the standard LTL falls

4

as a degenerate sublogic of MTL where only the interval [0,∞) is allowed,
which amounts to “ignoring” the timestamps in execution traces.

Recursive definitions of satisfaction typically lead to efficient dynamic pro-
gramming based algorithms for checking membership of a trace in the set of
traces defined by a formula [19]. An equivalent recursive definition of the
semantics above can be easily devised:

(ρ, i) � φ1UIφ2 iff 0 ∈ I and (ρ, i) � φ2, or i < |ρ| and (ρ, i) � φ1 and
(ρ, i+ 1) � φ1UI′φ2 where I ′ = I − τi+1 + τi

(ρ, i) � φ1SIφ2 iff 0 ∈ I and (ρ, i) � φ2, or i > 1 and (ρ, i) � φ1 and
(ρ, i− 1) � φ1SI′φ2 where I ′ = I − τi + τi−1

An efficient dynamic programming algorithm for testing (ρ, i) � φ follows
naturally: allocate a table d of size |ρ| × |φ| × c of bits, where c is the largest
integer constant occurring in φ. The idea is that d(i, j, c) is 1 if and only if
(ρ, i) satisfies the formula ψ that is obtained from the jth subformula of φ
by subtracting c from the interval at the root of the subformula (if any). By
carefully traversing the table d, one can fill it in time linear on its size. See [19]
for related algorithms for other temporal logics. However, such an algorithm
is highly undesirable in the context of monitoring, because it not only requires
the entire trace to be stored, which is intolerable while monitoring very long
executions, but it also is not online in nature.

3 Monitoring MTL Formulae over Finite Traces

In this section, we present our main monitoring algorithm for MTL.

3.1 Resolving the Past and Deriving the Future

We define two mutually recursive formula transformations, one for past and
one for future. The transformation [ρ, i]φ resolves all the top-level past-time
operators in φ according to the events until the ith one in ρ, i.e. according
to the events observed so far. The resulting formula is an equivalent formula
that does not contain any unguarded past-time operators, i.e. every top-level
temporal operator is a future-time operator (see Lemma 3.2). The transfor-
mation φ{ρ, i} derives the formula φ with respect to the ith event in ρ, so that
the resulting formula holds after the event if and only if φ holds before the
event (see Lemma 3.2).

Definition 3.1 Let ρ be a timed state sequence, and 1 ≤ i ≤ |ρ|. We define

[ρ, i]true = true [ρ, i]false = false

[ρ, i]p = p ∈ πi [ρ, i](φ1 ∧ φ2) = ([ρ, i]φ1) ∧ ([ρ, i]φ2)

[ρ, i](φ1 ⊕ φ2) = ([ρ, i]φ1) ⊕ ([ρ, i]φ2) [ρ, i]◦Iφ = ◦Iφ
[ρ, i](φ1UIφ2) = φ1UIφ2 [ρ, i]◦·Iφ = if i = 1 or τi−1 /∈ τi − I

then false else [ρ, i](φ{ρ, i− 1})

5

[ρ, i](φ1SIφ2) =





if 0 ∈ I then [ρ, i]φ2

else false



 ∨





if i = 1 then false

else [ρ, i](φ1 ∧ (φ1SI′φ2){ρ, i− 1})





where I ′ = I − τi + τi−1

true{ρ, i} = true false{ρ, i} = false

p{ρ, i} = p ∈ πi (φ1 ∧ φ2){ρ, i} = (φ1{ρ, i}) ∧ (φ2{ρ, i})
(φ1 ⊕ φ2){ρ, i} = (φ1{ρ, i}) ⊕ (φ2{ρ, i}) (◦·Iφ){ρ, i} = ([ρ, i]◦·Iφ){ρ, i}
(φ1SIφ2){ρ, i} = ([ρ, i](φ1SIφ2)){ρ, i}

(◦Iφ){ρ, i}= if i = |ρ| or τi+1 /∈ τi + I then false else φ

(φ1UIφ2){ρ, i}=





if 0 ∈ I then φ2{ρ, i}
else false



 ∨





if i = |ρ| then false

else (φ1{ρ, i} ∧ (φ1UI′φ2))





where I ′ = I − τi+1 + τi

From now on we adopt the convention that the operators [ρ, i]· and ·{ρ, i} bind
weaker than all the logical connectives. E.g., [ρ, i]φ1SIφ2 denotes [ρ, i](φ1SIφ2),
and φ1SIφ2{ρ, i} denotes (φ1SIφ2){ρ, i}.
Let F(φ) be the set of all subformulae of φ that are either rooted at a temporal
operator or are atomic propositions. Let F̂(φ) be the set of formulas in F(φ)
which have an occurrence in φ that is not guarded by a temporal operator,
i.e. formulas in F(φ) that are at the “top-level”. Let φ denote the formula
obtained by dropping all the intervals in φ (i.e., implicitly replacing every
interval with [0,∞)). For instance, for φ = p1UI(p2 ∧ p3), we have F(φ) =
{p1, p2, p3, φ}, F̂(φ) = {φ}, and φ = p1U(p2 ∧ p3). Let

F+(φ) =F(φ) ∪ {φ1UI′φ2 | φ1UIφ2 ∈ F(φ), I ′ = I − n for some n}
F−(φ) =F(φ) ∪ {φ1SI′φ2 | φ1SIφ2 ∈ F(φ), I ′ = I − n for some n}
F±(φ) =F+(φ) ∪ F−(φ)

The following lemma states certain properties of the formula transformations
in Definition 3.1, that we informally claimed earlier in this section.

