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Abstract

Hoare logics rely on the fact that logic formulae can en-
code, or specify, program states, including environments,
stacks, heaps, path conditions, data constraints, and so on.
Such formula encodings tend to lose the structure of the
original program state and thus to be complex in practice,
making it difficult to relate formal systems and program cor-
rectness proofs to the original programming language and
program, respectively. Worse, since programs often manip-
ulate mathematical objects such as lists, trees, graphs, etc.,
one needs to also encode, as logical formulae, the process
of identifying these objects in the encoded program state.

This paper proposes matching logic, an alternative to
Hoare logics in which the state structure plays a crucial
role. Program states are represented as algebraic data-
types called (concrete) configurations, and program state
specifications are represented as configuration terms with
variables and constraints on them, called (configuration)
patterns. A pattern specifies those configurations that match
it. Patterns can bind variables to their scope, allowing both
for pattern abstraction and for expressing loop invariants.

Matching logic is tightly connected to rewriting logic se-
mantics (RLS): matching logic formal systems can system-
atically be obtained from executable RLS of languages. This
relationship allows to prove soundness of matching logic
formal systems w.r.t. complementary, testable semantics. All
notions are exemplified using KernelC, a fragment of C
with dynamic memory allocation/deallocation.

1. Introduction

Program reasoning approaches are conventionally based
on an axiomatic semantics of the programming language as
a formal system deriving (partial or total) correctness triples
{ϕ} PGM {ϕ′}, also called Hoare triples, where the precondi-
tion ϕ and the postcondition ϕ′ are formulae in some logic
of choice. The underlying intuition is that logical formu-
lae can symbolically encode program states, so {ϕ} PGM {ϕ′}
relates program states before the execution of PGM to corre-

sponding states resulting after the execution of PGM.
The logic originally used by Hoare [7] for formulae

was first-order logic (FOL). Driven by practical needs, re-
searchers have extended FOL with various domains and de-
cision procedures, as well as with means to recursively de-
fine predicates. However, as rightfully noted by Reynolds
and O’Hearn among many others [15, 8], in spite of three
decades of study, FOL-based approaches still suffer from ei-
ther limited applicability or extreme complexity, and scale
poorly to programs of even moderate size. For example,
even proving that a small C program reverses a list (each
list node contains a value and a pointer to the next node) is
a highly non-trivial task for FOL-based approaches [15].

The last decade has seen an increasing interest in exten-
sions of FOL more suitable to reason about shared data,
such as TVLA [10] or separation logics [15, 8]. For the lat-
ter, e.g., new logical connectives are added to FOL to spec-
ify data separation, e.g., the separating conjunction: ϕ1�ϕ2
states that the heap can be split in two disjoint (not neces-
sarily contiguous) sub-heaps, and ϕ1 holds in one and ϕ2
in the other. The semantics of separation logic is given in
terms of both an environment (or store, or a stack) and a
heap. Separation logic program reasoning is still based on
Hoare triples {ϕ} PGM {ϕ′}, but ϕ and ϕ′ use separation logic.

We here present matching logic, which does not require,
nor precludes, extensions of FOL. Instead, it proposes to en-
code program states as (configuration) patterns, which may,
and typically do, contain variables and formulae among
other items. The role of the variables is to allow patterns
to be matched by concrete program configurations, and the
role of the formulae is to constrain the matchings.

We discuss matching logic by defining and reasoning
about KernelC, a fragment of C with malloc and free. For
simplicity, we assume arbitrarily large (integer) numbers,
infinite memory, and memory locations holding precisely
one number. One can write many interesting C programs in
KernelC. Here are some that we will refer to in the paper:



SUM: calculates in s the sum of the first p natural numbers:

s = 0;

n = 1;

while (n != p+1) {

s = s+n;

n = n+1;

}

ALLOCATE: allocates a single-linked list of 5 nodes, in re-
versed order, each node having two contiguous locations,
one holding a value and the other a pointer to the next node:

n = 0;

p = null;

while (n != 5) {

q = malloc(2);

*q = n;

*(q+1) = p;

p = q;

n = n+1;

}

REVERSE: reverses a list of nodes as above that starts at p:

if (p != null) {

x = *(p+1);

*(p+1) = null;

while (x != null) {

y = *(x+1);

*(x+1) = p;

p = x;

x = y;

}

}

DEALLOCATE: frees a list starting with p:

while (p != null) {

q = *(p+1);

free(p);

p = q;

}

Matching logic is inspired from recent efforts in rewriting
logic semantics (RLS) [12, 19, 16] of programming lan-
guages. Even though RLS definitions are apparently opera-
tional, they are, in fact, tightly connected to their matching
logic equivalent formal systems. This connection has two
major benefits: (1) it allows to prove soundness of match-
ing logic formal systems w.r.t. executable and supposedly
well-tested language semantics, and (2) it allows to derive
matching logic program verifiers from executable RLS of
languages. Moreover, the program verifiers resulting from
(2) are themselves executable using rewriting logic.

We have implemented such a prover for KernelC using
Maude [3] and experimented with it on tens of examples.

For example, to prove the correctness of the last three pro-
grams above, notoriously difficult using conventional Hoare
logics [15] and provers based on it, our matching logic
prover requires minimal support from the user. The most
difficult task is to equationally define an operator list(p,A)
identifying, or matching, in the heap a flattened list structure
as in C starting with pointer p and containing the sequence
of integers A; as seen later in the paper, even this task is rela-
tively easy. In experiments with our matching logic prover,
we defined many other configuration constructs like list,
including trees, queues, stacks, graphs, as well as paramet-
ric variants of them, e.g., stacks of trees, etc., and used them
to verify several non-trivial programs, including the Schorr-
Waite algorithm with arbitrary (cyclic) graphs.

In this paper we only focus on the mathematical founda-
tions of matching logic: what it is and why it is sound. In
passing, we also discuss memory safety issues and sketch
our matching logic verification approach. Since matching
logic is different from other logics for program verification,
we start with a general overview of our approach in Section
2. Section 3 discusses rewriting logic semantics (RLS) and
Section 4 gives an RLS to KernelC, defining also mem-
ory and strong memory safety. Section 5 presents match-
ing logic in detail, proving its soundness for KernelC and
discussing some differences and relationships to relevant re-
lated work. Section 6 shows how sound and complete (w.r.t.
the matching logic formal system) program verifiers can be
derived from K semantics definitions. Appendix 7 includes
our current Maude implementation of a matching logic ver-
ifier using the approach in Section 6, together with many
examples.

2. Overview of the Matching Logic Approach

Matching logic builds on top of rewriting logic seman-
tics (RLS) [12, 19, 16]. A RLS consists of a set of equa-
tions and rewrite rules gradually rewriting concrete config-
urations, called for simplicity just configurations. A con-
figuration in KernelC is a heterogeneous bag, called cell,
containing 4 indexed items, also called subcells, of the form

〈〈K〉k 〈ρ〉env 〈σ〉mem 〈π〉ptr〉,

where: 〈K〉k is a fragment of code (K is a special list struc-
ture called computation), 〈ρ〉env is an environment map,
〈σ〉mem is a memory or heap allocation map, and 〈π〉ptr is
a map storing for each allocated pointer the size of the al-
located block (in C free(P) deallocates as many locations
as previously allocated at P using an explicit malloc, so we
need to keep this piece of information in the configuration
for the semantics of free). The concrete configuration

〈〈x=*y;y=x;〉k 〈x7→7,y7→6〉env 〈57→3�67→4〉mem 〈57→2〉ptr〉
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contains the code “x=*y;y=x;” in an environment mapping
x to 7 and y to 6, a heap having value 3 at location 5 and
4 at 6, and where some previous malloc allocated 2 mem-
ory locations starting with location 5. Note that, unlike in
separation logic where � is a logical connective, our � is
a construct for maps represented as an algebraic data-type
of sets of pairs P 7→ I; hence, our � is a binary operation
obeying laws like associativity, commutativity, etc. Differ-
ent cells in the configuration may use different constructs
(space, comma, etc.) as separators; we use � for memory
as it resembles the separation conjunct in separation logic.
KernelC’s RLS rewrites the above configuration to (3 steps)

〈〈y=x;〉k 〈x7→4,y7→6〉env 〈57→3�67→4〉mem 〈57→2〉ptr〉.

To define a matching logic formal system, one needs to
first define the configuration patterns, called for simplicity
just patterns. Patterns add variables and constraints over
them to (concrete) configurations, thus allowing them to
symbolically specify sets of configurations, namely all those
matching the pattern consistently with its constraints. Vari-
ables can appear anywhere in the pattern: in computation, in
environment, in memory, etc. Some of the variables appear-
ing in a pattern, possibly all, can be bound by the pattern to
localize their scope. The remaining unbound variables are
called free for that pattern.

We formalize patterns by adding two more cells to con-
figurations, one for its bound variables and another for its
constraints. Constraints can be expressed using FOL, or
fragments or extensions of it. Patterns used in our matching
logic formal system of KernelC are bag cells containing 6
indexed sub-cells of the form

〈〈K〉k 〈ρ〉env 〈σ〉mem 〈π〉ptr 〈V〉bnd 〈ϕ〉form〉,

where the first 4 subcells are like in configurations but po-
tentially using variables, and where 〈V〉bnd is a bag contain-
ing the pattern’s bound variables and 〈ϕ〉form is a formula
constraining the variables (both the bound and free ones).

A concrete program configuration γ matches configura-
tion pattern Γ = 〈〈V〉bnd 〈ϕ〉form C〉, written γ |≡ Γ, iff there
is a matching substitution τ of the variables in Γ such that
γ = 〈τ(C)〉 and τ(ϕ) holds; if τ is important, then we write
it as a subscript to |≡ , e.g., γ |≡τΓ. For instance, the pattern

〈〈x=*y;〉k 〈x7→p,y7→p〉env 〈p7→q�σ〉mem 〈p〉bnd 〈p,q〉form C〉

is matched by a concrete configuration γ iff γ’s current com-
mand is the assignment “x=*y;”, where x and y are the only
variables in the environment and are aliased to a pointer p
holding some value, q, different from p; p is bound, so its
scope is limited to the pattern, but q, σ and C are free. The
difference between bound and free variables becomes rele-
vant in the presence of correctness pairs, discussed next.

A matching logic formal system derives correctness
pairs Γ

V

Γ′, where Γ and Γ′ are patterns. The intuition
underlying correctness pairs Γ

V

Γ′ is that they relate con-
crete program configurations with the resulting configura-
tions after the enclosed fragment of program executes: if
configuration γ yields configuration γ′ after executing its
enclosed code and if γ |≡τΓ, then γ′ |≡τ′ Γ′ for some τ′ with
τ(x) = τ′(x) for any variable x free in both Γ and Γ′. We
keep the fragment of code embedded in the configurations
instead of working with Hoare-like triples because expres-
sions may have side effects which cannot be cleanly isolated
(e.g., malloc). Dynamic logic [6] takes a similar approach.

Here is a correctness pair stating that SUM (see page 1)
indeed calculates in s the sum of the first p natural numbers:

〈〈SUM〉k 〈p 7→p〉env 〈p ≥ 0〉form 〈·〉bnd C〉

V

〈〈·〉k 〈s 7→p(p+1)/2, ρ〉env 〈true〉form 〈ρ〉bnd C〉

In words, the above says that if SUM is executed in a configu-
ration in which p holds a value p ≥ 0, then, in the resulting
configuration (“·” is the unit of any cell, including that of
computations), s holds the value p(p+1)/2.

Such configuration pairs can be derived in matching
logic using two types of rules, ones specific to each lan-
guage definition, and a few general ones. These rules are
discussed in detail in Section 5. Here we only discuss the
matching logic rule for pointer assignment:

〈〈K1〉kC〉

V

〈〈P〉kC1〉, 〈〈K2〉kC1〉

V

〈〈I〉k 〈P 7→I′�σ〉memC2〉

〈〈*K1=K2;〉k C〉

V

〈〈·〉k 〈P 7→I�σ〉mem C2〉

In words, if a configuration embeds computation “*K1=K2;”
with rest of configuration C, then first evaluate K1 obtain-
ing pointer P and configuration C1 (if K1 has side effects
then C,C1), then evaluate K2 in C1; if the result is I and
the resulting configuration has pointer P allocated, then re-
place the value at that pointer by I keeping the rest of the
configuration unchanged, and discard the assignment.

There are two other specific aspects of matching logic.
One is (configuration) pattern abstraction, crucial for proof
modularity: Γ1VΓ2 iff Γ1 matches Γ2 consistently with their
internal constraints. Formally, if Γ1 = 〈〈V1〉bnd 〈ϕ1〉form C1〉

and Γ2 = 〈〈V2〉bnd 〈ϕ2〉form C2〉, then Γ1V Γ2 iff there is some
substitution θ of the variables in V2 such that C1 = θ(C2)
and ϕ1 ⇒ θ(ϕ2) holds. Pattern abstraction captures the intu-
ition that a state matching Γ1 also matches Γ2, so Γ1 is “more
concrete” and Γ2 is “more abstract”. Pattern abstraction is
crucial for expressing loop invariants. For example, the fol-
lowing is a loop invariant pattern for the while loop in SUM:

〈〈p 7→p, s 7→n(n−1)/2, n 7→n〉env 〈p≥0∧n≤p+1〉form 〈n〉bnd C〉

Note that it binds n. After processing the body of the loop,
the resulting pattern is an instance of this one with a substi-
tution θ taking n to n + 1. Therefore, pattern abstraction is
necessary in order to express and prove the loop invariant.
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The other specific aspect of matching logic is the use of
(configuration) pattern equations, written t ≡ t′ where t, t′

are (subterms of) patterns, allowing terms to be replaced by
equal terms in any pattern context. In other words, deriva-
tions in matching logic are done modulo pattern equations,
the same way rewrites are done in rewriting logic modulo
equations [11]. Pattern equational reasoning obeys all the
conventional equational reasoning rules and assumes all the
existing equations coming with the definition of configu-
rations (associativity, commutativity, etc., of the cell con-
structs). Moreover, equalities implied by a pattern’s con-
straints can also be used in equational derivations.

What makes pattern equational reasoning interesting is
that one can add one’s own pattern equational definitions.
For example, one can define a heap construct list taking
a pointer and a sequence of integers, together with two
equations defining how and under what conditions it can be
matched against a flat, pointer representation of a list in the
heap. The two equations, together with pattern abstraction,
allow us to identify sequences of integers as “mathematical
objects” flattened in the configuration patterns. For exam-
ple, one can show that

〈〈3 7→1�4 7→0�5 7→2�6 7→3〉mem C〉V〈〈list(5, 2.1)〉mem C〉

for any well-formed C, where “ . ” is the concatenation of
sequences of integers and ε is the empty sequence, saying
that the sequence of integers “2.1” can be identified in the
heap as the elements of a list structure starting at pointer 5.

With the list construct for heaps, we can derive the fol-
lowing correctness pair for REVERSE (see page 1) using the
matching logic formal system of KernelC in Section 5:

〈〈REVERSE〉k 〈p 7→p〉env 〈list(p, α)〉mem 〈p〉bnd 〈true〉form C〉V

〈〈·〉k〈p 7→p, ρ〉env〈list(p, rev(α))〉mem〈p, ρ〉bnd〈true〉formC〉.

rev(α) is the reverse of α, an operation which is easy to de-
fine. Figure 6 depicts the detailed derivation; we only show
the loop invariant pattern here (note that only α is free):

〈
〈p 7→q, x 7→r, ρ〉env 〈list(q, β) � list(r, γ)〉mem

〈rev(α)=rev(γ).β〉form 〈q,r, ρ, β,γ〉bnd
〉

All the difficult tasks in matching logic uniformly rely on
one principle, applied at various levels: matching. Match-
ing (modulo associativity and commutativity of�) also gives
us separation: e.g., 〈list(q, β)�list(r, γ)�σ〉mem can only
match three disjoint heaps: two lists and the rest. Even
the difficult frame inference problem becomes a matching
problem: e.g., in the rule for pointer assignment above, the
(meta-)variables σ and C can be thought of as memory and
configuration frames, respectively; to apply that rule (using
the Substitution rule in Section 5), one needs to match its
pre-configuration against the current configuration.

Unfortunately, matching is not an easy problem. How-
ever, like SAT, matching is relatively well understood and

efficiently implemented by several systems; encouragingly,
rewrite engines like ASF+SDF [20], Elan [2] and Maude
[3] can execute millions of matching steps per second.

Matching logic is therefore a novel foundation for pro-
gram verification, leveraging the strength of decision pro-
cedures for matching by uniformly recasting important pro-
gram verification concepts as instances of matching.

3. Background: Rewriting Logic Semantics

Meseguer’s rewriting logic [11] extends equational logic
with rewrite rules. A rewrite theory is a triple R = (Σ, E,R),
where Σ is a signature (sorts and operation symbols), E is a
set of Σ-equations (written t1 = t2, where t1, t2 are Σ-terms
possibly containing variables), and R is a set of Σ-rules
(written t1 → t2). Like in equational logic, terms can be
replaced by equal terms in any context and in any direction.
We write R |= t = t′ whenever t can be proved equal to t′

using equational deduction with the equations in R. Like in
term rewriting, rules can be applied in any context, but only
from left-to-right. One way to think of rewriting logic is that
equations apply until the term is matched by the left-hand-
side (lhs) of some rule, which then irreversibly transforms
the term. We write R |= t→t′ when t can be rewritten, using
arbitrarily many equational steps but only one rewrite step
in R, into t′. Also, we write R|= t→∗t′ when t can be rewrit-
ten, using the equations and rules in R, into t′. Rewriting
logic thus captures rewriting modulo equations into a logic,
with good mathematical properties (loose and initial mod-
els, complete deduction, proofs = computations, etc.). It is
simple to understand and efficiently executable.

Rewriting logic semantics in general and the K tech-
nique in particular [12, 19, 16], referred to as “K” from
here on, propose to define languages L as rewrite theo-
ries (ΣL, EL,RL), where ΣL extends the syntax of L. The
equations EL are thought of as structural rearrangements
preparing the context for rules and carrying no computa-
tional meaning, while rules in RL are irreversible computa-
tional steps. K achieves context-sensitivity in two ways: (1)
by adding algebraic structure to configurations and using it
to control matching; and (2) by extending the original lan-
guage syntax with a special task sequentialization construct,
“y” pronounced “then”, as well as frozen variants of exist-
ing language constructs. Frozen operators have a “�” as part
of their name and are used to “freeze” fragments of program
until their turn comes. Figure 1 shows the K semantics of a
trivial assignment language, and a rewrite derivation in it.

In Figure 1, op stands for the various arithmetic and re-
lational operations that one may want to include in one’s
language, and opInt stands for the mathematical counterpart
(function or relation) of op which operates on integers. For
example, op can range over standard arithmetic operator
names +, -, *, /, etc., and over standard relational oper-
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Int F integer numbers (abstract syntax)
Id F identifiers, to be used as variable names
K F Int | Id | K1 opK2 | Id=K; | K1 K2

Cfg F 〈Bag· [CfgItem]〉 (configuration)
CfgItem F 〈K〉k | 〈Env〉env

K F ... | Seq y· [K]
Env F Map ,· [Id, Int]
K1 opK2 = (K1y � opK2) (computation structural equations)
I1 opK2 = (K2 y I1 op�)
(X=K;) = (K y X=�;)
K1 K2 = K1 y K2 (semantic equations and rules)
I1 op I2 → I1 opInt I2

〈X y K〉k 〈X 7→ I, ρ〉env → 〈I y K〉k 〈X 7→ I, ρ〉env

〈X=I;y K〉k 〈ρ〉env → 〈K〉k 〈ρ[X ← I]〉env

(range of variables: X ∈ Id; K,K1,K2 ∈ K; I, I1, I2 ∈ Int)
〈〈x=7;y=x+3;x+y〉k 〈·〉env〉 =∗ 〈〈x=7;y y=x+3;y x+y〉k 〈·〉env〉→

〈〈y=x+3;yx+y〉k 〈x7→7〉env〉 =∗ 〈〈xy�+3yy=�;yx+y〉k 〈x7→7〉env〉 →

〈〈7y�+3yy=�;yx+y〉k 〈x7→7〉env〉 =∗ 〈〈y=7+3;yx+y〉k 〈x7→7〉env〉→

〈〈y=10;y x+y〉k 〈x 7→ 7〉env〉 → 〈〈x+y〉k 〈x 7→ 7, y 7→ 10〉env〉=

〈〈xy�+y〉k 〈x 7→7, y 7→10〉env〉 → 〈〈7y�+y〉k 〈x 7→7, y 7→10〉env〉=
∗

〈〈yy7+�〉k 〈x 7→7, y 7→10〉env〉 → 〈〈10y7+�〉k 〈x 7→7, y 7→10〉env〉=

〈〈7+10〉k 〈x 7→7, y 7→10〉env〉 → 〈〈17〉k 〈x 7→7, y 7→10〉env〉

Figure 1. K semantics of simple assignment
language and rewrite derivation (7 rewrites).

ator names ==, !=, <=, >=, etc., in which case +Int is the
addition operation on integers (e.g., 3 +Int 7 = 10), etc., and
==Int is the equality on integers (e.g., (3 ==Int 5) = 0 and
(3 ==Int 3) = 1; for simplicity we assume, like in C, that
boolean values are special integer values). One should add
one group of 2 equations and 1 rule for each such arithmetic
or relational operator name that one wants in the language,
as we generically showed in Figure 1.

K definitions typically use only one (abstract) syntactic
category, K, serving as minimal syntactic infrastructure to
define terms; it is not intended to be used for parsing or
type-checking. We make no distinction between algebraic
signatures and their context-free notation: syntactic cate-
gories correspond to sorts and productions to operations in
the signature; for example, production “K F Id=K;” is
equivalent to defining an operation “ = ; : Id × K → K”.

Sequences and bags are standard (equational) data-
structures. We use notations Seq @

u [S ] for sequences and
Bag @

u [S ] for bags, resp., where u is their unit and @ is
their binary construct. Formally, if added for sort S ′, these
correspond to adding subsorting S < S ′ (i.e., production
S ′ F S , not needed when S ′ = S ), operations u :→ S ′

(a constant) and @ : S ′×S ′ → S ′, and appropriate unit
and associativity equations for sequences, and unit, commu-
tativity and associativity equations for bags; e.g., the third

production in box (configuration) in Figure 1 desugars as:

K F ... | · | K y K // additional sequence constructs
(·y K) = (K y ·) = K // unit
(K1 y K2)y K3 = K1 y (K2 y K3) // associativity

We also assume finite maps; formally, Map @
u [S 1, S 2] cor-

responds to bags of pairs of elements of sorts S 1 and S 2,
respectively, each pair written s1 7→ s2, with additional op-
erations [ ] : S ′× S1→ S2 and [ ← ] : S ′× S1× S2→ S ′

and \ : S ′×S1→S ′ for lookup, update (adding a new pair
if map undefined on that element) and deletion (i.e., remov-
ing an element binding), respectively, where S ′ is the sort
corresponding to the maps. These operators are overloaded.
E.g., “EnvF Map ,· [Id, Int]” in Figure 1 desugars as:

EnvF · | Id 7→ Int | Env,Env | Env[Id← Int] | Env\Id
IntF ... | Env[Id]
ρ , · = · , ρ = ρ // unit
ρ1 , ρ2 = ρ2 , ρ1 // commutativity
ρ1 , (ρ2 , ρ3) = (ρ1 , ρ2) , ρ3 // associativity
(ρ , (X 7→ I))[X] = I
(ρ , (X 7→ I))[Y] = ρ[X] when X , Y
... the remaining equations are similar ...

Hence, an environment is a finite bag of pairs, ρ[X] retrieves
the Int associated to the Id X in ρ, ρ[X ← J] updates the Int
corresponding to X in ρ to J, and ρ\X removes pair X 7→
from ρ (if there is any). One can also define, in the same
style, an operation Dom giving the domain of a map as a
bag of elements, as well as an operation checking whether
the map term is indeed a partial function. These operations
are easy to define algebraically and therefore we assume
them from here on; in fact, we assume that each map that
occurs in an equation or rule is a well-formed map (e.g., the
maps σ�σ′ in the rules for malloc and free in Figure 2).

Sequences, bags and maps are core to K language def-
initions. When used as configuration constructors, we call
them K-cells or just cells. K is a modular definitional frame-
work: rules match only what they need from the configura-
tion, so one can change the configuration (e.g., adding store,
input/output, stacks, etc.) without having to revisit existing
rules. In particular, the KernelC semantics (Fig. 2) includes
that of the simple language in Fig. 1 unchanged, despite ad-
ditional K-cells in the configuration of KernelC. Matching
logics with K configurations inherit the modularity of K.

Sort K contains computation structures, or simply com-
putations, obtained by adding to the original abstract syn-
tax computation sequences (terms in Seq y· [K]) and frozen
computations (wrapped by operators containing a “�” in
their name). Intuitively, K1yK2 means “first process K1,
then process K2”. Frozen computations are structurally in-
hibited from advancing until their turn comes. For example,
“K1 opK2” first processes K1 and in the meanwhile keeps K2
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frozen: “K1 opK2 = K1y� opK2”. After K1 is processed,
its result is placed back in context and K2 is “scheduled”:
“I1 opK2 = K2yI1 op�”. As equations, these can be applied
forth (to “schedule” for processing) and back (to “plug” re-
sults back). We assume all freezing operators are automat-
ically added to sort K (i.e., the “...” in “KF ...” in Figure
1 include “Id=�;” and “� opK | K op�” for all operations
op that one in the language). Computation equations give
the evaluation strategy of each language construct. They ac-
complish the same role as the context productions of evalu-
ation contexts [22], but logically rather than syntactically.

We next discuss the semantic equations and rules in Fig-
ure 1. When the language has sequential composition, it is
typically desugared into K’s y. The rewrite semantics of
+ is clear. The first rule making use of the structure of the
configuration is the variable lookup rule: it matches the top
of the 〈...〉k cell, which must be a variable identifier X ∈ Id,
as well as a pair X 7→ I in the environment cell, and replaces
X in the computation by I. The rule for variable assignment
updates the environment, at the same time dissolving the as-
signment statement. We chose to let lookup of uninitialized
variables be undefined; thus, the term 〈〈x=x+1;〉k〈·〉env〉,
which is equal to 〈〈xy �+1y x=�;〉k〈·〉env〉, is stuck.

K relates to reduction semantics (with [22] and without
[13] evaluation contexts), SECD [9] and other abstract ma-
chines, the CHAM [1], continuations [14], refocusing [4],
etc. We refer the interested reader to [16] for details on K.

4. KernelC

We here discuss the K definition of KernelC together
with some memory safety aspects.

4.1. Formal Semantics of KernelC

Figure 2 shows the complete K definition of KernelC, a
C-like language with dynamic memory allocation and deal-
location. We assume programs syntactically correct:

Definition 1 A KernelC computation K is well-formed iff
it is equal (using equational reasoning within KernelC’s
semantics) to a well-formed program or expression in C.
Also, a computation is well-terminated iff it is equal to the
unit computation “·” or to an integer value I ∈ Int.

We also assume the C meaning of the language constructs.
In particular, malloc(N) allocates a block of N contigu-
ous locations and returns a pointer to the first location, and
free(P) assumes that a block of N locations has been pre-
viously allocated using a corresponding malloc and deal-
locates all N locations. For simplicity, we allow integers
of any size and assume that locations, which are addressed
using natural numbers, can hold any integer.

Nat F naturals, Int F integers (abstract syntax)
Id F identifiers, to be used as variable names
K F Int | Id | null | *K | !K | K1 opK2 | K1 &&K2 | K1||K2 |

| K1=K2; | K1 K2 | {K} | {} | malloc(K); | free(K);
| if (K1) K2 | if (K1) K2 else K3 | while (K1) K2

null = 0 (desugaring of non-core constructs)
! K = if (K) 0 else 1
K1 &&K2 = if (K1)K2 else 0
K1 ||K2 = if (K1) 1 else K2

{K} = K
if (K1)K2 = if (K1)K2 else {}

Cfg F 〈Bag· [CfgItem]〉 (configuration)
CfgItem F 〈K〉k | 〈Env〉env | 〈Mem〉mem | 〈Ptr〉ptr

K F ... | Seq y· [K]
Mem F Map �

· [Nat+, Int]
Env F Map ,· [Id, Int]
Ptr F Map ,· [Nat+,Nat]
*K = (K y *�) (computation structural equations)
K1 opK2 = (K1 y � opK2)
I1 opK2 = (K2 y I1 op�)
if (K1)K2 elseK3 = (K1yif (�)K2 elseK3)
(X=K;) = (KyX=�;)
(*K1=K2;) = (K1 y *�=K2;)
(*P1=K2;) = (K2 y *P1=�;)
malloc(K); = (Kymalloc(�);)
free(K); = (Kyfree(�);)
{} = · (semantic equations and rules)
K1 K2 = K1yK2

I1 op I2 → I1 opInt I2

if (0)K2 elseK3 → K3

if (I)K2 elseK3 → K2 where I , 0
〈X y K〉k 〈X 7→ I, ρ〉env → 〈I y K〉k 〈X 7→ I, ρ〉env

〈X=I;y K〉k 〈ρ〉env → 〈K〉k 〈ρ[X ← I]〉env

〈*Py K〉k 〈P 7→ I�σ〉mem → 〈I y K〉k 〈P 7→ I�σ〉mem

〈*P=I;y K〉k 〈P 7→ I′�σ〉mem → 〈K〉k 〈P 7→ I�σ〉mem

〈while(K1)K2 y K〉k = 〈if(K1){K2;while(K1)K2}y K〉k
〈malloc(N);yK〉k〈σ〉mem〈π〉ptr→〈PyK〉k〈σ�σ′〉mem〈π[P←N]〉ptr

where Dom(σ′) = P, P + N − 1
〈free(P);yK〉k 〈σ�σ′〉mem 〈P 7→N, π〉ptr → 〈K〉k 〈σ〉mem 〈π〉ptr

where Dom(σ′) = P, P + N − 1
(range of variables: X∈ Id; K,K1,K2 ∈K; I,I1,I2 ∈ Int; P∈Nat+; N ∈Nat)

Figure 2. KernelC in K: Complete Semantics
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The desugaring equations are self-contained (Figure 2);
we prefer to desugar derived language constructs wherever
possible. The “boolean” constructs && and || are shortcut.
Even though the conditional is a statement, once all syntac-
tic categories are collapsed into one, K, it can be used to
desugar expression constructs as well. We use parentheses
for grouping, as in the equation desugaring !=.

The configuration of KernelC is a top 〈...〉 cell contain-
ing four sub-cells: the 〈...〉k and 〈...〉env cells also present
in the simple language in Figure 1; a cell 〈...〉mem hold-
ing the memory (or heap) which can be dynamically allo-
cated/deallocated; and a cell 〈...〉ptr associating to pointers
returned by malloc the number of locations that have been
allocated (this info is necessary for the semantics of free).

Definition 2 Let (Σ, E) be the algebraic specification of
KernelC configurations: Σ contains all the configuration
constructs (for bags, maps, etc.) and E contains all their
defining equations (associativities, commutativities, etc.).
Let T be the Σ-algebra of ground terms; the E-equational
classes (i.e., provably equal using equational reasoning
with E) of (ground) terms in T of sort Cfg which have the
form 〈〈K〉k 〈ρ〉env 〈σ〉mem 〈π〉ptr〉 are called (concrete) con-
figurations. We distinguish several types of configurations:

• Configurations of the form 〈〈K〉k 〈·〉env 〈·〉mem 〈·〉ptr〉

where K is a well-formed computation, also written
more compactly JKK, are called initial configurations;

• Configurations 〈〈K〉k 〈ρ〉env 〈σ〉mem 〈π〉ptr〉 whose em-
bedded computation K is well-terminated (a “·” or an
I ∈ Int) are called final configurations;

• Configurations γ ∈ T which cannot be rewritten any-
more (i.e., there is no configuration γ′ ∈ T such that
KernelC |=γ → γ′) are normal form configurations;

• Normal form configurations which are not final are
called stuck (or junk, or core dump) configurations;

• Configurations γ which cannot be rewritten infinitely
(i.e., there is no infinite set of configurations {γn}n∈Nat

such that γ0 = γ and KernelC |= γn → γn+1 for any
n ∈ Nat) are called terminating configurations.

The computation structural equations define the desired
evaluation strategy of each of the language constructs. Note
the one for the conditional, which schedules for processing
the condition, keeping the two branches frozen.

Let us discuss the semantic equations and rules in Figure
2. Empty blocks and sequential composition are dissolved
into the unit and the sequentialization of K. The rules for
+, == and if are clear. Variable lookup and assignment
rules are the same as in Figure 1. Pointer lookup and update
are similar, replacing the environment by memory, with a
subtle difference: the rule for pointer assignment matches
the pointer in the memory map, so it correctly requires
the pointer to be already allocated in memory; for environ-
ments, we preferred to add an environment entry in case the

variable is not present in the environment (that was because
we do not have explicit variable declarations in KernelC; if
we had, than the rules for variable and pointer lookup would
be similar, the former resembling the latter).

The equation of while shows a use of the cell structure
to achieve context sensitivity; replacing it with the simple-
minded equation (or rule in case one prefers to regard loops
unrolling as a computational step)

while(K1)K2 = if(K1){K2;while(K1)K2}

then there is nothing to prevent the application of this equa-
tion again on the while term inside the conditional, and so
on. While proof-theoretically one could argue that there is
no problem with that, operationally it is problematic as it
leads to operational non-termination even though the pro-
gram may terminate. The equation of while applies only
when while is the first computation task; it cannot apply
again until the outer conditional and K2 are processed.

Figure 3 shows a rewriting logic derivation using the K
semantics in Figure 2; →∗ stands for one or more rewrite
steps, with arbitrarily many equational steps in between.

The rules for free and mallocmake subtle use of match-
ing modulo associativity and commutativity of � . In the
case of free(P), a σ′ is matched in the 〈...〉mem cell whose
domain is the N contiguous locations P, P+N−1, where N is
the natural number associated to P in the 〈...〉ptr cell (i.e.,
the number of locations previously allocated at P using a
malloc); then the free statement in cell 〈...〉k, the memory
map σ′ in cell 〈...〉mem and the pointer mapping P7→N in cell
〈...〉ptr are discarded; this way, the memory starting with lo-
cation P can be reclaimed and reused in possible implemen-
tations of KernelC. Recall that we assume that all (partial)
maps appearing in any context are well-formed; in particu-
lar, the map σ�σ′ in the rule of free is well-formed, which
means that there is only one such matching in the memory
cell (P and N are given), which means that the rule for free
is deterministic. Such a compact and elegant definition is
possible only thanks to the strength of matching and rewrit-
ing modulo equations. Maude [3] provides efficient support
for these operations, which is what makes it a very con-
venient execution vehicle for K and matching logic. The
well-formedness of maps can either be assumed (one can
prove aside that each equation/rule preserves it) or checked
as a condition attached to the rule.

The most intricate rule in Figure 2 is that of malloc,
which is an almost exact dual of the rule for free. Like
in the free rule, the σ′ is doubly constrained: its do-
main is disjoint from σ’s (because σ�σ′ is well-formed)
and its domain is the set of contiguous locations P, P+N−1
with P the returned pointer. However, the constraints on σ′

are loose enough to allow a high degree of semantic non-
determinism. E.g., program “BAD ≡ p=malloc(2);*2=7;”
may exhibit three different types of behavior, two in which it
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Let REVERSE be the list reverse program in Introduction, and let
WHILE ≡ while(x!=null){y=*(x+1);*(x+1)=p;p=x;x=y;}

IF ≡ if(�){x=*(p+1); *(p+1)=null; WHILE}.
Also, let us assume the environment and memory maps:
(ρ1≡ p 7→1,x 7→0,y 7→0), (ρ2≡p 7→1,x 7→5,y 7→0), (ρ3≡p 7→5,x 7→0,y 7→0),
(σ1≡1 7→7�2 7→5�5 7→9�6 7→0), (σ2≡1 7→7�2 7→0�5 7→9�6 7→0),
(σ3=17→7�27→0�5 7→9�67→1). The following derivation shows
an execution reversing a list with the elements 7, 9:
〈REVERSE(p)〉k 〈ρ1〉env〈σ1〉mem = 〈p!=nullyIF〉k 〈ρ1〉env 〈σ1〉mem =

〈!(p==null)y IF〉k 〈ρ1〉env 〈σ1〉mem =∗

〈if (p==0) 0 else 1y IF〉k 〈ρ1〉env 〈σ1〉mem =

〈p==0y if (�) 0 else 1y IF〉k 〈ρ1〉env 〈σ1〉mem =

〈py �==0y if (�) 0 else 1y IF〉k 〈ρ1〉env 〈σ1〉mem →

〈1y �==0y if (�) 0 else 1y IF〉k 〈ρ1〉env 〈σ1〉mem =

〈1==0y if (�) 0 else 1y IF〉k 〈ρ1〉env 〈σ1〉mem →

〈0y if (�) 0 else 1y IF〉k 〈ρ1〉env 〈σ1〉mem =

〈if (0) 0 else 1yIF〉k〈ρ1〉env〈σ1〉mem→〈1yIF〉k 〈ρ1〉env 〈σ1〉mem →
∗

〈x=*(p+1); y *(p+1)=0; y WHILE〉k 〈ρ1〉env 〈σ1〉mem →
∗

〈x=*2; y *(p+1)=0; y WHILE〉k 〈ρ1〉env 〈σ1〉mem →
∗

〈x=5; y *(p+1)=0; y WHILE〉k 〈ρ1〉env 〈σ1〉mem →
∗

〈*(p+1)=0; y WHILE〉k 〈ρ2〉env 〈σ1〉mem →
∗

〈if(x!=0){y=*(x+1);*(x+1)=p;p=x;x=y;WHILE}〉k 〈ρ2〉env 〈σ2〉mem →
∗

〈y=*(x+1); y *(x+1)=p;p=x;x=y;WHILE〉k 〈ρ2〉env 〈σ2〉mem →
∗

〈*(x+1)=p; y p=x; y x=y; y WHILE〉k 〈ρ2〉env 〈σ2〉mem →
∗

〈p=x; y x=y; y WHILE〉k 〈ρ2〉env 〈σ3〉mem →
∗

〈if(x!=0){y=*(x+1);*(x+1)=p;p=x;x=y;WHILE}〉k 〈ρ3〉env 〈σ3〉mem →
∗

〈·〉k 〈ρ3〉env 〈σ3〉mem

Figure 3. Rewriting logic derivation using the
KernelC semantics in Figure 2.

terminates normally but in non-isomorphic configurations,
and one in which it gets stuck looking up for location 1
which is not allocated. E.g., 〈〈BAD〉k〈·〉env〈·〉mem〈·〉ptr〉 rewrites
to any of the following (each being a normal form):

〈〈·〉k 〈p 7→ 1〉env 〈(1 7→ −1) � (2 7→ 7)〉mem 〈1 7→ 2〉ptr〉

〈〈·〉k 〈p 7→ 2〉env 〈(2 7→ 7) � (3 7→ −1)〉mem 〈2 7→ 2〉ptr〉

〈〈*2y �=7;〉k〈p 7→ 5〉env〈(5 7→ −1) � (6 7→ −3)〉mem〈5 7→ 2〉ptr〉

In concrete implementations of KernelC, one may see the
last type of behavior more frequently than the other two,
as it is little likely that malloc allocates at the “predicted”
location, 2 in our case. We tried this code in gcc on a Linux
machine (casting 1 to (T*)1) and it compiled (but it gave
an expected segmentation fault when run). Thus, we can
regard the third normal form term above as a “core dump”.

We claim that, in spite of this apparently undesired non-
determinism, this is the most general semantics of malloc
that a language designer may want to have1. Any other ad-
ditional constraints, such as “always allocate a fresh mem-
ory region”, or “always reuse existing memory if possible”,

1To accommodate some implementations, one may want to have an
even more general definition of malloc(N), namely one in which at least
N locations are allocated; we do not do it here, but it can be easily done
by replacing the second and third occurrences of N in the rule for malloc
with an M and adding a side condition M ≥ N to the rule.

etc., may lead to a restrictive definition of KernelC, pos-
sibly undesired by some implementors. The actual C lan-
guage makes no specific requirements on memory alloca-
tion, allowing C interpreters or compilers freedom to choose
among various memory allocation possibilities; it is pro-
grammers’ responsibility to write programs that do not rely
on particular memory allocation strategies.