Lemma 3.2 For a timed state sequence ρ and 1 ≤ i ≤ |ρ|,
(i) F([ρ, i]φ) ⊆ F+(φ). Further, if φ is rooted at a past time temporal oper-

ator then F([ρ, i]φ) ⊆ F+(φ) \ φ.
(ii) Every formula in F̂([ρ, i]φ) is rooted at a future time temporal operator.

(iii) (ρ, i) � φ if and only if (ρ, i) � [ρ, i]φ.

(iv) F(φ{ρ, i}) ⊆ F+(φ). Further, if φ is rooted at a past time temporal
operator then F(φ{ρ, i}) ⊆ F+(φ) \ φ.

6

(v) F(φ{ρ, |ρ|}) is empty, i.e. φ{ρ, |ρ|} is equivalent to true or false.

(vi) For i < |ρ|, (ρ, i) � φ if and only if (ρ, i+ 1) � φ{ρ, i}, and (ρ, |ρ|) � φ if
and only if φ{ρ, |ρ|}. �

3.2 Canonical Forms

While transforming the MTL formulae after every event, it is crucial to keep
the size of the transformed formulae small. An important component of our
monitoring algorithm is a procedure which keeps formulae in a canonical form
that is guaranteed not to grow larger than exponential in size of the original
formula. Moreover, the formula representations can be updated also in simple
exponential time with the size of the original formula. As explained below,
the correctness of this procedure is based on a result by Hsiang [14], regarding
propositional calculus as a Boolean ring by reducing propositions to canoni-
cal forms consisting of exclusive disjunction of conjunctions. The encoding of
propositions that follows is specialized for the particular operations required
by our main monitoring algorithm. Whether BDDs [5] or other more stan-
dard encodings, such as CNF or DNF, can also be viable possibilities in our
monitoring framework, as well as the viceversa, namely whether our encoding
can outperform the others in some situations, are definitely issues deserving
further investigation. However, for the time being we prefer the Boolean ring
encoding presented next because it relieves us from dealing with negations
and, more importantly, it allows very simple and efficient implementations of
several propositional operations, including a non-trivial substitution.

Let P = {p1, p2, ..., pm} be a set of “parameters”, and let Prop⊕∧(P) be
the set of ⊕∧-canonical propositions over symbols in P∪{true, false}. By ⊕∧-
canonical it is meant canonical modulo the associativity and commutativity
equations of ⊕ and ∧, using the other equations below as rewriting rules:

(1) (φ1 ∧ φ2) ∧ φ3 = φ1 ∧ (φ2 ∧ φ3) (2) φ1 ∧ φ2 = φ2 ∧ φ1

(3) φ ∧ true = φ (4) φ ∧ φ = φ

(5) (φ1 ⊕ φ2) ⊕ φ3 = φ1 ⊕ (φ2 ⊕ φ3) (6) φ1 ⊕ φ2 = φ2 ⊕ φ1

(7) φ⊕ false = φ (8) φ⊕ φ = false

(9) (φ1 ⊕ φ2) ∧ φ3 = (φ1 ∧ φ3) ⊕ (φ2 ∧ φ3)

Let E be the set of equations above. Since ⊕ and ∧ are commutative and
associative, we can unambiguously write expressions such as φ1 ⊕ . . .⊕φn and
φ1 ∧ . . . ∧ φn, or ⊕n

i=1φi and ∧ni=1φi, respectively. Due to the Church-Rosser
and termination of the AC-rewriting system above [14], it is not hard to see
that ⊕∧-canonical forms have unique forms ⊕i∈I ∧j∈Ji Cij, where

• Cij ∈ P ∪ {true, false} for all i ∈ I and j ∈ Ji;

• for each i ∈ I, the elements Cij form a set, that is, Cij 6= Cik for j 6= k;

7

• the sets {Cij | j ∈ Ji} also form a set;

• true 6∈ {Cij | j ∈ Ji} except when |Ji| = 1, and if this is the case then i is
the only index in I with this property;

• false 6∈ {Cij | j ∈ Ji} except when |Ji| = 1 and |I| = 1.

Notice that |I| ≤ 2m and |Ji| ≤ m. Because of the above, one can regard any
⊕∧-canonical form as a set of sets of elements in P. In order for this to work,
we need to adopt the standard convention that ∧j∈∅ is true, and that ⊕i∈∅ is
false.

We next describe how ⊕∧-canonical propositions over parameters in P =
{p1, p2, ..., pm} can be encoded on 2m bits, and also how several common op-
erations on propositions encoded this way can be performed efficiently. Since
⊕∧-canonical propositions can be seen as sets of sets of at most m elements,
we start by encoding each subset P of P by a sequence of m bits b with the
property that b[j] = 1 if and only if pj ∈ P . Now each b corresponds to a
number between 0 and 2m−1, which allows us to assign exactly 2m bits to any
⊕∧-canonical proposition φ; the idea being that the ith bit is 1 if and only if
the set corresponding to the binary m-bit representation of i corresponds to
one of the conjuncts of φ. A sequence of 2m zeros encodes the formula false;
if φ is of the form true⊕ φ′, then the bit corresponding to i = 0 in the 2m-bit
representation of φ is 1. In particular, the proposition true is encoded as 1,
regarded as a 2m-bit number.

Let us next define corresponding bitwise transformations for the various
operations on ⊕∧-canonical propositions. From now, due to the one-to-one
correspondence, we make no distinction between a ⊕∧-canonical proposition
and its binary representation. Therefore, in particular, we say φ[i] = 1 if and
only if φ contains the conjunct formed with the corresponding propositions in
the binary representation of i.

Exclusive disjunction. For ⊕∧-canonical propositions φ and ψ, the binary rep-
resentation of the canonical form of φ ⊕ ψ, is nothing but the bitwise xor

operation applied to the binary representations of φ and ψ. Indeed, each bit
in the binary representation corresponds to a set of propositions forming a
corresponding conjunct, and by equations (8) and (7), the same set cannot
appear twice in a normal form. This simple procedure takes time O(m2m), be-
cause one also needs to increment the m-bit counter traversing the two 2m-bit
sequences.

Conjunction. For ⊕∧-canonical propositions φ and ψ, we claim that the fol-
lowing O(m22m) procedure calculates the binary representation of the ⊕∧-
canonical form of their conjunction in ξ:

ξ = 0
for i, j = 0 to 2m − 1
k = binary(i) or binary(j)
ξ[k] = ξ[k] xor (φ[i] and ψ[j])

8

The operators or, xor and and above are bitwise, and binary(i) is the binary
representation of i. If i and j are already in binary representation then the
increments of the for loop, and the calculation of k and ξ[k], take time O(m).
To keep the notation simple, we ambiguously let φ∧ψ also denote the 2m-bit
ξ calculated by the procedure above.

Other boolean operators. One can define other boolean operations as well. For
example, ¬φ can be calculated in constant time, by xor-ing the first bit of φ
(the one corresponding to true) with 1. Similarly, φ∧pk, for some pk ∈ P, can
be calculated like in the general conjunction φ∧ψ, but with the optimization
that since j = 2k is the only bit in ψ that is a 1, the conjunction can be
computed in time O(m2m). Finally, since standard disjunction φ ∨ ψ reduces
to φ⊕ ψ ⊕ (φ ∧ ψ), it can be computed in time O(m22m).

Substitution. A very frequent operation on propositions that we will use, is
that of applying a substitution. More precisely, suppose that T : [1,m] →
[0, 2m − 1] is a map assigning to parameters pj ∈ P, abstracted by their in-
dex, a ⊕∧-canonical proposition in binary representation. Now given another
⊕∧-canonical proposition in binary representation, say φ, the problem is to
efficiently calculate the proposition obtained by the substitution given by T to
the formula φ, after putting it in ⊕∧-canonical form. The following code run-
ning in time O(m223m) calculates the binary representation of this proposition
in ξ:

ξ = 0
for i = 1 to 2m − 1

if φ[i] then γ = 1 (as a 2m-bit number)
for j = 1 to m

if binary(i)[j] then γ = γ ∧ T [j]
ξ = ξ ⊕ γ

The outer loop and conditional traverse all conjuncts of φ; then the inner
loop and conditional traverse all the propositions occurring in a conjunct, and
apply them the substitution incrementally, propagating the ⊕ bottom-up, due
to the distributivity rule (9). Finally, the newly obtained proposition γ which
is in ⊕∧-canonical form, needs to be merged with the already existing similar
propositions obtained for different i. Let subst(φ, T) be the ξ calculated above.

All the above allow us to state the following important result:

Theorem 3.3 ⊕∧-canonical propositions over parameters in P = {p1, p2, ..., pm}
can be stored in space 2m such that the operations of exclusive disjunction,
conjunction and substitution, run in time O(m2m), O(m22m) and O(m223m),
respectively.

�

3.3 Monitoring MTL Formulas

The MTL monitoring algorithm can be now relatively easily defined, following
the mutually recursive formula transformation relations in Definition 3.1, and

9

1 monitor(φ, ρ)
2 allocate R[1 . . . m], D[1 . . . m]
3 for i = 1 to |ρ| do
4 for j = 1 to m do R[j] = resolve(formula(j),R,D, ρ, i)
5 for j = 1 to m do D[j] = derive(formula(j),R,D, ρ, i)
6 φ = subst(φ,D)
7 if φ = false or φ = true then break
8 return φ
9 end monitor

Fig. 1. The MTL monitoring algorithm over finite timed state sequences.

taking advantage of the 2m-bit representations of propositions in ⊕∧-canonical
forms and the efficient implementation of basic propositional operations. Our
algorithm is essentially a dynamic programming algorithm that implements
the recursive relations in Definition 3.1.