We can now formally state what KernelC is:

Definition 3 The language KernelC discussed in this sec-
tion is the rewrite logic theory (ΣKernelC, EKernelC,RKernelC)
depicted in Figure 2. If KernelC |= γ →∗ γ′ we say that, in
KernelC, configuration γ rewrites to configuration γ′.

Both the abstract syntax of KernelC and Σ are included
in ΣKernelC, and also both the desugaring equations of de-
rived KernelC constructs and E are included in EKernelC;
recall from Definition 2 that (Σ, E) is the equational defini-
tion of KernelC configurations.

Therefore, the rewrite logic semantics of KernelC, iden-
tified with KernelC from here on, can produce by means of
rewriting all the possible complete or intermediate execu-
tions that the language can yield. In particular, if

KernelC |= JKK→∗ γ

with K a well-formed computation and γ a final configura-
tion, then γ contains the (possibly non-deterministic) “re-
sult” obtained after “evaluating” K. In addition to com-
prising all the good executions, the rewrite theory KernelC
also comprises all the bad executions of KernelC programs,
namely all those that can get stuck; as seen shortly, this is
very important as it will allow us to formally define memory
safety of KernelC programs.

Note that like in any other formal operational semantics,
our rewrite logic definition of KernelC has the property that
informal execution steps and whole executions of programs
become, respectively, formal proof steps and whole proofs
in rewriting logic. Interestingly, unlike in other operational
semantic frameworks, rewriting logic also provides models
which are complete for its proof system, so the very same K
definition of KernelC is also a loose “denotational” seman-
tics in addition to being an “operational” one; moreover,
since rewriting logic admits initial models, which are essen-
tially built as a fix point over the algebra of terms, there is a
selected subset of models, the “reachable” ones, for which
induction is valid. As seen in Section 5, one can also sys-
tematically obtain a matching logic proof system from the
same K definition of KernelC, which can be used to for-
mally prove properties about programs. In other words,
once one has a K definition of a language, one needs no
other formal semantics of that language because its K def-
inition already provides everything one may need from a
formal semantics. This is also one of the reasons for which
we call K semantics executable rather than operational; the
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latter may give the wrong impression that the K semantics
can only be used to yield an interpreter for the language.

Even though K is executable by its very nature, here
we actually defined, and not implemented, KernelC. We
therefore wanted to keep our semantics as loose, or un-
constrained, as possible. As usual, when implementing
non-deterministic specifications one needs not (and typi-
cally does not) provide all the non-deterministic behav-
iors in one’s implementation. In fact, each implementa-
tion of KernelC is expected to be deterministic. The non-
determinism of malloc in our KernelC definition is a re-
sult of a deliberate language under-specification, not a de-
sired non-deterministic feature of the language. General de-
tails on under-specification versus non-determinism are be-
yond our scope here, but the interested reader is referred
to [21] for an in-depth discussion on these subjects. An
additional advantage of the under-specified malloc in our
definition of KernelC is that it allows us to elegantly yet
rigorously define memory safety in the next section: a pro-
gram is memory-safe iff it cannot get stuck, i.e., it cannot be
rewritten to a normal form whose computation cell is differ-
ent from “·” or an integer. It is worth mentioning here that
the soundness theorem of matching logic (Theorem 27) also
ensures the memory safety of the verified program.

4.2. Memory Safety and SafeKernelC

We here give a formal definition to memory safety in
KernelC, capturing the intuition that a program is mem-
ory safe iff it is so under any possible implementation
of KernelC, i.e., under any possible choice the rule for
malloc may make. Due to the undecidability of termi-
nation in general, our notion of memory safety, like any
other practical (i.e., not unreasonably restricted) notion of
memory safety, is undecidable in general. In this section
we show that memory safety is actually undecidable even
for terminating KernelC programs. That means, in par-
ticular, that KernelC (as an executable semantics) as well
as any faithful implementation of it, cannot detect memory
safety violations even on programs which always terminate,
no matter whether that is attempted statically or at runtime.

To check memory safety, one therefore needs either to
rely on user help (e.g., annotations), which is our approach
in Section 5 in a more general verification setting including
memory safety, or to restrict the class of memory safe pro-
grams, which is what we do next. We propose the seman-
tic notion of strong memory safety: a program is strongly
memory safe iff it does not get stuck in the executable se-
mantics SafeKernelC, a variant of KernelC semantics with
symbolic pointers. Interestingly, our formal definition of
strong memory safety includes the informal notion of mem-
ory safety implied by the “C rules for pointer operations”
[5]. Strong memory safety is shown decidable for terminat-

ing programs, but, of course, it is undecidable in general.

Definition 4 Well-formed computation K is terminating iff
JKK is a terminating configuration in KernelC, and is mem-
ory safe iff any normal form of JKK in KernelC is final.

Program “BAD ≡ p=malloc(2);*2=7;” is terminating
but not memory safe: JBADK rewrites, as seen, to normal
form 〈〈*2y�=7;〉k〈p7→5〉env〈(5 7→−1)�(6 7→−3)〉mem〈5 7→2〉ptr〉.
Program “GOOD ≡ p=malloc(2);*(p+1)=7;”, on the other
hand, is both terminating and memory-safe: JGOODK
rewrites only to normal form configurations of the form
〈〈·〉k 〈p 7→ i〉env 〈(i 7→ j) � (i+1 7→7)〉mem 〈i 7→2〉ptr〉, where i ∈
Nat+ and j ∈ Int. Program “p=malloc(1);while(*p){}” is
memory safe but not terminating (when *p , 0), and finally,
program “p=malloc(1);while(*1){}” is neither memory-
safe (when p , 1) nor terminating (when p = 1 and *1,0).

For our simple language, memory is the only source of
unsafety; for more complex languages, one may have vari-
ous types of safety, depending upon the language construct
at the top of the computation in t when t is a normal form,
which tells why the computation got stuck; e.g., if the lan-
guage has division and 3/0 is at the top of the computation,
then K got stuck because a division by zero was attempted.

KernelC is Turing complete (we assumed both arbitrar-
ily large integers and infinite memory), so termination of
KernelC programs is undecidable. That immediately im-
plies that memory safety is also undecidable in general: for
any memory safe program PGM, the program “PGM;BAD” is
memory safe iff PGM does not terminate. What is not so ob-
vious is the decidability or undecidability of memory safety
on terminating programs. In the remaining of this section
we show that this is actually an undecidable problem, but
that a stronger version of memory safety is decidable.

A hasty reader may think that, since programs have
no symbolic inputs or data, memory safety must be de-
cidable on terminating programs: one can simply run the
program and check each memory access. The complex-
ity of the problem comes from the non-determinism/under-
specification of malloc, which makes any particular execu-
tion of the program to mean close to nothing wrt memory
safety. Consider, for example, an execution of the program
“x=malloc(1); free(x); y=malloc(1); *x=1;” in which
the second malloc just happens to return the same pointer as
the first malloc. Since this particular execution taking place
on a hypothetical particular implementation of KernelC ter-
minates normally, one may be wrongly tempted to say that
it is memory safe; this program is clearly not memory safe
(gets stuck if second malloc chooses a different location)
and even the execution itself can be argued as memory un-
safe, because of a memory leak on x (dangling pointer).

Since unrestricted use of pointers returned by malloc
can lead to non-deterministic executions of programs, one
could, in principle, introduce some notion of “path memory
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safety”. For example, one could argue that an execution of
the program “x=malloc(1); y=malloc(1); if (y==x+1)
{} else BAD” in which y just happens to be x+1 is memory
safe, or that an execution of the program “x=malloc(2);
if (*x==*(x+1)) {} else BAD” in which *x just happens
to be *(x+1) is memory safe. Encouraged by the informal
so-called “C rules for pointer operations” [5], we prefer to
not introduce such a notion of “path memory safety” and,
instead, to keep our notion of memory safety of programs
in Definition 4; with it, these terminating programs are not
memory safe. Later in this section we introduce a stronger
notion of memory safety, supported by an executable se-
mantics that will always get stuck on these programs.

Proposition 5 Memory safety of terminating KernelC pro-
grams is an undecidable property.

Proof. Since KernelC is Turing complete, we can encode
any decidable property ϕ(n) of input n ∈ Nat as a ter-
minating and memory-safe KernelC program “x=n;PGMϕ”
which writes some variable out, such that ϕ(n) holds
iff KernelC |= Jx=n;PGMϕK →∗ 〈〈·〉k〈out 7→ 1, ...〉env...〉
and ϕ(n) does not hold iff KernelC |= Jx=n;PGMϕK →∗
〈〈·〉k〈out 7→ 0, ...〉env...〉. Since the pointer returned by
malloc is non-deterministic, we can use it to “choose
a random” n to assign to x: consider the program
“PGM’ϕ ≡ x=malloc(1);PGMϕ;if(out)GOOD else BAD”.
PGM’ϕ terminates because “x=n;PGMϕ” terminates for any
n ∈ Nat returned by malloc(1) and the conditional always
terminates. On the other hand, PGM’ϕ is memory safe iff
the variable out is 1 in the environment when PGMϕ termi-
nates, which happens iff ϕ(n) holds for all n ∈ Nat. The
undecidability of memory safety then follows from the fact
that there are decidable properties ϕ for which (∀n)ϕ(n) is a
proper co-recursively-enumerable property [17]. �

Since our notion of memory safety refers to a program
rather than a path, the proposition above says that it is also
impossible to devise any runtime checker for memory safety
of general purpose KernelC (and hence C) programs. One
could admittedly argue that such anomalies occur as arti-
facts of poorly designed languages like C, that allow for
(too) direct memory access and complete freedom in han-
dling pointers as if they are natural numbers. However, it is
actually precisely these capabilities that make C attractive
when performance is a concern, and performance is indeed
a concern in many applications. That memory unsafe pro-
grams may execute just fine is a must feature of any formal
semantic definition of C that is worth its salt, because all C
implementations deliberately “suffer” from this problem.

Note that we are not attempting to fix C’s problems here,
nor to propose a better language design. Our goal is to pro-
pose a program verification approach based on matching
and rewriting logic, and so, for this purpose, the fact that
the base language is intricate is a plus. However, the high

(abstract syntax)
NatVar F infinite set of symbolic natural numbers
Nat F ... | NatVar

(semantic equations and rules)
〈malloc(N);yK〉k〈σ〉mem〈π〉ptr → 〈pyK〉k〈σ�σ′〉mem〈π[P←N]〉ptr

where P is a fresh symbol in NatVar and Dom(σ′) = P, P + N − 1

Figure 4. Formal semantics of SafeKernelC.
(figure only shows how it differs from the se-
mantics of KernelC in Figure 2)

degree of non-determinism in the semantics of malloc may
be problematic in formal verification. We prefer to give a
slightly different semantics to our language, one which cap-
tures the non-determinism of malloc symbolically. Figure
4 shows the formal K semantic definition of SafeKernelC,
which essentially adds symbolic numbers and gives malloc
a symbolic semantics. Everything else stays unchanged,
like in the definition of KernelC in Figure 2.

Definition 6 Well-formed computation K is strongly ter-
minating iff JKK is terminating in SafeKernelC, and is
strongly memory safe iff any normal form of JKK in
SafeKernelC is final.

Since SafeKernelC adds symbolic values (for pointers
and initial values in allocated memory locations), the as-
sumed machinery for naturals and integers is now expected
to work with these symbolic values as well. In particular,
the rule (side) conditions may be harder to check. For ex-
ample, the rule “I1==I2 → N” applies only when one proves
that I1 = I2, and in that case N is 1, or when one proves
that I1 , I2, and in that case N is 0; if one cannot prove
any of the two, then the term “I1==I2” remains unreduced
and the execution of the program may get stuck because
of that. For example, both “p=malloc(1);while(*p){}”
and “p=malloc(1);while(*1){}” are now strongly terminat-
ing (but remain memory unsafe, also in the strong sense).
Also, both programs discussed in front of Proposition 5 get
stuck when processing the conditions of their if statements.
On the positive side, programs obeying the recommended
safety rules for pointer operations in C [5], e.g., reading
only initialized locations and comparing pointers only if
they are within the same data-structure contiguously allo-
cated in memory, are strongly memory safe. For exam-
ple, “n=100;a=malloc(n);x=a;while(x!=a+n){*x=0;x=x+1;}”
is both strongly memory safe and strongly terminating.

Proposition 7 Let p ∈ K be a program. Then

1. If p is terminating then p is strongly terminating;
2. If p is strongly memory safe then p is memory safe;

10



3. If p is strongly memory safe then p is terminating iff p
is strongly terminating.

The first two implications in the proposition above are
proper. For example, “p=malloc(1);while(*p){}” is a
strongly terminating program (but not strongly memory
safe) which is not terminating. We call such programs “ac-
cidentally non-terminating”. There are also programs which
are memory safe but not strongly memory safe, such as
“x=malloc(1);y=malloc(1);if(y==x+1){}else{}”. We call
such programs “accidentally memory safe”.

Proposition 8 Strong termination and strong memory
safety remain undecidable in general, but strong memory
safety of strongly terminating programs is decidable.

5. Matching Logic

Matching logic can be thought of both as a symbolic “big
step” semantics associated to a K language definition and as
a configuration-based axiomatic semantics of the language.
Matching logic derives pairs Γ

V

Γ′ of configuration pat-
terns, called (partial) correctness pairs. We exemplify it
by defining a formal system for KernelC.

Recall from Section 4 that we let (Σ, E) denote the alge-
braic specification of KernelC configurations, i.e., Σ con-
tains all the configuration constructs (for bags, maps, etc.)
and E contains all their defining equations (associativities,
commutativities, etc.). Like in rewriting logic, everything
we do from here on takes place modulo equations in E;
we therefore take the freedom to write t = t′ instead of
KernelC |= t = t′ for any terms t and t′. Also, re-
call from Definition 2 that the (concrete) configurations of
KernelC are well-formed ground Cfg-terms of the form
〈〈K〉k 〈ρ〉env 〈σ〉mem 〈π〉ptr〉. In other words, configurations
have only concrete data (no variables) and we assume all
their equational properties by default, in particular we can
conveniently write their subcells in any order.

5.1. Patterns

Configuration patterns, or simply just patterns, play a
central role in matching logic. Patterns take the place of the
formulae in Hoare logics, so they are program state specifi-
cations; more precisely, patterns are program configuration
specifications, i.e., they can also refer to programs them-
selves, not only to their state. Technically, patterns are con-
figuration terms augmented with variables and constraints
over them. Patterns can generalize by a mechanism called
pattern abstraction, and relate to concrete program specifi-
cations by a mechanism called pattern matching; both these
mechanisms are very natural and intuitive, yet they involve

some technical details that need to be discussed.

Formulae

We here discuss the logical infrastructure needed later on
to define the pattern constraints. Let Form be a new sort, for
formulae, providing at least the following signature: true
and false constants, a semantic entailment relation ψ |= ϕ
(i.e., operation of bool result; sort bool is assumed), and
conjunction ϕ∧ψ. We also assume a mechanism for sub-
stitution of variables in formulae: θ(ϕ) is the formula ap-
plying substitution θ to ϕ; of course, in case formulae have
quantifiers or other kinds of binders, then substitutions are
supposed to act on free variables only and in a capture-free
manner. These operations are required to satisfy the follow-
ing natural properties (ϕ, ϕ′, ψ range over Form):
• False hypothesis: false |= ϕ;
• True conclusion: ϕ |= true;
• Reflectivity: ϕ |= ϕ;
• Transitivity: If ψ |= ϕ and ϕ |= ϕ′ then ψ |= ϕ′;
• Substitution closure: If ψ |= ϕ then θ(ψ) |= θ(ϕ) for any

substitution θ.
We take the freedom to write |=ϕ instead of true |=ϕ. Then,
e.g., one can infer that if |= θ(ϕ) and ϕ |= ϕ′, then |= θ(ϕ′).
Substitutions play a major role in matching logic, because
they can be the results of matching operations. We will de-
fine and discuss substitutions in detail shortly. For now, the
reader can informally assume the usual meaning of a substi-
tution, namely a mapping that associates terms to variables.

For mathematical uniformity, we assume that Form con-
tains all the background signatures and theories of math-
ematical objects involved in proofs, including arithmetic,
etc. Furthermore, we here also assume that Form includes
equational logic, i.e., it has an equality formula construct
for each sort or subsort in Σ, giving for any two terms t, t′

of same sort S an equality formula t =S t′. We drop the
index S whenever clear from context. When implementing
matching logic provers, for efficiency reasons, we do not
advocate flattening all the logical infrastructure of a config-
uration into one formula; in our experience with our prover
(Section 7), it can be more convenient to store axioma-
tizations of various mathematical domains of interest as
background library theories, and to use a specialized equa-
tional/rewriting derivation engine with powerful support for
matching “outside” of the logical infrastructure. However,
we here chose to flatten everything in a formula because it
simplifies the exposition, in that we can now uniformly as-
sume that the formula embedded in a pattern contains all the
logical ingredients needed to reason about that pattern.

It is worth mentioning here that matching logic will re-
quire overall less support from the underlying logic than
Hoare logics. Indeed, the latter requires the logic to have ex-
istential quantifiers in order to state loop invariants. Match-
ing logic will never require any quantifier support from the
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underlying logic; in particular, the loop invariants will make
use of patterns’ binding variables.

Patterns, Free and Bound Pattern Variables

We now define patterns as configuration terms with vari-
ables (slots for matching) embedding a subset of bound
variables and a formula constraining all its variables.

Definition 9 Consider a new sort Var and, for each existing
sort S, a new subsort SVar<S together with infinitely many
variable symbols of sort SVar; also, assume that SVar<Var.
Consider two additional configuration item cells, namely:

CfgItemF ... | 〈Bag ,· [Var]〉bnd | 〈Form〉form

For simplicity, we also use (Σ, E) for the extended alge-
braic specification of configurations and T for the (larger)
Σ-algebra of ground terms. Let T (Var) be the Σ-algebra
of terms with variables in Var. The E-equational classes
of terms in T (Var) of sort Cfg which are 6-cell configura-
tion of the form 〈〈K〉k 〈ρ〉env 〈σ〉mem 〈π〉ptr 〈V〉bnd 〈ϕ〉form〉 are
called (configuration) patterns. If Γ is a pattern as above,
then we call bnd(Γ) = V the set of its bound variables, we
call the set vars(Γ) of all the variables that appear in Γ (ex-
cept those bound in ϕ, if any) the pattern variables of Γ, we
call free(Γ) = vars(Γ) − bnd(Γ) the set of free variables of
Γ, and finally call ϕ the constraints or the formula of Γ.

In what follows, Γ,Γ′,Γ1, ... range over patterns, γ, γ′, γ1, ...
range over concrete configurations, and C,C′,C1, ... range
over terms which are bags of configuration items. Un-
less otherwise stated directly or indirectly, the configuration
item bag terms C, C′, C1, etc., can have variables.

We borrow the terminology of finality from configura-
tions (see Definition 2) to patterns:

Definition 10 Patterns 〈〈K〉k ...〉 whose embedded compu-
tation K is well-terminated (a “·” or a term of sort Int) are
called final patterns.

The intuition for final patterns is that they specify con-
crete configurations which are themselves final, that is, they
can not be rewritten anymore within the rewriting logic se-
mantics of KernelC.

Substitutions

Substitutions typically act on a specific subset of vari-
ables, letting all the other variables unchanged. In matching
logic, substitutions play a very crucial role: they are the
results of successful matching operations. Since we want
matching logic proofs to refer to finitely presentable math-
ematical objects, so that they can be produced and used by
program verification tools, we found it more convenient to
work with substitutions as finite domain maps, same like the
other map structures considered in our language definitions:

Definition 11 A substitution ξ : V → T (Var) is a sort-
preserving map ξ from a finite set of variables V ⊆ Var to
terms which can have variables. If ξ is such a substitution,
then we may call it a V-substitution and/or may say that V
is the set of variables on which ξ acts. When ξ(v) is a ground
term for each v ∈ V, we call ξ a ground substitution.

Finally, we let ξ : T (Var) → T (Var) denote the unique
homomorphic extension of ξ : V → T (Var) to arbitrary
terms which is the identity on all variables in Var − V.

Note that if ξ1 : V1 → T (Var) and ξ2 : V2 → T (Var)
are two substitutions, then both ξ1 ◦ ξ2 : V2 → T (Var) and
ξ2 ◦ ξ1 : V1 → T (Var) are substitutions. However, note
that it is not necessarily the case that the homomorphic ex-
tensions of substitutions have without additional constraints
the “Kleisli” extension property ξ1 ◦ ξ2 = ξ1 ◦ ξ2. For ex-
ample, if x1, x2 ∈ IntVar and ξ1 is an {x1}-substitution with
ξ1(x1) = 0 and ξ2 is an {x2}-substitution with ξ2(x2) = x1,

then ξ1 ◦ ξ2(x1 + x2) = x1 +0 while (ξ1 ◦ξ2)(x1 + x2) = 0+0.
The “additional constraints” needed to make the above can
be to restrict the homomorphic extensions of substitutions
to only terms over the variables on which the substitution
acts. However, we will shortly see that in matching logic
some substitutions act only on the free variables in a pattern
but not on the bound ones, while other substitutions only act
on the bound variables but not on the free ones.

For notational consistency, we will attempt to use
τ, τ′, τ1, ... for ground substitutions, ξ, ξ′, ξ1, ... for substi-
tutions which are not necessarily ground but which typi-
cally only act on the free variables of the patterns on which
they are applied, and θ, θ′, θ1, ... for substitutions of vari-
ables bound in the patterns on which they are applied. To
avoid confusion, we are going to mention the type of substi-
tutions whenever that is not clearly implied by the context.

Pattern Abstraction

To increase the modularity of program verification, we
want to prove each task in a setting which is as general
as possible and then instantiate that general setting to vari-
ous special cases. That means, in particular, that we need a
mechanism to generalize and/or refine specifications. Since
in matching logic patterns specify program configurations,
we need a mechanism to generalize and/or refine patterns.
We here introduce pattern abstraction, written Γ V Γ′,
which will do precisely that; we say that Γ is “more con-
crete than” Γ′, or that Γ′ is “more abstract than” Γ.

Definition 12 Pattern Γ′ = 〈C′ 〈V ′〉bnd 〈ϕ
′〉form〉 abstracts

Γ = 〈C 〈V〉bnd 〈ϕ〉form〉, or Γ refines Γ′, written Γ V[θ] Γ′

with subscript θ optional (i.e., mentioned only when needed
in context), iff free(Γ) ⊇ free(Γ′) and free(Γ) ∩ bnd(Γ′) = ∅

and θ is a V ′-substitution such that C = θ(C′) and ϕ |= θ(ϕ′).
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Pattern abstraction is therefore some kind of an abstract
matching operation, in that if ΓV Γ′ then Γ can be thought
of as matching Γ′ in a way that is consistent with their inter-
nal constraints. Note that the substitution θ used for pattern
abstraction and appearing optionally as a subscript in the
notation Γ Vθ Γ′ only acts on bound variables in Γ′ and is
not required to be ground; in fact, for a v′ ∈ V ′, the term
θ(v′) may contain both bound and free variables in Γ. When
a pattern abstraction step Γ Vθ Γ′ is applied in a matching
logic proof, the free variables of Γ are going to sooner or
later be bound in a larger proof context; since θ only acts on
the bound variables of Γ′ and since free(Γ) ⊇ free(Γ′), the
contextual bindings of the free variables in the abstracted
pattern Γ′ are going to remain the same as in the concrete
pattern Γ, as expected. The condition free(Γ) ∩ bnd(Γ′) = ∅

has technical motivations, to avoid variable captures in the
context of substitutions. As seen later in this section, the
bound variables in patterns can be α-converted, so this con-
dition is easy to ensure in matching logic proofs. The con-
ditions free(Γ) ⊇ free(Γ′) and free(Γ) ∩ bnd(Γ′) = ∅ in the
definition of pattern abstraction are stronger than needed
in the subsequent proofs, but we prefer them because they
are more compact to state and more intuitive than what is
needed; besides, we have no practical need to weaken them
yet. We assume, of course, that no variable capture occurs
in θ(ϕ′); as already mentioned when we discussed the logic
infrastructure, one should α-convert variables that ϕ′ binds
(if any) appropriately before applying θ to ϕ′.

The most immediate operation that one can perform
on a pattern is to “concretize” it via a substitution of its
bound variables. However, one should make sure that the
free/bound variable conditions in Definition 12 still hold:

Proposition 13 If Γ = 〈C 〈V〉bnd〉 and Γ′ = 〈C′ 〈V ′〉bnd〉

with free(Γ) ⊇ free(Γ′) and free(Γ)∩ bnd(Γ′) = ∅, and if θ is
a V ′-substitution such that C = θ(C′), then ΓVθ Γ′.

Proof. The only difference between the hypothesis of this
proposition and Definition 12 is that the pattern conditions
are not mentioned; instead, if ϕ is the condition of Γ then the
condition of Γ′ is θ(ϕ). Since θ(ϕ) |= θ(ϕ), this proposition
is therefore an immediate consequence of Definition 12. �

Particularly interesting instances of the proposition
above are when θ is a bijection renaming V ′ into V (this case
leads to α-conversion and is discussed below), or when θ is
ground and V = ∅.

The finite set of bound variables can be arbitrarily ex-
tended in any pattern abstraction:

Proposition 14 If ΓVθ Γ′ and U is a finite set of variables
disjoint from vars(Γ) ∪ vars(Γ′), then ΓU VθU Γ′U , where
ΓU and Γ′U extend the set of bound variables in Γ and Γ′

with U, respectively, and θU is the (bnd(Γ′)∪U)-substitution
extending θ with the identity on the variables in U.

Proof. Let Γ = 〈C 〈V〉bnd 〈ϕ〉form〉 and Γ′ =

〈C′ 〈V ′〉bnd 〈ϕ
′〉form〉 and θ a V ′ substitution such that C′ =

θ(C) and ϕ |= θ(ϕ′). Then ΓU = 〈C 〈V,U〉bnd 〈ϕ〉form〉

and Γ′U = 〈C′ 〈V ′,U〉bnd 〈ϕ
′〉form〉, and θU(C′) = θ(C′) and

θU(ϕ′) = θ(ϕ′). Therefore, ΓU VθU Γ′U . �

Two patterns can abstract each other:

Definition 15 Patterns Γ and Γ′ are equivalent or equally
abstract, written ΓWV Γ′, iff ΓV Γ′ and Γ′ V Γ.

Pattern equivalence ΓWV Γ′ implies, in particular, that
free(Γ) = free(Γ′). It also subsumes two very practical op-
erations, namely α-conversion (or renaming) and elimina-
tion/addition of redundant bound pattern variables:

Proposition 16 If Γ = 〈C 〈V〉bnd〉 and U is a finite set of
variables disjoint from vars(Γ), then:

1. ΓWV 〈α(C) 〈U〉bnd〉 if α :V→U is a bijection;
2. ΓWV 〈C 〈V,U〉bnd〉.

Proof. “1.” follows by noting that Γ Vα−1 〈α(C) 〈U〉bnd〉

and 〈α(C) 〈U〉bnd〉 Vα Γ. To prove “2.”, for both abstrac-
tions involved take θ to be the identity substitution on V and
anything on U; the idea here is that θ(C) = C no matter how
θ is defined on the variables in U. �

The pattern abstraction operation is transitive, that is, if
Γ1 V Γ2 and Γ2 V Γ3 such that bnd(Γ3)∩ free(Γ1) = ∅ then
Γ1 V Γ3. More precisely,

Proposition 17 If Γ1 Vθ1 Γ2 and Γ2 Vθ2 Γ3 such that
bnd(Γ3) ∩ free(Γ1) = ∅ then Γ1Vθ1◦θ2

Γ3.

Proof. Let us assume that Γ1 is the pattern
〈C1 〈V1〉bnd 〈ϕ1〉form〉, Γ2 is the pattern 〈C2 〈V2〉bnd 〈ϕ2〉form〉,
and Γ3 is the pattern 〈C3 〈V3〉bnd 〈ϕ3〉form〉, where
C1 = θ1(C2) and ϕ1 |= θ1(ϕ2), where C2 = θ2(C3) and
ϕ2 |= θ2(ϕ3), and where free(Γ1) ⊇ free(Γ2) ⊇ free(Γ3).
Since variables in V2 cannot be among the free variables
of Γ3, the above imply that all the occurrences of variables
in V2 that appear in C2 = θ2(C3) are actually produced
by θ2, that is, they appear as variables in a term θ2(v3) for
some variable v3 ∈ V3 which occurs in C3. That means that
(θ1 ◦ θ2)(C3) = θ1(θ2(C3)), that is, that (θ1 ◦ θ2)(C3) = C1.
Similarly, it follows that (θ1 ◦ θ2)(ϕ3) = θ1(θ2(ϕ3)), and
since the transitivity and substitution closure of |= imply

that ϕ1 |= θ1(θ2(ϕ3)), it follows that ϕ1 |= (θ1 ◦ θ2)(ϕ3).
Therefore, Γ1 Vθ1◦θ2

Γ3. �

We next want to show that pattern abstraction is pre-
served by substitutions of free variables, that is, to show
that if ΓVΓ′ and ξ is some free(Γ)-substitution (recall that
free(Γ) ⊇ free(Γ′)), then ξ(Γ) V ξ(Γ′). However, in order
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for this result to hold, some measures need to be taken to
avoid “unexpected” variable captures. First, note that while
the bound and free variables of Γ and Γ′ are respectively
disjoint, nothing is known about the disjointness of the free
variables in Γ and the bound variables of Γ′; if they are not
disjoint then ξ may wrongly act on bound variables in Γ′

when applied to calculate ξ(Γ′). Second, note that if the
term ξ(v) for some v ∈ free(Γ) contains any variable which
is bound by Γ or Γ′, then that variable may be undesirably
captured by the bound variables of ξ(Γ) and/or ξ(Γ′).

Proposition 18 Suppose that Γ Vθ Γ′ and that ξ :
free(Γ) → T (Var) is a free(Γ)-substitution which does not
interfere with the bound variables of Γ and Γ′, that is, the
set bnd(Γ) ∪ bnd(Γ′) is disjoint from the set of variables of
ξ(v) for any v ∈ free(Γ). Then ξ(Γ)Vξ◦θ ξ(Γ

′).

Proof. Suppose that Γ is the pattern 〈C 〈V〉bnd 〈ϕ〉form〉 and
that Γ′ is the pattern 〈C′ 〈V ′〉bnd 〈ϕ

′〉form〉, so that θ is a V ′-
substitution with C = θ(C′) and ϕ |= θ(ϕ′). Then, since
ξ does not interfere with the bound variables in Γ and Γ′,
it follows that ξ(Γ) is the pattern 〈ξ(C) 〈V〉bnd 〈ξ(ϕ)〉form〉

and ξ(Γ′) is the pattern 〈ξ(C′) 〈V ′〉bnd 〈ξ(ϕ′)〉form〉. More-
over, the non-interference hypothesis also implies that

(ξ ◦ θ)(ξ(C′)) = ξ(θ(C′)) and that (ξ ◦ θ)(ξ(ϕ′)) = ξ(θ(ϕ′)).

Therefore, (ξ ◦ θ)(ξ(C′)) = ξ(C) and ξ(ϕ) |= (ξ ◦ θ)(ξ(ϕ′)).
Since it is also the case that free(ξ(Γ)) ⊇ free(ξ(Γ′)) and
free(ξ(Γ)) ∩ bnd(ξ(Γ′)) = ∅, we conclude that indeed
ξ(Γ)Vξ◦θ ξ(Γ

′). �

A simple case when the non-interference hypothesis of
Proposition 18 holds trivially is when ξ is ground.

All the variable capture hypotheses in Proposition 18 can
be easily achieved by applying, if necessary, α-conversions
to Γ and/or Γ′. Thus, one can easily show the following:

Corollary 19 If Γ V Γ′ and ξ is an arbitrary free(Γ)-
substitution, then there are configurations Γ0 and Γ′0 such
that ΓWV Γ0 and Γ′WV Γ′0 and ξ(Γ0)V ξ(Γ′0).

Proof. Let Γ0 and Γ′0 be some arbitrary α-converted vari-
ants of Γ and Γ′, respectively. Since free(Γ) = free(Γ0), ξ
satisfies the hypotheses of Proposition 18 for Γ0 V Γ′0. �

Pattern Matching and Concrete Patterns

The relationship between patterns and configurations is
established by what we call pattern matching in match-
ing logic. Intuitively, configuration γ matches pattern Γ,
written γ |≡ Γ, iff there is some ground substitution of the
variables in Γ which is consistent with Γ’s constraints and
which transforms Γ into γ (forgetting the two additional
cells 〈...〉bnd and 〈...〉form which, in this case, are redundant).

Definition 20 Configuration γ matches pattern Γ, written
γ |≡[τ]Γ with the index τ optional (written only when needed
in context), iff Γ= 〈C 〈V〉bnd 〈ϕ〉form〉and γ= 〈τ(C)〉, where τ
is some ground substitution of vars(Γ) such that |=τ(ϕ).

Pattern matching therefore makes no distinction between
bound and free variables: all pattern variables are matched
the same way. Both pattern abstraction and pattern match-
ing are defined in terms of matching, the former via a sub-
stitution matching only the bound variables of the second
pattern, while the latter via a ground substitution matching
both the bound and the free variables in the pattern.

Definition 21 Patterns of the form 〈C 〈·〉bnd 〈true〉form〉 with
〈C〉 a (concrete) configuration, are called concrete pat-
terns. If γ = 〈C〉 is a configuration, we let γ̂ denote the
the concrete pattern 〈C 〈·〉bnd 〈true〉form〉 associated to γ.

As expected, pattern matching is a special case of pat-
tern abstraction, namely an abstraction of the concrete pat-
tern associated to the matched configuration to a pattern ab-
stracting all the variables away:

Proposition 22 γ |≡τ 〈C 〈V〉bnd〉 iff γ̂ Vτ 〈C 〈vars(C)〉bnd〉.

Proof. Simple consequence of Definitions 20 and 12. �

Proposition 23 If γ |≡τΓ and ΓVθ Γ′ then γ |≡τ′Γ′ for some
τ′ such that τ(x′) = τ′(x′) for any x′ ∈ free(Γ′).

Proof. It follows directly as a corollary of Propositions 22
and 14. However, because of the relevance of this result, we
also give it a direct proof in what follows.

Let us suppose that Γ′ = 〈C′ 〈V ′〉bnd 〈ϕ
′〉form〉, that Γ =

〈θ(C′) 〈V〉bnd 〈ϕ〉form〉 with ϕ |=θ(ϕ′), and that γ = 〈τ(θ(C′))〉
with |=τ(ϕ). Let τ′ then be the ground vars(Γ′)-substitution
defined as follows: τ′(x′) = τ(x′) for all x′ ∈ free(Γ′) and
τ′(v′) = τ(θ(v′)) for all v′ ∈ bnd(Γ′) = V ′. It can be easily
seen now that τ′(C′) = τ(θ(C′)) and that τ′(ϕ′) = τ(θ(ϕ′)),
which imply the desired result. �

5.2. Correctness Pairs

In matching logic, configuration patterns are therefore
program state specifications, a pattern specifying all those
concrete configurations that match it. Also, as shown by
Proposition 23, pattern abstraction is specification abstrac-
tion. However, unlike in Hoare logics but like in dynamic
logic [6], the (fragment of) program itself is also part of the
pattern. Hence, we introduce the following:

Definition 24 A (partial) correctness pair is a pair of pat-
terns written Γ

V

Γ′, where Γ′ is final.
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The intuition underlying Γ

V

Γ′, captured formally by
the soundness of matching logic (Theorem 27), is: if
KernelC |= γ →∗ γ′ with γ′ normal form and γ |≡Γ, then
also γ′ |≡ Γ′, the two matchings agreeing on the free vari-
ables in Γ (and implicitly in Γ′; as seen in the sequel, the
free variables of Γ will include those of Γ′ whenever Γ

V

Γ′

is derivable). The requirement that Γ′ is final, that is that the
computation K embedded in Γ′ is either the unit computa-
tion “·” or a term of sort Int says that K is a well-formed ter-
minated computation, i.e., concrete configuration instances
of Γ′ cannot be rewritten anymore because they completed
their intended task, not because they are stuck in some “un-
expected” computation term.

We only discuss partial correctness here (i.e., we do not
require that γ must terminate). When Γ′ has an empty com-
putation (i.e., the processed code was a statement), to sim-
plify writing we use the following sugared notation, remi-
niscent to Hoare triples: 〈C〉 K 〈C′〉 is 〈〈K〉k C〉

V

〈〈·〉k C′〉.

5.3. Rules

Figure 5 shows the matching logic formal system associ-
ated to KernelC. One can systematically derive these rules
from the K executable semantics in Figure 2, because they
say the same thing but with different notations. For exam-
ple, the rule for malloc(K) in Figure 5 says: first process
K; if N is the result, then produce a “fresh” symbol P and
update the configuration like in Figure 2, but adding P as a
configuration parameter. Since if had two cases in the ex-
ecutable definition, we generate two proof obligations, one
for each case. The rule for while is somehow similar to
its Hoare logic variant (save for the possible side effect of
its condition) and can also be (informally) derived from its
executable definition in Figure 2.

The underlying ideas of the derivation of matching logic
rules from executable rules are the following:

• Derive for each language construct the most general
pre- and post-configurations on which the correspond-
ing executable rule(s) match and apply;

• Move the side conditions of the executable rules as
consequence of the embedded formula, e.g., if ψ is a
side condition of an executable rule, then, in the cor-
responding pattern in its matching logic rule, “match”
... ∧ ψ against its embedded formula;

• Add the variables appearing “fresh” in the right-hand-
side terms of executable rules as pattern parameters;

• Generating two or more matching logic rule hypothe-
ses for constructs whose executable semantics has
multiple cases.

This mechanical process will be fully automated and proved
sound elsewhere. We here only want to stress the fact that,
since matching logic works with configurations inheriting
the very same structure of the concrete configurations in the

〈C〉 K1 〈C1〉, 〈〈K2〉k C1〉

V

Γ

〈〈K1 K2〉k C〉

V

Γ

〈〈K1〉k C〉
V

〈〈I1〉k C1〉, 〈〈K2〉k C1〉

V

〈〈I2〉k C2〉

〈〈K1 opK2〉k C〉

V

〈〈I1 opInt I2〉k C2〉

〈〈K1〉k 〈ϕ〉form C〉

V

〈〈I1〉k 〈ϕ1〉form C1〉,

〈〈K2〉k 〈ϕ1∧I1,0〉form C1〉

V

Γ,

〈〈K3〉k 〈ϕ1∧I1 =0〉form C1〉

V

Γ

〈〈if(K1)K2 elseK3〉k 〈ϕ〉form C〉

V

Γ

〈〈X〉k 〈X7→I, ρ〉env C〉

V

〈〈I〉k 〈X7→I, ρ〉env C〉

〈〈K〉k C〉

V

〈〈I〉k 〈ρ〉env C′〉
〈C〉 X=K; 〈〈ρ[X←I]〉env C′〉

〈〈K〉k C〉

V

〈〈P〉k 〈P 7→I�σ〉mem C′〉
〈〈*K〉k C〉

V

〈〈I〉k 〈P 7→I�σ〉mem C′〉

〈〈K1〉k C〉

V

〈〈P〉k C1〉, 〈〈K2〉k C1〉

V

〈〈I〉k 〈P 7→I′�σ〉mem C2〉

〈C〉 *K1=K2; 〈〈P 7→I�σ〉mem C2〉

〈〈K1〉k C〉

V

〈〈I〉k 〈ϕ〉form C1〉, 〈〈ϕ∧I,0〉form C1〉 K2 〈C〉
〈C〉 while(K1) K2 〈〈ϕ∧I=0〉form C1〉

〈〈K〉k C〉

V

〈〈N〉k 〈σ〉mem 〈π〉ptr 〈ϕ〉form 〈V〉bnd C′〉
〈〈malloc(K)〉kC〉

V

〈〈P〉k〈σ�σ′〉mem〈π[P←N]〉ptr〈ϕ∧ψ〉form〈V,P〉bndC′〉

(where ψ is Dom(σ′) = P, P + N − 1)

〈〈K〉k C′〉

V

〈〈P〉k 〈σ�σ′〉mem 〈P 7→N, π〉ptr 〈ϕ ∧ ψ〉form C〉
〈〈free(K)〉k C′〉

V

〈〈·〉k 〈σ〉mem 〈π〉ptr 〈ϕ〉form C〉
(where ψ is Dom(σ′) = P, P + N − 1)

Figure 5. KernelC: Matching logic formal system
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executable K semantics, the two semantics are actually very
close to each other. The automation of this will lead to gen-
eration of language proof systems sound by construction.