Given a formula φ in ⊕∧-canonical form, which one can accomplish off-line,
using a procedure like Hsiang’s [14], let m = |F±(φ)|. Note that m ≤ |φ|+Σφ,
where Σφ is the sum of all the numeric constants associated to each occurrence
of UI and SI in φ as follows: if I = [m,n] then n; if I = [m,∞] then m; if
I = ≈d c then d; 0 otherwise. For each ψ ∈ F±(φ) assign a unique integer
1 ≤ index(ψ) ≤ m s.t. whenever ψ1 ∈ F±(ψ2) then index(ψ1) ≤ index(ψ2). For
1 ≤ i ≤ m let formula(i) return ψ such that index(ψ) = i.

Figure 1 shows the pseudocode of the main monitoring algorithm. This
procedure always keeps the formulas that it handles in 2m-bit canonical form.
These canonical forms will be over parameters F±(φ) = {ψ1, . . . , ψm} where
index(ψi) = i, and are encoded as described in Subsection 3.2. Note that the
initial 2m-bit representation of φ can be calculated in time O(m2m).

The monitoring procedure maintains two arrays, R and D, each of length
m, which are updated by the loop in line 3, each time the next element in
the observed timed sequence ρ is available. If formula(j) = ψ then after the
ith iteration R[j] will be [ρ, i]ψ and D[j] will be ψ{ρ, i}. Further, R[j] and
D[j] are kept in canonical form. We note that it is possible to use the same
parameter set {ψ1, . . . , ψm} for encoding the canonical representation of R[j]
and D[j] because as a consequence of Lemma 3.2 F(D[j]),F(R[j]) ⊆ F±(φ).
The arrays R and D are computed using two mutually recursive procedures
- resolve and derive - shown in Figure 2. These follow Definition 3.1 and
hence are self explanatory. Note that the computation of R in the current
iteration uses D from the previous iteration, and the computation of D is the
current iteration uses R from the current iteration. Thus, in each iteration R
is updated before D.

Theorem 3.4 The procedure monitor(φ, ρ) returns true iff ρ � φ. It takes
space O(m2m) and time O(|ρ|m323m), where m = |F±(φ)| ≤ |φ| + Σφ.

�

10

resolve(φ,R,D, ρ, i)
case φ of
p : ψ = p ∈ πi
◦·Iφ1 : if i = 1 or τi−1 /∈ τi − I then ψ = false

else ψ = subst(subst(φ1, D), R)
φ1SIφ2 : if 0 ∈ I then ψ2 = subst(φ2, R) else ψ2 = false

if i = 1 then ψ1 = false

else I ′ = I − τi + τi−1

ψ1 = subst(φ1, R) ∧ subst(D[index(φ1SI′φ2)], R)
ψ = ψ1 ∨ ψ2

◦Iφ1, φ1UIφ2 : ψ = φ
return ψ

end resolve

derive(φ,R,D, ρ, i)
case φ of
p : ψ = p ∈ πi
◦Iφ1 : if i = |ρ| or τi+1 /∈ τi + I then ψ= false else ψ = φ1

φ1UIφ2 : if 0 ∈ I then ψ1 = subst(φ2, D) else ψ1 = false

if i = |ρ| then ψ2 = false

else I ′ = I − τi+1 + τi
ψ2 = subst(φ1, D) ∧ φ1UI′φ2

ψ = ψ1 ∨ ψ2

◦·Iφ1, φ1SIφ2 : ψ=subst(R[index(φ)], D)
return ψ

end derive

Fig. 2. Resolving the past and deriving the future.

We end this section with a couple of observations. First, note that in the
ith iteration the monitoring procedure only access ρi−1, ρi and ρi+1, and thus
we need not store the entire timed sequence observed. Second, the space re-
quirement of the procedure can be further optimized by having entries in R
for only those ψ ∈ F±(φ) that are rooted at past time operators. This is be-
cause the entries in R for atomic propositions coincide with the corresponding
entries in D, and the entries for ψ rooted at future time operators contain ψ
itself.

4 Stronger Performance Results for Sublogics of MTL

A more refined performance analysis of the monitoring algorithm for certain
sublogics of MTL shows that the algorithm has much better performance over
these sublogics in comparison to entire MTL. We consider two such sublogics
- MTL with only past time operators, and LTL.

11

4.1 MTL with Only Past Time Operators

A large class of safety properties, often called canonical safety [18] properties,
can be expressed compactly and naturally as a past time formula φ which has
to hold at every moment in an execution trace. In MTL, this is the same as
checking for

�
φ (

�
[0,∞)φ). Such properties can be monitored very efficiently:

Theorem 4.1 Suppose φ is an MTL formula with only past time operators.
Then monitor(

�
φ, ρ) takes time O(|ρ|m) and space O(m), wherem = |F±(φ)|. �

The reader can check that monitoring MTL with only future time operators
has the same complexity as MTL with both future and past time operators.

4.2 Linear Temporal Logics

The monitoring algorithm for MTL can be specialized to obtain an algorithm
for LTL. Recall that LTL formulas can be seen as MTL formulas with only in-
tervals of form [0,∞); although LTL formulas are interpreted over (untimed)
state sequences. The monitoring algorithm can be specialized by simply drop-
ping all references to time in the resolve and derive procedures.

As corollaries to Theorems 3.4 and 4.1 we get that LTL with both past
and future time operators can be monitored in time O(|ρ||φ|323|φ|) and space
O(|φ|2|φ|) (note that φ = φ), while LTL with only past time operators can be
monitored in time O(|ρ||φ|) and space O(|φ|). Indeed monitoring algorithms
with the same complexity bounds are known for LTL with only future time
operators [11] and LTL with only past time operators [12]. But the algorithm
for LTL with both past and future time operators seems to be novel.

5 Exponential Lower Bounds for Space

We now derive some space lower bound results which show that the our mon-
itoring algorithm for MTL and its sublogics is close to optimal.

5.1 Lower Bounds for MTL

Consider a monitoring scenario with only one proposition and hence only two
states, say 0 and 1. For natural numbers k, n define the following language of
finite timed sequences ρ = (π, τ):

Lk,n = {ρ | τ1 = . . . = τk, τi+k = τi + 1, ∃l s.t. |π| = lkn, and
∃i < l s.t. π[(i− 1)kn+ 1, ikn] = π[(l − 1)kn+ 1, lkn]}

Lk,n contains only those timed sequences whose length is a multiple of kn, and
where time increases by one every k steps. Further, if the underlying state
sequence is w1 . . . wm, where each wi is of length kn, then wm = wi for some
i < m.

Lemma 5.1 Any monitoring algorithm for Lk,n requires space Ω(2kn).
�

12

Now, we give an MTL formula φk,n that defines the language Lk,n. The
following ’macros’ will be useful for this purpose.

tick = ◦1true end = ¬◦true

startcell = ◦k−1
0 true lastword = ¬ �

ntrue

where we write ◦k−1
0 for a sequence of ◦0 operators of length k − 1. The

predicate tick is true at a position if the time in the next position is exactly
one more than the time in the current position, while end holds only at the last
position in a timed sequence. The predicate startcell holds at a position only
if the time does not advance in the next k− 1 steps, while lastword holds at a
position if the time in all the subsequent positions is at most n− 1 units more
than the time at the current position. The idea is that, since we are interested
in the timed sequences where time increases only every k positions, startcell is
true at positions that are one more than a multiple of k. In addition, since we
are interested in sequences whose length is a multiple of kn, lastword is true
only in the last kn positions. Define

φk,n = ψ1
k,n ∧ ψ2

k,n ∧ ψ3
k,n

where ψik,n are defined as follows.

ψ1
k,n = ◦k−1

0 (tick ∨ end) ∧ �
(tick → ◦1◦k−1

0 (tick ∨ end))

The predicate above expresses the condition that τ1 = . . . = τk and τi+k =
τi + 1.

ψ2
k,n =

�
≈n0

�
n−1true

The predicate ψ2
k,n in conjunction with ψ1

k,n expresses the condition that the
length of the timed sequence is a multiple of kn.

ψ3
k,n =

�
≈n0(¬lastword ∧ startcell ∧

�
[0,n−1](startcell →

∧ki=1(◦i−1
0 0 → �

≈n0(lastword ∧ startcell ∧ ◦i−1
0 0) ∧

◦i−1
0 1 → �

≈n0(lastword ∧ startcell ∧ ◦i−1
0 1))))

The predicate ψ3
k,n in conjunction with ψ1

k,n and ψ2
k,n enforces the additional

condition that ρ[(l − 1)kn + 1, lkn] = ρ[(i − 1)kn + 1, ikn] for some i < l.
Note the critical use of relative congruences in the above predicates instead of
absolute congruences.

Theorem 5.2 Let A be any monitoring algorithm for MTL.

(i) There is a formula ψ, to monitor which A requires space Ω(2αc
√

|ψ|),
where c is the largest constant occurring in ψ, and α is a fixed constant.

(ii) There is a formula ψ, to monitor which A requires space Ω(22α|ψ|
) for a

fixed constant α.
�

13

In the formula ψ of Theorem 5.2.1, let c be as in the statement. Then we
have for c > 1

c
√

|ψ| ≥
√

(c+ 1)|ψ| ≥
√

|ψ| + Σψ

using the fact that Σψ ≤ c|ψ|.
Finally, note that since φk,n contains only future time operators, the lower

bounds established above also apply to MTL with only future time operators.

5.2 Lower Bounds for MTL with Intervals Only

We prove lower bounds for sublogics of MTL with no congruences (absolute
or relative). We first prove a lower bound for MTL with only intervals of form
[0,∞). Note that this will also give us a lower bound for LTL.