In addition to language specific rules, matching logic as-
sumes the following general-purpose rules (to avoid adding
side conditions, we assume by default that all pairs of con-
figurations involved in general purpose matching logic rules
are well-formed correctness pairs):

Basic:


Γ

V

Γ

〈〈false〉form C〉

V

Γ

when Γ is final
and
free(C) ⊇ free(Γ)

Consequence:
Γ1 V Γ′1, Γ′1

V

Γ′2, Γ′2 V Γ2

Γ1

V

Γ2

Substitution:
Γ1

V

Γ2

ξ(Γ1)

V

ξ(Γ2)

{
ξ only acts on free
variables in Γ1 (and Γ2)

In the Substitution rule, ξ therefore only acts on variables
that are free in Γ1 (and Γ2); also, we assume that ξ does
not interfere with the bound variables of Γ1 and Γ2, that is,
bnd(Γ1)∪bnd(Γ2) is disjoint from the set of variables of ξ(v)
for any v ∈ free(Γ1); in particular, ξ does not capture any of
the bound variables in Γ1 and/or Γ2. Additionally, since pat-
tern variables can be α-converted so there is no relationship
between pattern variables happening to have the same name
in Γ1 and Γ2 we also assume that free(Γ1) ∩ bnd(Γ2) = ∅.

5.4. Framing

One can easily add framing rules for one’s language if
one wants to do so for certain configuration cells. In match-
ing logic, almost every cell can yield a framing rule. How-
ever, not all of these rules are desirable or necessary in
all languages, so we refrain from adding them by default.
For example, a conventional memory framing rule would
be unsound for a language defining a “safe exit” command
which exits the program only when the memory is com-
pletely deallocated. Instead, we rather encourage the devel-
opment of good proving methodologies allowing for fram-
ing by means of Substitution rule. Consider, e.g., the fol-

lowing correct matching logic proof of SUM (see page 1):

〈〈p7→p〉env 〈p ≥ 0〉form 〈·〉bnd〉

s=0;n=1;〈〈p7→p, s 7→0, n 7→1〉env 〈p ≥ 0〉form 〈·〉bnd〉

V [θ(n) = 1]
〈〈p7→p, s 7→n(n−1)/2, n 7→n〉env 〈p≥0 ∧ n≤ p+1〉form 〈n〉bnd〉

while(n!=p+1) {
〈〈p7→p, s 7→n(n−1)/2, n 7→n〉env 〈p≥0 ∧ n< p+1〉form 〈n〉bnd〉

s=s+n; n=n+1;
〈〈p7→p, s 7→n(n+1)/2, n 7→n+1〉env 〈p≥0 ∧ n< p+1〉form 〈n〉bnd〉

V [θ(n) = n + 1]
〈〈p7→p, s 7→n(n−1)/2, n 7→n〉env 〈p≥0 ∧ n≤ p+1〉form 〈n〉bnd〉

} 〈〈p7→p, s 7→n(n−1)/2, n 7→n〉env 〈p≥0 ∧ n= p+1〉form 〈n〉bnd〉

V [θ(ρ) = (p7→p, n 7→n), θ(c) = (〈p≥0 ∧ n= p+1〉form 〈n〉bnd)]
〈〈s 7→p(p+1)/2, ρ〉env 〈ρ, c〉bnd c〉

Even though we proved that s eventually holds the sum
of the first p numbers, the resulting correctness argument
is, from a modularity perspective, rather poor: it can only
be used in an environment containing only p, it cannot be
composed with programs making use of the memory, it can-
not even be sequentially composed with programs that need
anything else from the environment but s, etc. A more gen-
eral and modular way to prove this program is to derive the
following (we let it as an exercise for the interested reader):

〈〈p 7→p, ρ〉env 〈p ≥ 0 ∧ ϕ〉form 〈V〉bnd c〉
s=0; n=1; while(n!=p+1) {s=s+n; n=n+1;}
〈〈p 7→p, s 7→p(p+1)/2, n 7→p+1, ρ\s\n〉env 〈p ≥ 0 ∧ ϕ〉form 〈V〉bnd c〉

Now one can prove the above correctness pair from this by
applying a substitution (θ(ρ)= ·, θ(ϕ)= true, θ(V)= ·, θ(c)= ·)
and then an abstraction. The free variables p, ρ, ϕ, V and c
can be substituted to any corresponding terms, the last four
thus possibly matching any corresponding frames.

5.5. Configuration Equations

In matching logic, equations (defined shortly) are re-
garded as structural identities, written using the symbol ≡,
and, like in rewriting logic [11], derivations in matching
logic take place modulo equations:

Modulo-≡:
Γ1 ≡ Γ′1, Γ′1

V

Γ′2, Γ′2 ≡ Γ2

Γ1

V

Γ2

As basic configuration equations, we inherit all the struc-
tural equations defining the configurations (cell structure
equations, e.g., associativity, commutativity, etc.). Standard
equational reasoning is also assumed. Equivalences of for-
mulae embedded in configurations are regarded as equali-
ties as well, and so are equational consequences of them. In
other words, we assume the following:

Basic-≡:
t = t′

t ≡ t′ , plus full equational reasoning for ≡

16



Formula-≡:
ϕ |=ψ, ψ |=ϕ

〈ϕ〉form ≡ 〈ψ〉form

Context-≡: Cxt[t] 〈t= t′ ∧ ϕ〉form ≡ Cxt[t′] 〈t= t′ ∧ ϕ〉form

for any context Cxt

One can add one’s own equations to a matching logic formal
system; however, to preserve soundness, the custom equa-
tions must be consistent (we discuss consistency shortly).
Immediate candidates are equations making configuration
properties explicit, e.g., maps induce disjointness:

〈p 7→u�q 7→v�σ〉mem〈ϕ〉form ≡ 〈p 7→u�q 7→v�σ〉mem〈p,q∧ϕ〉form

In our prover based on rewriting logic, we do not add equa-
tions like the one above. We prefer to keep the formulae
small. Instead, we derive p,q when needed by a matching
operation on the map. However, other provers may prefer
to have all configuration constraints in one place.

However, what makes pattern equational reasoning in-
teresting is that one is allowed to extend the signature of
configurations and add one’s own pattern equational defi-
nitions. For example, one can define a heap construct list
taking a pointer and a sequence of integers, together with
the following two pattern equations:

〈list(p,α)�σ〉mem 〈p=0∧ϕ〉form ≡ 〈σ〉mem 〈p=0∧α=ε∧ϕ〉form

〈list(p,α)�σ〉mem 〈p,0∧ϕ〉form 〈V〉bnd 〈π〉ptr ≡

〈V, a, q, β, π′〉bnd 〈p 7→a�p+1 7→q�list(q, β)�σ〉mem

〈p,0 ∧ α=a.β ∧ π= p 7→2, π′ ∧ ϕ〉form 〈π〉ptr

In the second equation, a, q, β are variable names that do
not appear in the left hand side of the equation. The two
equations above, together with pattern abstraction, allow us
to identify sequences of integers as “mathematical objects”
flattened in patterns; e.g., if π = (37→2, 57→2) then:

〈37→1�47→0�57→2�67→3〉mem 〈true〉form 〈·〉bnd 〈π〉ptr ≡

〈list(0, ε)�37→1�47→0�57→2�67→3〉mem 〈true〉form 〈·〉bnd 〈π〉ptr V
〈list(q, β)�37→a�47→q�57→2�67→3〉mem〈1=a.β〉form〈a,q, β〉bnd〈π〉ptr

≡ 〈list(3, 1)�57→2�67→3〉mem 〈true〉form 〈·〉bnd 〈π〉ptr V
〈list(q, β)�57→a�67→q〉mem 〈2.1=a.β〉form 〈a, q, β〉bnd 〈π〉ptr ≡

〈list(5, 2.1)〉mem 〈true〉form 〈·〉bnd 〈π〉ptr

It is now a simple exercise, tedious but mechanical, to de-
rive correctness proofs like the one in Figure 6 (to remove
notational clutter, we did not include the frame variables
and the 〈...〉ptr cell) for list reverse, which would be very
hard to derive in Hoare logic even for simpler languages
than KernelC [15]. The hardest part is to guess the loop in-
variant, the rest of the steps are mechanical; our prover fills
them automatically. For example, here is the detailed proof

of the last abstraction step in the while body in Figure 6:

〈
〈p7→r, x7→r′, y7→r′, ρ′〉env〈list(q, β)�r 7→c�r+17→q�list(r′,γ′)〉mem

〈r,0 ∧ rev(α)=rev(γ)β ∧ γ=cγ′〉form 〈q,r, ρ′, β,γ, c, γ′〉bnd
〉

V [α-conversion δ with δ(c′) = c, δ(β′) = β]

〈
〈p7→r, x7→r′, y7→r′, ρ′〉env〈list(q, β′)�r 7→c′�r+17→q�list(r′,γ′)〉mem

〈r,0∧rev(α)=rev(γ)β∧γ=cγ′∧cβ=c′β′〉form〈q,r, ρ′, β,γ, c,γ′, c′, β′〉bnd
〉

≡ 〈
〈p7→r, x7→r′, y7→r′, ρ′〉env〈list(r, cβ)�list(r′,γ′)〉mem

〈r,0∧rev(α)=rev(γ)β∧γ=cγ′〉form〈r, ρ′, β,γ, c,γ′〉bnd
〉

V [θ(q) = r, θ(r) = r′, θ(ρ) = (y 7→r′, ρ′), θ(β) = cβ, θ(γ) = γ′]

〈
〈p7→q, x7→r, ρ〉env〈list(q, β)�list(r,γ)〉mem

〈rev(α)=rev(γ)β〉form〈q,r, ρ, β,γ〉bnd
〉

In the last abstraction, θ(rev(α)=rev(γ)β) is indeed implied
by rev(α)=rev(γ)β∧γ=cγ′ because rev(cγ′) = rev(γ′)c.

One can also derive the following (programs on page 1):

〈〈ALLOCATE〉k 〈·〉env 〈·〉mem 〈·〉ptr 〈·〉bnd 〈true〉form〉

V

〈
〈·〉k〈p 7→p, ρ〉env〈list(p, 4.3.2.1.0)〉mem

〈π〉ptr〈p, ρ, π〉bnd〈true〉form
〉

〈
〈DEALLOCATE〉k 〈p 7→p, q 7→q〉env 〈list(p, α)�σ〉mem

〈π〉ptr 〈·〉bnd 〈true〉form
〉

V

〈〈·〉k 〈p 7→0, q 7→0〉env 〈σ〉mem 〈π〉ptr 〈π〉bnd 〈true〉form〉

In experiments with our matching logic prover (see Ap-
pendix 7), we defined several other constructs besides list,
including trees, queues, stacks, graphs, as well as paramet-
ric variants of them, e.g., stacks of trees, etc., and used them
to verify several non-trivial programs, including the Schorr-
Waite algorithm; details about all these will appear else-
where.

Before we discuss consistency of pattern equations and
soundness of matching logic in detail, we introduce a pre-
liminary notion of well-formedness of pattern equations:

Definition 25 A pattern equational specification is well-
formed whenever the following hold:

1. If Γ ≡ Γ′ then free(Γ) = free(Γ′);
2. Each ≡-equation refers only to non-computational

items of the pattern, that is, they do not contain any
computation cell subterms.

Well-formedness of pattern equational specification is a
simple to check syntactic criterion: each equation must have
the same free variables in both its terms, and non or the
two terms should contain any 〈...〉k cell as a subterm. This
well-formedness criterion may not be the most relaxed one,
but, however, all the pattern equations we were interested
in so far verified these conditions, so we have no practical
motivation for a more relaxed notion.
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〈〈p7→p〉env 〈list(p, α)〉mem 〈true〉form 〈p〉bnd〉

if (p != null) {〈〈p7→p〉env 〈list(p, α)〉mem 〈p,0〉form 〈p〉bnd〉

〈〈p7→p〉env〈p 7→a�p+17→p′�list(p′, α′)〉mem〈p,0∧α=aα′〉form〈p, a,p′,α′〉bnd〉

x=*(p+1);
〈〈p7→p,x7→p′〉env〈p 7→a�p+17→p′�list(p′,α′)〉mem〈p,0∧α=aα′〉form〈p,a,p′,α′〉bnd〉

*(p+1)=null;
〈〈p7→p,x7→p′〉env〈p 7→a�p+17→0�list(p′,α′)〉mem〈p,0∧α=aα′〉form〈p,a,p′,α′〉bnd〉

V [θ(q) = p, θ(r) = p′, θ(ρ) = ·, θ(β) = a, θ(γ) = α′]
〈〈p7→q,x7→r, ρ〉env〈list(q, β)�list(r,γ)〉mem〈rev(α)=rev(γ)β〉form〈q,r, ρ, β,γ〉bnd〉

while (x != null) {
〈〈p7→q,x7→r,ρ〉env〈list(q,β)�list(r,γ)〉mem〈r,0∧rev(α)=rev(γ)β〉form〈q,r,ρ,β,γ〉bnd〉

〈
〈p7→q,x7→r, ρ〉env〈list(q, β)�r 7→c�r+17→r′�list(r′,γ′)〉mem
〈r,0 ∧ rev(α)=rev(γ)β ∧ γ=cγ′〉form 〈q,r, ρ, β,γ, c, γ′〉bnd

〉

y=*(x+1); *(x+1)=p;

〈
〈p7→q,x7→r,y7→r′, ρ′〉env〈list(q, β)�r 7→c�r+17→q�list(r′,γ′)〉mem
〈r,0 ∧ rev(α)=rev(γ)β ∧ γ=cγ′〉form 〈q,r, ρ′, β,γ, c, γ′〉bnd

〉

p=x; x=y;

〈
〈p7→r,x7→r′,y7→r′, ρ′〉env〈list(q, β)�r 7→c�r+17→q�list(r′,γ′)〉mem
〈r,0 ∧ rev(α)=rev(γ)β ∧ γ=cγ′〉form 〈q,r, ρ′, β,γ, c, γ′〉bnd

〉

V [θ(q) = r, θ(r) = r′, θ(ρ) = (y 7→r′, ρ′), θ(β) = cβ, θ(γ) = γ′]
〈〈p7→q,x7→r, ρ〉env〈list(q, β)�list(r,γ)〉mem〈rev(α)=rev(γ)β〉form〈q,r, ρ, β,γ〉bnd〉

}
〈〈p7→q,x7→r,ρ〉env〈list(q,β)�list(r,γ)〉mem〈r=0∧rev(α)=rev(γ)β〉form〈q,r,ρ,β,γ〉bnd〉

〈〈p7→q,x7→r,ρ〉env〈list(q,β)〉mem〈r =0∧γ=ε∧rev(α)=rev(γ)β〉form 〈q,r,ρ,β,γ〉bnd〉

V [θ(p) = q, θ(ρ) = (x7→r, ρ)]
〈〈p7→p, ρ〉env〈list(p, rev(α))〉mem 〈true〉form 〈p, ρ〉bnd〉

} else {〈〈p7→p〉env 〈list(p, α)〉mem 〈p=0〉form 〈p〉bnd〉

〈〈p7→p〉env 〈·〉mem 〈p=0∧α=ε〉form 〈p〉bnd〉

V 〈〈p7→p, ρ〉env〈list(p, rev(α))〉mem 〈true〉form 〈p, ρ〉bnd〉

} 〈〈p7→p, ρ〉env〈list(p, rev(α))〉mem 〈true〉form 〈p, ρ〉bnd〉

Figure 6. Matching logic proof of list reverse

5.6. Consistency and Soundness

Therefore, there are three types of pattern equations: (1)
ones implicit in the definition of configurations (bags, maps,
etc.); (2) ones defining configuration constructs useful for
proving (lists, trees, graphs, etc.); and (3) ones defining
mathematical objects, such as actual sequences with equa-
tionally defined operators such as rev with rev(ε) = ε and
rev(aα) = rev(α)a, trees, graphs, etc. All these may yield
inconsistent pattern equational specifications.

Definition 26 A pattern specification is consistent iff it is
well-formed and the following hold (γ, γ′ configurations):

1. It is not the case that γ̂ (≡∪V)∗ 〈〈false〉form 〉.
2. If γ̂ (≡∪V)∗ γ̂′ then γ = γ′;

The conditions above say that one cannot use the ≡ equa-
tions and abstraction to generate an infeasible specification
or to collapse otherwise distinct configuration concrete data.
Proving consistency is an interesting but non-trivial subject,
which we do not investigate here. It is the most general se-
mantic hypothesis that we were able to find in order to prove
the soundness of matching logic:

Theorem 27 (Soundness of matching logic) Assume a
consistent pattern specification for KernelC and suppose

that γ̂

V

γ̂′ is derivable, where γ and γ′ are two (concrete)
configurations. Then γ is memory safe and, if γ termi-
nates then γ′ is the only normal form configuration such
that KernelC |= γ →∗ γ′.

Proof. Since one typically derives correctness pairs whose
patterns are not concrete, one may need to apply a Substitu-
tion step to make the desired correctness pair fit the hypoth-
esis of Theorem 27. We stated this theorem in terms of con-
crete patterns instead of arbitrary patterns just for simplic-
ity, to avoid formalizing the elimination of the additional
configuration constructs, which are useful for proofs but are
not part of concrete configurations. To prove this soundness
result, however, we cannot avoid that elimination step and
thus prove a more general result (lemma below). Before we
do that, note that it is a simple inductive exercise to show
that if Γ

V
Γ′ is derivable then free(Γ) ⊇ free(Γ′).

Lemma 28 Under the same consistency hypoth-
esis of Theorem 27, suppose that correctness pair
Γ

V

Γ′ is derivable, with Γ and Γ′ not necessarily
concrete patterns, and that τ is a ground substitu-
tion of all free variables in Γ (and Γ′).

If γ̂ (≡ ∪V)∗ τ(Γ) for some concrete configura-
tion γ then γ is memory safe and, if γ terminates
then there is a unique normal form configuration
γ′ with KernelC |= γ →∗ γ′, and this unique γ′

has the property that γ̂′ (≡∪V)∗ τ(Γ′).

Let us first note that this result is indeed more general
than the one stated in the theorem. Indeed, suppose that
γ̂

V

γ̂′ is derivable, where γ and γ′ are two configurations
and take Γ = γ̂, Γ′ = γ̂′ and τ the empty substitution in
Lemma 28. Since τ(Γ) = Γ = γ̂ and τ(Γ′) = Γ′ = γ̂′,
Lemma 28 implies that γ is memory safe and, if it termi-
nates then it has a unique normal form γ′′, and that unique
γ′′ has the property that that γ̂′′ (≡ ∪ V)∗ γ̂′. Then the
pattern specification consistency hypothesis (Definition 26)
implies that γ′ = γ′′, so Theorem 27 holds.

Let us now prove Lemma 28. The proof proceeds by
structural induction on the derivation tree of Γ

V

Γ′. We
first prove the soundness of the general purpose rules:

Basic: For the basic matching logic derivation rule Γ

V

Γ

with Γ a final pattern, let τ be a ground substitution and let
γ be a concrete configuration such that γ̂ (≡ ∪ V)∗ τ(Γ).
Since Γ is final, that is its computation is well-terminated,
the computation of τ(Γ) is also well-terminated; moreover,
since consistency implies that the computation structure is
not altered by user-defined ≡-equations, it follows that the
computation of γ is also well-terminated, which means by
Definition 1 that γ is a final configuration of KernelC; in
particular, it is both memory safe and terminating, and it is
its own unique normal form (i.e., γ′ = γ in Lemma 28).
Then the result follows in a straightforward way.
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The soundness of the basic derivation rule
〈〈false〉form C〉

V

Γ follows by default from the consistency
hypothesis, because there is no concrete configuration γ
such that γ̂ (≡∪V)∗ τ(〈〈false〉form C〉) = 〈〈false〉form τ(C)〉.

Consequence:
Γ1 V Γ′1, Γ′1

V

Γ′2, Γ′2 V Γ2

Γ1

V

Γ2

Suppose that Γ′1

V

Γ′2 satisfies the property in Lemma 28
and let us show that so does Γ1

V

Γ2. Let τ be a ground
free(Γ1)-substitution and γ a configuration such that γ̂ (≡
∪ V)∗ τ(Γ1). Let τ′ be the ground free(Γ′1)-substitution
with τ′(x′) = τ(x′) for each x′ ∈ free(Γ′1), and note that
τ(Γ′1) = τ′(Γ′1) and τ′(Γ2) = τ(Γ2). By Proposition 18 it fol-
lows that τ(Γ1) V τ(Γ′1). Therefore, γ̂ (≡∪V)∗ τ′(Γ′1). By
the induction hypothesis we first conclude that γ is mem-
ory safe. Also, if γ terminates then there is a unique normal
form γ′ with KernelC |= γ →∗ γ′; moreover, this unique γ′

has the property that γ̂′ (≡∪V)∗ τ′(Γ′2). By Proposition 18
again it follows that τ′(Γ′2) V τ′(Γ2). Since τ′(Γ2) = τ(Γ2),
we conclude that γ̂′ (≡∪V)∗ τ(Γ2).

Substitution:
Γ1

V

Γ2

ξ(Γ1)

V

ξ(Γ2)

{
ξ only acts on free
variables in Γ1 (and Γ2)

Suppose that Γ1

V

Γ2 satisfies the property in Lemma 28 and
let us show that so does ξ(Γ1)

V

ξ(Γ2), where ξ is a free(Γ1)-
substitution satisfying all the requirements of the Substitu-
tion rule. Let τ be a ground free(ξ(Γ1))-substitution and γ a
configuration such that γ̂ (≡∪V)∗ τ(ξ(Γ1)). Let us consider
the free(Γ1)-substitution τ ◦ ξ. One immediate observation
is that τ(ξ(Γ1)) = (τ ◦ ξ)(Γ1) and τ(ξ(Γ2)) = (τ ◦ ξ)(Γ2).
Therefore, γ̂ (≡∪V)∗ (τ ◦ ξ)(Γ1). By the induction hypoth-
esis we obtain fist that γ is memory safe, and second that if
γ terminates then it has a unique normal form, say γ′, and
γ̂′ (≡ ∪ V)∗ (τ ◦ ξ)(Γ2). Since τ(ξ(Γ2)) = (τ ◦ ξ)(Γ2), we
therefore conclude that γ̂′ (≡∪V)∗ τ(ξ(Γ2)).

Modulo-≡:
Γ1 ≡ Γ′1, Γ′1

V

Γ′2, Γ′2 ≡ Γ2

Γ1

V

Γ2

Suppose that Γ′1

V

Γ′2 satisfies the property in Lemma 28
and let us show that so does Γ1

V

Γ2. Let τ be a ground
free(Γ1)-substitution and γ a configuration such that γ̂ (≡
∪ V)∗ τ(Γ1). Since free(Γ1) = free(Γ2) and ≡ is closed
under equational reasoning, it follows that τ(Γ1) ≡ τ(Γ′1).
Therefore, γ̂ (≡ ∪V)∗ τ(Γ′1). By the induction hypothesis
we first conclude that γ is memory safe. Also, if γ ter-
minates then there is a unique normal form γ′ of γ, and
γ̂′ (≡ ∪V)∗ τ(Γ′2). By the same reasons as above we have
τ(Γ2) ≡ τ(Γ′2). Therefore, γ̂′ (≡∪V)∗ τ(Γ2).

We are done with the soundness of the general purpose
matching logic rules. We next prove the soundness of each
of the KernelC language specific rules in Figure 5, recall-
ing them but using exclusively the

V

notation for correctness
pairs, i.e., desugaring the Hoare-like notation in some of the
rules in Figure 5. The remaining proofs are very similar to

each other, following the same structure: first pick some
configuration γ matching the left pattern in the correctness
pair which is the conclusion of the matching logic rule.
Since computations are not modified by the user defined ≡
equalities, it follows that γ has the same language construct
in its computation as the matched pattern. Then, accord-
ing to the evaluation strategy of the language construct un-
der consideration, a number of configurations are obtained
from γ, by rewriting parts of it using the rewrite logic se-
mantics of KernelC, corresponding to the sub-expressions
or sub-statements that need to be evaluated first. Then each
of those is shown to match the left patterns in the correct-
ness pairs in the hypothesis of the matching logic rule. By
using the induction hypothesis then we conclude that all
those computations are memory safe and, if they terminate,
their normal forms match the right hand patterns. Then one
can infer that γ is memory safe and, if it terminates, its
unique normal form can be obtained by combining the nor-
mal forms of the other configurations. The fact that each of
the intermediate configurations matches its right hand pat-
tern implies that the combined normal form of γ also satis-
fies its right pattern.

〈〈K1〉k C〉

V

〈〈·〉k C1〉, 〈〈K2〉k C1〉

V

Γ

〈〈K1 K2〉k C〉

V

Γ

Suppose that the two correctness pairs above the line sat-
isfy the property in Lemma 28 and let us show that the
one below the line also satisfies it. Let τ be a ground
free(〈〈K1 K2〉k C〉)-substitution and γ a configuration such
that γ̂ (≡∪V)∗ τ(〈〈K1 K2〉k C〉), that is, such that γ̂ (≡∪V
)∗ 〈〈τ(K1) τ(K2)〉k τ(C)〉. Since applications of ≡ do not
modify the computation structure, it follows that γ must
be a configuration of the form 〈〈τ(K1) τ(K2)〉k C0〉. Let
γ1 be the configuration 〈〈τ(K1)〉k C0〉. Again, since ap-
plications of ≡ do not modify the computation structure,
we can easily see that K2 plays no role in showing that
γ̂ (≡ ∪V)∗ 〈〈τ(K1) τ(K2)〉k τ(C)〉. Therefore, we can infer
that γ̂1 (≡ ∪ V)∗ 〈〈τ(K1)〉k τ(C)〉, that is, that γ̂1 (≡ ∪ V
)∗ τ(〈〈K1〉k C〉). By the induction hypothesis it first follows
that γ1 is memory safe, and second that if γ1 terminates then
it has a unique normal form γ′1 and γ̂′1 (≡∪V)∗ τ(〈〈·〉k C1〉),
that is, γ̂′1 (≡∪V)∗ 〈〈·〉k τ(C1)〉. By similar arguments to the
above, γ′1 must have the form 〈〈·〉k C′0〉. Let γ2 be the con-
figuration 〈〈τ(K2)〉k C′0〉. By similar arguments, it follows
that γ̂2 (≡ ∪ V)∗ 〈〈τ(K2)〉k τ(C1)〉, that is, that γ̂2 (≡ ∪ V
)∗ τ(〈〈K2〉k C1〉). By the induction hypothesis it first follows
that γ2 is memory safe, and second that if γ2 terminates then
it has a unique normal form γ′2 and γ̂′2 (≡∪V)∗ τ(Γ).

Since the rewrite rules in the rewrite logic semantics of
KernelC only match and modify the computation structure
at its top, there is only one way to rewrite γ in KernelC: first
rewrite it the same way as γ1 is rewritten, keeping the τ(K2)
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untouched at the bottom of the intermediate computations.
If γ1 does not terminate then γ does not terminate either
and the latter is also memory safe, just like γ1 is. If γ1 ter-
minates, then γ rewrites to γ2 after processing all the steps
corresponding to rewriting γ1. From here on, the rewriting
process is identical to γ2’s, so we conclude that γ is indeed
memory safe. If γ2 terminates, then γ terminates as well
and, obviously, with the same normal form, γ′2, which has
the desired property that γ̂′2 (≡∪V)∗ τ(Γ).

〈〈K1〉k C〉

V

〈〈I1〉k C1〉, 〈〈K2〉k C1〉

V

〈〈I2〉k C2〉

〈〈K1 opK2〉k C〉

V

〈〈I1 opInt I2〉k C2〉

The soundness proof of this rule is very similar to that of
the rule above. Pick γ, γ1 and γ2 in the same manner as
above. According to the structural equations of op in the
rewriting logic semantics of KernelC, γ1 is rewritten first
(in a slightly and non-intrusively modified way, suffixing its
computation with a frozen term), then γ2, then the compu-
tations of their normal forms are summed. Since γ1 and
γ2 match the left hand patterns in the rule hypothesis, they
are memory safe and their normal forms, if they terminate,
are I1 and I2, respectively. Thus we conclude that γ is also
memory safe and its unique normal form, if it terminate,
matches the right hand pattern in the conclusion of the rule.

〈〈K1〉k 〈ϕ〉form C〉

V

〈〈I1〉k 〈ϕ1〉form C1〉,
〈〈K2〉k 〈ϕ1∧I1,0〉form C1〉

V

Γ,
〈〈K3〉k 〈ϕ1∧I1 =0〉form C1〉

V

Γ

〈〈if(K1)K2 elseK3〉k 〈ϕ〉form C〉

V

Γ

Let γ match the left hand pattern in the conclusion of
the rule above, that is, there is some ground substitution τ
such that γ̂ (≡ ∪ V)∗ τ(〈〈if(K1)K2 elseK3〉k 〈ϕ〉form C〉).
Let γ1 be the configuration replacing the computation of γ
by K1. Then γ1 matches the left hand pattern in the first
correctness pair in the hypothesis of the rule, so γ1 is mem-
ory safe. If γ1 does not terminate, then γ will not terminate
either, and so γ is also memory safe. Suppose that γ1 ter-
minates and let γ′1 be its normal form. The computation of
γ′1 is either 0 or an integer number different from 0, the two
cases being similar to analyze. Suppose it is different from
0 and let γ2 be the configuration replacing the computation
of γ′ with K2. Since γ′1 matches the right pattern of the first
hypothesis configuration pair, it follows that I1 , 0, so γ2
matches the left hand pattern of the second hypothesis cor-
rectness pair. So γ2 and γ are memory safe. If γ2 terminates
then so does γ and they have the same normal form.

〈〈X〉k 〈X7→I, ρ〉env C〉

V

〈〈I〉k 〈X7→I, ρ〉env C〉

Straightforward, because this matching logic rule is identi-

cal to its corresponding rewriting logic rule in Figure 2.

〈〈K〉k C〉

V

〈〈I〉k 〈ρ〉env C′〉
〈〈X=K;〉k C〉

V

〈〈·〉k 〈ρ[X←I]〉env C′〉

As before, let γ match 〈〈X=K;〉k C〉 and let γ1 change the
computation cell 〈X=K;〉k by 〈K〉k in γ. Then γ1 matches
the pattern 〈〈K〉k C〉, so the induction hypothesis says that
γ1 is memory safe and, if it terminates, then its unique nor-
mal form γ′1 matches 〈〈I〉k 〈ρ〉env C′〉. Since the rewriting of
γ in KernelC first processes K exactly as γ1 does, if γ1 does
not terminate then γ does not terminate but is memory safe.
If γ1 terminates, then the only reduction left to terminate
γ’s rewriting is to assign the value I in the computation of
γ′1 to X. The resulting unique normal form of γ, say γ′, then
matches the pattern 〈〈·〉k 〈ρ[X←I]〉env C′〉.

〈〈K〉k C〉

V

〈〈P〉k 〈P 7→I�σ〉mem C′〉
〈〈*K〉k C〉

V

〈〈I〉k 〈P 7→I�σ〉mem C′〉

Let γ match 〈〈*K〉k C〉 and let γ1 replace 〈*K〉k by 〈K〉k in
γ. Then γ1 matches 〈〈K〉k C〉 and, by the induction hypoth-
esis, γ1 is memory safe and if it terminates then its unique
normal form matches 〈〈P〉k 〈P 7→I�σ〉mem C′〉. If γ1 does
not terminate then γ does not terminate either but it is mem-
ory safe. If γ1 terminates then let γ′1 be its unique normal
form. Since the rewriting of γ first processes K the same
way γ1 does, once K is processed in γ the resulting con-
figuration is of the form 〈〈Py *�〉k〈P 7→I�σ〉mem C′〉 =

〈〈*P〉k〈P 7→I�σ〉mem C′〉. This configuration matches the
lhs of the rewrite rule corresponding to pointer lookup
in Figure 2, so it is rewritten to a configuration of the
form 〈〈I〉k 〈P 7→I�σ〉mem C′〉, which is now a normal form.
Therefore, γ is also memory safe when γ1 terminates, and
its unique normal form satisfies the desired pattern.

〈〈K1〉k C〉

V

〈〈P〉k C1〉,
〈〈K2〉k C1〉

V

〈〈I〉k 〈P 7→I′�σ〉mem C2〉

〈〈*K1=K2;〉k C〉

V

〈〈·〉k 〈P 7→I�σ〉mem C2〉

The soundness of the rule for pointer assignment above is
similar to the ones for pointer lookup and normal assign-
ment above, so we do not discuss it in detail.

〈〈K1〉k C〉

V

〈〈I〉k 〈ϕ〉form C1〉,
〈〈K2〉k 〈ϕ∧I,0〉form C1〉

V

〈〈·〉k C〉
〈〈while(K1)K2〉k C〉

V

〈〈·〉k 〈ϕ∧I=0〉form C1〉

Let γ match 〈〈while(K1)K2〉k C〉 and let γ1 replace the
computation cell 〈while(K1)K2〉k in γ by 〈K1〉k. Then γ1
matches 〈〈K1〉k C〉, so it is memory safe and, if it terminates,
then its normal form γ′1 matches 〈〈I〉k 〈ϕ〉form C1〉. If γ1 does
not terminate then γ does not terminate either, but γ is mem-
ory safe. Suppose that γ1 terminates. If I = 0 then, in the
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reduction of γ, the conditional in the semantics of while in
Figure 2 takes the exit branch after processing K1 and thus
the normal form γ′ of γ is γ′1 with emptied computation,
that is, with 〈·〉k instead of 〈I〉k. Then γ′ matches the pattern
〈〈·〉k 〈ϕ∧I=0〉form C1〉 and we are done with the case I = 0.
If I , 0 then let γ2 change the computation cell 〈I〉k in γ′1 by
〈K2〉k. Then γ2 matches the pattern 〈〈K2〉k 〈ϕ∧I,0〉form C1〉,
so by the induction hypothesis γ2 is memory safe and, if it
terminates, its normal form γ′2 matches the pattern 〈〈·〉k C〉.
If γ2 does not terminate then γ does not terminate either, but
it is memory safe. Suppose that γ2 terminates. Combining
the rewrites of γ1 and γ2 and their unique normal forms sat-
isfying the above-mentioned properties, we deduce that γ
rewrites to a configuration δ which also matches the invari-
ant pattern 〈〈while(K1)K2〉k C〉.

Iterating this process we get a finite or infinite sequence
γ = δ0, δ1, ..., such that for any n ≥ 0 in the sequence
the following holds: γ rewrites to δn and (a) δn does not
terminate but is memory safe, or (b) δn is memory safe
and terminates in a configuration satisfying the pattern
〈〈·〉k 〈ϕ∧I=0〉form C1〉, or (c) δn rewrites to the next config-
uration in the sequence, δn+1, in a unique way. From this,
we conclude that if γ has a normal form γ′, then γ′ indeed
matches the pattern 〈〈·〉k 〈ϕ∧I=0〉form C1〉.

〈〈K〉k C〉

V

〈〈N〉k 〈σ〉mem 〈π〉ptr 〈ϕ〉form 〈V〉bnd C′〉
〈〈malloc(K)〉k C〉

V

〈〈P〉k 〈σ�σ′〉mem 〈π[P← N]〉ptr 〈ϕ ∧ ψ〉form 〈V, P〉bnd C′〉
(where ψ is Dom(σ′) = P, P + N − 1)

Let γ match the pattern 〈〈malloc(K)〉k C〉 and let γ1 be the
configuration replacing the computation of γ by K. Since γ1
matches 〈〈K〉k C〉, by the induction hypothesis γ1 is mem-
ory safe and, if it terminates, its normal form γ′1 matches
〈〈N〉k 〈σ〉mem 〈π〉ptr 〈ϕ〉form 〈V〉bnd C′〉. If γ1 does not termi-
nate we are done. If γ1 terminates, then γ rewrites to a term
of the form 〈〈P〉k 〈σ�σ′〉mem 〈π[P← N]〉ptr C′〉 for some
concrete P ∈ Nat and map σ′ with Dom(σ′) = P, P + N − 1,
which therefore matches the desired pattern. Note that,
since P is added as a bound variable in the desired pattern,
it can match any concrete natural number; also, no new free
variables are added to the pattern.

〈〈K〉k C′〉

V

〈〈P〉k 〈σ�σ′〉mem 〈P 7→N, π〉ptr 〈ϕ ∧ ψ〉form C〉
〈〈free(K)〉k C′〉

V

〈〈·〉k 〈σ〉mem 〈π〉ptr 〈ϕ〉form C〉
(where ψ is Dom(σ′) = P, P + N − 1)

Let γ match the pattern 〈〈free(K)〉k C′〉 and let γ1 be the
configuration replacing the computation of γ by K. Since γ1
matches 〈〈K〉k C′〉, by the induction hypothesis γ1 is mem-
ory safe and, if it terminates, its normal form γ′1 matches
〈〈P〉k 〈σ�σ′〉mem 〈P 7→N, π〉ptr 〈ϕ ∧ ψ〉form C〉. If γ1 does
not terminate we are done. If γ1 terminates, then γ also

has a unique well-terminated normal form which matches
the pattern 〈〈·〉k 〈σ〉mem 〈π〉ptr 〈ϕ〉form C〉. �

5.7 Discussion

Matching logic, unlike Hoare logics, does not encode the
entire program state in a formula. The rationale is that by
keeping the configuration structure unaltered, one can more
easily relate it to the actual program state and identify, by
means of pattern matching, mathematical objects to reason
about. However, for languages with simple configurations
containing only an environment, for which Hoare logic was
initially introduced [7], one can show that the Hoare and
the matching logic formal systems are ultimately equiva-
lent, that is, each can prove its rules from the other’s.

Both separation logic [15, 8] and matching logic build
upon the observation that program verification based on
Hoare logic with FOL formulae frequently leads to com-
plex and artificial encodings and proofs, particularly in the
context of a heap. Separation logic considers the heap as the
problem and extends FOL by assuming the heap at the core
of its models; by introducing specialized logical connec-
tives, like separating conjunction, it allows to state proper-
ties that hold in separate portions of the heap. The program
state is still encoded as a formula like in Hoare logic, but us-
ing a more powerful logic. In matching logic, the heap plays
no special role, being an algebraic data-type like the rest of
the configuration. Since the heap is a map data-type, which
is a set (of pairs), which is an associative (A) and commu-
tative (C) binary operation, matching modulo AC subsumes
heap separation: by definition, if a heap h matches a pattern
σ1�σ2 then it can be split in two disjoint sub-heaps h1 and
h2 such that h1 matches σ1 and h2 matches σ2.

The above being said, matching logic’s aim is neither to
subsume nor to extend Hoare or separation logics. Its ma-
jor aim is to provide a formal reasoning framework built
upon the now well-understood and efficiently implemented
operation of matching. By abstracting program states into
configuration patterns expressed using the same formalism
as the actual concrete configurations instead of logical for-
mulae, matching logic is more executable in nature than the
other logics, which comes with two important benefits: first,
soundness results like Theorem 27 follow relatively easily;
second and more importantly, as shown in Section 6, one
can derive also relatively easily sound matching logic pro-
gram verifiers directly from the executable semantics.

Techniques for soundly defining configuration constructs
(like lists, trees, graphs, etc.) need to be developed. We
hope that separation logic [15, 8] or shape analysis [18]
predicate definitions may be adapted to our framework.

It is worth mentioning that configuration patterns have,
in some sense, everything they need to be organized as a
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logic. Indeed, a pattern can be regarded as a kind of formula
quantified existentially over its bound variables, with con-
crete configurations as models and with abstraction V as
special implication connective. Then matching would be-
come a decision procedure in such a setting, and explicit
existential pattern variable Skolemization steps would be
needed. However, without a practical need for more con-
nectives and nesting for patterns with formulae, we think
that organizing patterns in a logic is, at this moment, no
more than a theoretical exercise.

6 Matching Logic Verification in K

Section 5 showed that a matching logic formal system
for a language can be relatively automatically derived from
a K definition of the language. That formal system can be
used to prove properties about programs in many different
ways, with a slight preference for a “forwards” approach,
that is, one in which programs are processed in the order
of their execution. We think that the forwards approach is
not enforced and that one can develop weakest-precondition
proving techniques based on matching logic, but we do not
do it here. Here we show how one can derive a “forwards”
matching logic program verifier based on the original K def-
inition of the language. The program verifier is systemat-
ically derived, to such an extent that we believe that this
process can actually be automated, same as the derivation
of matching logic formal systems from K definitions. Un-
like the matching logic formal system, the derived program
verifier imposes a particular way to search for the matching
logic proof, namely “forwards”. Like in matching logic, the
verifier will also work with configuration patterns. Like the
K semantics of the language, the derived program verifier
is also a formal K executable definition, but the purpose of
its execution is to verify programs rather than execute them.
The verifier will rewrite (configuration) patterns instead of
(concrete) configurations. At branching points, e.g. if, it
generates two rewrite tasks, one for each branch. To keep
track of all the proof tasks, a top level bag structure is added,
containing a soup of proof tasks.

Here are the steps necessary to transform a K language
semantic definition in a matching logic program verifier for
the defined language:

(1) Additional infrastructure. Since the verifier works with
patterns like in matching logic, we first need to extend the
syntax of configurations to patterns, like in matching logic.
As expected, due to unavoidable undecidability aspects of
program verification (even for memory safety: Proposition
5), the user needs to intervene in the verification process
(e.g., by providing loop invariants). We provide one generic
means for program annotations: pattern assertions. A pat-
tern assertion is a pattern that one is free to state at any place
in the computation corresponding to a program, including in

the middle of an expression. Since the computation is im-
plicit, to avoid clutter in pattern assertions we only mention
the other cells of the pattern. The meaning of a pattern as-
sertion is the expected one: when the program reaches that
point during its execution, its configuration must match the
asserted pattern. The simplest infrastructure needed to al-
low such pattern assertions is to simply extend the syntax of
computations as follows:

K F ... | Bag· [CfgItem]

In tools based on this verification approach one may want
to prefix such pattern assertions with special keywords such
as assert, or invariant, etc.

Another piece of infrastructure, useful to hold all the
“proof tasks” in one place, is the following:

TopF 〈Bag· [Cfg]〉>

Initially, the top bag will contain only one proof task, the
original annotated program, but as shortly seen more proof
tasks can be generated during a verification session.

(2) Assertion checking and cleanup. The verification pro-
cess is going to proceed as follows: one starts with one
“assumed” pattern in the top soup, which is regarded as a
proof task. Then the rewriting engine “picks” a task from
the soup and advances it one step, following mostly the ex-
isting rewrite semantics of each language construct as de-
fined in K, with a few changes for some of the constructs,
as shortly seen. When a pattern assertion is encountered,
one has to prove that is can be matched by the current pat-
tern. Therefore, we add the following rule:

〈〈CyK〉k C′〉 → 〈〈K〉k C〉
when 〈〈K〉k C′〉 (≡ ∪V)∗〈〈K〉k C〉

In other words, a particular proof task gets stuck on a pat-
tern assertion is that cannot be shown to abstract the current
pattern. For simplicity, in case of success we here choose to
replace the current pattern by the abstract one; one can also
keep the current pattern, as we do in our current prototype,
because that contains more information than the abstract
one. However, in that case one needs a special treatment
for loop invariants, which we intend to discuss elsewhere.

The new rewrite system, as shortly seen, may yield more
tasks in the soup. To clean them up, we add the following:

〈〈·〉k C〉 → ·

〈〈false〉form C〉 → ·

The first rule above discards the completed tasks, and the
second discards the infeasible ones. Completed tasks result
when computations are completely processed, and infeasi-
ble ones when the original assumptions make some of the
branches generated for proving infeasible.

(3) Make rules symbolic. One advantage of using rewrit-
ing in general and K in particular as a semantic language
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definitional framework is that rewrite rules make no differ-
ence between concrete and symbolic values, they all being
terms. For example, the term 7 +Int 3 rewrites to 10, while
the term 7 +Int x +Int 3 rewrites to 10 +Int x using the same
rewriting machinery. This advantage makes it very conve-
nient to build matching logic provers on top of K semantics
because one needs not change most of the already existing
semantics rules. Some changes, however, are needed. One
needs to change all the rules which were conditional in the
original K definition, because their conditions must now be
“proved” using the pattern internal formula instead of just
“checked” as in the original K definition. Also, language
constructs which originally were defined by cases, like if,
need now to generate one proof task for each of its cases.
For example, here is the new rule for if, which replaces the
two rules in the K definition in Figure 2:

〈〈(if (I)K2 elseK3)yK〉k 〈ϕ〉form C〉
→ 〈〈K2yK〉k〈ϕ∧I,0〉form C〉
〈〈K3yK〉k〈ϕ∧I=0〉form C〉

Let us now consider the while loop. Recall that its orig-
inal K semantics was the following:

while(K1)K2
→ if(K1){K2;while(K1)K2}

Following a similar reasoning to what we used to (for the
time being informally) derive the matching rule for while,
we can derive the following symbolic rule:

〈〈(while(K1)K2)yK〉k C〉
→ 〈〈if(K1){K2yC} elseK〉k C〉

This rule elegantly captures the two cases of the semantics
of while: (a) the pattern at the beginning of the loop, say
the “invariant”, must also hold at the end of the loop body
when the condition holds, and (2) the pattern is refined with
the false condition for the remaining computation.

There are two more rules that special treatment because
they have side conditions, the ones for memory allocation
and deallocation. They are both rewrite variants of their
corresponding matching logic rules:

〈malloc(N);y K〉k 〈σ〉mem 〈π〉ptr 〈ϕ〉form 〈V〉bnd

→ 〈PyK〉k 〈σ�σ′〉mem 〈π[P←N]〉ptr 〈ϕ ∧ ψ〉form 〈V, P〉bnd

(where ψ is Dom(σ′) = P, P + N − 1)

〈free(P);y K〉k 〈σ�σ′〉mem 〈P 7→ N, π〉ptr 〈ϕ ∧ ψ〉form

→ 〈K〉k 〈σ〉mem 〈π〉ptr 〈ϕ〉form

(where ψ is Dom(σ′) = P, P + N − 1)

Figure 7 shows all the above steps necessary to derive
a matching logic program verifier from the K definition of
KernelC, as well as a rewriting sequence using it.

Theorem 29 (Soundness and completeness of K verifier
w.r.t. matching logic) The following hold, where for an an-
notated computation K′ like in Figure 7, K′◦ is the compu-
tation obtained by removing all pattern assertions from K′:

1. (Soundness) If 〈〈〈K′ y C′〉k C〉〉> →∗ 〈·〉> using the
K definition in Figure 7, then 〈〈K′◦〉k C〉

V

〈〈·〉k C′〉 is
derivable using the matching logic system in Figure 5;

2. (Completeness) If 〈〈K〉k C〉
V

〈〈·〉k C′〉 is derivable us-
ing the matching logic formal system in Figure 5,
then there is some annotated computation K′ such that
K′◦ = K and 〈〈〈K′ y C′〉k C〉〉> →∗ 〈·〉> using the K
rewriting logic definition in Figure 7.

Appendix 7 shows our current implementation of a
matching logic prover for KernelC using Maude, as well
as examples defining complex patterns on configurations.
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in model-checker .

mod K is including INT .
sorts Var NeVarList VarList K NeKList KList KConstant .
subsorts Var Int KConstant < K < NeKList .
subsorts Var < NeVarList < VarList NeKList < KList .
ops null dot : -> KConstant .
op _˜>_ : K K -> K [assoc id: dot format (d +nib! o -) prec 100] .
op ‘(‘) : -> KList .
op _,_ : NeVarList VarList -> NeVarList [assoc id: () prec 105] .
op _,_ : VarList NeVarList -> NeVarList [ditto] .
op _,_ : VarList VarList -> VarList [ditto] .
op _,_ : NeKList KList -> NeKList [ditto] .
op _,_ : KList NeKList -> NeKList [ditto] .
op _,_ : KList KList -> KList [ditto] .
op heat_ : KList -> K [memo prec 0] .
op cool_ : KList -> K [prec 0] .
eq heat(null) = cool(null) .
eq heat(dot) = dot .
ceq heat(K ˜> K’) = heat(K) ˜> heat(K’) if K =/= dot /\ K’ =/= dot .
op [_|_] : KList KList -> K .
var K K’ : K . var Kl Kl’ : KList . var NeKl : NeKList .
eq heat(K,NeKl) = heat(K) ˜> [NeKl | ()] .
eq heat() = cool() .
eq cool(K’) ˜> [(K,Kl) | Kl’] = heat(K) ˜> [Kl | (Kl’,K’)] .
eq cool(K’) ˜> [() | NeKl] = cool(NeKl,K’) .

endm

mod HEAP is including K .
sorts FreshLoc LocType LocTypeList Heap NeHeap HeapDefTerm HeapDefName .

--- sort HeapVar
subsort FreshLoc < K . subsort LocType < LocTypeList . subsorts Var HeapDefTerm < NeHeap < Heap .
op #‘(_‘) : FreshLoc -> NeHeap [prec 0 format(r d d d o)] . --- holds the counter for fresh location names
op l : Nat -> FreshLoc .
op n_ : FreshLoc -> FreshLoc .
var N M : Nat .
eq n(l(N)) = l(N + 1) .
op _,_ : LocTypeList LocTypeList -> LocTypeList [assoc] .
op [_,_,_] : K LocType K -> NeHeap .
op empty : -> Heap .
op _**_ : NeHeap Heap -> NeHeap [assoc comm id: empty format(d nisssb! o d)] .
op _**_ : Heap Heap -> Heap [ditto] .
ops heat_ cool_ : Heap -> K [ditto] .
op __ : HeapDefName KList -> HeapDefTerm [prec 0] . --- the KList arguments are "in"
op ___ : HeapDefName KList KList -> HeapDefTerm [prec 0] . --- the first KList arguments are "out", second are "in"

op _._ : HeapDefName LocType -> LocType [prec 0] .
op _[_] : HeapDefName HeapDefName -> HeapDefName [prec 0] .
op heap : Heap -> K .

endm

mod LANG-SYNTAX is including HEAP .
op _+_ : K K -> K [ditto] .
op _=_ : K K -> K [prec 60] .
op _==_ : K K -> K [prec 50] .
op _!=_ : K K -> K [prec 50] .
op !_ : K -> K [prec 0] .
op *_ : K -> K [prec 0] .

op _&&_ : K K -> K [gather(e E) prec 55] .
op _||_ : K K -> K [gather(e E) prec 59] .
op if‘(_‘)_ : K K -> K [prec 93] .
op if‘(_‘)_else_ : K K K -> K [prec 95] .
op _;_ : K K -> K [assoc prec 100 gather(E e)] .
op _; : K -> K [prec 99] .
op while‘(_‘)_ : K K -> K .
op {_} : K -> K .
op {} : -> K .

var K K’ K1 K2 C : K . var H : Heap . var X : Var . var NeXl : NeVarList .
eq (K != K’) = !(K == K’) .
eq K1 && K2 = if (K1) K2 else 0 .
eq K1 || K2 = if (K1) 1 else K2 .
eq ! K = if (K) 0 else 1 .
eq if (K) K’ = if (K) K’ else {} .
eq K ; = K .
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op [_] : Heap -> K . --- heap patterns regarded as "bool expressions" that can have side effects (bindings of heap variables)
op //@‘inv_while‘(_‘)_ : K K K -> K [prec 95] .
op stop : -> K .
op undef : -> K .

--- assume and assert
ops (//@‘assume_) (//@‘assert_) (//@‘access_) : K -> K [prec 90] .

--- old
op old : K -> K .

--- alloc (only typed locations)
op alloc_ : LocTypeList -> K [prec 0] .

--- free
op free_ : K -> K [prec 0] .

---
--- some translation rules
---

op heap? : K -> Bool .
eq heap?([H]) = true .
eq heap?(heap(H)) = true .
eq heap?(K) = false [owise] .

endm

mod PRE-FORMULAE is
sorts True NtPreFormula PreFormula . subsort True NtPreFormula < PreFormula .
op True : -> True .
op False : -> NtPreFormula .
op _/\_ : NtPreFormula PreFormula -> NtPreFormula [assoc comm id: True prec 55] .
op _/\_ : PreFormula PreFormula -> PreFormula [ditto] .
op _=>_ : PreFormula PreFormula -> NtPreFormula [prec 61 strat(1 2 0)] .
op ˜_ : PreFormula -> NtPreFormula [prec 0] .

var PreF PreF1 PreF2 : PreFormula . var NtPreF NtPreF1 NtPreF2 : NtPreFormula .

eq False /\ NtPreF = False .
eq NtPreF /\ NtPreF = NtPreF .
eq ˜ NtPreF /\ NtPreF = False .
eq ˜ ˜ PreF = PreF .
eq ˜ True = (False).PreFormula .
eq ˜ False = (True).PreFormula .

--- Even though the path condition is a conjunction, we may need disjunction for some theories, like sets.
op _\/_ : PreFormula PreFormula -> NtPreFormula [assoc comm prec 59] .
eq True \/ PreF = True . eq False \/ PreF = PreF . eq PreF \/ PreF = PreF . eq ˜ PreF \/ PreF = True .

--- eq ˜(PreF1 \/ PreF2) = ˜(PreF1) /\ ˜(PreF2) .

--- eq NtPreF /\ (PreF1 \/ PreF2) = NtPreF /\ PreF1 \/ NtPreF /\ PreF2 .

--- axiomatizing implication
*** eq PreF => True = True .
--- eq PreF => PreF = True .
*** eq NtPreF /\ PreF => NtPreF = True .

--- the ceq below is a bad idea, slows down a LOT
--- ceq PreF /\ PreF1 => PreF2 = True if PreF1 => PreF2 = True .

--- one of the two below may be needed
--- eq PreF /\ PreF1 => PreF /\ PreF2 = PreF /\ PreF1 => PreF2 .

*** eq PreF => (NtPreF1 /\ NtPreF2) = (PreF => NtPreF1) /\ (PreF => NtPreF2) .
*** eq PreF => (NtPreF1 \/ NtPreF2) = (PreF => NtPreF1) \/ (PreF => NtPreF2) .

*** eq PreF /\ ˜(PreF1 /\ PreF2) => False = (PreF => PreF1) /\ (PreF => PreF2) .
endm

mod EQ-THEORY is including PRE-FORMULAE + K .
op _===_ : K K -> NtPreFormula [comm] .

var K K1 K2 : K . var I I’ : Int . var NeKl1 NeKl2 : NeKList .

eq K + K1 === K + K2 = K1 === K2 .
eq (K === K) = True .
eq I === I’ = if I == I’ then True else False fi .
eq K1 + K2 === null = False .

eq (K1,NeKl1) === (K2,NeKl2) = (K1 === K2) /\ (NeKl1 === NeKl2) .
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--- transitivity
var PreF : PreFormula .

*** eq PreF /\ (K1 === K2) /\ (K === K1) => (K === K2) = True .
eq (K1 === K2) /\ (K === K1) /\ ˜(K === K2) = False .

endm

mod SEQ-THEORY is including EQ-THEORY .
op nil : -> KConstant .
op oneElemSeq : K -> K .
op _::_ : K K -> K [assoc prec 1] .
ops head tail last pref reverse : K -> K .

var S S’ S1 S1’ S2 S2’ S3 S3’ K K1 K2 : K . var PreF : PreFormula .
eq oneElemSeq(head(S)) :: tail(S) = S .
eq K === head(S) /\ ˜(oneElemSeq(K) :: tail(S) :: S1 === S2) = K === head(S) /\ ˜(S :: S1 === S2) .
eq K === last(S) /\ ˜(pref(S) :: oneElemSeq(K) :: S1 === S2) = K === last(S) /\ ˜(S :: S1 === S2) .
eq K === last(S) /\ ˜(pref(S) :: oneElemSeq(K) === S2) = K === last(S) /\ ˜(S === S2) .

eq S1 === S1’ /\ ˜(S1 :: S2 === S1’ :: S2) = False .
eq S === nil /\ S1 === S :: S2 = S === nil /\ S1 === S2 .
eq S === nil /\ S1 === S2 :: S = S === nil /\ S1 === S2 .
eq S1 === S /\ S === S1’ /\ ˜(S1 :: S2 === S1’ :: S2) = False .
eq S1 === S1’ /\ S === S1 :: S2 /\ S === S3 /\ ˜(S1’ :: S2 === S3) = False .
eq S1 === S1’ /\ S === S1 :: S2 /\ ˜(S === S1’ :: S2) = False .
eq S1 === nil /\ ˜(S1 :: S2 === S2) = False .
eq S1 === nil /\ ˜(S2 :: S1 === S2) = False .

eq head(S) === K /\ ˜(S === oneElemSeq(K) :: tail(S)) = False .
eq head(S) === K /\ tail(S) === nil = S === oneElemSeq(K) .

eq last(S) === K /\ ˜(S === pref(S) :: oneElemSeq(K)) = False .

eq head(S) === K /\ ˜(reverse(oneElemSeq(K) :: tail(S)) :: S1 === S2) = head(S) === K /\ ˜(reverse(S) :: S1 === S2) .

eq S === nil /\ ˜(reverse(S) === nil) = False .
eq S === oneElemSeq(K) /\ ˜(reverse(S) === S’) = S === oneElemSeq(K) /\ ˜(S === S’) .
eq reverse(S) :: oneElemSeq(K) = reverse(oneElemSeq(K) :: S) .
eq reverse(S) === reverse(S’) = S === S’ .
eq S === nil /\ ˜(S1 :: reverse(S) === S2) = S === nil /\ ˜(S1 === S2) .
eq S === nil /\ ˜(reverse(S) :: S1 === S2) = S === nil /\ ˜(S1 === S2) .
eq S === nil /\ reverse(S) :: S1 === S2 = S === nil /\ S1 === S2 .

eq S1 :: S === S2 :: S = S1 === S2 .
eq S :: S1 === S :: S2 = S1 === S2 .
eq nil :: S = S .
eq S === nil /\ ˜(S === oneElemSeq(K)) = S === nil .
eq S === nil /\ S === oneElemSeq(K) = False .

eq S === oneElemSeq(K) /\ ˜(head(S) === K) = False .
eq S === oneElemSeq(K) /\ ˜(tail(S) === nil) = False .

eq S === nil /\ ˜(S :: S1 === S2) = S === nil /\ ˜(S1 === S2) .
eq oneElemSeq(K) === nil = False .

eq S === oneElemSeq(K) /\ ˜(oneElemSeq(head(S)) === S’) = S === oneElemSeq(K) /\ ˜(oneElemSeq(K) === S’) .

eq S1 === S2 /\ ˜(S1 :: S1’ === S2 :: S2’) = S1 === S2 /\ ˜(S1’ === S2’) .
eq oneElemSeq(K1) === oneElemSeq(K2) = K1 === K2 .

endm

mod TREE-THEORY is including EQ-THEORY .
op emptyTree : -> KConstant .
op Tree : K K K -> K .
ops Data Left Right : K -> K .
op mirror : K -> K .
var K K’ S S’ S1 S1’ S2 S2’ : K .
eq mirror(S) === emptyTree = S === emptyTree .
eq mirror(emptyTree) = emptyTree .
eq ˜(S === emptyTree) /\ ˜(mirror(S) === S’) = ˜(S === emptyTree) /\ ˜(Tree(Data(S),mirror(Right(S)),mirror(Left(S))) === S’) .
eq S === emptyTree /\ ˜(Tree(K,mirror(S),S’) === S2) = S === emptyTree /\ ˜(Tree(K,emptyTree,S’) === S2) .
eq S === emptyTree /\ ˜(Tree(K,S’,mirror(S)) === S2) = S === emptyTree /\ ˜(Tree(K,S’,emptyTree) === S2) .
eq Left(S) === emptyTree /\ Right(S) === emptyTree /\ ˜(mirror(S) === S’) = Left(S) === emptyTree /\ Right(S) === emptyTree /\ ˜(S === S’) .
eq Data(S) === K /\ Left(S) === S1 /\ Right(S) === S2 /\ ˜(Tree(K,S1,S2) === S’) = Data(S) === K /\ Left(S) === S1 /\ Right(S) === S2 /\ ˜(S === S’) .
eq Tree(K,S1,S2) === Tree(K’,S1’,S2’) = K === K’ /\ S1 === S1’ /\ S2 === S2’ .
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endm

mod SET-THEORY is including EQ-THEORY .
ops emptySet allSet : -> KConstant .
op oneElemSet : K -> K .

op _INTERSECT_ : K K -> K [assoc comm prec 10] .
op _MINUS_ : K K -> K [prec 13] .
op _UNION_ : K K -> K [assoc comm prec 12] .
op _IN_ : K K -> NtPreFormula [prec 15] .

var A B C : K .

***(
op _DIFF_ : K K -> K [assoc comm prec 5] .
op EMP?_ : K -> NtPreFormula .
eq allSet INTERSECT A = A .
eq emptySet INTERSECT A = emptySet .
eq A INTERSECT A = A .
eq emptySet DIFF A = A .
eq A DIFF A = emptySet .
eq A INTERSECT (B DIFF C) = (A INTERSECT B) DIFF (A INTERSECT C) .
eq A UNION B = A DIFF B DIFF (A INTERSECT B) .
eq A MINUS B = A DIFF (A INTERSECT B) .

eq A IN B = (A DIFF (A INTERSECT B) === emptySet) .

--- eq EMP?(emptySet) = True .
--- eq EMP?(A) /\ EMP?(B) = EMP?(A UNION B) .

eq S === emptySet /\ ˜((S INTERSECT S1) DIFF S2 === S3) = S === emptySet /\ ˜(S2 === S3) .
eq S === emptySet /\ ((S INTERSECT S1) DIFF S2 === S3) = S === emptySet /\ (S2 === S3) .
eq S === emptySet /\ (S INTERSECT S’ === S1) = S === emptySet /\ (emptySet === S1) .
eq S === emptySet /\ S DIFF S1 === S2 = S === emptySet /\ S1 === S2 .
eq S === S1 DIFF (S1 INTERSECT S2) /\ ˜(S’ DIFF (S INTERSECT S2) === S3) = S === S1 DIFF (S1 INTERSECT S2) /\ ˜(S’ === S3) .

eq S1 DIFF (S1 INTERSECT S2) === emptySet /\ S2 DIFF (S1 INTERSECT S2) === S /\ ˜(S DIFF S1 === S3)
= S1 DIFF (S1 INTERSECT S2) === emptySet /\ S2 DIFF (S1 INTERSECT S2) === S /\ ˜(S2 === S3) .

eq A === B = EMP?(A DIFF B) .

--- eq ˜ EMP?(A) = ...
--- eq EMP?(A) \/ EMP?(B) = ...
***)

--- LEMMAS as AXIOMS
var S S’ S1 S1’ S2 S2’ S3 S3’ : K . var L K : K . var PreF : PreFormula .

--- eq oneElemSet(L) IN S1 UNION S2 = (oneElemSet(L) IN S1) \/ (oneElemSet(L) IN S2) .
--- eq oneElemSet(L) IN oneElemSet(K) = L === K .

eq S IN S = True .
eq S IN S UNION S’ = True .
eq emptySet IN S = True .
eq emptySet UNION S = S .
eq emptySet INTERSECT S = emptySet .
eq S UNION S = S .
eq S MINUS S = emptySet .
eq S MINUS S’ IN S = True .
eq S UNION S’ MINUS S’ IN S = True .
eq (S1 MINUS S2) MINUS S3 = S1 MINUS (S2 UNION S3) .
eq (S1 MINUS S2) IN (S1 UNION S3) = True .
eq S1 UNION S MINUS S2 UNION S = S1 MINUS S2 UNION S .

--- eq S1 UNION S2 IN S = (S1 IN S) /\ (S2 IN S) .
eq (S1 MINUS S1’) UNION (S2 MINUS S2’) IN S1 UNION S2 = True .
eq S UNION (S’ MINUS S) = S UNION S’ .
eq (S1 UNION S2) MINUS S = (S1 MINUS S) UNION (S2 MINUS S) .

eq (S1 MINUS S2) UNION S3 IN S1 = S3 IN S1 .
eq (S1 MINUS S2) UNION S3 IN (S1 UNION S1’) = S3 IN (S1 UNION S1’) .

eq S UNION S1 IN S UNION S2 = S1 IN S UNION S2 .

eq S === emptySet /\ ˜(S MINUS S’ === S1) = S === emptySet /\ ˜(emptySet === S1) .
eq S === emptySet /\ (S INTERSECT S’ === S1) = S === emptySet /\ (emptySet === S1) .
eq S === emptySet /\ (S UNION S’ === S1) = S === emptySet /\ (S’ === S1) .
eq S === emptySet /\ S’ IN S = S === emptySet /\ S’ === emptySet .
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eq S === emptySet /\ ˜((S MINUS S’) UNION S1 === S2) = S === emptySet /\ ˜(S1 === S2) .

eq emptySet === oneElemSet(K) = False .

eq S1 IN S2 /\ S3 === S2 MINUS S1 /\ ˜(S === S1 UNION S3 UNION S’) = S1 IN S2 /\ S3 === S2 MINUS S1 /\ ˜(S === S2 UNION S’) .
eq S1 IN S2 /\ S3 === S2 MINUS S1 /\ ˜(S === S1 UNION S3) = S1 IN S2 /\ S3 === S2 MINUS S1 /\ ˜(S === S2) .
eq S1 IN S2 /\ S3 === S2 MINUS S1 /\ ˜(S === (S1’ MINUS (S1 UNION S3 UNION S’)) UNION S2’)
= S1 IN S2 /\ S3 === S2 MINUS S1 /\ ˜(S === (S1’ MINUS (S2 UNION S’)) UNION S2’) .
eq S1 IN S2 /\ S3 === S2 MINUS S1 /\ ˜(S IN (S1 UNION S3)) = S1 IN S2 /\ S3 === S2 MINUS S1 /\ ˜(S IN S2) .
eq S1 IN S2 /\ S3 === S2 MINUS S1 /\ ˜(S IN (S1 UNION S3 UNION S’)) = S1 IN S2 /\ S3 === S2 MINUS S1 /\ ˜(S IN S2 UNION S’) .
eq S1 IN S2 /\ S3 === S2 MINUS S1 /\ ˜((S MINUS (S1 UNION S3 UNION S’)) UNION S1’ IN S2’)
= S1 IN S2 /\ S3 === S2 MINUS S1 /\ ˜((S MINUS (S2 UNION S’)) UNION S1’ IN S2’) .
eq S1 IN S2 /\ S3 === S2 MINUS S1 /\ ˜((S MINUS (S1 UNION S3)) UNION S1’ IN S2’)
= S1 IN S2 /\ S3 === S2 MINUS S1 /\ ˜((S MINUS S2) UNION S1’ IN S2’) .
eq S1 IN S2 /\ S3 === S2 MINUS S1 /\ ˜(S MINUS (S1 UNION S3) IN S2’) = S1 IN S2 /\ S3 === S2 MINUS S1 /\ ˜(S MINUS S2 IN S2’) .
eq S1 IN S2 /\ S3 === S2 MINUS S1 /\ (S === S1 UNION S3 UNION S’) = S1 IN S2 /\ S3 === S2 MINUS S1 /\ (S === S2 UNION S’) .
eq S1 IN S2 /\ S3 === S2 MINUS S1 /\ (S === S1 UNION S3) = S1 IN S2 /\ S3 === S2 MINUS S1 /\ (S === S2) .

eq S1 IN S2 /\ ˜((S1 MINUS (S2 UNION S3)) UNION S IN S’) = S1 IN S2 /\ ˜(S IN S’) .
eq S1 IN S2 /\ S2 MINUS S3 === S UNION S’ /\ ˜(S1 MINUS (S3 UNION S UNION S1’) IN S’) = False .

eq S1 IN S2 /\ ˜(S1 MINUS S IN S2 UNION S’) = False .
eq S1 IN S2 /\ ˜(S1 IN S2 UNION S) = False .

eq S1 MINUS S2 === S3 /\ ˜(S1 MINUS S IN S2 UNION S3) = False .
eq S1 IN S2 /\ ˜(S === (S1 MINUS (S2 UNION S2’)) UNION S3) = S1 IN S2 /\ ˜(S === S3) .
eq S1 IN S2 /\ ˜(S === (S1 MINUS (S2 UNION S2’))) = S1 IN S2 /\ ˜(S === emptySet) .

eq S1 IN S2 /\ ˜((S1 MINUS S) UNION S’ IN S2 UNION S2’) = S1 IN S2 /\ ˜(S’ IN S2 UNION S2’) .

***(
eq PreF => S1 UNION S2 IN S = (PreF => S1 IN S) /\ (PreF => S2 IN S) .
eq PreF /\ S === emptySet => S MINUS S’ === emptySet = True .
eq PreF /\ (S1 === S2) => S1 MINUS S IN S2 = True .
eq PreF /\ S1 IN S2 /\ S2 === S2’ => S1 MINUS (S2’ UNION S3) === emptySet = True .
eq PreF /\ S IN S1 /\ S1 === S2 UNION S3 /\ S2 === S2’ => S MINUS (S’ UNION S3) IN S2’ = True .
eq PreF /\ S1 IN S2 /\ S2 === S3 => S1 MINUS (S3 UNION S) IN S’ = True .
eq PreF /\ (S1 IN S2) /\ (S2 === S2’) => S1 IN S2’ UNION S3 = True .
eq PreF /\ S1 IN S2 /\ S2 === S3 UNION S3’ => S1 MINUS (S1’ UNION S3) IN S3’ = True .

eq (S1 === S2) /\ (S === S3 UNION S1) /\ (S === S’) /\ ˜(S’ === S3 UNION S2) = False .
eq (S === S1 UNION S2) /\ (S1 === S1’) /\ (S2 === S2’) /\ ˜(S === S1’ UNION S2’) = False .
eq S1 IN S2 /\ S2 === S2’ /\ ˜(S1 MINUS S1’ IN S2’ UNION S3) = False .
eq (S === S1 UNION S2) /\ (S1 === S1’) /\ (S2 === S2’ UNION S3) /\ (S3 === S3’) /\ ˜(S === S1’ UNION S2’ UNION S3’) = False .
eq S1 IN S2 /\ S2 === S3 UNION S3’ /\ ˜(S1 MINUS (S1’ UNION S3) IN S3’) = False .
eq S1 UNION S2 === emptySet = S1 === emptySet /\ S2 === emptySet .

eq S2 IN S1 /\ S1 MINUS S2 === S3 = S1 === S2 UNION S3 .
***)
endm

mod LIFTING is including LANG-SYNTAX .
including EQ-THEORY .
including SEQ-THEORY .
including TREE-THEORY .
including SET-THEORY .

op ˆ : K -> NtPreFormula .

var K1 K2 : K . var Kl1 Kl2 : KList . var X : Var .

--- basic stuff
eq ˆ(1) = True .
eq ˆ(0) = False .

--- EQ
eq ˆ((K1,Kl1) == (K2,Kl2)) = K1 === K2 /\ ˆ(Kl1 == Kl2) .
eq () == () = 1 .

--- SET
op _in_ : K K -> K [prec 15] .
eq ˆ(K1 in K2) = K1 IN K2 .

endm

mod SUBST is including K + HEAP .
sorts Subst NeSubst . subsort NeSubst < Subst .
op _<-_ : Var K -> NeSubst [prec 1] .
op empty : -> Subst .
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op _,_ : NeSubst Subst -> NeSubst [assoc comm id: empty] .
op _,_ : Subst Subst -> Subst [ditto] .

var L : FreshLoc . var X : Var . var K K1 K2 : K . var Kl : KList . var NeKl1 NeKl2 : NeKList . var Subst : Subst .
eq (K1,NeKl1) <- (K2,NeKl2) = (K1 <- K2),(NeKl1 <- NeKl2) .

--- eq K <- K = empty .

op _[_] : K Subst -> K [prec 5] .
op _[_] : KList Subst -> KList [ditto] .

eq Kl[empty] = Kl .
eq (NeKl1,NeKl2)[Subst] = (NeKl1[Subst]),(NeKl2[Subst]) .
eq ()[Subst] = () .

eq X[S1:[Subst],X <- K,S2:[Subst]] = K .

eq X[Subst] = X [owise] .
eq L[Subst] = L [owise] .
eq Kc:KConstant[Subst] = Kc:KConstant .
endm

mod ENV is including SUBST .
sorts FreshVar BasicEnv ProperEnv HeapEnv Env .
subsorts BasicEnv < ProperEnv HeapEnv < Env . subsort FreshVar < Var .
op empty : -> BasicEnv .
op {_,_} : Var K -> ProperEnv [prec 0] .
op __ : BasicEnv BasicEnv -> BasicEnv [assoc comm id: empty] .
op __ : ProperEnv ProperEnv -> ProperEnv [ditto] .
op __ : Env Env -> Env [ditto] .
op _[_] : Env Subst -> Env .
op _[_] : Env Var -> [K] [prec 1] .
op aux : Env Env Var -> [K] .
op <_,_> : Env K -> [K] .

op $‘(_‘) : FreshVar -> ProperEnv [prec 0 format(r d d d o)] .
op v : Nat -> FreshVar .
op n_ : FreshVar -> FreshVar .

var X X’ : Var . var ?X ?F : FreshVar . var K K’ : K . var Env Env’ : Env .

eq n(v(N:Nat)) = v(N:Nat + 1) .

--- sannity check, just in case somethig is wrong somewhere :-)
--- one can remove this equation eventually, to make environment checking a bit faster
op WrongENV : Var K K -> [Env] [format (r! o)] .
eq {X,K} {X,K’} = if K == K’ then {X,K} else WrongENV(X,K,K’) fi .

eq Env[A:NeSubst, B:NeSubst] = Env[A:NeSubst][B:NeSubst] .
eq Env[empty] = Env .

eq ({X’,K’} Env)[X <- K] = if X == X’ then {X,K} Env else {X’,K’} (Env[X <- K]) fi .
eq $(?F)[X <- K] = $(?F) {X,K} .

eq (Env $(?F))[X] = aux(Env $(?F), Env, X) .
eq aux(Env, {X’,K’} Env’, X) = if X == X’ then < Env, K’ > else aux(Env, Env’, X) fi .
eq aux(Env $(?F), empty, X) = if X :: FreshVar then < Env {X,?F} $(n ?F), ?F > else < Env $(?F), X > fi .

eq {?X,?F} {?F,K} = {?X,K} .
endm

mod VALIDITY-CHECKER is including LIFTING + SAT-SOLVER + SUBST .
--- lift PreFormulae into Formulae
op ˆ : PreFormula -> Formula .
var PreF PreF1 PreF2 : PreFormula . var NtPreF1 NtPreF2 : NtPreFormula .
eq ˆ(True) = True .
eq ˆ(False) = False .
eq ˆ(NtPreF1 /\ NtPreF2) = ˆ(NtPreF1) /\ ˆ(NtPreF2) .

--- eq ˆ(PreF1 \/ PreF2) = ˆ(PreF1) \/ ˆ(PreF2) .
eq ˆ(˜ PreF) = ˜ ˆ(PreF) .

op VALID : PreFormula -> Bool .
op UNSAT‘(_‘) : PreFormula -> Bool [format(nr! d no nr! o)] .
eq VALID(True) = true .
eq VALID(False) = false .

--- the simplification equations do all the work for now; if needed, uncomment the following eq
--- op FAILED : PreFormula -> Bool .
--- eq VALID(PreF) = if tautCheck(ˆ(PreF)) then true else FAILED(PreF) fi [owise] .
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eq VALID(PreF1 => PreF2) = UNSAT(PreF1 /\ ˜(PreF2)) .

---eq UNSAT(True) = false .
eq UNSAT(False) = true .
---eq UNSAT(PreF) = not tautCheck(˜ ˆ(PreF)) [owise] .

var X : Var . var F : FreshLoc . var Kc : KConstant .

---eq UNSAT(X === Kc /\ PreF) = UNSAT(PreF[X <- Kc]) .
---eq UNSAT(F === Kc /\ PreF) = UNSAT(PreF[F <- Kc]) .

---op _[_] : PreFormula Subst -> [PreFormula] .

endm

mod CONFIG is including HEAP + ENV + VALIDITY-CHECKER .
sort Config .
op empty : -> Config .
op __ : Config Config -> Config [assoc comm id: empty] .
op <heap>_</heap> : Heap -> Config [format (rn! nssso nr! o)] .
op <k>_</k> : K -> Config [format (gn! no ng! o)] .
op <env>_</env> : Env -> Config [format (cn! o c! o)] .
op <sat>_</sat> : PreFormula -> Config [format (mn! o m! o)] .

endm

mod CONFIGS is including CONFIG .
sort Configs .
ops done delete : -> Configs .
op __ : Configs Configs -> Configs [prec 110 strat (1 0) frozen(2)] .
var Cfgs Cfgs’ Cfgs’’ : [Configs] . var N M : Nat . var Cfg : Config .
eq (Cfgs Cfgs’) Cfgs’’ = Cfgs (Cfgs’ Cfgs’’) .
op <config>_</config> : Config -> Configs [format (yn! o yn! n)] .

--- this appears to work so far; if needed, you can replace it with the commented ceq
eq <config> <sat> False </sat> ?Cfg:[Config] </config> = delete .

--- ceq <config> <sat> F:PreFormula </sat> ?Cfg:[Config] </config> = delete if VALID(˜ F:PreFormula) .

sort Result .
op (_feasible and_infeasible paths) : Nat Nat -> Result .
op [|_|] : K -> Result .
op [| _,_,_ |] : Nat Nat Configs -> Result .
eq [| N, M, delete Cfgs |] = [| N, M + 1, Cfgs |] .
eq [| N, M, <config> <k> dot </k> Cfg </config> Cfgs |] = [| N + 1, M, Cfgs |] .
eq [| N, M, done |] = N feasible and M infeasible paths .

endm

mod MATCH is including CONFIG .
sort PreFormula*Subst .
op (_,_) : PreFormula Subst -> PreFormula*Subst [prec 80] .
op _|-_:=_ : PreFormula Heap Heap -> [PreFormula*Subst] [format (n nr! no nr! no n)] .
op _|-_:=_ : PreFormula*Subst Heap Heap -> [PreFormula*Subst] [format (n nr! no nr! no n)] .

var H H’ : Heap . var Hdt : HeapDefTerm . var F : FreshLoc . var Cond Cond’ : PreFormula .
var Hdn : HeapDefName . var Kl Kl1 Kl2 Kl’ Kl’’ : KList . var Subst Subst’ : Subst .
var ?H ?X : FreshVar . var X : Var .

eq Cond |- H’ := H = (Cond,empty) |- H’ := H .

eq (Cond,Subst) |- H’ := H’ ** #(F) = (Cond,Subst) .
eq (Cond,Subst) |- ?H ** H’ := H ** H’ ** #(F) = (Cond,(Subst, ?H <- heap(H))) .