Consider a monitoring framework with only two atomic predicates and
therefore only four possible states, say 0, 1, # and $. For a natural number
k, define Lk to be the set of all timed sequences (π, τ) such that

π ∈ {σ#w#σ′$wσ′′ | w ∈ {0, 1}k and σ, σ′, σ′′ ∈ {0, 1,#}∗}

A similar language was previously used in several works [16,17,20] to prove
lower bounds in model checking and in monitoring extended regular expres-
sions.

Lemma 5.3 Any monitoring algorithm for Lk requires space Ω(2k).
�

Theorem 5.4 Let A be any monitoring algorithm for MTL with only inter-
vals of form [0,∞). There is a formula φ, to monitor which A requires space

Ω(2α
√

|φ|) for a fixed constant α.
�

This lower bound can be improved for the sublogic of MTL with arbitrary
intervals. Using the arguments similar to that in proof of Lemma 5.1 we can
easily show that any monitoring algorithm would require space Ω(n) to mon-
itor the formula p ↔ (¬(

�
ntrue) ∨ (

�
nq)). Thus, in general any monitoring

algorithm would require space Ω(2αφ) to monitor a formula φ. The above
happened because φ contains a constant that is exponentially larger than |φ|.
The following shows that even if the largest constant occurring in a formula
is much smaller than the size of the formula, any monitor would still need an
exponential space.

Theorem 5.5 Suppose A is a monitoring algorithm for MTL with arbitrary
intervals. There is a formula φ such that the largest constant occurring in it is
smaller than |φ| and A requires space Ω(2α|φ|/ log |φ|), for a fixed constant α.

�

6 Conclusion and Future Work

A general monitoring algorithm for requirements expressed in metric tempo-
ral logic (MTL) has been presented, together with instantiations for various

14

sublogics of MTL. It was shown that the algorithm is exponential in the num-
ber of temporal operators and atomic predicates, and in the sum of numeric
constants in the original MTL formula, and also that the exponential bound
cannot be avoided even for simple sublogics of MTL. The number of propo-
sitional operators, which often take most of the size of a specification, does
not affect the complexity of our algorithms. Since MTL is an expressive and
powerful logic for monitoring requirements, the presented novel and close to
optimal algorithms can be used in practical runtime verification and testing
tools, such as JPaX [10].

7 Acknowledgments

We are thankful to Koushik Sen for stimulating us in doing a better space
analysis of the presented technique, thus improving the space requirement
of our monitoring algorithm from our original rough 2O(m) to the current
O(m2m).

References

[1] R. Alur and T. Henzinger. Real time logics: complexity and expressiveness.
In Fifth annual symposium on logic in computer science, pages 390–401. IEEE
Computer Society Press, 1990.

[2] R. Alur and T. Henzinger. Logics and models of real time: A survey. In Real
Time: Theory in Practice, volume 600 of Lecture Notes in Computer Science.
Springer Verlag, 1992.

[3] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-Based Runtime
Verification. Pre-Print CSPP-24, University of Manchester, Department of
Computer Science, August 2003.

[4] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based runtime
verification. In Proceedings of 5th International Conference on Verification,
Model Checking and Abstract Interpretation (VMCAI’04), Lecture Notes in
Computer Science, 2004.

[5] R.E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, 35(8):677–691.

[6] Doron Drusinsky. The Temporal Rover and the ATG Rover. In SPIN Model
Checking and Software Verification, volume 1885 of Lecture Notes in Computer
Science, pages 323–330. Springer, 2000.

[7] B. Finkbeiner and H. Sipma. Checking finite traces using alternating automata.
Electronic Notes in Theoretical Computer Science, 55(2), 2001.

[8] M. Geilen. On the construction of monitors for temporal logic properties.
Electronic Notes in Theoretical Computer Science, 55(2), 2001.

15

[9] M.C.W. Geilen. An improved on-the-fly tableau construction for a real-time
temporal logic. In International Conference on Computer Aided Verification,
July 2003.

[10] K. Havelund and G. Roşu. Monitoring Java programs with Java PathExplorer.
Electronic Notes in Theoretical Computer Science, 55(2), 2001.

[11] K. Havelund and G. Roşu. Monitoring programs using rewriting. In
Automated Software Engineering. Institute of Electrical and Electronics
Engineers Computer Society, 2001.

[12] K. Havelund and G. Roşu. Synthesizing monitors for safety properties. In
Tools and Algorithms for Construction and Analysis of Systems, Lecture Notes
in Computer Science 2280, pages 342–356, 2002.

[13] Klaus Havelund and Grigore Roşu. Runtime Verification 2001, volume 55
of Electronic Notes in Theoretical Computer Science. Elsevier Science, 2001.
Proceedings of a Computer Aided Verification (CAV’01) satellite workshop.

[14] Jieh Hsiang. Refutational Theorem Proving using Term Rewriting Systems.
Artificial Intelligence, 25:255–300, 1985.

[15] R. Koymans. Specifying real-time properties with metric temporal logic. Real
Time Systems, 2(4):255–299, 1990.

[16] O. Kupferman and M. Y. Vardi. Freedom, Weakness, and Determinism: From
linear-time to branching-time. In Proceedings of the IEEE Symposium on Logic
in Computer Science, pages 81–92, 1998.