***(
ceq (Cond,Subst) |- Hdn(Kl’)(Kl1) ** H’ := Hdn(Kl’’)(Kl2) ** H
= (Cond,(Subst, Kl’ <- Kl’’)) |- H’[Kl’ <- Kl’’] := H
if VALID(Cond => Kl1 === Kl2) .

ceq (Cond,(?S1,(K <- K’),?S2)) = (Cond,(?S1,?S2)) if VALID(Cond => K === K’) .
***)

ceq (Cond,Subst) |- Hdn(Kl’)(Kl1) ** H’ := Hdn(Kl’’)(Kl2) ** H
= (Cond,(Subst,checkAndMakeSubst(Cond, Subst, Kl’, Kl’’))) |- H’[checkAndMakeSubst(Cond, Subst, Kl’, Kl’’)] := H
if VALID(Cond => Kl1 === Kl2) .

op checkAndMakeSubst : PreFormula Subst KList KList -> [Subst] .
op _?_ : Bool [Subst] -> [Subst] .
eq true ? S:[Subst] = S:[Subst] .
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--- eq checkAndMakeSubst(Cond,(X <- K,Subst),(X,Kl’),(K’’,Kl’’)) = checkAndMakeSubst(Cond,(X <- K,Subst),(K,Kl’),(K’’,Kl’’)) .
eq checkAndMakeSubst(Cond,Subst,(?X,Kl’),(K’’,Kl’’)) = ?X <- K’’, checkAndMakeSubst(Cond,Subst,(Kl’)[?X <- K’’],Kl’’) .
ceq checkAndMakeSubst(Cond,Subst,(K’,Kl’),(K’’,Kl’’)) = VALID(Cond => K’ === K’’) ? checkAndMakeSubst(Cond,Subst,Kl’,Kl’’)
if not(K’ :: FreshVar) .

eq checkAndMakeSubst(Cond,Subst,(),()) = empty .

var ?S1 ?S2 : [Subst] . var K K’ K’’ : K .

var L V : K . var T : LocType . var NeH1 NeH2 : NeHeap . var NeKl1 NeKl2 : NeKList .

op _[_] : Heap Subst -> [Heap] [prec 5] .
eq ((empty).Heap)[Subst] = empty .
eq #(F)[Subst] = #(F) .
eq [L,T,V][Subst] = [L,T,V] .
eq (NeH1 ** NeH2)[Subst] = (NeH1[Subst]) ** (NeH2[Subst]) .
eq Hdn(Kl)[Subst] = Hdn(Kl[Subst]) .
eq (Hdn(Kl’)(Kl))[Subst] = Hdn(Kl’[Subst])(Kl[Subst]) .

endm

mod STUFF is including LANG-SYNTAX + CONFIGS + MATCH .
op _? : Bool -> K [prec 0] . eq true ? = dot .

op derive : Heap K -> K .
op answer : Heap LocType K -> K .
var L K K’ : K . var T : LocType . var H : Heap . var NeKl : NeKList . var Cfg : Config .
eq derive(([L,T,K] ** H), L) = answer(H,T,K) .

op cases_ : KList -> K .
eq <config> <k> cases(K,NeKl) ˜> K’ </k> Cfg </config>
= <config> <k> K ˜> K’ </k> Cfg </config> <config> <k> cases(NeKl) ˜> K’ </k> Cfg </config> .
eq cases(K) = K .

endm

mod LANG-SEMANTICS is including STUFF .
var L N K K’ K1 K2 E E1 E2 C C’ V : K . var Kl Kl’ : KList . var X : Var . var ?X : FreshVar . var I I’ : Int .
var Env Env’ : Env .
var H H’ : Heap . var NeH NeH’ : NeHeap . var HDef : HeapDefName .
var Cfg Cfg’ : Config .
var Cond Cond’ : PreFormula .

var F : FreshLoc . var T : LocType . var Tl : LocTypeList .
var Subst : Subst . var Fv : FreshVar .

var P : K .
eq [| P |] = [| 0, 0, <config>

<k> heat(P) </k>
<heap> #(l(0)) </heap>
<env> $(v(0)) </env>
<sat> True </sat>

</config> done |] .

eq {K} = K .
eq {} = dot .

--- integers
eq heat(I) = cool(I) .

--- fresh locations
eq heat(F) = cool(F) .

--- variable lookup
eq <k> heat(X) ˜> K </k> <env> Env </env> = <k> Env[X] ˜> K </k> .
eq <k> < Env,V > ˜> K </k> = <k> cool(V) ˜> K </k> <env> Env </env> .

--- location lookup: keep the heap intact while deriving it for debugging
op *[] : -> K . eq heat(* E) = (heat(E) ˜> *[]) .
eq <heap> H </heap> <k> cool(L) ˜> *[] ˜> K </k> = <heap> H </heap> <k> derive(H,L) ˜> * L ˜> K </k> .
eq <heap> H’ </heap> <k> answer(H,T,V) ˜> * L ˜> K </k> = <heap> H ** [L,T,V] </heap> <k> cool(V) ˜> K </k> .

--- variable assignment
op _=[] : Var -> K . eq heat(X = E) = (heat(E) ˜> (X = [])) . eq cool(E) ˜> X = [] = cool(X = E) .
eq <k> cool(X = E) ˜> K </k> <env> Env </env> = <k> K </k> <env> Env[X <- E] </env> .

--- location assignment
ops (*[]=_) (*_=[]) : K -> K [prec 0] . eq heat((* L) = E) = (heat(L) ˜> *‘[‘]=_(E)) . eq cool(L) ˜> *‘[‘]=_(E) = (heat(E) ˜> *_=‘[‘](L)) .
eq <heap> H </heap> <k> cool(E) ˜> *_=‘[‘](L) ˜> K </k> = <heap> H </heap> <k> derive(H,L) ˜> (* L = E) ˜> K </k> .
eq <heap> H </heap> <k> answer(H’,T,V) ˜> (* L = E) ˜> K </k> = <heap> H’ ** [L,T,E] </heap> <k> K </k> .
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--- addition
ops ([]+_) (_+[]) : K -> K . eq heat(E1 + E2) = (heat(E1) ˜> [] + E2) .
eq cool(E1) ˜> [] + E2 = (heat(E2) ˜> E1 + []) . eq cool(E2) ˜> E1 + [] = cool(E1 + E2) .

--- ==
ops ([]==_) (_==[]) : K -> K . eq heat(E1 == E2) = (heat(E1) ˜> [] == E2) .
eq cool(E1) ˜> [] == E2 = (heat(E2) ˜> E1 == []) . eq cool(E2) ˜> E1 == [] = cool(E1 == E2) .

--- conditional
op if‘([]‘)_else_ : K K -> K .
eq heat(if (E) E1 else E2) = (heat(E) ˜> if ([]) E1 else E2) .
eq <config> <k> cool(E) ˜> if ([]) E1 else E2 ˜> K </k> <sat> Cond </sat> Cfg </config>
= <config> <k> heat(E1) ˜> K </k> <sat> Cond /\ ˆ(E) </sat> Cfg </config>
<config> <k> heat(E2) ˜> K </k> <sat> Cond /\ ˜ ˆ(E) </sat> Cfg </config> .

--- stop
eq <k> heat(stop) ˜> K </k> = <k> dot </k> .

--- sequential composition
eq heat(K1 ; K2) = (heat(K1) ˜> heat(K2)) .

--- heap heating and cooling
ops ([]**_) (_**[]) : NeHeap -> K .
eq heat(NeH ** NeH’) = (heat(NeH) ˜> [] ** NeH’) .
eq cool(H) ˜> [] ** NeH’ = (heat(NeH’) ˜> H ** []) . eq cool(H’) ˜> H ** [] = cool(H ** H’) .
eq heat((empty).Heap) = cool((empty).Heap) .

op _([]) : HeapDefName -> K .
eq heat(HDef(Kl)) = (heat(Kl) ˜> HDef([])) .
eq cool(Kl) ˜> HDef([]) = cool(HDef(Kl)) .

--- we also heat the out parameters, but only to make sure they are consistently replaced by fresh variables
ops (__([])) (_([])_) : HeapDefName KList -> K .
eq heat(HDef(Kl’)(Kl)) = (heat(Kl) ˜> HDef(Kl’)([])) .
eq cool(Kl) ˜> HDef(Kl’)([]) = (heat(Kl’) ˜> HDef([])(Kl)) .
eq cool(Kl’) ˜> HDef([])(Kl) = cool(HDef(Kl’)(Kl)) .

--- heap "bool expression"
eq heat([H]) = heat(H) .
eq cool(heap(H)) = cool(H) .

--- assume
op Assume : PreFormula -> K .
op freezeKassume : K Env -> K .
eq <k> heat(//@ assume(C)) ˜> K </k> <env> Env $(Fv) </env> = <k> heat(C) ˜> freezeKassume(K,Env) </k> <env> Env $(Fv) </env> .
eq <k> cool(C) ˜> freezeKassume(K,Env) </k> <env> Env’ $(Fv) </env> = <k> Assume(ˆ(C)) ˜> K </k> <env> Env $(Fv) </env> .
eq <k> Assume(Cond’) ˜> K </k> <sat> Cond </sat> = <k> K </k> <sat> Cond /\ Cond’ </sat> .
eq <heap> H’ ** #(F) </heap> <k> cool(H) ˜> K ˜> freezeKassume(K’,Env) </k> <sat> Cond </sat>

--- = <heap> H ** #(F) </heap> <k> cool(1) ˜> K ˜> freezeKassume(K’,Env) </k> <sat> Cond /\ assumeCond(H) </sat> .
= <heap> H ** #(F) </heap> <k> assumeCond(H) ˜> cool(1) ˜> K ˜> freezeKassume(K’,Env) </k> <sat> Cond </sat> .

op assumeCond : Heap -> K .
eq assumeCond(X) = dot .
eq assumeCond(#(F)) = dot .
eq assumeCond(NeH ** NeH’) = (assumeCond(NeH) ˜> assumeCond(NeH’)) .
eq assumeCond([L,T,V]) = Assume(˜(L === null)) .

--- assert --- the "&& C" may not be necessary --- do some experiments with it and without it
op Assert : PreFormula -> K .
op freezeKassert : K -> K .
eq <k> heat(//@ assert(C)) ˜> K </k> = <k> heat(C) ˜> freezeKassert(K) </k> .
eq <k> cool(C) ˜> freezeKassert(K) </k> = <k> Assert(ˆ(C)) ˜> K </k> .
eq <k> Assert(Cond’) ˜> K </k> <sat> Cond </sat> = <k> VALID(Cond => Cond’) ? ˜> K </k> <sat> Cond </sat> .
crl <heap> H </heap> <k> cool(H’) ˜> K ˜> freezeKassert(K’) </k> <sat> Cond </sat> <env> Env </env>
=> <heap> H </heap> <k> cool(1) ˜> K ˜> freezeKassert(K’) </k> <sat> Cond’ </sat> <env> Env[Subst] </env>
if (Cond |- H’ := H) => (Cond’,Subst) .

--- old
eq <k> heat(old(E)) ˜> K </k> = <k> cool(E) ˜> K </k> .

--- &&&
op _&&&_ : K K -> K [gather(e E) prec 56] .
eq <k> heat(K1 &&& K2) ˜> K ˜> freezeKassert(K’) </k> = <k> heat(K1 && K2) ˜> K ˜> freezeKassert(K’) </k> .
ceq <k> heat(K1 &&& K2) ˜> K ˜> freezeKassume(K’,Env) </k> = <k> heat(K2 && K1) ˜> K ˜> freezeKassume(K’,Env) </k> if heap?(K2) .

--- access
op //@‘access([]) : -> K .
eq heat(//@ access(K)) = (heat(K) ˜> //@ access([])) . eq cool(K) ˜> //@ access([]) = dot .
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--- alloc
***( --- this assumes that alloc may also fail, returning null
eq <config> <heap> H ** #(F) </heap> <k> heat(alloc(Tl)) ˜> K </k> <sat> Cond </sat> Cfg </config>
= <config> <heap> H ** [F,Tl,null] ** #(n(F)) </heap> <k> cool(F) ˜> K </k> <sat> Cond /\ ˜ (F === null) </sat> Cfg </config>
<config> <heap> H ** #(F) </heap> <k> cool(null) ˜> K </k> <sat> Cond </sat> Cfg </config> .

eq [L, (T,Tl), V] = [L, T, V] ** [L + 1, Tl, V] .
***)
eq <heap> H ** #(F) </heap> <k> heat(alloc(Tl)) ˜> K </k> <sat> Cond </sat>
= <heap> H ** [F,Tl,null] ** #(n(F)) </heap> <k> cool(F) ˜> K </k> <sat> Cond /\ ˜ (F === null) </sat> .
eq [L, (T,Tl), V] = [L, T, V] ** [L + 1, Tl, V] .

--- free
op free([]) : -> K .
eq heat(free(K)) = (heat(K) ˜> free([])) . eq cool(L) ˜> free([]) = cool(free(L)) .
eq <heap> H ** [L,T,V] </heap> <k> cool(free(L)) ˜> K </k> = <heap> H </heap> <k> K </k> .

--- while
eq //@ inv K’ while (C) K
= (//@ assert(K’) ; flush ; cleanEnv ; cleanHeap ; cleanSat ; //@ assume(K’) ; (if (C) (K ; //@ assert(K’) ; stop))) .

ops flush cleanEnv clean?Env cleanHeap cleanSat : -> K .
eq heat(flush) = flush .
eq heat(cleanEnv) = cleanEnv .
eq heat(clean?Env) = clean?Env .
eq heat(cleanHeap) = cleanHeap .
eq heat(cleanSat) = cleanSat .
rl <k> flush ˜> K </k> => <k> K </k> .
ceq <k> cleanEnv ˜> K </k> <env> {X,V} Env </env> = <k> cleanEnv ˜> K </k> <env> Env </env> if not heap?(V) .
eq <k> cleanEnv ˜> K </k> <env> Env </env> = <k> K </k> <env> Env </env> [owise] .
ceq <k> clean?Env ˜> K </k> <env> {?X,V} Env </env> = <k> clean?Env ˜> K </k> <env> Env </env> if not heap?(V) .
eq <k> clean?Env ˜> K </k> <env> Env </env> = <k> K </k> <env> Env </env> [owise] .
eq <heap> H ** #(F) </heap> <k> cleanHeap ˜> K </k> = <heap> #(F) </heap> <k> K </k> .
eq <k> cleanSat ˜> K </k> <sat> Cond </sat> = <k> K </k> <sat> True </sat> .

--- SEQ theory
eq heat(nil) = cool(nil) .
ops ([]::_) (_::[]) : K -> K .
eq heat(E1 :: E2) = (heat(E1) ˜> [] :: E2) .
eq cool(E1) ˜> [] :: E2 = (heat(E2) ˜> E1 :: []) .
eq cool(E2) ˜> E1 :: [] = cool(E1 :: E2) .

op head‘([]‘) : -> K .
eq heat(head(E)) = (heat(E) ˜> head([])) .
eq cool(E) ˜> head([]) = cool(head(E)) .

op tail‘([]‘) : -> K .
eq heat(tail(E)) = (heat(E) ˜> tail([])) .
eq cool(E) ˜> tail([]) = cool(tail(E)) .

op reverse‘([]‘) : -> K .
eq heat(reverse(E)) = (heat(E) ˜> reverse([])) .
eq cool(E) ˜> reverse([]) = cool(reverse(E)) .

op oneElemSeq‘([]‘) : -> K .
eq heat(oneElemSeq(E)) = (heat(E) ˜> oneElemSeq([])) .
eq cool(E) ˜> oneElemSeq([]) = cool(oneElemSeq(E)) .

--- TREE theory
eq heat(emptyTree) = cool(emptyTree) .
op Tree‘([]‘) : -> K .
eq heat(Tree(K,E1,E2)) = (heat(K,E1,E2) ˜> Tree([])) .
eq cool(K,E1,E2) ˜> Tree([]) = cool(Tree(K,E1,E2)) .

op mirror‘([]‘) : -> K .
eq heat(mirror(K)) = (heat(K) ˜> mirror([])) .
eq cool(K) ˜> mirror([]) = cool(mirror(K)) .

--- SET theory
eq heat(emptySet) = cool(emptySet) .

--- UNION
ops ([]UNION_) (_UNION[]) : K -> K . eq heat(E1 UNION E2) = (heat(E1) ˜> [] UNION E2) .
eq cool(E1) ˜> [] UNION E2 = (heat(E2) ˜> E1 UNION []) . eq cool(E2) ˜> E1 UNION [] = cool(E1 UNION E2) .

***(
--- DIFF
ops ([]DIFF_) (_DIFF[]) : K -> K . eq heat(E1 DIFF E2) = (heat(E1) ˜> [] DIFF E2) .
eq cool(E1) ˜> [] DIFF E2 = (heat(E2) ˜> E1 DIFF []) . eq cool(E2) ˜> E1 DIFF [] = cool(E1 DIFF E2) .
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--- INTERSECT
ops ([]INTERSECT_) (_INTERSECT[]) : K -> K . eq heat(E1 INTERSECT E2) = (heat(E1) ˜> [] INTERSECT E2) .
eq cool(E1) ˜> [] INTERSECT E2 = (heat(E2) ˜> E1 INTERSECT []) . eq cool(E2) ˜> E1 INTERSECT [] = cool(E1 INTERSECT E2) .

***)
--- in
ops ([]in_) (_in[]) : K -> K . eq heat(E1 in E2) = (heat(E1) ˜> [] in E2) .
eq cool(E1) ˜> [] in E2 = (heat(E2) ˜> E1 in []) . eq cool(E2) ˜> E1 in [] = cool(E1 in E2) .

endm

mod EXAMPLES is including LANG-SEMANTICS .
ops pgm1 pgm2 : -> K .
ops wrong addHead allocAndAddHead appendRec1 appendWhile1 appendRec2 appendWhile2 reverse1 reverse2 reverseWhile disposeList disposeListWhile : -> K .
ops enqueue dequeue transferOwner1 transferOwner2 stealQueue : -> K .
ops allocTree mirror treeToList1 treeToList2 treeToListWhile : -> K .
ops a b c d e f g h i j k l m n o p q r s t u v x y z temp ret return result from to left right : -> Var .
ops ?a ?b ?c ?d ?e ?f ?g ?h ?i ?j ?k ?l ?m ?n ?o ?p ?q ?r ?s ?t ?u ?v ?x ?y ?z : -> FreshVar .
ops list node queue seq tree graph stack : -> HeapDefName .
ops frame frame1 frame2 frame3 rest rest1 rest2 rest3 : -> Var .
ops ?frame ?frame1 ?frame2 ?frame3 ?rest ?rest1 ?rest2 ?rest3 : -> FreshVar .
ops data next head tail left right : -> LocType .
op ?z : -> FreshVar .
op Schorr-Waite-tree : -> K .
op root : -> Var .

ops requires ensures1 ensures2 ensures3 ensures4 : -> K .

ops cleanTree markedTree stackTree : -> HeapDefName .
ops marked switch generic : -> LocType .

var D1 D1’ D2 D2’ : K .

var In In1 In2 Out Out1 Out2 : K .
var Set1 Set2 : FreshLoc .

var L L’ L1 L1’ L1’’ L2 L2’ L2’’ L3 L3’ L3’’ V K : K . var F F1 F2 F3 : FreshLoc . var H H’ : Heap .
var Cond Cond’ : PreFormula . var HDef : HeapDefName . var Subst : Subst .

ops sa sb sq sf st : -> Var .
ops ?sa ?sb ?sq ?sf : -> FreshVar .

ops tl tr : -> Var .
ops ?tl ?tr : -> FreshVar .

eq pgm1 =
--- simple program to test the various paths

//@ assume(a != null || b != null || c != null) ;
if (a == null)
if (b == null) {
a = c ;
b = c

} else {
a = b ;
c = a

}
else {
b = a ;
c = a

} ;
//@ assert(a != null && b != null && c != null)

.

---endm
---rew [| pgm1 |] .
---q

eq pgm2 =
--- b = a ; c = a ; d = a ; e = a ; f = a ; g = a ; h = a ; i = a ; j = a ; k = a ; l = a ; m = a ; n = a ; o = a ; p = a ; q = a ; r = a ;

if (a) {} else {} ; --- 01
if (b) {} else {} ; --- 02
if (c) {} else {} ; --- 03
if (d) {} else {} ; --- 04
if (e) {} else {} ; --- 05
if (f) {} else {} ; --- 06
if (g) {} else {} ; --- 07

35



if (h) {} else {} ; --- 08
if (i) {} else {} ; --- 09
if (j) {} else {} ; --- 10
if (k) {} else {} ; --- 11
if (l) {} else {} ; --- 12
if (m) {} else {} ; --- 13
if (n) {} else {} ; --- 14
if (o) {} else {} ; --- 15
if (p) {} else {} ; --- 16 : 24sec, 22.4sec with memo for heat
if (q) {} else {} ; --- 17 : 49sec, 45.7sec with memo for heat
if (r) {} else {} ; --- 18 : 99sec, 94.0sec with memo for heat --- 262144 paths
//@ assert(1) ;

.

---endm
---rew [| pgm2 |] .
---q

---------------
--- list(L) ---
---------------
---
--- [list(L) ** H] = L == null && [H] || [[L, (V,L’)] ** list(L’) ** H]
---

eq assumeCond(list(L)) = dot .
ceq (Cond,Subst) |- H’ := H ** list(L) = (Cond,Subst) |- H’ := H if VALID(Cond => (L === null)) .
ceq (Cond,Subst) |- H’ ** list(L) := H = (Cond,Subst) |- H’ := H if VALID(Cond => (L === null)) .

eq derive((list(L) ** H ** #(F)), L)
= (Assert(˜(L === null)) ˜> answer([L + 1, node . next, n F] ** list(n F) ** H ** #(n n F), node . data, F)) .

eq derive((list(L) ** H ** #(F)), L + 1)
= (Assert(˜(L === null)) ˜> answer([L, node . data, F] ** list(n F) ** H ** #(n n F), node . next, n F)) .

crl (Cond,Subst) |- H’ := H ** [L, node . data, V] ** [L1, node . next, L2] ** list(L’)
=> (Cond,Subst) |- H’ := H ** list(L) if VALID(Cond => L1 === L + 1 /\ L’ === L2) .

crl (Cond,Subst) |- H’ := H ** [L, node . data, V] ** [L1, node . next, L’]
=> (Cond,Subst) |- H’ := H ** list(L) if VALID(Cond => L1 === L + 1 /\ L’ === null) .

var S S1 S2 S3 : K .

------------------
--- list(S)(L) ---
------------------
---
--- [list(S)(L) ** H] = L == null && S == nil && [H]
--- || L != null && [[L, (V,L’)] ** list(S’)(L’) ** H] && S == V :: S’
---
eq assumeCond(list(S)(L)) = dot .
ceq (Cond,Subst) |- H’ := H ** list(S)(L) = (Cond /\ S === nil, Subst) |- H’ := H if VALID(Cond => L === null) .
ceq (Cond,Subst) |- H’ ** list(S)(L) := H
= (Cond,(Subst, checkAndMakeSubst(Cond,Subst,S,nil))) |- H’[checkAndMakeSubst(Cond,Subst,S,nil)] := H if VALID(Cond => L === null) .

eq derive((list(S)(L) ** H ** #(F)), L)
= (Assert(˜(L === null)) ˜> Assume(˜(S === nil) /\ head(S) === F)
˜> answer([L + 1, node . next, n F] ** list(tail(S))(n F) ** H ** #(n n F), node . data, F)) .

eq derive((list(S)(L) ** H ** #(F)), L + 1)
= (Assert(˜(L === null)) ˜> Assume(˜(S === nil) /\ head(S) === F)
˜> answer([L, node . data, F] ** list(tail(S))(n F) ** H ** #(n n F), node . next, n F)) .

crl (Cond,Subst) |- H’ := H ** [L, node . data, V] ** [L1, node . next, L2] ** list(S)(L’)
=> (Cond,Subst) |- H’ := H ** list(oneElemSeq(V) :: S)(L) if VALID(Cond => L1 === L + 1 /\ L’ === L2) .

crl (Cond,Subst) |- H’ := H ** [L, node . data, V] ** [L1, node . next, L’]
=> (Cond,Subst) |- H’ := H ** list(oneElemSeq(V))(L) if VALID(Cond => L1 === L + 1 /\ L’ === null) .

---------------
--- node(L) ---
---------------
---
--- [node(L) ** H] = [[L, (V,L’)] ** H]
---
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eq assumeCond(node(L)) = dot .
ceq (Cond,Subst) |- H’ := H ** node(L) = (Cond,Subst) |- H’ := H if VALID(Cond => L === null) .
ceq (Cond,Subst) |- H’ ** node(L) := H = (Cond,Subst) |- H’ := H if VALID(Cond => L === null) .

eq derive(node(L) ** H ** #(F), L)
= (Assert(˜(L === null)) ˜> answer([L + 1, node . next, n F] ** H ** #(n n F), node . data, F)) .

eq derive(node(L) ** H ** #(F), L + 1)
= (Assert(˜(L === null)) ˜> answer([L, node . data, F] ** H ** #(n n F), node . next, n F)) .

crl (Cond,Subst) |- H’ := H ** [L,node . data,V] ** [L1,node . next,L’]
=> (Cond,Subst) |- H’ := H ** node(L) if VALID(Cond => L1 === L + 1) .

------------------
--- node(V)(L) ---
------------------
---
--- [node(V)(L) ** H] = [[L, (V,L’)] ** H]
---
--- ceq (Cond,Subst) |- H’ := H ** node(V)(L) = (Cond,Subst) |- H’ := H if VALID(Cond => L === null) .
--- ceq (Cond,Subst) |- H’ ** node(V)(L) := H = (Cond,Subst) |- H’ := H if VALID(Cond => L === null) .

eq assumeCond(node(V)(L)) = Assume(˜(L === null)) .

eq derive(node(V)(L) ** H ** #(F), L)
= (Assert(˜(L === null)) ˜> answer([L + 1, node . next, F] ** H ** #(n F), node . data, V)) .

eq derive(node(V)(L) ** H ** #(F), L + 1)
= (Assert(˜(L === null)) ˜> answer([L, node . data, V] ** H ** #(n F), node . next, F)) .

crl (Cond,Subst) |- H’ := H ** [L,node . data,V] ** [L1,node . next,L’]
=> (Cond /\ ˜(L === null), Subst) |- H’ := H ** node(V)(L) if VALID(Cond => L1 === L + 1) .

----------------
--- queue(L) ---
----------------
---
--- [queue(L) ** H] = [[L, (Q,Q’)] ** seq(L’)(Q,Q’) ** H]
---

eq assumeCond(queue(L)) = dot .

ceq (Cond,Subst) |- H’ := H ** queue(L) = (Cond,Subst) |- H’ := H if VALID(Cond => L === null) .
ceq (Cond,Subst) |- H’ ** queue(L) := H = (Cond,Subst) |- H’ := H if VALID(Cond => L === null) .

eq derive(queue(L) ** H ** #(F), L)
= (Assert(˜(L === null))
˜> cases(answer([L + 1, queue . tail, null] ** H ** #(F), queue . head, null),

Assume(˜(F === null) /\ ˜(n F === null))
˜> answer([L + 1, queue . tail, n F] ** seq(n n F)(F,n F) ** H ** #(n n n F), queue . head, F))) .

eq derive(queue(L) ** H ** #(F), L + 1)
= (Assert(˜(L === null))
˜> cases(answer([L, queue . head, null] ** H ** #(F), queue . tail, null),

Assume(˜(F === null) /\ ˜(n F === null))
˜> answer([L, queue . head, F] ** seq(n n F)(F,n F) ** H ** #(n n n F), queue . tail, n F))) .

crl (Cond,Subst) |- H’ := H ** [L,queue . head,L’] ** [L1,queue . tail,L1’]
=> (Cond,Subst) |- H’ := H ** queue(L)
if VALID(Cond => L1 === L + 1 /\ L’ === null /\ L1’ === null) .

crl (Cond,Subst) |- H’ := H ** [L,queue . head,L’] ** [L1,queue . tail,L1’] ** seq(L2)(L’,L1’)
=> (Cond,Subst) |- H’ := H ** queue(L) if VALID(Cond => L1 === L + 1) .

-------------------
--- queue(S)(L) ---
-------------------
eq assumeCond(queue(S)(L)) = cases(Assume(S === nil), Assume(˜(S === nil) /\ ˜(L === null))) .

ceq (Cond,Subst) |- H’ := H ** queue(S)(L) = (Cond /\ S === nil,Subst) |- H’ := H if VALID(Cond => L === null) .
ceq (Cond,Subst) |- H’ ** queue(S)(L) := H
= (Cond,(Subst,checkAndMakeSubst(Cond,Subst,S,nil))) |- H’[checkAndMakeSubst(Cond,Subst,S,nil)] := H if VALID(Cond => L === null) .

eq derive(queue(S)(L) ** H ** #(F), L)
= (Assert(˜(L === null))

37



˜> cases(Assume(S === nil) ˜> answer([L + 1, queue . tail, null] ** H ** #(F), queue . head, null),
Assume(˜(S === nil) /\ ˜(F === null) /\ ˜(n F === null))
˜> answer([L + 1, queue . tail, n F] ** seq(S,n n F)(F,n F) ** H ** #(n n n F), queue . head, F))) .

eq derive(queue(S)(L) ** H ** #(F), L + 1)
= (Assert(˜(L === null))
˜> cases(Assume(S === nil) ˜> answer([L, queue . head, null] ** H ** #(F), queue . tail, null),

Assume(˜(S === nil) /\ ˜(F === null) /\ ˜(n F === null))
˜> answer([L, queue . head, F] ** seq(S,n n F)(F,n F) ** H ** #(n n n F), queue . tail, n F))) .

crl (Cond,Subst) |- H’ := H ** [L,queue . head,L’] ** [L1,queue . tail,L1’]
=> (Cond,Subst) |- H’ := H ** queue(nil)(L)
if VALID(Cond => L1 === L + 1 /\ L’ === null /\ L1’ === null) .

crl (Cond,Subst) |- H’ := H ** [L,queue . head,L’] ** [L1,queue . tail,L1’] ** seq(S,L2)(L’,L1’)
=> (Cond,Subst) |- H’ := H ** queue(S)(L) if VALID(Cond => L1 === L + 1) .

---------------------
--- seq(L)(L1,L2) ---
---------------------

eq assumeCond(seq(L)(L1,L2)) = Assume(˜(L1 === null) /\ ˜(L2 === null)) .

eq derive(seq(L)(L1,L2) ** H ** #(F), L1)
= cases(Assume(L1 === L2) ˜> answer([L1 + 1,node . next,L] ** H ** #(n F), node . data, F),

Assume(˜(L1 === L2)) ˜> answer([L1 + 1,node . next,n F] ** seq(L)(n F,L2) ** H ** #(n n F), node . data, F)) .

eq derive(seq(L)(L1,L2) ** H ** #(F), L1 + 1)
= cases(Assume(L1 === L2) ˜> answer([L1,node . data,F] ** H ** #(n F), node . next, L),

Assume(˜(L1 === L2)) ˜> answer([L1,node . data,F] ** seq(L)(n F,L2) ** H ** #(n n F), node . next, n F)) .

eq derive(seq(L)(L1,L2) ** H ** #(F), L2 + 1)
= cases(Assume(L1 === L2) ˜> answer([L1,node . data,F] ** H ** #(F), node . next, L),

Assume(˜(L1 === L2)) ˜> answer(seq(L2)(L1,n F) ** [L2,node . data,F] ** H ** #(n n F), node . next, L)) .

crl (Cond,Subst) |- H’ := H ** [L,node . data,V] ** [L1,node . next,L’]
=> (Cond,Subst) |- H’ := H ** seq(L’)(L,L) if VALID(Cond => L1 === L + 1) .

crl (Cond,Subst) |- H’ := H ** seq(L)(L1,L2) ** seq(L’)(L1’,L2’)
=> (Cond,Subst) |- H’ := H ** seq(L’)(L1,L2’) if VALID(Cond => L1’ === L) .

crl (Cond,Subst) |- H’ := H ** node(L) ** #(F)
=> (Cond,Subst) |- H’ := H ** seq(F)(L,L) ** #(n F) if VALID(Cond => ˜(L === null)) .

--- something more general may replace the rule below; for now it is good enough
crl (Cond,Subst) |- H’ ** list(L) ** seq(L)(L1,L2) := H
=> (Cond,Subst) |- H’ ** list(L1) := H if VALID(Cond => ˜(L1 === null)) .

crl (Cond,Subst) |- H’ := H ** list(L) ** seq(L)(L1,L2)
=> (Cond,Subst) |- H’ := H ** list(L1) if VALID(Cond => ˜(L1 === null)) .

-----------------------
--- seq(S,L)(L1,L2) ---
-----------------------
eq assumeCond(seq(S,L)(L1,L2)) = Assume(˜(L1 === null) /\ ˜(L2 === null) /\ ˜(S === nil)) .

eq derive(seq(S,L)(L1,L2) ** H ** #(F), L1)
= (Assume(˜(S === nil)) ˜>
cases(Assume(L1 === L2) ˜> Assume(S === oneElemSeq(F)) ˜> answer([L1 + 1,node . next,L] ** H ** #(n F), node . data, F),

Assume(˜(L1 === L2)) ˜> Assume(head(S) === F)
˜> answer([L1 + 1,node . next,n F] ** seq(tail(S),L)(n F,L2) ** H ** #(n n F), node . data, F))) .

eq derive(seq(S,L)(L1,L2) ** H ** #(F), L1 + 1)
= (Assume(˜(S === nil)) ˜>
cases(Assume(L1 === L2) ˜> Assume(S === oneElemSeq(F)) ˜> answer([L1,node . data,F] ** H ** #(F), node . next, L),

Assume(˜(L1 === L2)) ˜> Assume(head(S) === F)
˜> answer([L1,node . data,F] ** seq(tail(S),L)(n F,L2) ** H ** #(n n F), node . next, n F))) .

eq derive(seq(S,L)(L1,L2) ** H ** #(F), L2 + 1)
= (Assume(˜(S === nil)) ˜>
cases(Assume(L1 === L2) ˜> Assume(S === oneElemSeq(F)) ˜> answer([L1,node . data,F] ** H ** #(n F), node . next, L),

Assume(˜(L1 === L2)) ˜> Assume(last(S) === F)
˜> answer(seq(pref(S),L2)(L1,n F) ** [L2,node . data,F] ** H ** #(n n F), node . next, L))) .

crl (Cond,Subst) |- H’ := H ** [L,node . data,V] ** [L1,node . next,L’]
=> (Cond,Subst) |- H’ := H ** seq(oneElemSeq(V),L’)(L,L) if VALID(Cond => L1 === L + 1) .
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crl (Cond,Subst) |- H’ := H ** seq(S1,L)(L1,L2) ** seq(S2,L’)(L1’,L2’)
=> (Cond,Subst) |- H’ := H ** seq(S1 :: S2, L’)(L1,L2’) if VALID(Cond => L1’ === L) .

--- crl (Cond,Subst) |- H’ := H ** node(V)(L) ** #(F)
--- => (Cond,Subst) |- H’ := H ** seq(oneElemSeq(V),F)(L,L) ** #(n F) if VALID(Cond => ˜(L === null)) .
rl (Cond,Subst) |- H’ := H ** node(V)(L) ** #(F) => (Cond /\ ˜(L === null), Subst) |- H’ := H ** seq(oneElemSeq(V),F)(L,L) ** #(n F) .

--- something more general may replace the rule below; for now it is good enough
--- crl (Cond,Subst) |- H’ := H ** list(S)(L) ** #(F)
--- => (Cond,Subst) |- H’ := H ** seq(head(S),F)(L,L) ** list(tail(S))(F) ** #(n F) if VALID(Cond => ˜(L === null)) .

crl (Cond,Subst) |- H’ ** seq(S1,L1)(L,L) := H ** list(S)(L) ** #(F)
=> (Cond,(Subst,checkAndMakeSubst(Cond,Subst,(S1,L1),(oneElemSeq(head(S)),F))))
|- H’[checkAndMakeSubst(Cond,Subst,(S1,L1),(oneElemSeq(head(S)),F))] := H ** list(tail(S))(F) ** #(n F)
if VALID(Cond => ˜(L === null)) .

rl (Cond,Subst) |- H’ ** list(S)(L) := H ** seq(S1,L1)(L,L) ** #(F)
=> (Cond,(Subst,checkAndMakeSubst(Cond,Subst,(S),(S1 :: F))))
|- H’[checkAndMakeSubst(Cond,Subst,(S),(S1 :: F))] ** list(F)(L1) := H ** #(n F) .

rl (Cond,Subst) |- H’ ** seq(S,L)(L1,L3) := H ** seq(S1,L3)(L1,L2) ** list(S3)(L3) ** #(F)
=> (Cond,(Subst,checkAndMakeSubst(Cond,Subst,(S,L),((S1 :: oneElemSeq(head(S3))),F))))
|- H’[checkAndMakeSubst(Cond,Subst,(S,L),((S1 :: oneElemSeq(head(S3))),F))] := H ** list(tail(S3))(F) ** #(n F) .

***(
crl (Cond,Subst) |- H’ ** list(S2)(L) ** seq(S1,L)(L1,L2) := H
=> (Cond,Subst) |- H’ ** list(S1 :: S2)(L1) := H if VALID(Cond => ˜(L1 === null)) .

***)

crl (Cond,Subst) |- H’ := list(S2)(L) ** seq(S1,L)(L1,L2) ** H
=> (Cond,Subst) |- H’ := list(S1 :: S2)(L1) ** H if VALID(Cond => ˜(L1 === null)) .

---------------
--- tree(L) ---
---------------
eq assumeCond(tree(L)) = dot .

ceq (Cond,Subst) |- H’ := H ** tree(L) = (Cond,Subst) |- H’ := H if VALID(Cond => (L === null)) .
ceq (Cond,Subst) |- H’ ** tree(L) := H = (Cond,Subst) |- H’ := H if VALID(Cond => (L === null)) .

eq derive((tree(L) ** H ** #(F)), L)
= (Assert(˜(L === null))
˜> answer([L + 1, tree . left, n F] ** tree(n F) ** [L + 2, tree . right, n n F] ** tree(n n F) ** H ** #(n n n F), tree . data, F)) .

eq derive((tree(L) ** H ** #(F)), L + 1)
= (Assert(˜(L === null))
˜> answer([L, tree . data, F] ** tree(n F) ** [L + 2, tree . right, n n F] ** tree(n n F) ** H ** #(n n n F), tree . left, n F)) .

eq derive((tree(L) ** H ** #(F)), L + 2)
= (Assert(˜(L === null))
˜> answer([L, tree . data, F] ** [L + 1, tree . left, n F] ** tree(n F) ** tree(n n F) ** H ** #(n n n F), tree . right, n n F)) .

crl (Cond,Subst) |- H’ := H ** [L, tree . data, V] ** [L1, tree . left, L1’] ** tree(L1’’) ** [L2, tree . right, L2’] ** tree(L2’’)
=> (Cond,Subst) |- H’ := H ** tree(L) if VALID(Cond => L1 === L + 1 /\ L2 === L + 2 /\ L1’ === L1’’ /\ L2’ === L2’’) .

crl (Cond,Subst) |- H’ := H ** [L, tree . data, V] ** [L1, tree . left, L1’] ** [L2, tree . right, L2’] ** tree(L2’’)
=> (Cond,Subst) |- H’ := H ** tree(L) if VALID(Cond => L1 === L + 1 /\ L2 === L + 2 /\ L1’ === null /\ L2’ === L2’’) .

crl (Cond,Subst) |- H’ := H ** [L, tree . data, V] ** [L1, tree . left, L1’] ** tree(L1’’) ** [L2, tree . right, L2’]
=> (Cond,Subst) |- H’ := H ** tree(L) if VALID(Cond => L1 === L + 1 /\ L2 === L + 2 /\ L1’ === L1’’ /\ L2’ === null) .

crl (Cond,Subst) |- H’ := H ** [L, tree . data, V] ** [L1, tree . left, L1’] ** [L2, tree . right, L2’]
=> (Cond,Subst) |- H’ := H ** tree(L) if VALID(Cond => L1 === L + 1 /\ L2 === L + 2 /\ L1’ === null /\ L2’ === null) .

------------------
--- tree(S)(L) ---
------------------
eq assumeCond(tree(S)(L)) = cases(Assume(S === emptyTree /\ (L === null)), Assume(˜(S === emptyTree) /\ ˜(L === null))) .
ceq (Cond,Subst) |- H’ := H ** tree(S)(L) = (Cond /\ S === emptyTree, Subst) |- H’ := H if VALID(Cond => (L === null)) .
ceq (Cond,Subst) |- H’ ** tree(S)(L) := H
= (Cond,(Subst,checkAndMakeSubst(Cond,Subst,S,emptyTree))) |- H’ := H if VALID(Cond => (L === null)) .

eq derive((tree(S)(L) ** H ** #(F)), L)
= (Assert(˜(L === null)) ˜> Assume(˜(S === emptyTree) /\ Data(S) === F)
˜> answer([L + 1, tree . left, n F] ** tree(Left(S))(n F) ** [L + 2, tree . right, n n F]

39



** tree(Right(S))(n n F) ** H ** #(n n n F), tree . data, F)) .

eq derive((tree(S)(L) ** H ** #(F)), L + 1)
= (Assert(˜(L === null)) ˜> Assume(˜(S === emptyTree) /\ Data(S) === F)
˜> answer([L, tree . data, F] ** tree(Left(S))(n F) ** [L + 2, tree . right, n n F]

** tree(Right(S))(n n F) ** H ** #(n n n F), tree . left, n F)) .

eq derive((tree(S)(L) ** H ** #(F)), L + 2)
= (Assert(˜(L === null)) ˜> Assume(˜(S === emptyTree) /\ Data(S) === F)
˜> answer([L, tree . data, F] ** [L + 1, tree . left, n F] ** tree(Left(S))(n F)

** tree(Right(S))(n n F) ** H ** #(n n n F), tree . right, n n F)) .

crl (Cond,Subst) |- H’ := H ** [L, tree . data, V] ** [L1, tree . left, L1’] ** tree(S1)(L1’’) ** [L2, tree . right, L2’] ** tree(S2)(L2’’)
=> (Cond,Subst) |- H’ := H ** tree(Tree(V,S1,S2))(L) if VALID(Cond => L1 === L + 1 /\ L2 === L + 2 /\ L1’ === L1’’ /\ L2’ === L2’’) .

crl (Cond,Subst) |- H’ := H ** [L, tree . data, V] ** [L1, tree . left, L1’] ** [L2, tree . right, L2’] ** tree(S2)(L2’’)
=> (Cond,Subst) |- H’ := H ** tree(Tree(V,emptyTree,S2))(L) if VALID(Cond => L1 === L + 1 /\ L2 === L + 2 /\ L1’ === null /\ L2’ === L2’’) .

crl (Cond,Subst) |- H’ := H ** [L, tree . data, V] ** [L1, tree . left, L1’] ** tree(S1)(L1’’) ** [L2, tree . right, L2’]
=> (Cond,Subst) |- H’ := H ** tree(Tree(V,S1,emptyTree))(L) if VALID(Cond => L1 === L + 1 /\ L2 === L + 2 /\ L1’ === L1’’ /\ L2’ === null) .

crl (Cond,Subst) |- H’ := H ** [L, tree . data, V] ** [L1, tree . left, L1’] ** [L2, tree . right, L2’]
=> (Cond,Subst) |- H’ := H ** tree(Tree(V,emptyTree,emptyTree))(L) if VALID(Cond => L1 === L + 1 /\ L2 === L + 2 /\ L1’ === null /\ L2’ === null) .

***(
--------------------------
--- generic data stack ---
--------------------------
eq stack[HDef](L) ** #(F) = stack[HDef](L)[stack[HDef] . data = F, stack[HDef] . next = n(F)] ** #(n(n(F))) .
ceq Cond |- H’ := H ** stack[HDef](L)[?:[Fields]] = Cond |- H’ := H if VALID(Cond => (L === null)) .
ceq Cond |- H’ ** stack[HDef](L) := H = Cond |- H’ := H if VALID(Cond => (L === null)) .

eq derive((stack[HDef](L)[stack[HDef] . data = F1, stack[HDef] . next = F2] ** H), L)
= (Assert(˜(L === null)) ˜> Assume(˜(F1 === null))
˜> answer([L + 1, stack[HDef] . next, F2] ** stack[HDef](F2) ** HDef(F1) ** H, stack[HDef] . data, F1)) .

eq derive((stack[HDef](L)[stack[HDef] . data = F1, stack[HDef] . next = F2] ** H), L + 1)
= (Assert(˜(L === null)) ˜> Assume(˜(F1 === null))
˜> answer([L, stack[HDef] . data, F1] ** stack[HDef](F2) ** HDef(F1) ** H, stack[HDef] . next, F2)) .

crl Cond |- H’ := H ** [L, stack[HDef] . data, V] ** [L1, stack[HDef] . next, L2] ** stack[HDef](L’)[?:[Fields]] ** HDef(V)[?’:[Fields]]
=> Cond |- H’ := H ** stack[HDef](L)[?] if VALID(Cond => ˜(V === null) /\ L1 === L + 1 /\ L’ === L2) .

crl Cond |- H’ := H ** [L, stack[HDef] . data, V] ** [L1, stack[HDef] . next, L’] ** HDef(V)[?’:[Fields]]
=> Cond |- H’ := H ** stack[HDef](L)[?] if VALID(Cond => ˜(V === null) /\ L1 === L + 1 /\ L’ === null) .

***)

---------------------
--- List examples ---
---------------------

eq wrong =
--- wrong(list * a)
--- accesses * a without checking whether a is null or not

//@ assume([list(a)]) ;
--- comment line below and it will not work

if (a != null) {
*(a + 1) = a ;

}
.

---endm
---rew [| wrong |] .
---q

eq addHead =
--- list * addHead(list * a, node * n)
--- prepends n as new head to a; n must be different from null
*** requires n != null && [(node(n) ** list(a))]
*** ensures [list(n)]

//@ assume n != null && [(node(n) ** list(a))] ;
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*(n + 1) = a ;
--- return(n)

//@ assert [list(n)]
.

---endm
---rew [| addHead |] .
---q

op addHeadComplete : -> K .
eq addHeadComplete =

--- list * addHead(list * a, node * n)
--- prepends n as new head to a; n must be different from null
*** requires [(node(e)(n) ** list(sa)(a))]
*** ensures [list(oneElemSeq(e) :: sa)(n)]

//@ assume [(node(e)(n) ** list(sa)(a))] ;
*(n + 1) = a ;

--- return(n)
//@ assert [list(oneElemSeq(e) :: sa)(n)]

.

---endm
---rew [| addHeadComplete |] .
---q

eq allocAndAddHead =
--- list * allocAndAddHead(list * a, data k)
--- allocs a new node containing k, then links it to a and returns the larger list
*** requires [list(a)]
*** ensures result != null && [list(result)]

//@ assume [list(a)] ;
x = alloc(node . data, node . next) ;
* x = k ;
*(x + 1) = a ;
result = x ;
//@ assert result != null && [list(result)]

.

---endm
---rew [| allocAndAddHead |] .
---q

op allocAndAddHeadComplete : -> K .
eq allocAndAddHeadComplete =

--- list * allocAndAddHead(list * a, data k)
--- allocs a new node containing k, then links it to a and returns the larger list
*** requires [list(sa)(a)]
*** ensures result != null && [list(oneElemSeq(k) :: sa)(result)]

//@ assume [list(sa)(a)] ;
x = alloc(node . data, node . next) ;
* x = k ;
*(x + 1) = a ;
result = x ;
//@ assert result != null && [list(oneElemSeq(k) :: sa)(result)]

.

---endm
---rew [| allocAndAddHeadComplete |] .
---q

eq appendRec1 =
--- append1(list * a, list * b)
--- appends list b to the end of list a; b can be null, but a cannot be null
*** requires a != null && [list(a) ** list(b)]
*** ensures [list(a)]

//@ assume a != null && [list(a) ** list(b) ** rest] ;
if (*(a + 1) == null) {
*(a + 1) = b ;

--- return()
//@ assert [list(a) ** rest] ;
stop

} ;
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--- append(*(a + 1), b)
//@ assert *(a + 1) != null && [list(*(a + 1)) ** list(b) ** ?frame] ;
//@ assume [list(*(a + 1)) ** ?frame] ;

--- return()
//@ assert [list(a) ** rest]

.

---endm
---rew [| appendRec1 |] .
---q

op appendRec1Complete : -> K .
eq appendRec1Complete =

--- append1(list * a, list * b)
--- appends list b to the end of list a; b can be null, but a cannot be null
*** requires a != null && [list(sa)(a) ** list(sb)(b)]
*** ensures [list(sa :: sb)(a)]

//@ assume a != null && [list(sa)(a) ** list(sb)(b) ** frame] ;
if (*(a + 1) == null) {
*(a + 1) = b ;

--- return()
//@ assert [list(sa :: sb)(a) ** frame] ;
stop

} ;
--- append(*(a + 1), b)

//@ assert *(a + 1) != null && [list(?sa)(*(a + 1)) ** list(?sb)(b) ** ?frame] ;
//@ assume [list(?sa :: ?sb)(*(a + 1)) ** ?frame] ;

--- return()
//@ assert [list(sa :: sb)(a) ** frame]

.

---endm
---rew [| appendRec1Complete |] .
---q

eq appendWhile1 =
--- append1(list * a, list * b)
--- appends list b to the end of list a; b can be null, but a cannot be null
*** requires a != null && [list(a) ** list(b)]
*** ensures [list(a)]

//@ assume a != null && [list(a) ** list(b)] ;
x = a ;
//@ inv a != null && [seq(?z)(a,x) ** list(?z) ** ?frame]
while (*(x + 1) != null) {
x = *(x + 1) ;

} ;
*(x + 1) = b ;
//@ assert [list(a)]

.

---endm
---rew [| appendWhile1 |] .
---q

ops ?sax ?sz : -> FreshVar .

op appendWhile1Complete : -> K .
eq appendWhile1Complete =

--- append1(list * a, list * b)
--- appends list b to the end of list a; b can be null, but a cannot be null
*** requires a != null && [list(sa)(a) ** list(sb)(b)]
*** ensures [list(sa :: sb)(a)]

//@ assume a != null && [list(sa)(a) ** list(sb)(b)] ;
x = a ;
//@ inv a != null && [seq(?sax,?z)(a,x) ** list(?sz)(?z) ** ?frame] && sa == ?sax :: ?sz
while (*(x + 1) != null) {
x = *(x + 1) ;

} ;
*(x + 1) = b ;
//@ assert [list(sa :: sb)(a)]

.

---endm
---rew [| appendWhile1Complete |] .
---q
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eq appendRec2 =
--- list * append2(list * a, list * b)
--- this one returns a poiter to a list appendig a and b, so a can also be null
*** requires [list(a) ** list(b)]
*** ensures [list(result)]

//@ assume [list(a) ** list(b)] ;
if (a == null) {

--- return(b) ;
result = b ;
//@ assert [list(result)] ;
stop

} ;
--- x = append(a -> next,b)

//@ assert [list(*(a + 1)) ** list(b) ** ?frame] ;
//@ assume [list(x) ** ?frame] ;
*(a + 1) = x ;

--- return(a)
result = a ;
//@ assert [list(result)] ;

.

---endm
---rew [| appendRec2 |] .
---q

op appendRec2Complete : -> K .
eq appendRec2Complete =
--- list * append2(list * a, list * b)
--- this one returns a poiter to a list appendig a and b, so a can also be null
*** requires [list(sa)(a) ** list(sb)(b)]
*** ensures [list(sa :: sb)(result)]

//@ assume [list(sa)(a) ** list(sb)(b)] ;
if (a == null) {

--- return(b) ;
result = b ;
//@ assert [list(sa :: sb)(result)] ;
stop

} ;
--- x = append(a -> next,b)

//@ assert [list(?sa)(*(a + 1)) ** list(?sb)(b) ** ?frame] ;
//@ assume [list(?sa :: ?sb)(x) ** ?frame] ;
*(a + 1) = x ;

--- return a
result = a ;
//@ assert [list(sa :: sb)(result)] ;

.

---endm
---rew [| appendRec2Complete |] .
---q

eq appendWhile2 =
--- list * append2(list * a, list * b)
--- this one returns a poiter to a list appendig a and b, so a can also be null
*** requires [list(sa)(a) ** list(sb)(b)]
*** ensures [list(sa :: sb)(result)]

//@ assume [list(a) ** list(b)] ;
if (a == null) {

--- return(b) ;
result = b ;
//@ assert [list(result)] ;
stop

} ;
x = a ;
//@ inv a != null && [seq(?z)(a,x) ** list(?z) ** ?frame]
while (*(x + 1) != null) {
x = *(x + 1)

} ;
*(x + 1) = b ;

--- return(a)
result = a ;
//@ assert [list(result)]

.
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---endm
---rew [| appendWhile2 |] .
---q

op appendWhile2Complete : -> K .
eq appendWhile2Complete =

--- list * append2(list * a, list * b)
--- this one returns a poiter to a list appendig a and b, so a can also be null
*** requires [list(sa)(a) ** list(sb)(b)]
*** ensures [list(sa :: sb)(result)]

//@ assume [list(sa)(a) ** list(sb)(b)] ;
if (a == null) {

--- return(b) ;
result = b ;
//@ assert [list(sa :: sb)(result)] ;
stop

} ;
x = a ;
//@ inv a != null && [seq(?sax,?z)(a,x) ** list(?sz)(?z) ** ?frame] && sa == ?sax :: ?sz
while (*(x + 1) != null) {
x = *(x + 1)

} ;
*(x + 1) = b ;

--- return(a)
result = a ;
//@ assert [list(sa :: sb)(result)]

.

---endm
---rew [| appendWhile2Complete |] .
---q

eq reverse1 =
--- list * reverse(list * a)
--- this is a "functional" implementation of return, very inefficient; uses append, though.
*** requires [list(a)]
*** ensures [list(result)]

//@ assume [list(a)] ;
if (a == null) {

--- return(null)
result = null ;
//@ assert [list(result)] ;
stop

} ;
if (*(a + 1) == null) {

--- return(a)
result = a ;
//@ assert [list(result)] ;
stop

} ;
x = *(a + 1) ;
*(a + 1) = null ;

--- reverse1(x)
//@ assert [list(x) ** ?frame] ;
//@ assume [list(x) ** ?frame] ;

--- append1(x,a) ;
//@ assert x != null && [list(x) ** list(a) ** ?frame1] ;
//@ assume [list(x) ** ?frame1] ;

--- return(x)
result = x ;
//@ assert [list(result)]

.

---endm
---rew [| reverse1 |] .
---q

ops ?sx ?sx1 : -> FreshVar .

op reverse1Complete : -> K .
eq reverse1Complete =

--- list * reverse(list * a)
--- this is a "functional" implementation of return, very inefficient; uses append, though.
*** requires [list(sa)(a)]
*** ensures [list(reverse(sa))(result)]
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//@ assume [list(sa)(a)] ;
if (a == null) {

--- return(null)
result = null ;
//@ assert [list(reverse(sa))(result)] ;
stop

} ;
if (*(a + 1) == null) {

--- return(a)
result = a ;
//@ assert [list(reverse(sa))(result)] ;
stop

} ;
x = *(a + 1) ;
*(a + 1) = null ;

--- reverse1(x)
//@ assert [list(?sx)(x) ** ?frame] ;
//@ assume [list(reverse(?sx))(x) ** ?frame] ;

--- append1(x,a) ;
//@ assert x != null && [list(?sx1)(x) ** list(?sa)(a) ** ?frame1] ;
//@ assume [list(?sx1 :: ?sa)(x) ** ?frame1] ;

--- return(x)
result = x ;
//@ assert [list(reverse(sa))(result)]

.

---endm
---rew [| reverse1Complete |] .
---q

eq reverse2 =
--- list * reverse(list * a, list * r)
--- this is a more efficient recursive implementation of reverse, based on an auxilliary accumulator
*** requires [list(a) ** list(r)]
*** ensures [list(result)]

//@ assume [list(a) ** list(r)] ;
if (a == null) {

--- return(r)
result = r ;
//@ assert [list(result)] ;
stop

} ;
t = *(a + 1) ;
*(a + 1) = r ;

--- return(reverse(t,a)), which is equivalent to result = reverse(t,a)
//@ assert [list(t) ** list(a) ** ?frame] ;
//@ assume [list(result) ** ?frame] ;
//@ assert [list(result)]

.

---endm
---rew [| reverse2 |] .
---q

op sr : -> Var .
op ?st : -> FreshVar .

op reverse2Complete : -> K .
eq reverse2Complete =

--- list * reverse(list * a, list * r)
--- this is a more efficient recursive implementation of reverse, based on an auxilliary accumulator
*** requires [list(sa)(a) ** list(sr)(r)]
*** ensures [list(reverse(sa) :: sr)(result)]

//@ assume [list(sa)(a) ** list(sr)(r)] ;
if (a == null) {

--- return(r)
result = r ;
//@ assert [list(reverse(sa) :: sr)(result)] ;
stop

} ;
t = *(a + 1) ;
*(a + 1) = r ;

--- return(reverse(t,a)), which is equivalent to result = reverse(t,a)
//@ assert [list(?st)(t) ** list(?sa)(a) ** ?frame] ;
//@ assume [list(reverse(?st) :: ?sa)(result) ** ?frame] ;
//@ assert [list(reverse(sa) :: sr)(result)]

.
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---endm
---rew [| reverse2Complete |] .
---q

eq reverseWhile =
--- list * reverse(list * a)
*** requires [list(a)]
*** ensures [list(result)]

//@ assume [list(a)] ;
if (a == null) {

--- return(null)
result = null ;
//@ assert [list(result)] ;
stop

} ;
x = a ;
y = *(a + 1) ;
*(x + 1) = null ;
//@ inv [list(x) ** list(y) ** ?frame]
while (y != null) {
t = *(y + 1) ;
*(y + 1) = x ;
x = y ;
y = t

} ;
--- return(x)

result = x ;
//@ assert [list(result)]

.

---endm
---rew [| reverseWhile |] .
---q

op ?sy : -> FreshVar .

op reverseWhileComplete : -> K .
eq reverseWhileComplete =

--- list * reverse(list * a)
*** requires [list(sa)(a) ** rest]
*** ensures [list(reverse(sa))(result) ** rest]

//@ assume [list(sa)(a) ** rest] ;
if (a == null) {

--- return(null)
result = null ;
//@ assert [list(reverse(sa))(result) ** rest] ;
stop

} ;
x = a ;
y = *(a + 1) ;
*(x + 1) = null ;
//@ inv [list(?sx)(x) ** list(?sy)(y) ** ?frame] && reverse(sa) == reverse(?sy) :: ?sx
while (y != null) {
t = *(y + 1) ;
*(y + 1) = x ;
x = y ;
y = t

} ;
--- return(x)

result = x ;
//@ assert [list(reverse(sa))(result) ** rest]

.

---endm
---rew [| reverseWhileComplete |] .
---q

eq disposeList =
--- disposeList(list * a)
*** requires [list(a)]
*** ensures [empty]

//@ assume [list(a)] ;
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if (a != null) {
--- dispose(*(a + 1))

//@ assert [list(*(a + 1)) ** ?frame] ;
//@ assume [?frame] ;
free(a) ; free(a + 1) ;

} ;
//@ assert [empty]

.

---endm
---rew [| disposeList |] .
---q

eq disposeListWhile =
--- disposeList(list * a)
*** requires [list(a)]
*** ensures [empty]

//@ assume [list(a)] ;
//@ inv [list(a) ** ?frame]
while (a != null) {
b = *(a + 1) ;
free(a) ; free(a + 1) ;
a = b

} ;
//@ assert [empty]

.

---endm
---rew [| disposeListWhile |] .
---q

----------------------
--- Queue examples ---
----------------------

eq enqueue =
--- enqueue(queue * q, node * n)
--- //@ assumes q != null and n != null, and appends n to the queue
--- if the queue is empty, i.e., * q = null and *(q+1) = null, then it initializes it with the node n
*** requires q != null && n != null && [queue(q) ** node(n)]
*** ensures [queue(q)]

//@ assume q != null && n != null && [queue(q) ** node(n)] ;
if (* q == null) {
* q = n ;
*(q + 1) = n ;

--- return()
//@ assert [queue(q)] ;
stop

} ;
*(*(q + 1) + 1) = n ;
*(q + 1) = n ;

--- return()
//@ assert [queue(q)]

.

---endm
---rew [| enqueue |] .
---q

op enqueueComplete : -> K .
eq enqueueComplete =

--- enqueue(queue * q, node * n)
--- //@ assumes q != null and n != null, and appends n to the queue
--- if the queue is empty, i.e., * q = null and *(q+1) = null, then it initializes it with the node n
*** requires q != null && n != null && [queue(sq)(q) ** node(e)(n)]
*** ensures [queue(sq :: oneElemSeq(e))(q)]

//@ assume q != null && n != null && [queue(sq)(q) ** node(e)(n)] ;
if (* q == null) {
* q = n ;
*(q + 1) = n ;

--- return()
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//@ assert [queue(sq :: oneElemSeq(e))(q)] ;
stop

} ;
*(*(q + 1) + 1) = n ;
*(q + 1) = n ;

--- return()
//@ assert [queue(sq :: oneElemSeq(e))(q)]

.

---endm
---rew [| enqueueComplete |] .
---q

eq dequeue =
--- node * dequeue(queue * q)
--- if q == null or q empty it returns null
--- if q has elements then it returns the first element and modifies q into "q - n"
*** requires [queue(q)]
*** ensures [queue(q) ** node(return)]

//@ assume [queue(q)] ;
if (q == null) {

--- return(null)
return = null ;
//@ assert [queue(q) ** node(return)] ;
stop

} ;
if (* q == null) {

--- return(null)
return = null ;
//@ assert [queue(q) ** node(return)] ;
stop

} ;
if (* q == *(q + 1)) {
r = * q ;
* q = null ;
*(q + 1) = null ;

--- a bit of help here: access(exp) does nothing but symbolically evaluates exp and then discards its value.
--- the reason for doing so is to "roll" the heap; this is needed for the next //@ assert, which needs r to be
--- extracted from the sequence associated to the queue in order to unroll it into a node.
--- I could also do this automatically whenever anything else fails, but for now this is acceptable.

//@ access(* r) ; --- the followig also works: * r = * r ;
--- return(r)

return = r ;
//@ assert [queue(q) ** node(return)] ;
stop

} ;
r = * q ;
* q = *(r + 1) ;

--- return(r)
//@ assert [queue(q) ** node(r)]

.

---endm
---rew [| dequeue |] .
---q

op dequeueComplete : -> K .
eq dequeueComplete =

--- node * dequeue(queue * q)
--- if q == null or q empty it returns null
--- if q has elements then it returns the first element and modifies q into "q - n"
*** requires [queue(sq)(q)]
*** ensures sq == nil && result == null && [queue(nil)(q)] || sq != nil && [queue(tail(sq))(q) ** node(head(sq))(result)]

//@ assume [queue(sq)(q)] ;
if (q == null) {

--- return(null)
result = null ;
//@ assert sq == nil && result == null && [queue(nil)(q)] || sq != nil && [queue(tail(sq))(q) ** node(head(sq))(result)] ;
stop

} ;
if (* q == null) {

--- return(null)
result = null ;
//@ assert sq == nil && result == null && [queue(nil)(q)] || sq != nil && [queue(tail(sq))(q) ** node(head(sq))(result)] ;
stop
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} ;
if (* q == *(q + 1)) {
r = * q ;
* q = null ;
*(q + 1) = null ;

--- a bit of help here: access(exp) does nothing but symbolically evaluates exp and then discards its value.
--- the reason for doing so is to "roll" the heap; this is needed for the next //@ assert, which needs r to be
--- extracted from the sequence associated to the queue in order to unroll it into a node.
--- I could also do this automatically whenever anything else fails, but for now this is acceptable.

//@ access(* r) ; --- the followig also works: * r = * r ;
--- return(r)

result = r ;
//@ assert sq == nil && result == null && [queue(nil)(q)] || sq != nil && [queue(tail(sq))(q) ** node(head(sq))(result)] ;
stop

} ;
r = * q ;
* q = *(r + 1) ;

--- return(r)
result = r ;
//@ assert sq == nil && result == null && [queue(nil)(q)] || sq != nil && [queue(tail(sq))(q) ** node(head(sq))(result)] ;

.

---endm
---rew [| dequeueComplete |] .
---q

eq transferOwner1 =
--- transferOwner1(queue * from, queue * to)
--- dequeues "from" and enqueues the resulting node to "to"
--- we prove that it all takes the same heap space
--- everything is done manually here, without "calling" enqueue and dequeue defined above
*** requires [queue(from) ** queue(to)]
*** ensures [queue(from) ** queue(to)]

//@ assume [queue(from) ** queue(to)] ;
if (from == null || to == null) {

--- return()
//@ assert [queue(from) ** queue(to)] ;
stop ;

} ;
if (* from == null) {

--- return()
//@ assert [queue(from) ** queue(to)] ;
stop ;

} ;
n = * from ;
if (*(from + 1) == n) {
* from = null ;
*(from + 1) = null ;

} else {
* from = *(n + 1)

} ;
if (* to == null) {
* to = n

} else {
*(*(to + 1) + 1) = n

} ;
*(to + 1) = n ;

--- again, a bit of help to unroll the location n in the heap
//@ access(* n) ;

--- return()
//@ assert [queue(from) ** queue(to)]

.

---endm
---rew [| transferOwner1 |] .
---q

op transferOwner1Complete : -> K .
eq transferOwner1Complete =

--- transferOwner1(queue * from, queue * to)
--- dequeues "from" and enqueues the resulting node to "to"
--- we prove that it all takes the same heap space
--- everything is done manually here, without "calling" enqueue and dequeue defined above
*** requires [queue(sf)(from) ** queue(st)(to)]
*** ensures (sf == nil || to == null) && [queue(sf)(from) ** queue(st)(to)] || [queue(tail(sf))(from) ** queue(st :: oneElemSeq(head(sf)))(to)]

49



//@ assume [queue(sf)(from) ** queue(st)(to)] ;
if (from == null || to == null) {

--- return()
//@ assert (sf == nil || to == null) && [queue(sf)(from) ** queue(st)(to)] || [queue(tail(sf))(from) ** queue(st :: oneElemSeq(head(sf)))(to)] ;
stop ;

} ;
if (* from == null) {

--- return()
//@ assert (sf == nil || to == null) && [queue(sf)(from) ** queue(st)(to)] || [queue(tail(sf))(from) ** queue(st :: oneElemSeq(head(sf)))(to)] ;
stop ;

} ;
n = * from ;
if (*(from + 1) == n) {
* from = null ;
*(from + 1) = null ;

} else {
* from = *(n + 1)

} ;
if (* to == null) {
* to = n

} else {
*(*(to + 1) + 1) = n

} ;
*(to + 1) = n ;

--- again, a bit of help to unroll the location n in the heap
//@ access(* n) ;

--- return()
//@ assert (sf == nil || to == null) && [queue(sf)(from) ** queue(st)(to)] || [queue(tail(sf))(from) ** queue(st :: oneElemSeq(head(sf)))(to)]

.

---endm
---rew [| transferOwner1Complete |] .
---q

eq transferOwner2 =
--- transferOwner2(queue * from, queue * to)
--- same as above, but it "calls" dequeue and enqueue
*** requires [queue(from) ** queue(to)]
*** ensures [queue(from) ** queue(to)]

//@ assume [queue(from) ** queue(to)] ;
if (from == null || to == null) {

--- return()
//@ assert [queue(from) ** queue(to)] ;
stop ;

} ;
--- n = dequeue(from) ;

//@ assert [queue(from) ** ?rest1] ;
//@ assume [queue(from) ** node(n) ** ?rest1] ;
if (n == null) {

--- return()
//@ assert [queue(from) ** queue(to)] ;
stop ;

} ;
--- enqueue(to,n) ;

//@ assert to != null && n != null && [queue(to) ** node(n) ** ?rest2] ;
//@ assume [queue(to) ** ?rest2] ;

--- return()
//@ assert [queue(from) ** queue(to)]

.

---endm
---rew [| transferOwner2 |] .
---q

op transferOwner2Complete : -> K .
eq transferOwner2Complete =
--- transferOwner2(queue * from, queue * to)
--- same as above, but it "calls" dequeue and enqueue
*** requires [queue(sf)(from) ** queue(st)(to)]
*** ensures (sf == nil || to == null) && [queue(sf)(from) ** queue(st)(to)] || [queue(tail(sf))(from) ** queue(st :: oneElemSeq(head(sf)))(to)]

//@ assume [queue(sf)(from) ** queue(st)(to)] ;
if (from == null || to == null) {

--- return()
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//@ assert (sf == nil || to == null) && [queue(sf)(from) ** queue(st)(to)] || [queue(tail(sf))(from) ** queue(st :: oneElemSeq(head(sf)))(to)] ;
stop ;

} ;
--- n = dequeue(from) ;

//@ assert [queue(?sf)(from) ** ?rest1] ;
//@ assume ?sf == nil && n == null && [queue(nil)(from) ** ?rest1] || ?sf != nil && [queue(tail(?sf))(from) ** node(head(?sf))(n) ** ?rest1] ;
if (n == null) {

--- return()
//@ assert (sf == nil || to == null) && [queue(sf)(from) ** queue(st)(to)] || [queue(tail(sf))(from) ** queue(st :: oneElemSeq(head(sf)))(to)] ;
stop ;

} ;
--- enqueue(to,n) ;

//@ assert to != null && n != null && [queue(?st)(to) ** node(?e)(n) ** ?rest2] ;
//@ assume [queue(?st :: oneElemSeq(?e))(to) ** ?rest2] ;

--- return()
//@ assert (sf == nil || to == null) && [queue(sf)(from) ** queue(st)(to)] || [queue(tail(sf))(from) ** queue(st :: oneElemSeq(head(sf)))(to)]

.

---endm
---rew [| transferOwner2Complete |] .
---q

eq stealQueue =
--- stealQueue(queue * from, queue * to)
--- steals queue "from" by transfering one element from it to "to"
--- it speculates the fact that a dequed element still keeps the pointer to the rest of the queue
--- thus, after transfering the dequeued element from "from" to "to", the two queues are sequentialized
--- all we have to do is to move the tail of "to" to the tail of "from" after the transfer
--- ... apparently ... one also has to free the two pointers held by "from" ... in case "from" was not empty
*** requires [queue(from) ** queue(to)]
*** ensures (from == null || to == null) && [queue(from) ** queue(to)] || [queue(to)]

//@ assume [queue(from) ** queue(to)] ;
if (from == null || to == null) {

--- return()
//@ assert (from == null || to == null) && [queue(from) ** queue(to)] || [queue(to)] ;
stop ;

} ;
if (* from != null) {
if (* to == null) {
* to = * from

} else {
*(*(to + 1) + 1) = * from ;

} ;
*(to + 1) = *(from + 1) ;

} ;
free(from) ; free(from + 1) ;
//@ assert (from == null || to == null) && [queue(from) ** queue(to)] || [queue(to)] ;

.

---endm
---rew [| stealQueue |] .
---q

op stealQueueComplete : -> K .
eq stealQueueComplete =

--- stealQueue(queue * from, queue * to)
--- steals queue "from" by transfering one element from it to "to"
--- it speculates the fact that a dequed element still keeps the pointer to the rest of the queue
--- thus, after transfering the dequeued element from "from" to "to", the two queues are sequentialized
--- all we have to do is to move the tail of "to" to the tail of "from" after the transfer
--- ... apparently ... one also has to free the two pointers held by "from" ... in case "from" was not empty
*** requires [queue(sf)(from) ** queue(st)(to)]
*** ensures (from == null || to == null) && [queue(sf)(from) ** queue(st)(to)] || [queue(st :: sf)(to)]

//@ assume [queue(sf)(from) ** queue(st)(to)] ;
if (from == null || to == null) {

--- return()
//@ assert (from == null || to == null) && [queue(sf)(from) ** queue(st)(to)] || [queue(st :: sf)(to)] ;
stop ;

} ;
if (* from != null) {
if (* to == null) {
* to = * from

} else {
*(*(to + 1) + 1) = * from ;

} ;
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*(to + 1) = *(from + 1) ;
} ;
free(from) ; free(from + 1) ;
//@ assert (from == null || to == null) && [queue(sf)(from) ** queue(st)(to)] || [queue(st :: sf)(to)]

.

---endm
---rew [| stealQueueComplete |] .
---q

---------------------
--- Tree examples ---
---------------------

eq allocTree =
--- tree * allocTree(data k, tree * left, tree * right)
*** requires [tree(left) ** tree(right)]
*** ensures [tree(result)]

//@ assume [tree(left) ** tree(right)] ;
t = alloc(tree . data, tree . left, tree . right) ;
* t = k ;
*(t + 1) = left ;
*(t + 2) = right ;

--- return(t)
result = t ;
//@ assert [tree(result)]

.

---endm
---rew [| allocTree |] .
---q

op allocTreeComplete : -> K .
eq allocTreeComplete =
*** requires [tree(tl)(left) ** tree(tr)(right)]
*** ensures [tree(Tree(k,tl,tr))(result)]

//@ assume [tree(tl)(left) ** tree(tr)(right)] ;
t = alloc(tree . data, tree . left, tree . right) ;
* t = k ;
*(t + 1) = left ;
*(t + 2) = right ;

--- return(t)
result = t ;
//@ assert [tree(Tree(k,tl,tr))(result)]

.

---endm
---rew [| allocTreeComplete |] .
---q

eq mirror =
--- mirror(tree * t)
--- mirrors the tree t

//@ assume [tree(t)] ;
if (t == null) {

--- return()
//@ assert [tree(t)] ;
stop ;

} ;
--- mirror(*(t + 1))

//@ assert [tree(*(t + 1)) ** ?rest1] ;
//@ assume [tree(*(t + 1)) ** ?rest1] ;

--- mirror(*(t + 2))
//@ assert [tree(*(t + 2)) ** ?rest2] ;
//@ assume [tree(*(t + 2)) ** ?rest2] ;

--- swap the left and right subtrees
*** this is wrong and it catches it!
--- *(t + 1) = *(t + 2) ;
--- *(t + 2) = *(t + 1) ;
*** this is correct, using a temporary

x = *(t + 1) ;

52



*(t + 1) = *(t + 2) ;
*(t + 2) = x ;

--- return()
//@ assert [tree(t)] ;

.

---endm
---rew [| mirror |] .
---q

op mirrorComplete : -> K .
eq mirrorComplete =
--- mirror(tree * t)
--- mirrors the tree t
*** requires [tree(tr)(t)]
*** ensures [tree(mirror(tr))(t)]

//@ assume [tree(tr)(t)] ;
if (t == null) {

--- return()
//@ assert [tree(t)] ;
stop ;

} ;
--- mirror(*(t + 1))

//@ assert [tree(?tl)(*(t + 1)) ** ?rest1] ;
//@ assume [tree(mirror(?tl))(*(t + 1)) ** ?rest1] ;

--- mirror(*(t + 2))
//@ assert [tree(?tr)(*(t + 2)) ** ?rest2] ;
//@ assume [tree(mirror(?tr))(*(t + 2)) ** ?rest2] ;

--- swap the left and right subtrees
*** this is wrong and it catches it!
--- *(t + 1) = *(t + 2) ;
--- *(t + 2) = *(t + 1) ;
*** this is correct, using a temporary

x = *(t + 1) ;
*(t + 1) = *(t + 2) ;
*(t + 2) = x ;

--- return()
//@ assert [tree(mirror(tr))(t)] ;

.

---endm
---rew [| mirrorComplete |] .
---q

***(

eq treeToList1 =
--- list * treeToList(tree * t)
--- traverses t in infix order and returns a list
--- also, it deallocates t at the same time
--- this uses append, so it is inefficient
*** requires [tree(t)]
*** ensures [list(return)]

//@ assume [tree(t)] ;
if (t == null) {

--- return(null)
return = null ;
//@ assert [list(return)] ;
stop ;

} ;
--- x = treeToList(t -> left)

//@ assert [tree(*(t + 1)) ** rest1] ;
//@ assume [list(x) ** rest1] ;

--- y = treeToList(t -> right)
//@ assert [tree(*(t + 2)) ** rest2] ;
//@ assume [list(y) ** rest2] ;
z = alloc(node . data,node . next) ;
* z = *(t) ;
*(z + 1) = y ;
free(t); free(t + 1) ; free(t + 2) ;

--- r = append2(x,z)
//@ assert [list(x) ** list(z) ** rest3] ;
//@ assume [list(r) ** rest3] ;

--- return(r)
return = r ;
//@ assert [list(return)]

.
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---endm
---rew [| treeToList1 |] .
---q

eq treeToList2 =
--- list * treeToList(tree * t, list * l)
--- an efficient version of the above, based on an accumulator list l
*** requires [tree(t) ** list(l)]
*** ensures [list(return)]

//@ assume [tree(t) ** list(l)] ;
if (t == null) {

--- return(l)
return = l ;
//@ assert [list(return)] ;
stop ;

} ;
--- y = treeToList(t -> right, l)

//@ assert [tree(*(t + 2)) ** list(l) ** rest1] ;
//@ assume [list(y) ** rest1] ;
left = *(t + 1) ;
z = alloc(node . data,node . next) ;
* z = * t ;
*(z + 1) = y ;
free(t); free(t + 1) ; free(t + 2) ;

--- r = treeToList(t -> left, z)
//@ assert [tree(left) ** list(z) ** rest2] ;
//@ assume [list(r) ** rest2] ;

--- return(r)
return = r ;
//@ assert [list(return)]

.

---endm
---rew [| treeToList2 |] .
---q

eq treeToListWhile =
--- list * treeToListWhile(tree * t)
*** requires [tree(t)]
*** ensures [list(return)]

//@ assume [tree(t)] ;
if (t == null) {

--- return(null)
return = null ;
//@ assert [list(return)] ;
stop ;

} ;
s = alloc(stack[tree] . data, stack[tree] . next) ; --- stack
* s = t ;
*(s + 1) = null ;
ret = null ; --- result list
//@ inv [stack[tree](s) ** list(ret) ** rest]
while (s != null) {

*** t = pop(s)
t = * s ;
temp = s ;
s = *(s + 1) ;
free(temp) ;
free(temp + 1) ;

--- get left and right subtrees, then cut the links to them in the current node
l = *(t + 1) ;
r = *(t + 2) ;
*(t + 1) = null ;
*(t + 2) = null ;

if (l != null) {
x = alloc(stack[tree] . data, stack[tree] . next) ;
* x = l ;
*(x + 1) = s ;
s = x ;

} ;

if (r != null) {
x = alloc(stack[tree] . data, stack[tree] . next) ;
* x = t ;
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*(x + 1) = s ;
y = alloc(stack[tree] . data, stack[tree] . next) ;
* y = r ;
*(y + 1) = x ;
s = y ;

} else {
z = alloc(node . data, node . next) ;
* z = * t ;
free(t) ;
free(t + 1) ;
free(t + 2) ;
*(z + 1) = ret ;
ret = z ;

}
} ;

--- return(ret)
return = ret ;
//@ assert [list(return)]

.