[17] O. Kupferman and M. Y. Vardi. Model Checking of Safety Properties. In
Proceedings of the Conference on Computer-Aided Verification, Lecture Notes
in Computer Science, 1999.

[18] Zohar Manna and Amir Pnueli. Temporal Verification of Reactive Systems:
Safety. Springer, New York, 1995.

[19] N. Markey and Ph. Schnoebelen. Model checking a path (preliminary report).
In 14th Int. Conf. Concurrency Theory, Lecture Notes in Computer Science
2761, pages 251–265. Springer, 2003.

[20] G. Roşu and M. Viswanathan. Testing extended regular language membership
incrementally by rewriting. In Rewriting Techniques and Applications, Lecture
Notes in Computer Science 2706, 2003.

[21] P. Wolper. Synthesis of Communicating Processes from Temporal Logic
Specifications. PhD thesis, Stanford University, Dpeartment of Computer
Science, 1982.

A Appendix

Proof of Lemma 3.2: We start with a few definitions. Define φ1 � φ2 if

16

• F(φ1) ⊆ F(φ2), and

• F(φ1) = F(φ2) implies |φ1| ≤ |φ2|.
Define φ1 ' φ2 if φ1 � φ2 and φ2 � φ1, and φ1 ≺ φ2 if φ1 � φ2 and φ1 6' φ2.
Note that the relation ≺ is well-founded.

We prove all the six statements simultaneously by nested induction. The
outer induction is on i, while the inner one is a Noetherian induction on the
relation ≺ over formulas. For the outer induction, the base case is when i = 1.
The arguments for the nested induction within this base case are similar to
(and simpler than) those that arise within the induction step, and so we leave
them to the reader. For the induction step, assume that all the six statements
are true whenever i < k (the outer induction hypothesis). We have to show
that they are true for i = k. We now do a nested induction on ≺. The base
case for this is when φ = true or φ = false, and these are easy to check. For
the induction step, we may assume that the six statements are true for all
i ≤ k and ψ ≺ φ (the inner induction hypothesis). We now consider each
statement in turn.

1. We consider the case φ = φ1SIφ2 and 0 ∈ I and i > 1; the others are
simpler.

[ρ, k]φ1SIφ2 = [ρ, k](φ2 ∨ (φ1 ∧ (φ1SI′φ2){ρ, k − 1}))

where I ′ = I − τk + τk−1. Let ψ = φ2 ∨ (φ1 ∧ (φ1SI′φ2){ρ, k − 1}). Then
F([ρ, k]φ) = F([ρ, k]ψ). From the outer induction hypothesis for statement
4, we have F(φ1SI′φ2{ρ, k − 1}) ⊆ F+(φ1SI′φ2) \ φ1SI′φ2 = F+(φ) \ φ. Then
it follows that F(ψ) ⊂ F(φ), and hence ψ ≺ φ. Then by inner induction hy-
pothesis for statement 1, we have F([ρ, k]ψ) ⊆ F+(ψ) = F+(φ1) ∪ F+(φ2) ∪
F+(φ1SI′φ2{ρ, i}) = F+(φ) \ φ, and the desired result follows.

2. The argument is similar to 1.

3. We again only consider the case φ = φ1SIφ2 and 0 ∈ I and i > 1; the
others are simpler. Let ψ and I ′ be as in 1. Then

(ρ, k) � φ1SIφ2 iff (ρ, k) � φ2, or (ρ, k) � φ1 and (ρ, k − 1) � φ1SI′φ2

iff (ρ, k) � φ2, or (ρ, k) � φ1 and (ρ, k) � (φ1SI′φ2){ρ, k − 1})
(using outer induction hypothesis for statement 6)

iff (ρ, k) � φ2 ∨ (φ1 ∧ (φ1SI′φ2){ρ, k − 1})
i.e. (ρ, k) � ψ

From the argument in 1, ψ ≺ φ. Then by inner induction hypothesis for
statement 3 we have (ρ, k) � ψ iff (ρ, k) � [ρ, k]ψ, which gives us the desired
result.

4. We consider only k < |ρ|, of which we again consider only two subcases.

17

• φ = φ1UIφ2: Let 0 ∈ I. Then

φ1UIφ2{ρ, k} = φ2{ρ, k} ∨ (φ1{ρ, k} ∧ (φ1UI′φ2))

where I ′ = I − τi+1 + τi. Let ψ = φ2{ρ, k} ∨ (φ1{ρ, k} ∧ (φ1UI′φ2)). Then
F(φ{ρ, k}) = F(ψ). Clearly, for i = 1, 2 we have F(φi) ⊂ F(φ) and hence
φi ≺ φ. Then by the inner induction hypothesis for statement 4, we have
F(φi{ρ, k}) ⊆ F+(φi) ⊆ F+(φ). Also, F+(φ1UI′φ2) ⊆ F+(φ1UIφ2). Then
F(ψ) ⊆ F+(φ), and the desired result follows.