---endm
---rew [| treeToListWhile |] .
---q

***)

***(
--------------------
--- Schorr-Waite ---
--------------------

-------------------------------------------------
--- cleanTree(L), markedTree(L), stackTree(L) ---
-------------------------------------------------

--------------------
--- cleanTree(L) ---
--------------------

eq //@ assumeCond(cleanTree(L)) = dot .

ceq (Cond,Subst) |- H’ := H ** cleanTree(L) = (Cond,Subst) |- H’ := H if VALID(Cond => (L === null)) .
ceq (Cond,Subst) |- H’ ** cleanTree(L) := H = (Cond,Subst) |- H’ := H if VALID(Cond => (L === null)) .

eq derive((cleanTree(L) ** H ** #(F)), L)
= (//@ Assert(˜(L === null))
˜> answer([L + 1, tree . switch, undef] ** [L + 2, tree . left, F] ** [L + 3, tree . right, n F]

** cleanTree(F) ** cleanTree(n F) ** H ** #(n n F), tree . marked, 0)) .

eq derive((cleanTree(L) ** H ** #(F)), L + 1)
= (//@ Assert(˜(L === null))
˜> answer([L, tree . marked, 0] ** [L + 2, tree . left, F] ** [L + 3, tree . right, n F]

** cleanTree(F) ** cleanTree(n F) ** H ** #(n n F), tree . switch, undef)) .

eq derive((cleanTree(L) ** H ** #(F)), L + 2)
= (//@ Assert(˜(L === null))
˜> answer([L, tree . marked, 0] ** [L + 1, tree . switch, undef] ** [L + 3, tree . right, n F]

** cleanTree(F) ** cleanTree(n F) ** H, tree . left, F)) .

eq derive((cleanTree(L) ** H ** #(F)), L + 3)
= (//@ Assert(˜(L === null))
˜> answer([L, tree . marked, 0] ** [L + 1, tree . switch, undef] ** [L + 2, tree . left, F]

** cleanTree(F) ** cleanTree(n F) ** H, tree . right, n F)) .

crl (Cond,Subst) |- H’ := H ** [L, tree . marked, 0] ** [L1, tree . switch, undef] ** [L2, tree . left, D1] ** [L3, tree . right, D2]
** cleanTree(D1’) ** cleanTree(D2’)

=> (Cond,Subst) |- H’ := H ** cleanTree(L) if VALID(Cond => L1 === L + 1 /\ L2 === L + 2 /\ L3 === L + 3 /\ D1 === D1’ /\ D2 === D2’) .

crl (Cond,Subst) |- H’ := H ** [L, tree . marked, 0] ** [L1, tree . switch, undef] ** [L2, tree . left, D1] ** [L3, tree . right, D2] ** cleanTree(D1’)
=> (Cond,Subst) |- H’ := H ** cleanTree(L) if VALID(Cond => L1 === L + 1 /\ L2 === L + 2 /\ L3 === L + 3 /\ D1 === D1’ /\ D2 === null) .

crl (Cond,Subst) |- H’ := H ** [L, tree . marked, 0] ** [L1, tree . switch, undef] ** [L2, tree . left, D1] ** [L3, tree . right, D2] ** cleanTree(D2’)
=> (Cond,Subst) |- H’ := H ** cleanTree(L) if VALID(Cond => L1 === L + 1 /\ L2 === L + 2 /\ L3 === L + 3 /\ D1 === null /\ D2 === D2’) .

crl (Cond,Subst) |- H’ := H ** [L, tree . marked, 0] ** [L1, tree . switch, undef] ** [L2, tree . left, D1] ** [L3, tree . right, D2]
=> (Cond,Subst) |- H’ := H ** cleanTree(L) if VALID(Cond => L1 === L + 1 /\ L2 === L + 2 /\ L3 === L + 3 /\ D1 === null /\ D2 === null) .
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---------------------
--- markedTree(L) ---
---------------------
eq //@ assumeCond(markedTree(L)) = dot .

ceq (Cond,Subst) |- H’ := H ** markedTree(L) = (Cond,Subst) |- H’ := H if VALID(Cond => (L === null)) .
ceq (Cond,Subst) |- H’ ** markedTree(L) := H = (Cond,Subst) |- H’ := H if VALID(Cond => (L === null)) .

eq derive((markedTree(L) ** H ** #(F)), L)
= (//@ Assert(˜(L === null))
˜> answer([L + 1, tree . switch, 1] ** [L + 2, tree . left, F] ** [L + 3, tree . right, n F]

** markedTree(F) ** markedTree(n F) ** H ** #(n n F), tree . marked, 1)) .

eq derive((markedTree(L) ** H ** #(F)), L + 1)
= (//@ Assert(˜(L === null))
˜> answer([L, tree . marked, 1] ** [L + 2, tree . left, F] ** [L + 3, tree . right, n F]

** markedTree(F) ** markedTree(n F) ** H ** #(n n F), tree . switch, 1)) .

eq derive((markedTree(L) ** H ** #(F)), L + 2)
= (//@ Assert(˜(L === null))
˜> answer([L, tree . marked, 1] ** [L + 1, tree . switch, 1] ** [L + 3, tree . right, n F]

** markedTree(F) ** markedTree(n F) ** H ** #(n n F), tree . left, F)) .

eq derive((markedTree(L) ** H ** #(F)), L + 3)
= (//@ Assert(˜(L === null))
˜> answer([L, tree . marked, 1] ** [L + 1, tree . switch, 1] ** [L + 2, tree . left, F]

** markedTree(F) ** markedTree(n F) ** H ** #(n n F), tree . right, n F)) .

crl (Cond,Subst) |- H’ := H ** [L, tree . marked, 1] ** [L1, tree . switch, 1] ** [L2, tree . left, D1] ** [L3, tree . right, D2]
** markedTree(D1’) ** markedTree(D2’)

=> (Cond,Subst) |- H’ := H ** markedTree(L) if VALID(Cond => L1 === L + 1 /\ L2 === L + 2 /\ L3 === L + 3 /\ D1 === D1’ /\ D2 === D2’) .

crl (Cond,Subst) |- H’ := H ** [L, tree . marked, 1] ** [L1, tree . switch, 1] ** [L2, tree . left, D1] ** [L3, tree . right, D2] ** markedTree(D1’)
=> (Cond,Subst) |- H’ := H ** markedTree(L) if VALID(Cond => L1 === L + 1 /\ L2 === L + 2 /\ L3 === L + 3 /\ D1 === D1’ /\ D2 === null) .

crl (Cond,Subst) |- H’ := H ** [L, tree . marked, 1] ** [L1, tree . switch, 1] ** [L2, tree . left, D1] ** [L3, tree . right, D2] ** markedTree(D2’)
=> (Cond,Subst) |- H’ := H ** markedTree(L) if VALID(Cond => L1 === L + 1 /\ L2 === L + 2 /\ L3 === L + 3 /\ D1 === null /\ D2 === D2’) .

crl (Cond,Subst) |- H’ := H ** [L, tree . marked, 1] ** [L1, tree . switch, 1] ** [L2, tree . left, D1] ** [L3, tree . right, D2]
=> (Cond,Subst) |- H’ := H ** markedTree(L) if VALID(Cond => L1 === L + 1 /\ L2 === L + 2 /\ L3 === L + 3 /\ D1 === null /\ D2 === null) .

--------------------
--- stackTree(L) ---
--------------------
eq //@ assumeCond(stackTree(L)) = dot .

ceq (Cond,Subst) |- H’ := H ** stackTree(L) = (Cond,Subst) |- H’ := H if VALID(Cond => (L === null)) .
ceq (Cond,Subst) |- H’ ** stackTree(L) := H = (Cond,Subst) |- H’ := H if VALID(Cond => (L === null)) .

eq derive((stackTree(L) ** H ** #(F)), L)
= (//@ Assert(˜(L === null))
˜> cases(answer([L + 1, tree . switch, 0] ** [L + 2, tree . left, F] ** [L + 3, tree . right, n F]

** stackTree(F) ** cleanTree(n F) ** H ** #(n n F), tree . marked, 1),
answer([L + 1, tree . switch, 1] ** [L + 2, tree . left, F] ** [L + 3, tree . right, n F]

** markedTree(F) ** stackTree(n F) ** H ** #(n n F), tree . marked, 1))) .

eq derive((stackTree(L) ** H ** #(F)), L + 1)
= (//@ Assert(˜(L === null))
˜> cases(answer([L, tree . marked, 1] ** [L + 2, tree . left, F] ** [L + 3, tree . right, n F]

** stackTree(F) ** cleanTree(n F) ** H ** #(n n F), tree . switch, 0),
answer([L, tree . marked, 1] ** [L + 2, tree . left, F] ** [L + 3, tree . right, n F]

** markedTree(F) ** stackTree(n F) ** H ** #(n n F), tree . switch, 1))) .

eq derive((stackTree(L) ** H ** #(F)), L + 2)
= (//@ Assert(˜(L === null))
˜> cases(answer([L, tree . marked, 1] ** [L + 1, tree . switch, 0] ** [L + 3, tree . right, n F]

** stackTree(F) ** cleanTree(n F) ** H ** #(n n F), tree . left, F),
answer([L, tree . marked, 1] ** [L + 1, tree . switch, 1] ** [L + 3, tree . right, n F]

** markedTree(F) ** stackTree(n F) ** H ** #(n n F), tree . left, F))) .

eq derive((stackTree(L) ** H ** #(F)), L + 3)
= (//@ Assert(˜(L === null))
˜> cases(answer([L, tree . marked, 1] ** [L + 1, tree . switch, 0] ** [L + 2, tree . left, F]

** stackTree(F) ** cleanTree(n F) ** H ** #(n n F), tree . right, n F),
answer([L, tree . marked, 1] ** [L + 1, tree . switch, 1] ** [L + 2, tree . left, F]

** markedTree(F) ** stackTree(n F) ** H ** #(n n F), tree . right, n F))) .

crl (Cond,Subst) |- H’ := H ** [L, tree . marked, 1] ** [L1, tree . switch, 0] ** [L2, tree . left, D1] ** [L3, tree . right, D2]
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** stackTree(D1’) ** cleanTree(D2’)
=> (Cond,Subst) |- H’ := H ** stackTree(L) if VALID(Cond => L1 === L + 1 /\ L2 === L + 2 /\ L3 === L + 3 /\ D1 === D1’ /\ D2 === D2’) .
crl (Cond,Subst) |- H’ := H ** [L, tree . marked, 1] ** [L1, tree . switch, 0] ** [L2, tree . left, D1] ** [L3, tree . right, D2] ** stackTree(D1’)
=> (Cond,Subst) |- H’ := H ** stackTree(L) if VALID(Cond => L1 === L + 1 /\ L2 === L + 2 /\ L3 === L + 3 /\ D1 === D1’ /\ D2 === null) .
crl (Cond,Subst) |- H’ := H ** [L, tree . marked, 1] ** [L1, tree . switch, 0] ** [L2, tree . left, D1] ** [L3, tree . right, D2] ** cleanTree(D2’)
=> (Cond,Subst) |- H’ := H ** stackTree(L) if VALID(Cond => L1 === L + 1 /\ L2 === L + 2 /\ L3 === L + 3 /\ D1 === null /\ D2 === D2’) .
crl (Cond,Subst) |- H’ := H ** [L, tree . marked, 1] ** [L1, tree . switch, 0] ** [L2, tree . left, D1] ** [L3, tree . right, D2]
=> (Cond,Subst) |- H’ := H ** stackTree(L) if VALID(Cond => L1 === L + 1 /\ L2 === L + 2 /\ L3 === L + 3 /\ D1 === null /\ D2 === null) .

crl (Cond,Subst) |- H’ := H ** [L, tree . marked, 1] ** [L1, tree . switch, 1] ** [L2, tree . left, D1] ** [L3, tree . right, D2]
** markedTree(D1’) ** stackTree(D2’)

=> (Cond,Subst) |- H’ := H ** stackTree(L) if VALID(Cond => L1 === L + 1 /\ L2 === L + 2 /\ L3 === L + 3 /\ D1 === D1’ /\ D2 === D2’) .
crl (Cond,Subst) |- H’ := H ** [L, tree . marked, 1] ** [L1, tree . switch, 1] ** [L2, tree . left, D1] ** [L3, tree . right, D2] ** markedTree(D1’)
=> (Cond,Subst) |- H’ := H ** stackTree(L) if VALID(Cond => L1 === L + 1 /\ L2 === L + 2 /\ L3 === L + 3 /\ D1 === D1’ /\ D2 === null) .
crl (Cond,Subst) |- H’ := H ** [L, tree . marked, 1] ** [L1, tree . switch, 1] ** [L2, tree . left, D1] ** [L3, tree . right, D2] ** stackTree(D2’)
=> (Cond,Subst) |- H’ := H ** stackTree(L) if VALID(Cond => L1 === L + 1 /\ L2 === L + 2 /\ L3 === L + 3 /\ D1 === null /\ D2 === D2’) .
crl (Cond,Subst) |- H’ := H ** [L, tree . marked, 1] ** [L1, tree . switch, 1] ** [L2, tree . left, D1] ** [L3, tree . right, D2]
=> (Cond,Subst) |- H’ := H ** stackTree(L) if VALID(Cond => L1 === L + 1 /\ L2 === L + 2 /\ L3 === L + 3 /\ D1 === null /\ D2 === null) .

***)

------------------------------
--- Schorr-Waite with tree ---
------------------------------

eq Schorr-Waite-tree =
*** requires [cleanTree(root)]
*** esures [markedTree(root)]

//@ assume [cleanTree(root)] ;
t = root ;
p = null ;

//@ inv (t == null && [stackTree(p) ** ?rest])
|| (* t == 1 &&& [markedTree(t) ** stackTree(p) ** ?rest])
|| (* t == 0 &&& [cleanTree(t) ** stackTree(p) ** ?rest])

while (p != null || (t != null && * t == 0)) {
if (t == null || * t == 1) {
if (*(p + 1) == 1) { --- POP
q = t ; --- q = t
t = p ; --- t = p
p = *(p + 3) ; --- p = p -> right
*(t + 3) = q ; --- t -> right = q

}
else { --- SWING
q = t ; --- q = t
t = *(p + 3) ; --- t = p -> right
*(p + 3) = *(p + 2) ; --- p -> right = p -> left
*(p + 2) = q ; --- p -> left = q
*(p + 1) = 1 ; --- p -> c = 1

}
}
else { --- PUSH
q = p ; --- q = p
p = t ; --- p = t
t = *(t + 2) ; --- t = t -> left
*(p + 2) = q ; --- p -> left = q
* p = 1 ; --- p -> m = 1
*(p + 1) = 0 ; --- p -> c = 0

}
} ;
//@ assert [markedTree(t)]

.

---endm
---rew [| Schorr-Waite-tree |] .
---q

***(
---------------------------------------
--- Schorr-Waite Complete with tree ---
---------------------------------------

op Schorr-Waite-tree-Complete : -> K .
eq Schorr-Waite-tree-Complete =
*** requires [cleanTree(initTree)(root)]
*** ensures [markedTree(initTree)(root)]

//@ assume [cleanTree(initTree)(root)] ;
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t = root ;
p = null ;

//@ inv t == null && [stackTree(?treeContext)(p) ** ?rest] && initTree == ?treeContext[emptyTree]
|| (* t == 1 &&& [markedTree(?tree)(t) ** stackTree(?treeContext)(p) ** ?rest] ||

* t == 0 &&& [ cleanTree(?tree)(t) ** stackTree(?treeContext)(p) ** ?rest]) && initTree == ?treeContext[?tree]
while (p != null || (t != null && * t == 0)) {
if (t == null || * t == 1) {
if (*(p + 1) == 1) { --- POP
q = t ; --- q = t
t = p ; --- t = p
p = *(p + 3) ; --- p = p -> right
*(t + 3) = q ; --- t -> right = q

}
else { --- SWING
q = t ; --- q = t
t = *(p + 3) ; --- t = p -> right
*(p + 3) = *(p + 2) ; --- p -> right = p -> left
*(p + 2) = q ; --- p -> left = q
*(p + 1) = 1 ; --- p -> c = 1

}
}
else { --- PUSH
q = p ; --- q = p
p = t ; --- p = t
t = *(t + 2) ; --- t = t -> left
*(p + 2) = q ; --- p -> left = q
* p = 1 ; --- p -> m = 1
*(p + 1) = 0 ; --- p -> c = 0

}
} ;
//@ assert [markedTree(initTree)(t)]

.

endm
rew [| Schorr-Waite-tree-Complete |] .
q
***)

***(

----------------------------------------------------
--- cleanGraph(L), markedGraph(L), stackGraph(L) ---
----------------------------------------------------

ops cleanGraph markedGraph stackInGraph : -> HeapDefName .
op Schorr-Waite-graph : -> K .

---------------------
--- cleanGraph(L) ---
---------------------
--- test: remove {L} from Out sets!
eq //@ assumeCond(cleanGraph(In,Out)(L)) = cases(//@ Assume(In === emptySet), //@ Assume(˜(In === emptySet) /\ ˜(L === null))) .

ceq (Cond,Subst) |- H’ := H ** cleanGraph(In,Out)(L) = (Cond /\ In === emptySet, Subst) |- H’ := H
if VALID(Cond => L === null) or VALID(Cond => oneElemSet(L) IN Out) .

ceq (Cond,Subst) |- H’ ** cleanGraph(In,Out)(L) := H
= (Cond,(Subst,checkAndMakeSubst(Cond,Subst,In,emptySet))) |- H’[checkAndMakeSubst(Cond,Subst,In,emptySet)] := H
if VALID(Cond => L === null) or VALID(Cond => oneElemSet(L) IN Out) .

eq derive((cleanGraph(In,Out)(L) ** H ** #(F)), L)
= (//@ Assert(˜(L === null)) ˜> //@ Assume(oneElemSet(L) IN In)
˜> //@ Assume(In MINUS oneElemSet(L) === (n n F) UNION (n n n F)) ˜> //@ Assume((n n F) INTERSECT (n n n F) === emptySet)
˜> answer([L + 1, graph . switch, undef] ** [L + 2, graph . left, F] ** [L + 3, graph . right, n F]

** cleanGraph((n n F), Out UNION (n n n F) UNION oneElemSet(L))(F)
** cleanGraph((n n n F), Out UNION (n n F) UNION oneElemSet(L))(n F) ** H ** #(n n n n F), graph . marked, 0)) .

eq derive((cleanGraph(In,Out)(L) ** H ** #(F)), L + 1)
= (//@ Assert(˜(L === null)) ˜> //@ Assume(oneElemSet(L) IN In)
˜> //@ Assume(In MINUS oneElemSet(L) === (n n F) UNION (n n n F)) ˜> //@ Assume((n n F) INTERSECT (n n n F) === emptySet)
˜> answer([L, graph . marked, 0] ** [L + 2, graph . left, F] ** [L + 3, graph . right, n F]

** cleanGraph((n n F), Out UNION (n n n F) UNION oneElemSet(L))(F)
** cleanGraph((n n n F), Out UNION (n n F) UNION oneElemSet(L))(n F) ** H ** #(n n n n F), graph . switch, undef)) .

eq derive((cleanGraph(In,Out)(L) ** H ** #(F)), L + 2)
= (//@ Assert(˜(L === null)) ˜> //@ Assume(oneElemSet(L) IN In)
˜> //@ Assume(In MINUS oneElemSet(L) === (n n F) UNION (n n n F)) ˜> //@ Assume((n n F) INTERSECT (n n n F) === emptySet)
˜> answer([L, graph . marked, 0] ** [L + 1, graph . switch, undef] ** [L + 3, graph . right, n F]

** cleanGraph((n n F), Out UNION (n n n F) UNION oneElemSet(L))(F)
** cleanGraph((n n n F), Out UNION (n n F) UNION oneElemSet(L))(n F) ** H ** #(n n n n F), graph . left, F)) .
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eq derive((cleanGraph(In,Out)(L) ** H ** #(F)), L + 3)
= (//@ Assert(˜(L === null)) ˜> //@ Assume(oneElemSet(L) IN In)
˜> //@ Assume(In MINUS oneElemSet(L) === (n n F) UNION (n n n F)) ˜> //@ Assume((n n F) INTERSECT (n n n F) === emptySet)
˜> answer([L, graph . marked, 0] ** [L + 1, graph . switch, undef] ** [L + 2, graph . left, F]

** cleanGraph((n n F), Out UNION (n n n F) UNION oneElemSet(L))(F)
** cleanGraph((n n n F), Out UNION (n n F) UNION oneElemSet(L))(n F) ** H ** #(n n n n F), graph . right, n F)) .

crl (Cond,Subst) |- H’ := H ** [L, graph . marked, 0] ** [L1, graph . switch, undef] ** [L2, graph . left, D1] ** [L3, graph . right, D2]
** cleanGraph(In1,Out1)(D1’) ** cleanGraph(In2,Out2)(D2’)

=> (Cond,Subst) |- H’ := H ** cleanGraph(oneElemSet(L) UNION In1 UNION In2, (Out1 UNION Out2) MINUS (In1 UNION In2 UNION oneElemSet(L)))(L)
if VALID(Cond => L1 === L + 1) and VALID(Cond => L2 === L + 2) and VALID(Cond => L3 === L + 3)
and VALID(Cond => D1 === D1’) and VALID(Cond => D2 === D2’) .

crl (Cond,Subst) |- H’ := H ** [L, graph . marked, 0] ** [L1, graph . switch, undef] ** [L2, graph . left, D1] ** [L3, graph . right, D2]
** cleanGraph(In1,Out1)(D1’)

=> (Cond,Subst) |- H’ := H ** cleanGraph(oneElemSet(L) UNION In1, Out1 MINUS oneElemSet(L))(L)
if VALID(Cond => L1 === L + 1) and VALID(Cond => L2 === L + 2) and VALID(Cond => L3 === L + 3) and VALID(Cond => D1 === D1’)
and (VALID(Cond => D2 === null) or VALID(Cond => oneElemSet(D2) IN In1) or VALID(Cond => D2 === L) or VALID(Cond => oneElemSet(D2) IN Out1)) .

crl (Cond,Subst) |- H’ := H ** [L, graph . marked, 0] ** [L1, graph . switch, undef] ** [L2, graph . left, D1] ** [L3, graph . right, D2]
** cleanGraph(In2,Out2)(D2’)

=> (Cond,Subst) |- H’ := H ** cleanGraph(oneElemSet(L) UNION In2, Out2 MINUS oneElemSet(L))(L)
if VALID(Cond => L1 === L + 1) and VALID(Cond => L2 === L + 2) and VALID(Cond => L3 === L + 3) and VALID(Cond => D2 === D2’)
and (VALID(Cond => D1 === null) or VALID(Cond => oneElemSet(D1) IN In2) or VALID(Cond => D1 === L) or VALID(Cond => oneElemSet(D1) IN Out2)) .

crl (Cond,Subst) |- H’ := H ** [L, graph . marked, 0] ** [L1, graph . switch, undef] ** [L2, graph . left, D1] ** [L3, graph . right, D2]
=> (Cond,Subst) |- H’ := H ** cleanGraph(oneElemSet(L), emptySet)(L)
if VALID(Cond => L1 === L + 1) and VALID(Cond => L2 === L + 2) and VALID(Cond => L3 === L + 3)
and (VALID(Cond => D1 === null) or VALID(Cond => D1 === L)) and (VALID(Cond => D2 === null) or VALID(Cond => D2 === L)) .

----------------------
--- markedGraph(L) ---
----------------------
eq //@ assumeCond(markedGraph(In,Out)(L)) = cases(//@ Assume(In === emptySet), //@ Assume(˜(In === emptySet) /\ ˜(L === null))) .

ceq (Cond,Subst) |- H’ := H ** markedGraph(In,Out)(L) = (Cond /\ In === emptySet, Subst) |- H’ := H
if VALID(Cond => L === null) or VALID(Cond => oneElemSet(L) IN Out) .

ceq (Cond,Subst) |- H’ ** markedGraph(In,Out)(L) := H
= (Cond,(Subst,checkAndMakeSubst(Cond,Subst,In,emptySet))) |- H’[checkAndMakeSubst(Cond,Subst,In,emptySet)] := H
if VALID(Cond => L === null) or VALID(Cond => oneElemSet(L) IN Out) .

eq derive((markedGraph(In,Out)(L) ** H ** #(F)), L)
= (//@ Assert(˜(L === null)) ˜> //@ Assume(oneElemSet(L) IN In) ˜> //@ Assume(In MINUS oneElemSet(L) === (n n F) UNION (n n n F))
˜> //@ Assume((n n F) INTERSECT (n n n F) === emptySet)
˜> answer([L + 1, graph . switch, 1] ** [L + 2, graph . left, F] ** [L + 3, graph . right, n F]

** markedGraph((n n F), Out UNION (n n n F) UNION oneElemSet(L))(F)
** markedGraph((n n n F), Out UNION (n n F) UNION oneElemSet(L))(n F) ** H ** #(n n n n F), graph . marked, 1)) .

eq derive((markedGraph(In,Out)(L) ** H ** #(F)), L + 1)
= (//@ Assert(˜(L === null)) ˜> //@ Assume(oneElemSet(L) IN In) ˜> //@ Assume(In MINUS oneElemSet(L) === (n n F) UNION (n n n F))
˜> //@ Assume((n n F) INTERSECT (n n n F) === emptySet)
˜> answer([L, graph . marked, 1] ** [L + 2, graph . left, F] ** [L + 3, graph . right, n F]

** markedGraph((n n F), Out UNION (n n n F) UNION oneElemSet(L))(F)
** markedGraph((n n n F), Out UNION (n n F) UNION oneElemSet(L))(n F) ** H ** #(n n n n F), graph . switch, 1)) .

eq derive((markedGraph(In,Out)(L) ** H ** #(F)), L + 2)
= (//@ Assert(˜(L === null)) ˜> //@ Assume(oneElemSet(L) IN In)
˜> //@ Assume(In MINUS oneElemSet(L) === (n n F) UNION (n n n F)) ˜> //@ Assume((n n F) INTERSECT (n n n F) === emptySet)
˜> answer([L, graph . marked, 1] ** [L + 1, graph . switch, 1] ** [L + 3, graph . right, n F]

** markedGraph((n n F), Out UNION (n n n F) UNION oneElemSet(L))(F)
** markedGraph((n n n F), Out UNION (n n F) UNION oneElemSet(L))(n F) ** H ** #(n n n n F), graph . left, F)) .

eq derive((markedGraph(In,Out)(L) ** H ** #(F)), L + 3)
= (//@ Assert(˜(L === null)) ˜> //@ Assume(oneElemSet(L) IN In)
˜> //@ Assume(In MINUS oneElemSet(L) === (n n F) UNION (n n n F)) ˜> //@ Assume((n n F) INTERSECT (n n n F) === emptySet)
˜> answer([L, graph . marked, 1] ** [L + 1, graph . switch, 1] ** [L + 2, graph . left, F]

** markedGraph((n n F), Out UNION (n n n F) UNION oneElemSet(L))(F)
** markedGraph((n n n F), Out UNION (n n F) UNION oneElemSet(L))(n F) ** H ** #(n n n n F), graph . right, n F)) .

crl (Cond,Subst) |- H’ := H ** [L, graph . marked, 1] ** [L1, graph . switch, 1] ** [L2, graph . left, D1] ** [L3, graph . right, D2]
** markedGraph(In1,Out1)(D1’) ** markedGraph(In2,Out2)(D2’)

=> (Cond,Subst) |- H’ := H ** markedGraph(oneElemSet(L) UNION In1 UNION In2, (Out1 UNION Out2) MINUS (In1 UNION In2 UNION oneElemSet(L)))(L)
if VALID(Cond => L1 === L + 1) and VALID(Cond => L2 === L + 2) and VALID(Cond => L3 === L + 3)
and VALID(Cond => D1 === D1’) and VALID(Cond => D2 === D2’) .

crl (Cond,Subst) |- H’ := H ** [L, graph . marked, 1] ** [L1, graph . switch, 1] ** [L2, graph . left, D1] ** [L3, graph . right, D2]
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** markedGraph(In1,Out1)(D1’)
=> (Cond,Subst) |- H’ := H ** markedGraph(oneElemSet(L) UNION In1, Out1 MINUS oneElemSet(L))(L)
if VALID(Cond => L1 === L + 1) and VALID(Cond => L2 === L + 2) and VALID(Cond => L3 === L + 3) and VALID(Cond => D1 === D1’)
and (VALID(Cond => D2 === null) or VALID(Cond => oneElemSet(D2) IN In1) or VALID(Cond => D2 === L) or VALID(Cond => oneElemSet(D2) IN Out1)) .

crl (Cond,Subst) |- H’ := H ** [L, graph . marked, 1] ** [L1, graph . switch, 1] ** [L2, graph . left, D1] ** [L3, graph . right, D2]
** markedGraph(In2,Out2)(D2’)

=> (Cond,Subst) |- H’ := H ** markedGraph(oneElemSet(L) UNION In2, Out2 MINUS oneElemSet(L))(L)
if VALID(Cond => L1 === L + 1) and VALID(Cond => L2 === L + 2) and VALID(Cond => L3 === L + 3) and VALID(Cond => D2 === D2’)
and (VALID(Cond => D1 === null) or VALID(Cond => oneElemSet(D1) IN In2) or VALID(Cond => D1 === L) or VALID(Cond => oneElemSet(D1) IN Out2)) .

crl (Cond,Subst) |- H’ := H ** [L, graph . marked, 1] ** [L1, graph . switch, 1] ** [L2, graph . left, D1] ** [L3, graph . right, D2]
=> (Cond,Subst) |- H’ := H ** markedGraph(oneElemSet(L), emptySet)(L)
if VALID(Cond => L1 === L + 1) and VALID(Cond => L2 === L + 2) and VALID(Cond => L3 === L + 3)
and (VALID(Cond => D1 === null) or VALID(Cond => D1 === L)) and (VALID(Cond => D2 === null) or VALID(Cond => D2 === L)) .

-----------------------
--- stackInGraph(L) ---
-----------------------

eq //@ assumeCond(stackInGraph(In,Out)(L)) = cases(//@ Assume(In === emptySet), //@ Assume(˜(In === emptySet) /\ ˜(L === null))) .

ceq (Cond,Subst) |- H’ := H ** stackInGraph(In,Out)(L) = (Cond /\ In === emptySet /\ Out === emptySet, Subst) |- H’ := H
if VALID(Cond => L === null) .

ceq (Cond,Subst) |- H’ ** stackInGraph(In,Out)(L) := H
= (Cond,(Subst,checkAndMakeSubst(Cond,Subst,(In,Out),(emptySet,emptySet)))) |- H’[checkAndMakeSubst(Cond,Subst,(In,Out),(emptySet,emptySet))] := H
if VALID(Cond => L === null) .

eq derive((stackInGraph(In,Out)(L) ** H ** #(F)), L)
= (//@ Assert(˜(L === null)) ˜> //@ Assume(oneElemSet(L) IN In)
˜> //@ Assume(In MINUS oneElemSet(L) === (n n F) UNION (n n n F)) ˜> //@ Assume((n n F) INTERSECT (n n n F) === emptySet)
˜> cases(answer([L + 1, graph . switch, 0] ** [L + 2, graph . left, F] ** [L + 3, graph . right, n F]

** stackInGraph((n n F), Out UNION (n n n F) UNION oneElemSet(L))(F)
** cleanGraph((n n n F), Out UNION (n n F) UNION oneElemSet(L))(n F) ** H ** #(n n n n F), graph . marked, 1),

answer([L + 1, graph . switch, 0] ** [L + 2, graph . left, F] ** [L + 3, graph . right, n F]
** stackInGraph((n n F), Out UNION (n n n F) UNION oneElemSet(L))(F)
** markedGraph((n n n F), Out UNION (n n F) UNION oneElemSet(L))(n F) ** H ** #(n n n n F), graph . marked, 1),

answer([L + 1, graph . switch, 1] ** [L + 2, graph . left, F] ** [L + 3, graph . right, n F]
** stackInGraph((n n F), Out UNION (n n n F) UNION oneElemSet(L))(n F)
** markedGraph((n n n F), Out UNION (n n F) UNION oneElemSet(L))(F) ** H ** #(n n n n F), graph . marked, 1))) .

eq derive((stackInGraph(In,Out)(L) ** H ** #(F)), L + 1)
= (//@ Assert(˜(L === null)) ˜> //@ Assume(oneElemSet(L) IN In)
˜> //@ Assume(In MINUS oneElemSet(L) === (n n F) UNION (n n n F)) ˜> //@ Assume((n n F) INTERSECT (n n n F) === emptySet)
˜> cases(answer([L, graph . marked, 1] ** [L + 2, graph . left, F] ** [L + 3, graph . right, n F]

** stackInGraph((n n F), Out UNION (n n n F) UNION oneElemSet(L))(F)
** cleanGraph((n n n F), Out UNION (n n F) UNION oneElemSet(L))(n F) ** H ** #(n n n n F), graph . switch, 0),

answer([L, graph . marked, 1] ** [L + 2, graph . left, F] ** [L + 3, graph . right, n F]
** stackInGraph((n n F), Out UNION (n n n F) UNION oneElemSet(L))(F)
** markedGraph((n n n F), Out UNION (n n F) UNION oneElemSet(L))(n F) ** H ** #(n n n n F), graph . switch, 0),

answer([L, graph . marked, 1] ** [L + 2, graph . left, F] ** [L + 3, graph . right, n F]
** stackInGraph((n n F), Out UNION (n n n F) UNION oneElemSet(L))(n F)
** markedGraph((n n n F), Out UNION (n n F) UNION oneElemSet(L))(F) ** H ** #(n n n n F), graph . switch, 1))) .

eq derive((stackInGraph(In,Out)(L) ** H ** #(F)), L + 2)
= (//@ Assert(˜(L === null)) ˜> //@ Assume(oneElemSet(L) IN In)
˜> //@ Assume(In MINUS oneElemSet(L) === (n n F) UNION (n n n F)) ˜> //@ Assume((n n F) INTERSECT (n n n F) === emptySet)
˜> cases(answer([L, graph . marked, 1] ** [L + 1, graph . switch, 0] ** [L + 3, graph . right, n F]

** stackInGraph((n n F), Out UNION (n n n F) UNION oneElemSet(L))(F)
** cleanGraph((n n n F), Out UNION (n n F) UNION oneElemSet(L))(n F) ** H ** #(n n n n F), graph . left, F),

answer([L, graph . marked, 1] ** [L + 1, graph . switch, 0] ** [L + 3, graph . right, n F]
** stackInGraph((n n F), Out UNION (n n n F) UNION oneElemSet(L))(F)
** markedGraph((n n n F), Out UNION (n n F) UNION oneElemSet(L))(n F) ** H ** #(n n n n F), graph . left, F),

answer([L, graph . marked, 1] ** [L + 1, graph . switch, 1] ** [L + 3, graph . right, n F]
** stackInGraph((n n F), Out UNION (n n n F) UNION oneElemSet(L))(n F)
** markedGraph((n n n F), Out UNION (n n F) UNION oneElemSet(L))(F) ** H ** #(n n n n F), graph . left, F))) .

eq derive((stackInGraph(In,Out)(L) ** H ** #(F)), L + 3)
= (//@ Assert(˜(L === null)) ˜> //@ Assume(oneElemSet(L) IN In)
˜> //@ Assume(In MINUS oneElemSet(L) === (n n F) UNION (n n n F)) ˜> //@ Assume((n n F) INTERSECT (n n n F) === emptySet)
˜> cases(answer([L, graph . marked, 1] ** [L + 1, graph . switch, 0] ** [L + 2, graph . left, F]

** stackInGraph((n n F), Out UNION (n n n F) UNION oneElemSet(L))(F)
** cleanGraph((n n n F), Out UNION (n n F) UNION oneElemSet(L))(n F) ** H ** #(n n n n F), graph . right, n F),

answer([L, graph . marked, 1] ** [L + 1, graph . switch, 0] ** [L + 2, graph . left, F]
** stackInGraph((n n F), Out UNION (n n n F) UNION oneElemSet(L))(F)
** markedGraph((n n n F), Out UNION (n n F) UNION oneElemSet(L))(n F) ** H ** #(n n n n F), graph . right, n F),

answer([L, graph . marked, 1] ** [L + 1, graph . switch, 1] ** [L + 2, graph . left, F]
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** stackInGraph((n n F), Out UNION (n n n F) UNION oneElemSet(L))(n F)
** markedGraph((n n n F), Out UNION (n n F) UNION oneElemSet(L))(F) ** H ** #(n n n n F), graph . right, n F))) .

crl (Cond,Subst) |- H’ := H ** [L, graph . marked, 1] ** [L1, graph . switch, 0] ** [L2, graph . left, D1] ** [L3, graph . right, D2]
** stackInGraph(In1,Out1)(D1’) ** cleanGraph(In2,Out2)(D2’)

=> (Cond,Subst) |- H’ := H ** stackInGraph(In1 UNION In2 UNION oneElemSet(L), Out1 UNION Out2 MINUS In1 UNION In2 UNION oneElemSet(L))(L)
if VALID(Cond => L1 === L + 1) and VALID(Cond => L2 === L + 2) and VALID(Cond => L3 === L + 3)
and VALID(Cond => D1 === D1’) and VALID(Cond => D2 === D2’) .

crl (Cond,Subst) |- H’ := H ** [L, graph . marked, 1] ** [L1, graph . switch, 0] ** [L2, graph . left, D1] ** [L3, graph . right, D2]
** stackInGraph(In1,Out1)(D1’)

=> (Cond,Subst) |- H’ := H ** stackInGraph(In1 UNION oneElemSet(L), Out1 MINUS oneElemSet(L))(L)
if VALID(Cond => L1 === L + 1) and VALID(Cond => L2 === L + 2) and VALID(Cond => L3 === L + 3) and VALID(Cond => D1 === D1’)
and (VALID(Cond => D2 === null) or VALID(Cond => oneElemSet(D2) IN In1) or VALID(Cond => D2 === L) or VALID(Cond => oneElemSet(D2) IN Out1)) .

crl (Cond,Subst) |- H’ := H ** [L, graph . marked, 1] ** [L1, graph . switch, 0] ** [L2, graph . left, D1] ** [L3, graph . right, D2]
** cleanGraph(In2,Out2)(D2’)

=> (Cond,Subst) |- H’ := H ** stackInGraph(In2 UNION oneElemSet(L), Out2 MINUS oneElemSet(L))(L)
if VALID(Cond => L1 === L + 1) and VALID(Cond => L2 === L + 2) and VALID(Cond => L3 === L + 3) and VALID(Cond => D2 === D2’)
and (VALID(Cond => D1 === null) or VALID(Cond => oneElemSet(D1) IN In2) or VALID(Cond => D1 === L) or VALID(Cond => oneElemSet(D1) IN Out2)) .

crl (Cond,Subst) |- H’ := H ** [L, graph . marked, 1] ** [L1, graph . switch, 0] ** [L2, graph . left, D1] ** [L3, graph . right, D2]
=> (Cond,Subst) |- H’ := H ** stackInGraph(oneElemSet(L), emptySet)(L)
if VALID(Cond => L1 === L + 1) and VALID(Cond => L2 === L + 2) and VALID(Cond => L3 === L + 3)
and (VALID(Cond => D1 === null) or VALID(Cond => D1 === L)) and (VALID(Cond => D2 === null) or VALID(Cond => D2 === L)) .

crl (Cond,Subst) |- H’ := H ** [L, graph . marked, 1] ** [L1, graph . switch, 0] ** [L2, graph . left, D1] ** [L3, graph . right, D2]
** stackInGraph(In1,Out1)(D1’) ** markedGraph(In2,Out2)(D2’)

=> (Cond,Subst) |- H’ := H ** stackInGraph(In1 UNION In2 UNION oneElemSet(L), Out1 UNION Out2 MINUS In1 UNION In2 UNION oneElemSet(L))(L)
if VALID(Cond => L1 === L + 1) and VALID(Cond => L2 === L + 2) and VALID(Cond => L3 === L + 3) and VALID(Cond => D1 === D1’)
and VALID(Cond => D2 === D2’) .

crl (Cond,Subst) |- H’ := H ** [L, graph . marked, 1] ** [L1, graph . switch, 0] ** [L2, graph . left, D1] ** [L3, graph . right, D2]
** markedGraph(In2,Out2)(D2’)

=> (Cond,Subst) |- H’ := H ** stackInGraph(In2 UNION oneElemSet(L), Out2 MINUS oneElemSet(L))(L)
if VALID(Cond => L1 === L + 1) and VALID(Cond => L2 === L + 2) and VALID(Cond => L3 === L + 3) and VALID(Cond => D2 === D2’)
and (VALID(Cond => D1 === null) or VALID(Cond => oneElemSet(D1) IN In2) or VALID(Cond => D1 === L) or VALID(Cond => oneElemSet(D1) IN Out2)) .

crl (Cond,Subst) |- H’ := H ** [L, graph . marked, 1] ** [L1, graph . switch, 1] ** [L2, graph . left, D1] ** [L3, graph . right, D2]
** markedGraph(In1,Out1)(D1’) ** stackInGraph(In2,Out2)(D2’)

=> (Cond,Subst) |- H’ := H ** stackInGraph(In1 UNION In2 UNION oneElemSet(L), Out1 UNION Out2 MINUS In1 UNION In2 UNION oneElemSet(L))(L)
if VALID(Cond => L1 === L + 1) and VALID(Cond => L2 === L + 2) and VALID(Cond => L3 === L + 3)
and VALID(Cond => D1 === D1’) and VALID(Cond => D2 === D2’) .

crl (Cond,Subst) |- H’ := H ** [L, graph . marked, 1] ** [L1, graph . switch, 1] ** [L2, graph . left, D1] ** [L3, graph . right, D2]
** markedGraph(In1,Out1)(D1’)

=> (Cond,Subst) |- H’ := H ** stackInGraph(In1 UNION oneElemSet(L), Out1 MINUS oneElemSet(L))(L)
if VALID(Cond => L1 === L + 1) and VALID(Cond => L2 === L + 2) and VALID(Cond => L3 === L + 3) and VALID(Cond => D1 === D1’)
and (VALID(Cond => D2 === null) or VALID(Cond => oneElemSet(D2) IN In1) or VALID(Cond => D2 === L) or VALID(Cond => oneElemSet(D2) IN Out1)) .

crl (Cond,Subst) |- H’ := H ** [L, graph . marked, 1] ** [L1, graph . switch, 1] ** [L2, graph . left, D1] ** [L3, graph . right, D2]
** stackInGraph(In2,Out2)(D2’)

=> (Cond,Subst) |- H’ := H ** stackInGraph(In2 UNION oneElemSet(L), Out2 MINUS oneElemSet(L))(L)
if VALID(Cond => L1 === L + 1) and VALID(Cond => L2 === L + 2) and VALID(Cond => L3 === L + 3) and VALID(Cond => D2 === D2’)
and (VALID(Cond => D1 === null) or VALID(Cond => oneElemSet(D1) IN In2) or VALID(Cond => D1 === L) or VALID(Cond => oneElemSet(D1) IN Out2)) .

crl (Cond,Subst) |- H’ := H ** [L, graph . marked, 1] ** [L1, graph . switch, 1] ** [L2, graph . left, D1] ** [L3, graph . right, D2]
=> (Cond,Subst) |- H’ := H ** stackInGraph(oneElemSet(L), emptySet)(L)
if VALID(Cond => L1 === L + 1) and VALID(Cond => L2 === L + 2) and VALID(Cond => L3 === L + 3)
and (VALID(Cond => D1 === null) or VALID(Cond => D1 === L)) and (VALID(Cond => D2 === null) or VALID(Cond => D2 === L)) .