• φ = ◦·Iφ1: Let η = [ρ, k]φ. We have F(φ{ρ, k}) = F(η{ρ, k}). From 1 we
have F(η) ⊆ F+(φ) \ φ. Then F(η) ⊂ F(φ) and hence η ≺ φ. Then by
inner induction hypothesis for statement 4 we have F(η{ρ, k}) ⊆ F+(η) ⊂
F+(φ) \ φ, from which the result follows.

5. The argument is similar to 4.

6. We consider only k < |ρ|, of which we again consider only two subcases.

• φ = φ1UIφ2 and 0 ∈ I: Let I ′ = I − τk+1 + τk. Then

(ρ, k) � φ iff (ρ, k) � φ2, or (ρ, k) � φ1 and (ρ, k + 1) � φ1UI′φ2

Now, clearly for i = 1, 2 we have F(φi) ⊂ F(φ) and hence φi ≺ φ. Then
using the inner induction hypothesis for statement 6 we have

(ρ, k) � φ iff (ρ, k + 1) � φ2{ρ, k}, or (ρ, k + 1) � φ1{ρ, k} and
(ρ, k + 1) � φ1UI′φ2

iff (ρ, k + 1) � φ2{ρ, k} ∨ (φ1{ρ, k} ∧ φ1UI′φ2)

• φ = ◦·Iφ1: Let η be as in 4. Then from 3 we have (ρ, k) � φ iff (ρ, k) � η.
From the argument in 4 we have that η ≺ φ. Then by the inner hypothesis
for statement 6, (ρ, k) � η iff (ρ, k + 1) � η{ρ, k}, and the result follows.

�

Proof of Theorem 3.4: Since the pseudocode of Figures 2 and 1 closely
follows Definition 3.1, it is clear that the monitoring procedure is correct. The
memory required by the monitoring procedure above is the memory to store
R and D, that is, O(m2m). With respect to time complexity, monitor(φ, ρ)
calls m times the procedures resolve and derive at steps 4 and 5, which
take longer than calculating the substitution at step 6. Each of the proce-
dures resolve and derive make one, two, or three calls to the substitution
procedure, so each call to them takes O(m223m). Thus, the time complexity
of monitor(φ, ρ) is O(|ρ|m323m).

�

Proof of Theorem 4.1: We have index(
�
φ0) = m. By Lemma 3.2, we have

that R[i] is either true or false for i < m and R[m] =
�
φ0. Similarly, D[i]

is true or false for i < m and D[m] is either false or
�
φ0. The monitoring

procedure can be easily modified to not have entries R[m] and D[m]. One can

18

check that the procedure thus modified takes time O(|ρ|m) and space O(m).
�

Proof of Lemma 5.1: The proof is by contradiction. Define an equivalence
relation ≡ on timed sequences whose length is a multiple of kn, as follows:

ρ1 ≡ ρ2 if {ρ1[(i−1)kn+1, ikn] | ikn ≤ |ρ1|} = {ρ2[(j−1)kn+1, jkn] | jkn ≤ |ρ2|}

Note that there are 22kn equivalence classes. Suppose there is a monitoring
algorithm A that uses space less than 2kn. Then by the pigeon hole principle
there are two timed sequences ρ1 6≡ ρ2 s.t. the memory of A is the same after
reading ρ1 and ρ2. Since ρ1 6≡ ρ2 there is a w s.t. w ∈ {ρ1[(i− 1)kn+ 1, ikn]}
and w /∈ {ρ2[(j − 1)kn + 1, jkn]}. But A gives the same answer on ρ1.w and
ρ2.w.

�

Proof of Theorem 5.2:

(i) Take ψ = φk,n. We have |φk,n| = Θ(k2), and the largest constant in φk,n
is n. By Lemma 5.1, A requires Ω(2kn) space, and the result follows.

(ii) Take ψ = φ1,n. We have |φ1,n| = Θ(log n). By Lemma 5.1, A requires
Ω(2n) space, and the result follows.

�

Proof of Lemma 5.3: Similar to proof of Lemma 5.1.
�

Proof of Theorem 5.4: The following formula defines Lk

φk = [(¬$) U ($ ∧ ◦ �
(¬$))] ∧

�
[# ∧ ◦k+1# ∧

∧k
i=1((◦i0 ∧ �

($ → ◦i0)) ∨
(◦i1 ∧ �

($ → ◦i1)))].

Note that |φk| = Θ(k2) and hence k =
√

|φk|. It now follows by Lemma 5.3.
�

Proof of Theorem 5.5: Consider the language which contains exactly those
(π, τ) ∈ Lk (defined above) such that τi+1 = τi + 1. Clearly, any monitoring
algorithm for Lk would require Ω(2k) space. Now, the following formula defines
this language:

φk = [(¬$) U ($ ∧ ◦ �
(¬$))] ∧

�
[# ∧ �

k+1# ∧ ∧k
i=1((

�
i0 ∧ �

($ → �
i0)) ∨

(
�
i1 ∧ �

($ → �
i1)))].

The size of this formula is Θ(k log k), and the largest constant occurring in it
is k < |φk|. One can show that k = Θ(|φ|/ log |φ|), and the result follows.

�

19