-------------------------------
--- Schorr-Waite with graph ---
-------------------------------

op nodes : -> Var .
ops ?nodes1 ?nodes2 ?nodes3 ?out1 ?out2 : -> FreshVar .

eq Schorr-Waite-graph =
//@ assume [cleanGraph(nodes,emptySet)(root)] ;
t = root ;
p = null ;

//@ inv t == null && [stackInGraph(nodes,emptySet)(p) ** ?rest]
|| t != null &&
(* t == 1 &&& [markedGraph(?nodes1,?out1)(t) ** stackInGraph(?nodes2,?out2)(p) ** ?rest] ||
* t == 0 &&& [ cleanGraph(?nodes1,?out1)(t) ** stackInGraph(?nodes2,?out2)(p) ** ?rest])
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&& nodes == ?nodes1 UNION ?nodes2 && ?out1 in ?nodes2 && ?out2 in ?nodes1
while (p != null || (t != null && * t == 0)) {
if (t == null || * t == 1) {
if (*(p + 1) == 1) { --- POP
q = t ; --- q = t
t = p ; --- t = p
p = *(p + 3) ; --- p = p -> right
*(t + 3) = q ; --- t -> right = q

}
else { --- SWING
q = t ; --- q = t
t = *(p + 3) ; --- t = p -> right
*(p + 3) = *(p + 2) ; --- p -> right = p -> left
*(p + 2) = q ; --- p -> left = q
*(p + 1) = 1 ; --- p -> c = 1

}
}
else { --- PUSH
q = p ; --- q = p
p = t ; --- p = t
t = *(t + 2) ; --- t = t -> left
*(p + 2) = q ; --- p -> left = q
* p = 1 ; --- p -> m = 1
*(p + 1) = 0 ; --- p -> c = 0

}
} ;
//@ assert [markedGraph(nodes,emptySet)(t)]

.

***)

***(
sort Graph .
op nodes : Graph -> Var .
op edges : Graph -> K .

op cleanGraph[_] : Graph -> HeapDefName [prec 0] .
op markedGraph[_] : Graph -> HeapDefName [prec 0] .
op stackInGraph[_] : Graph -> HeapDefName [prec 0] .

op graph : -> Graph .

op graph[_] : Graph -> HeapDefName [prec 0] .

var G : Graph . var Kl : KList .

op ?in : -> FreshVar .

eq cleanGraph[G](Kl) = cleanGraph[G](nodes(G))(Kl) .
eq markedGraph[G](Kl) = markedGraph[G](nodes(G))(Kl) .
eq stackInGraph[G](Kl) = stackInGraph[G](nodes(G))(Kl) .

op {_,_,_} : K LocType K -> K .

----------------------------
--- cleanGraph[G](In)(L) ---
----------------------------
eq //@ assumeCond(cleanGraph[G](In)(L)) = cases(//@ Assume(In === emptySet), //@ Assume(oneElemSet(L) IN In /\ ˜(L === null))) .

ceq (Cond,Subst) |- H’ := H ** cleanGraph[G](In)(L)
= (Cond /\ In === emptySet, Subst) |- H’ := H if VALID(Cond => L === null) .

ceq (Cond,Subst) |- H’ ** cleanGraph[G](In)(L) := H
= (Cond,(Subst,checkAndMakeSubst(Cond,Subst,In,emptySet))) |- H’[checkAndMakeSubst(Cond,Subst,In,emptySet)] := H if VALID(Cond => L === null) .

eq derive((cleanGraph[G](In)(L) ** H ** #(F)), L)
= (//@ Assert(˜(L === null))
˜> //@ Assume(oneElemSet(L) IN In /\ In IN nodes(G) /\ oneElemSet({L, left, F}) IN edges(G) /\ oneElemSet({L, right, n F}) IN edges(G))
˜> answer([L + 1, graph[G] . switch, undef] ** [L + 2, graph[G] . left, F] ** [L + 3, graph[G] . right, n F]

** cleanGraph[G](n n F)(F) ** cleanGraph[G]((In MINUS (n n F)) MINUS oneElemSet(L))(n F) ** H ** #(n n n F), graph[G] . marked, 0)) .

eq derive((cleanGraph[G](In)(L) ** H ** #(F)), L + 1)
= (//@ Assert(˜(L === null))
˜> //@ Assume(oneElemSet(L) IN In /\ In IN nodes(G) /\ oneElemSet({L, left, F}) IN edges(G) /\ oneElemSet({L, right, n F}) IN edges(G))
˜> answer([L, graph[G] . marked, 0] ** [L + 2, graph[G] . left, F] ** [L + 3, graph[G] . right, n F]

** cleanGraph[G](n n F)(F) ** cleanGraph[G]((In MINUS (n n F)) MINUS oneElemSet(L))(n F) ** H ** #(n n n F), graph[G] . switch, undef)) .

eq derive((cleanGraph[G](In)(L) ** H ** #(F)), L + 2)
= (//@ Assert(˜(L === null))
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˜> //@ Assume(oneElemSet(L) IN In /\ In IN nodes(G) /\ oneElemSet({L, left, F}) IN edges(G) /\ oneElemSet({L, right, n F}) IN edges(G))
˜> answer([L, graph[G] . marked, 0] ** [L + 1, graph[G] . switch, undef] ** [L + 3, graph[G] . right, n F]

** cleanGraph[G](n n F)(F) ** cleanGraph[G]((In MINUS (n n F)) MINUS oneElemSet(L))(n F) ** H ** #(n n n F), graph[G] . left, F)) .

eq derive((cleanGraph[G](In)(L) ** H ** #(F)), L + 3)
= (//@ Assert(˜(L === null))
˜> //@ Assume(oneElemSet(L) IN In /\ In IN nodes(G) /\ oneElemSet({L, left, F}) IN edges(G) /\ oneElemSet({L, right, n F}) IN edges(G))
˜> answer([L, graph[G] . marked, 0] ** [L + 1, graph[G] . switch, undef] ** [L + 2, graph[G] . left, F]

** cleanGraph[G](n n F)(F) ** cleanGraph[G]((In MINUS (n n F)) MINUS oneElemSet(L))(n F) ** H ** #(n n n F), graph[G] . right, n F)) .

crl (Cond,Subst) |- H’ := H ** [L, graph[G] . marked, 0] ** [L1, graph[G] . switch, undef] ** [L2, graph[G] . left, D1]
** [L3, graph[G] . right, D2] ** cleanGraph[G](In1)(D1’) ** cleanGraph[G](In2)(D2’)

=> (Cond,Subst) |- H’ := H ** cleanGraph[G](oneElemSet(L) UNION In1 UNION In2)(L)
if VALID(Cond => L1 === L + 1 /\ L2 === L + 2 /\ L3 === L + 3 /\ D1 === D1’ /\ D2 === D2’

/\ oneElemSet({L, left, D1’}) IN edges(G) /\ oneElemSet({L, right, D2’}) IN edges(G) /\ In1 INTERSECT In2 === emptySet) .

crl (Cond,Subst) |- H’ := H ** [L, graph[G] . marked, 0] ** [L1, graph[G] . switch, undef] ** [L2, graph[G] . left, D1]
** [L3, graph[G] . right, D2] ** cleanGraph[G](In1)(D1’)

=> (Cond,Subst) |- H’ := H ** cleanGraph[G](oneElemSet(L) UNION In1)(L)
if VALID(Cond => (D2 === null \/ D2 === L \/ oneElemSet(D2) IN In1) /\ L1 === L + 1 /\ L2 === L + 2 /\ L3 === L + 3 /\ D1 === D1’

/\ oneElemSet({L, left, D1’}) IN edges(G) /\ oneElemSet({L, right, D2}) IN edges(G)) .

crl (Cond,Subst) |- H’ := H ** [L, graph[G] . marked, 0] ** [L1, graph[G] . switch, undef] ** [L2, graph[G] . left, D1]
** [L3, graph[G] . right, D2] ** cleanGraph[G](In2)(D2’)

=> (Cond,Subst) |- H’ := H ** cleanGraph[G](oneElemSet(L) UNION In2)(L)
if VALID(Cond => (D1 === null \/ D1 === L \/ oneElemSet(D1) IN In2) /\ L1 === L + 1 /\ L2 === L + 2 /\ L3 === L + 3 /\ D2 === D2’

/\ oneElemSet({L, left, D1}) IN edges(G) /\ oneElemSet({L, right, D2’}) IN edges(G)) .

crl (Cond,Subst) |- H’ := H ** [L, graph[G] . marked, 0] ** [L1, graph[G] . switch, undef] ** [L2, graph[G] . left, D1] ** [L3, graph[G] . right, D2]
=> (Cond,Subst) |- H’ := H ** cleanGraph[G](oneElemSet(L))(L)
if VALID(Cond => (D1 === null \/ D1 === L) /\ (D2 === null \/ D2 === L) /\ L1 === L + 1 /\ L2 === L + 2 /\ L3 === L + 3

/\ oneElemSet({L, left, D1}) IN edges(G) /\ oneElemSet({L, right, D2}) IN edges(G)) .

-----------------------------
--- markedGraph[G](In)(L) ---
-----------------------------
eq //@ assumeCond(markedGraph[G](In)(L)) = cases(//@ Assume(In === emptySet), //@ Assume(oneElemSet(L) IN In /\ ˜(L === null))) .

ceq (Cond,Subst) |- H’ := H ** markedGraph[G](In)(L) = (Cond /\ In === emptySet, Subst) |- H’ := H if VALID(Cond => L === null) .
ceq (Cond,Subst) |- H’ ** markedGraph[G](In)(L) := H
= (Cond,(Subst,checkAndMakeSubst(Cond,Subst,In,emptySet))) |- H’[checkAndMakeSubst(Cond,Subst,In,emptySet)] := H if VALID(Cond => L === null) .

eq derive((markedGraph[G](In)(L) ** H ** #(F)), L)
= (//@ Assert(˜(L === null))
˜> //@ Assume(oneElemSet(L) IN In /\ In IN nodes(G) /\ oneElemSet({L, left, F}) IN edges(G) /\ oneElemSet({L, right, n F}) IN edges(G))
˜> answer([L + 1, graph[G] . switch, 1] ** [L + 2, graph[G] . left, F] ** [L + 3, graph[G] . right, n F]

** markedGraph[G](n n F)(F) ** markedGraph[G]((In MINUS (n n F)) MINUS oneElemSet(L))(n F) ** H ** #(n n n F), graph[G] . marked, 1)) .

eq derive((markedGraph[G](In)(L) ** H ** #(F)), L + 1)
= (//@ Assert(˜(L === null))
˜> //@ Assume(oneElemSet(L) IN In /\ In IN nodes(G) /\ oneElemSet({L, left, F}) IN edges(G) /\ oneElemSet({L, right, n F}) IN edges(G))
˜> answer([L, graph[G] . marked, 1] ** [L + 2, graph[G] . left, F] ** [L + 3, graph[G] . right, n F]

** markedGraph[G](n n F)(F) ** markedGraph[G]((In MINUS (n n F)) MINUS oneElemSet(L))(n F) ** H ** #(n n n F), graph[G] . switch, 1)) .

eq derive((markedGraph[G](In)(L) ** H ** #(F)), L + 2)
= (//@ Assert(˜(L === null))
˜> //@ Assume(oneElemSet(L) IN In /\ In IN nodes(G) /\ oneElemSet({L, left, F}) IN edges(G) /\ oneElemSet({L, right, n F}) IN edges(G))
˜> answer([L, graph[G] . marked, 1] ** [L + 1, graph[G] . switch, 1] ** [L + 3, graph[G] . right, n F]

** markedGraph[G](n n F)(F) ** markedGraph[G]((In MINUS (n n F)) MINUS oneElemSet(L))(n F) ** H ** #(n n n F), graph[G] . left, F)) .

eq derive((markedGraph[G](In)(L) ** H ** #(F)), L + 3)
= (//@ Assert(˜(L === null))
˜> //@ Assume(oneElemSet(L) IN In /\ In IN nodes(G) /\ oneElemSet({L, left, F}) IN edges(G) /\ oneElemSet({L, right, n F}) IN edges(G))
˜> answer([L, graph[G] . marked, 1] ** [L + 1, graph[G] . switch, 1] ** [L + 2, graph[G] . left, F]

** markedGraph[G](n n F)(F) ** markedGraph[G]((In MINUS (n n F)) MINUS oneElemSet(L))(n F) ** H ** #(n n n F), graph[G] . right, n F)) .

crl (Cond,Subst) |- H’ := H ** [L, graph[G] . marked, 1] ** [L1, graph[G] . switch, 1] ** [L2, graph[G] . left, D1]
** [L3, graph[G] . right, D2] ** markedGraph[G](In1)(D1’) ** markedGraph[G](In2)(D2’)

=> (Cond,Subst) |- H’ := H ** markedGraph[G](oneElemSet(L) UNION In1 UNION In2)(L)
if VALID(Cond => L1 === L + 1 /\ L2 === L + 2 /\ L3 === L + 3 /\ D1 === D1’ /\ D2 === D2’

/\ oneElemSet({L, left, D1’}) IN edges(G) /\ oneElemSet({L, right, D2’}) IN edges(G) /\ In1 INTERSECT In2 === emptySet) .

crl (Cond,Subst) |- H’ := H ** [L, graph[G] . marked, 1] ** [L1, graph[G] . switch, 1] ** [L2, graph[G] . left, D1]
** [L3, graph[G] . right, D2] ** markedGraph[G](In1)(D1’)

=> (Cond,Subst) |- H’ := H ** markedGraph[G](oneElemSet(L) UNION In1)(L)
if VALID(Cond => (D2 === null \/ D2 === L \/ oneElemSet(D2) IN In1) /\ L1 === L + 1 /\ L2 === L + 2 /\ L3 === L + 3 /\ D1 === D1’
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/\ oneElemSet({L, left, D1’}) IN edges(G) /\ oneElemSet({L, right, D2}) IN edges(G)) .

crl (Cond,Subst) |- H’ := H ** [L, graph[G] . marked, 1] ** [L1, graph[G] . switch, 1] ** [L2, graph[G] . left, D1]
** [L3, graph[G] . right, D2] ** markedGraph[G](In2)(D2’)

=> (Cond,Subst) |- H’ := H ** markedGraph[G](oneElemSet(L) UNION In2)(L)
if VALID(Cond => (D1 === null \/ D1 === L \/ oneElemSet(D1) IN In2) /\ L1 === L + 1 /\ L2 === L + 2 /\ L3 === L + 3 /\ D2 === D2’

/\ oneElemSet({L, left, D1}) IN edges(G) /\ oneElemSet({L, right, D2’}) IN edges(G)) .

crl (Cond,Subst) |- H’ := H ** [L, graph[G] . marked, 1] ** [L1, graph[G] . switch, 1] ** [L2, graph[G] . left, D1] ** [L3, graph[G] . right, D2]
=> (Cond,Subst) |- H’ := H ** markedGraph[G](oneElemSet(L))(L)
if VALID(Cond => (D1 === null \/ D1 === L) /\ (D2 === null \/ D2 === L) /\ L1 === L + 1 /\ L2 === L + 2 /\ L3 === L + 3

/\ oneElemSet({L, left, D1}) IN edges(G) /\ oneElemSet({L, right, D2}) IN edges(G)) .

------------------------------
--- stackInGraph[G](In)(L) ---
------------------------------
eq //@ assumeCond(stackInGraph[G](In)(L)) = cases(//@ Assume(In === emptySet), //@ Assume(oneElemSet(L) IN In /\ ˜(L === null))) .

ceq (Cond,Subst) |- H’ := H ** stackInGraph[G](In)(L) = (Cond /\ In === emptySet, Subst) |- H’ := H if VALID(Cond => L === null) .
ceq (Cond,Subst) |- H’ ** stackInGraph[G](In)(L) := H
= (Cond,(Subst,checkAndMakeSubst(Cond,Subst,In,emptySet))) |- H’[checkAndMakeSubst(Cond,Subst,In,emptySet)] := H if VALID(Cond => L === null) .

eq derive((stackInGraph[G](In)(L) ** H ** #(F)), L)
= (//@ Assert(˜(L === null))
˜> //@ Assume(oneElemSet(L) IN In /\ In IN nodes(G) /\ oneElemSet({L, left, F}) IN edges(G) /\ oneElemSet({L, right, n F}) IN edges(G))
˜> answer([L + 1, graph[G] . switch, 1] ** [L + 2, graph[G] . left, F] ** [L + 3, graph[G] . right, n F]

** markedGraph[G](n n F)(F) ** markedGraph[G]((In MINUS (n n F)) MINUS oneElemSet(L))(n F) ** H ** #(n n n F), graph[G] . marked, 1)) .

eq derive((stackInGraph(In,Out)(L) ** H ** #(F)), L)
= (//@ Assert(˜(L === null)) ˜> //@ Assume(oneElemSet(L) IN In) ˜> //@ Assume(In MINUS oneElemSet(L) === (n n F) UNION (n n n F))
˜> //@ Assume((n n F) INTERSECT (n n n F) === emptySet)
˜> cases(answer([L + 1, graph . switch, 0] ** [L + 2, graph . left, F] ** [L + 3, graph . right, n F]

** stackInGraph((n n F), Out UNION (n n n F) UNION oneElemSet(L))(F)
** cleanGraph((n n n F), Out UNION (n n F) UNION oneElemSet(L))(n F) ** H ** #(n n n n F), graph . marked, 1),

answer([L + 1, graph . switch, 0] ** [L + 2, graph . left, F] ** [L + 3, graph . right, n F]
** stackInGraph((n n F), Out UNION (n n n F) UNION oneElemSet(L))(F)
** markedGraph((n n n F), Out UNION (n n F) UNION oneElemSet(L))(n F) ** H ** #(n n n n F), graph . marked, 1),

answer([L + 1, graph . switch, 1] ** [L + 2, graph . left, F] ** [L + 3, graph . right, n F]
** stackInGraph((n n F), Out UNION (n n n F) UNION oneElemSet(L))(n F)
** markedGraph((n n n F), Out UNION (n n F) UNION oneElemSet(L))(F) ** H ** #(n n n n F), graph . marked, 1))) .

eq derive((markedGraph[G](In)(L) ** H ** #(F)), L + 1)
= (//@ Assert(˜(L === null))
˜> //@ Assume(oneElemSet(L) IN In /\ In IN nodes(G) /\ oneElemSet({L, left, F}) IN edges(G) /\ oneElemSet({L, right, n F}) IN edges(G))
˜> answer([L, graph[G] . marked, 1] ** [L + 2, graph[G] . left, F] ** [L + 3, graph[G] . right, n F]

** markedGraph[G](n n F)(F) ** markedGraph[G]((In MINUS (n n F)) MINUS oneElemSet(L))(n F) ** H ** #(n n n F), graph[G] . switch, 1)) .

eq derive((markedGraph[G](In)(L) ** H ** #(F)), L + 2)
= (//@ Assert(˜(L === null))
˜> //@ Assume(oneElemSet(L) IN In /\ In IN nodes(G) /\ oneElemSet({L, left, F}) IN edges(G) /\ oneElemSet({L, right, n F}) IN edges(G))
˜> answer([L, graph[G] . marked, 1] ** [L + 1, graph[G] . switch, 1] ** [L + 3, graph[G] . right, n F]

** markedGraph[G](n n F)(F) ** markedGraph[G]((In MINUS (n n F)) MINUS oneElemSet(L))(n F) ** H ** #(n n n F), graph[G] . left, F)) .

eq derive((markedGraph[G](In)(L) ** H ** #(F)), L + 3)
= (//@ Assert(˜(L === null))
˜> //@ Assume(oneElemSet(L) IN In /\ In IN nodes(G) /\ oneElemSet({L, left, F}) IN edges(G) /\ oneElemSet({L, right, n F}) IN edges(G))
˜> answer([L, graph[G] . marked, 1] ** [L + 1, graph[G] . switch, 1] ** [L + 2, graph[G] . left, F]

** markedGraph[G](n n F)(F) ** markedGraph[G]((In MINUS (n n F)) MINUS oneElemSet(L))(n F) ** H ** #(n n n F), graph[G] . right, n F)) .

crl (Cond,Subst) |- H’ := H ** [L, graph[G] . marked, 1] ** [L1, graph[G] . switch, 1] ** [L2, graph[G] . left, D1]
** [L3, graph[G] . right, D2] ** markedGraph[G](In1)(D1’) ** markedGraph[G](In2)(D2’)

=> (Cond,Subst) |- H’ := H ** markedGraph[G](oneElemSet(L) UNION In1 UNION In2)(L)
if VALID(Cond => L1 === L + 1 /\ L2 === L + 2 /\ L3 === L + 3 /\ D1 === D1’ /\ D2 === D2’

/\ oneElemSet({L, left, D1’}) IN edges(G) /\ oneElemSet({L, right, D2’}) IN edges(G) /\ In1 INTERSECT In2 === emptySet) .

crl (Cond,Subst) |- H’ := H ** [L, graph[G] . marked, 1] ** [L1, graph[G] . switch, 1] ** [L2, graph[G] . left, D1]
** [L3, graph[G] . right, D2] ** markedGraph[G](In1)(D1’)

=> (Cond,Subst) |- H’ := H ** markedGraph[G](oneElemSet(L) UNION In1)(L)
if VALID(Cond => (D2 === null \/ D2 === L \/ oneElemSet(D2) IN In1) /\ L1 === L + 1 /\ L2 === L + 2 /\ L3 === L + 3 /\ D1 === D1’

/\ oneElemSet({L, left, D1’}) IN edges(G) /\ oneElemSet({L, right, D2}) IN edges(G)) .

crl (Cond,Subst) |- H’ := H ** [L, graph[G] . marked, 1] ** [L1, graph[G] . switch, 1] ** [L2, graph[G] . left, D1]
** [L3, graph[G] . right, D2] ** markedGraph[G](In2)(D2’)

=> (Cond,Subst) |- H’ := H ** markedGraph[G](oneElemSet(L) UNION In2)(L)
if VALID(Cond => (D1 === null \/ D1 === L \/ oneElemSet(D1) IN In2) /\ L1 === L + 1 /\ L2 === L + 2 /\ L3 === L + 3 /\ D2 === D2’
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/\ oneElemSet({L, left, D1}) IN edges(G) /\ oneElemSet({L, right, D2’}) IN edges(G)) .

crl (Cond,Subst) |- H’ := H ** [L, graph[G] . marked, 1] ** [L1, graph[G] . switch, 1] ** [L2, graph[G] . left, D1] ** [L3, graph[G] . right, D2]
=> (Cond,Subst) |- H’ := H ** markedGraph[G](oneElemSet(L))(L)
if VALID(Cond => (D1 === null \/ D1 === L) /\ (D2 === null \/ D2 === L) /\ L1 === L + 1 /\ L2 === L + 2 /\ L3 === L + 3

/\ oneElemSet({L, left, D1}) IN edges(G) /\ oneElemSet({L, right, D2}) IN edges(G)) .

-----------------------
--- stackInGraph(L) ---
-----------------------

eq derive((stackInGraph(In,Out)(L) ** H ** #(F)), L)
= (//@ Assert(˜(L === null)) ˜> //@ Assume(oneElemSet(L) IN In)
˜> //@ Assume(In MINUS oneElemSet(L) === (n n F) UNION (n n n F)) ˜> //@ Assume((n n F) INTERSECT (n n n F) === emptySet)
˜> cases(answer([L + 1, graph . switch, 0] ** [L + 2, graph . left, F] ** [L + 3, graph . right, n F]

** stackInGraph((n n F), Out UNION (n n n F) UNION oneElemSet(L))(F)
** cleanGraph((n n n F), Out UNION (n n F) UNION oneElemSet(L))(n F) ** H ** #(n n n n F), graph . marked, 1),

answer([L + 1, graph . switch, 0] ** [L + 2, graph . left, F] ** [L + 3, graph . right, n F]
** stackInGraph((n n F), Out UNION (n n n F) UNION oneElemSet(L))(F)
** markedGraph((n n n F), Out UNION (n n F) UNION oneElemSet(L))(n F) ** H ** #(n n n n F), graph . marked, 1),

answer([L + 1, graph . switch, 1] ** [L + 2, graph . left, F] ** [L + 3, graph . right, n F]
** stackInGraph((n n F), Out UNION (n n n F) UNION oneElemSet(L))(n F)
** markedGraph((n n n F), Out UNION (n n F) UNION oneElemSet(L))(F) ** H ** #(n n n n F), graph . marked, 1))) .

eq derive((stackInGraph(In,Out)(L) ** H ** #(F)), L + 1)
= (//@ Assert(˜(L === null)) ˜> //@ Assume(oneElemSet(L) IN In)
˜> //@ Assume(In MINUS oneElemSet(L) === (n n F) UNION (n n n F)) ˜> //@ Assume((n n F) INTERSECT (n n n F) === emptySet)
˜> cases(answer([L, graph . marked, 1] ** [L + 2, graph . left, F] ** [L + 3, graph . right, n F]

** stackInGraph((n n F), Out UNION (n n n F) UNION oneElemSet(L))(F)
** cleanGraph((n n n F), Out UNION (n n F) UNION oneElemSet(L))(n F) ** H ** #(n n n n F), graph . switch, 0),

answer([L, graph . marked, 1] ** [L + 2, graph . left, F] ** [L + 3, graph . right, n F]
** stackInGraph((n n F), Out UNION (n n n F) UNION oneElemSet(L))(F)
** markedGraph((n n n F), Out UNION (n n F) UNION oneElemSet(L))(n F) ** H ** #(n n n n F), graph . switch, 0),

answer([L, graph . marked, 1] ** [L + 2, graph . left, F] ** [L + 3, graph . right, n F]
** stackInGraph((n n F), Out UNION (n n n F) UNION oneElemSet(L))(n F)
** markedGraph((n n n F), Out UNION (n n F) UNION oneElemSet(L))(F) ** H ** #(n n n n F), graph . switch, 1))) .

eq derive((stackInGraph(In,Out)(L) ** H ** #(F)), L + 2)
= (//@ Assert(˜(L === null)) ˜> //@ Assume(oneElemSet(L) IN In)
˜> //@ Assume(In MINUS oneElemSet(L) === (n n F) UNION (n n n F)) ˜> //@ Assume((n n F) INTERSECT (n n n F) === emptySet)
˜> cases(answer([L, graph . marked, 1] ** [L + 1, graph . switch, 0] ** [L + 3, graph . right, n F]

** stackInGraph((n n F), Out UNION (n n n F) UNION oneElemSet(L))(F)
** cleanGraph((n n n F), Out UNION (n n F) UNION oneElemSet(L))(n F) ** H ** #(n n n n F), graph . left, F),

answer([L, graph . marked, 1] ** [L + 1, graph . switch, 0] ** [L + 3, graph . right, n F]
** stackInGraph((n n F), Out UNION (n n n F) UNION oneElemSet(L))(F)
** markedGraph((n n n F), Out UNION (n n F) UNION oneElemSet(L))(n F) ** H ** #(n n n n F), graph . left, F),

answer([L, graph . marked, 1] ** [L + 1, graph . switch, 1] ** [L + 3, graph . right, n F]
** stackInGraph((n n F), Out UNION (n n n F) UNION oneElemSet(L))(n F)
** markedGraph((n n n F), Out UNION (n n F) UNION oneElemSet(L))(F) ** H ** #(n n n n F), graph . left, F))) .

eq derive((stackInGraph(In,Out)(L) ** H ** #(F)), L + 3)
= (//@ Assert(˜(L === null)) ˜> //@ Assume(oneElemSet(L) IN In)
˜> //@ Assume(In MINUS oneElemSet(L) === (n n F) UNION (n n n F)) ˜> //@ Assume((n n F) INTERSECT (n n n F) === emptySet)
˜> cases(answer([L, graph . marked, 1] ** [L + 1, graph . switch, 0] ** [L + 2, graph . left, F]

** stackInGraph((n n F), Out UNION (n n n F) UNION oneElemSet(L))(F)
** cleanGraph((n n n F), Out UNION (n n F) UNION oneElemSet(L))(n F) ** H ** #(n n n n F), graph . right, n F),

answer([L, graph . marked, 1] ** [L + 1, graph . switch, 0] ** [L + 2, graph . left, F]
** stackInGraph((n n F), Out UNION (n n n F) UNION oneElemSet(L))(F)
** markedGraph((n n n F), Out UNION (n n F) UNION oneElemSet(L))(n F) ** H ** #(n n n n F), graph . right, n F),

answer([L, graph . marked, 1] ** [L + 1, graph . switch, 1] ** [L + 2, graph . left, F]
** stackInGraph((n n F), Out UNION (n n n F) UNION oneElemSet(L))(n F)
** markedGraph((n n n F), Out UNION (n n F) UNION oneElemSet(L))(F) ** H ** #(n n n n F), graph . right, n F))) .

crl (Cond,Subst) |- H’ := H ** [L, graph . marked, 1] ** [L1, graph . switch, 0] ** [L2, graph . left, D1] ** [L3, graph . right, D2]
** stackInGraph(In1,Out1)(D1’) ** cleanGraph(In2,Out2)(D2’)

=> (Cond,Subst) |- H’ := H ** stackInGraph(In1 UNION In2 UNION oneElemSet(L), Out1 UNION Out2 MINUS In1 UNION In2 UNION oneElemSet(L))(L)
if VALID(Cond => L1 === L + 1) and VALID(Cond => L2 === L + 2) and VALID(Cond => L3 === L + 3)
and VALID(Cond => D1 === D1’) and VALID(Cond => D2 === D2’) .

crl (Cond,Subst) |- H’ := H ** [L, graph . marked, 1] ** [L1, graph . switch, 0] ** [L2, graph . left, D1] ** [L3, graph . right, D2]
** stackInGraph(In1,Out1)(D1’)

=> (Cond,Subst) |- H’ := H ** stackInGraph(In1 UNION oneElemSet(L), Out1 MINUS oneElemSet(L))(L)
if VALID(Cond => L1 === L + 1) and VALID(Cond => L2 === L + 2) and VALID(Cond => L3 === L + 3) and VALID(Cond => D1 === D1’)
and (VALID(Cond => D2 === null) or VALID(Cond => oneElemSet(D2) IN In1) or VALID(Cond => D2 === L) or VALID(Cond => oneElemSet(D2) IN Out1)) .

crl (Cond,Subst) |- H’ := H ** [L, graph . marked, 1] ** [L1, graph . switch, 0] ** [L2, graph . left, D1] ** [L3, graph . right, D2]
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** cleanGraph(In2,Out2)(D2’)
=> (Cond,Subst) |- H’ := H ** stackInGraph(In2 UNION oneElemSet(L), Out2 MINUS oneElemSet(L))(L)
if VALID(Cond => L1 === L + 1) and VALID(Cond => L2 === L + 2) and VALID(Cond => L3 === L + 3) and VALID(Cond => D2 === D2’)
and (VALID(Cond => D1 === null) or VALID(Cond => oneElemSet(D1) IN In2) or VALID(Cond => D1 === L) or VALID(Cond => oneElemSet(D1) IN Out2)) .

crl (Cond,Subst) |- H’ := H ** [L, graph . marked, 1] ** [L1, graph . switch, 0] ** [L2, graph . left, D1] ** [L3, graph . right, D2]
=> (Cond,Subst) |- H’ := H ** stackInGraph(oneElemSet(L), emptySet)(L)
if VALID(Cond => L1 === L + 1) and VALID(Cond => L2 === L + 2) and VALID(Cond => L3 === L + 3)
and (VALID(Cond => D1 === null) or VALID(Cond => D1 === L)) and (VALID(Cond => D2 === null) or VALID(Cond => D2 === L)) .

crl (Cond,Subst) |- H’ := H ** [L, graph . marked, 1] ** [L1, graph . switch, 0] ** [L2, graph . left, D1] ** [L3, graph . right, D2]
** stackInGraph(In1,Out1)(D1’) ** markedGraph(In2,Out2)(D2’)

=> (Cond,Subst) |- H’ := H ** stackInGraph(In1 UNION In2 UNION oneElemSet(L), Out1 UNION Out2 MINUS In1 UNION In2 UNION oneElemSet(L))(L)
if VALID(Cond => L1 === L + 1) and VALID(Cond => L2 === L + 2) and VALID(Cond => L3 === L + 3)
and VALID(Cond => D1 === D1’) and VALID(Cond => D2 === D2’) .

crl (Cond,Subst) |- H’ := H ** [L, graph . marked, 1] ** [L1, graph . switch, 0] ** [L2, graph . left, D1] ** [L3, graph . right, D2]
** markedGraph(In2,Out2)(D2’)

=> (Cond,Subst) |- H’ := H ** stackInGraph(In2 UNION oneElemSet(L), Out2 MINUS oneElemSet(L))(L)
if VALID(Cond => L1 === L + 1) and VALID(Cond => L2 === L + 2) and VALID(Cond => L3 === L + 3) and VALID(Cond => D2 === D2’)
and (VALID(Cond => D1 === null) or VALID(Cond => oneElemSet(D1) IN In2) or VALID(Cond => D1 === L) or VALID(Cond => oneElemSet(D1) IN Out2)) .

crl (Cond,Subst) |- H’ := H ** [L, graph . marked, 1] ** [L1, graph . switch, 1] ** [L2, graph . left, D1] ** [L3, graph . right, D2]
** markedGraph(In1,Out1)(D1’) ** stackInGraph(In2,Out2)(D2’)

=> (Cond,Subst) |- H’ := H ** stackInGraph(In1 UNION In2 UNION oneElemSet(L), Out1 UNION Out2 MINUS In1 UNION In2 UNION oneElemSet(L))(L)
if VALID(Cond => L1 === L + 1) and VALID(Cond => L2 === L + 2) and VALID(Cond => L3 === L + 3)
and VALID(Cond => D1 === D1’) and VALID(Cond => D2 === D2’) .

crl (Cond,Subst) |- H’ := H ** [L, graph . marked, 1] ** [L1, graph . switch, 1] ** [L2, graph . left, D1]
** [L3, graph . right, D2] ** markedGraph(In1,Out1)(D1’)

=> (Cond,Subst) |- H’ := H ** stackInGraph(In1 UNION oneElemSet(L), Out1 MINUS oneElemSet(L))(L)
if VALID(Cond => L1 === L + 1) and VALID(Cond => L2 === L + 2) and VALID(Cond => L3 === L + 3) and VALID(Cond => D1 === D1’)
and (VALID(Cond => D2 === null) or VALID(Cond => oneElemSet(D2) IN In1) or VALID(Cond => D2 === L) or VALID(Cond => oneElemSet(D2) IN Out1)) .

crl (Cond,Subst) |- H’ := H ** [L, graph . marked, 1] ** [L1, graph . switch, 1] ** [L2, graph . left, D1] ** [L3, graph . right, D2]
** stackInGraph(In2,Out2)(D2’)

=> (Cond,Subst) |- H’ := H ** stackInGraph(In2 UNION oneElemSet(L), Out2 MINUS oneElemSet(L))(L)
if VALID(Cond => L1 === L + 1) and VALID(Cond => L2 === L + 2) and VALID(Cond => L3 === L + 3) and VALID(Cond => D2 === D2’)
and (VALID(Cond => D1 === null) or VALID(Cond => oneElemSet(D1) IN In2) or VALID(Cond => D1 === L) or VALID(Cond => oneElemSet(D1) IN Out2)) .

crl (Cond,Subst) |- H’ := H ** [L, graph . marked, 1] ** [L1, graph . switch, 1] ** [L2, graph . left, D1] ** [L3, graph . right, D2]
=> (Cond,Subst) |- H’ := H ** stackInGraph(oneElemSet(L), emptySet)(L)
if VALID(Cond => L1 === L + 1) and VALID(Cond => L2 === L + 2) and VALID(Cond => L3 === L + 3)
and (VALID(Cond => D1 === null) or VALID(Cond => D1 === L)) and (VALID(Cond => D2 === null) or VALID(Cond => D2 === L)) .

op Schorr-Waite-graph-Complete : -> K .
eq Schorr-Waite-graph-Complete =
*** graph * schorr-waite(graph * root)
*** requires [ cleanGraph[graph](root)] ;
*** ensures [markedGraph[graph](result)] ;

//@ assume [cleanGraph[graph](root)] ;
t = root ;
p = null ;

//@ assert t == null && [stackInGraph[graph](p) ** ?rest]
|| [ (cleanGraph[graph])(?in)(t) ** stackInGraph[graph](nodes(graph) MINUS ?in)(p) ** ?rest]
|| [markedGraph[graph](?in)(t) ** stackInGraph[graph](nodes(graph) MINUS ?in)(p) ** ?rest] ;

stop ;
//@ inv t == null && [stackInGraph[graph](p) ** ?rest]

|| [ (cleanGraph[graph])(?in)(t) ** stackInGraph[graph](nodes(graph) MINUS ?in)(p) ** ?rest]
|| [markedGraph[graph](?in)(t) ** stackInGraph[graph](nodes(graph) MINUS ?in)(p) ** ?rest]

while (p != null || (t != null && * t == 0)) {
if (t == null || * t == 1) {
if (*(p + 1) == 1) { --- POP
q = t ; --- q = t
t = p ; --- t = p
p = *(p + 3) ; --- p = p -> right
*(t + 3) = q ; --- t -> right = q

}
else { --- SWING
q = t ; --- q = t
t = *(p + 3) ; --- t = p -> right
*(p + 3) = *(p + 2) ; --- p -> right = p -> left
*(p + 2) = q ; --- p -> left = q
*(p + 1) = 1 ; --- p -> c = 1

}
}
else { --- PUSH
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q = p ; --- q = p
p = t ; --- p = t
t = *(t + 2) ; --- t = t -> left
*(p + 2) = q ; --- p -> left = q
* p = 1 ; --- p -> m = 1
*(p + 1) = 0 ; --- p -> c = 0

}
} ;

--- return(t)
result = t ;
//@ assert [markedGraph[graph](result)]

.
***)

endm
---rew [| Schorr-Waite-graph |] .
---q

--- simple test for # of paths
rew [| pgm1 |] .
---rew [| pgm2 |] . --- slow
--- lists
rew [| wrong |] .
rew [| addHead |] .
rew [| addHeadComplete |] .
rew [| allocAndAddHead |] .
rew [| allocAndAddHeadComplete |] .
rew [| appendRec1 |] .
rew [| appendRec1Complete |] .
rew [| appendWhile1 |] .
rew [| appendWhile1Complete |] .
rew [| appendRec2 |] .
rew [| appendRec2Complete |] .
rew [| appendWhile2 |] .
rew [| appendWhile2Complete |] .
rew [| reverse1 |] .
rew [| reverse1Complete |] .
rew [| reverse2 |] .
rew [| reverse2Complete |] .
rew [| reverseWhile |] .
rew [| reverseWhileComplete |] .
rew [| disposeList |] .
rew [| disposeListWhile |] .
--- queues
rew [| enqueue |] .
rew [| enqueueComplete |] .
rew [| dequeue |] .
rew [| dequeueComplete |] .
rew [| transferOwner1 |] .
rew [| transferOwner1Complete |] .
rew [| transferOwner2 |] .
rew [| transferOwner2Complete |] .
rew [| stealQueue |] .
rew [| stealQueueComplete |] .
--- trees
rew [| allocTree |] .
rew [| allocTreeComplete |] .
rew [| mirror |] .
rew [| mirrorComplete |] .

---rew [| treeToList1 |] .
---rew [| treeToList2 |] .
---rew [| treeToListWhile |] .
q
--- Schorr-Waite
rew [| Schorr-Waite-tree |] .

rew [| Schorr-Waite-graph |] .
q
***)

rew [| Schorr-Waite-graph-Complete |] .

q

--- we are going to soon allow expressing configuration equalities as follows:
--- [list(S)(L) ** H] = L == null && S == nil && [H] || L != null && [[L, (V,L’)] ** list(S’)(L’) ** H] && S == V :: S’
--- [graph[B](G)(L) ** H] = L == null && G == empty && [H]
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|| L != null && [[L, (B,L1,L2)] ** H] && G == (L -> (L1,L2)) && {L1,L2} IN {L,null}
|| L != null && [[L, (B,L1,L2)] ** graph[B](G1)(L1) ** H] && G == G1 UNION (L -> (L1,L2)) && {L2} IN nodes(G) UNION {null}
|| L != null && [[L, (B,L1,L2)] ** graph[B](G2)(L2) ** H] && G == G2 UNION (L -> (L1,L2)) && {L1} IN nodes(G) UNION {null}
|| L != null && [[L, (B,L1,L2)] ** graph[B](G1)(L1) ** graph[B](G2)(L2) ** H] && G == G1 UNION G2 UNION (L -> (L1,L2))
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