
A Formal Semantics of C with Applications
Technical Report

Chucky Ellison Grigore Roşu
University of Illinois

{celliso2, grosu}@illinois.edu

Abstract
This paper describes an executable formal semantics of C expressed
using a formalism based on term rewriting. Being executable, the
semantics has been thoroughly tested against the GCC torture test
suite and successfully passes over 96% of 715 test programs. It is the
most complete and thoroughly tested formal definition of C to date.

The semantics yields an interpreter, debugger, and state space
search tool “for free”. The semantics is shown capable of automat-
ically finding program errors, both statically and at runtime. It is
also used to enumerate nondeterministic behavior. These techniques
together allow the tool to identify undefined programs.

The entire C semantics is included as Appendix B.

1. Introduction
C is one of the most frequently used programming languages.
It provides just enough abstraction above assembly language for
programmers to get their work done without having to worry about
the details of the machines on which the programs run. Despite
this abstraction, C is also known for the ease in which it allows
programmers to write buggy programs. With no runtime checks,
and little static checking, in C the programmer is to be trusted
entirely. Despite the abstraction, the language is still low-level
enough that programmers can take advantage of assumptions about
the underlying architecture. Trust in the programmer and the ability
to write non-portable code are actually two of the design principles
under which the C standard was written [20]. These ideas often work
in concert to yield intricate, platform-dependent bugs. The potential
subtlety of C bugs makes it an excellent candidate for formalization,
as subtle bugs can often be caught only by more rigorous means.

In this paper, we present a formal semantics for C that can be
used for finding program bugs. Rather than being an “on paper”
semantics, the definition is written in an executable, machine-
readable form and has been tested against the GCC torture tests. We
report on this evaluation in Section 7. The semantics is based on
the ISO/IEC 9899:1999 (C99) standard [19]. Where appropriate, we
reference the forthcoming ISO/IEC 9899:201x (C1X) standard [21],
which supersedes the C99 standard by addressing problems and
providing clarifications and extensions. We are handling some of
the extensions to C provided in C99 such as flexible array members,
but not features such as variable length arrays or complex number
support. We discuss the precise feature set later in this introduction.

The standard broadly categorizes the particular behaviors of any
C implementation into four categories: unspecified, implementation-
defined, undefined, and locale-specific behavior. For the purposes
of this paper, we focus on only three of these [21, §3.4]:

unspecified behavior Use of an unspecified value, or other behav-
ior [with] two or more possibilities and [. . .] no further require-
ments on which is chosen in any instance.

implementation-defined Unspecified behavior where each imple-
mentation documents how the choice is made.

undefined behavior Behavior, upon use of a non-portable or erro-
neous program construct or of erroneous data, [with] no require-
ments.

An example of unspecified behavior is the order in which the argu-
ments to a function are evaluated. An example of implementation
defined behavior is the size of an int. An example of undefined
behavior is referring to an object outside of its lifetime.

To put these definitions in perspective, for a C program to be
maximally portable, “it shall not produce output dependent on any
unspecified, undefined, or implementation-defined behavior, and
shall not exceed any minimum implementation limit” [21, §4.5].
This is called “strict conformance”. However, many C programs are
inherently non-portable (e.g., device drivers). The standard offers
another level of conformance (simply called “conforming”) where
the program may rely on particular implementation-defined or even
unspecified (but never undefined) behavior. Because the standard
requires that all implementation-defined behaviors are documented
by an implementation, but does not require this for unspecified
behaviors, we decided as a rule to give particular implementation-
defined behaviors to our semantics, and only when necessary for
common programs to also describe unspecified behaviors. We do not
give semantics to any undefined behavior. As much as possible, this
behavior is kept separate from the semantics underlying the high-
level (defined for all implementations) aspects of the language. More
details about this parameterization is described in Section 4.5.4.

This specification of low-level detail, coupled with the use of
an operational semantic framework, gives us an executable seman-
tics. Above all else, our semantics has been motivated by the de-
sire to develop formal, yet practical tools for C. Few languages
are designed using formal specifications. When C was being stan-
dardized, they explored using formal methods, but in the end they
decided to use simple prose because, “Anything more ambitious
was considered to be likely to delay the Standard, and to make it
less accessible to its audience” [20, §6]. We developed our seman-
tics in roughly 6 person −months. To put this in perspective, one
member of the standards committee estimated that it took roughly
62 person − years to produce the C99 standard [22]. We are not
claiming that we have done the same job in a fraction of the time
(we have done a fraction of the job in a fraction of the time). We
are only pointing out that the development of a formal semantics
could have taken place alongside the development of the standard.
For formal methods to be accepted by the general language com-
munity, it needs to be shown to have value beyond that of prose.
We developed our semantics in such a way so that the single def-
inition could be used immediately for interpreting, debugging, or
analysis (described in Section 6).

A Formal Semantics of C with Applications 1 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

However, this executability does not mean that our definition
is not formal. Being written in rewriting logic, it comes with a
complete proof system and initial model semantics [25]. Briefly,
a rewrite system is a set of rules over terms constructed from a
signature. The rewrite rules match and apply everywhere, making
rewriting logic a simple, uniform, and general formal computational
paradigm. This is explained in greater detail in Section 4.1.

Our C semantics defines approximately 120 C syntactic operators
and 200 intermediate or auxiliary semantic operators. The definitions
of these operators are given by 400 semantic rules and 172 helper
rules (such as sizeof(int) ⇒ 4) spread over 2,333 source lines of
code (SLOC). However, it takes only 37 of those rules (201 SLOC)
to cover the behavior of statements, and another 119 for expressions
(417 SLOC). There are 353 rules for dealing with types, memory,
and other necessary mechanisms. Finally, there are about 63 rules
for the core of our standard library. Our semantics is described
in more detail in Section 4, while the entire semantics can be
found in Appendix B. Additionally, the machine readable source
can be found at https://code.google.com/p/k-framework/
wiki/DefinitionOfC.

Contributions The specific contributions of this paper include:

• a detailed comparison of other C formalisms;
• the most comprehensive formal semantics of C to date, which is

executable and has been thoroughly tested;
• and demonstrations as to its utility in discovering program flaws.

Features Unless otherwise specified, all aspects related to the
below features are included and are given a direct semantics (not
by a translation to other features):

• Expressions: referencing and dereferencing, casts, array index-
ing (a[i]), structure members (-> and .), arithmetic, bitwise,
and logical operators, sizeof, increment and decrement, assign-
ments, sequencing1 (_,_), ternary conditional1 (_?_:_)
• Statements: for,1 do-while,1 while, if, if/else, switch, goto, break,

continue, return
• Types and Declarations: enums, structs, unions, bitfields, initial-

izers, static storage,1 typedefs
• Values: regular scalar values (signed/unsigned arithmetic and

pointer types), structs, unions
• Standard Library: malloc/free, set/longjmp, basic I/O
• Environment: command line arguments
• Conversions: (implicit) argument and parameter promotions and

arithmetic conversion, and (explicit) casts

2. Comparison with Existing Formal C Semantics
There have already been a number of formal semantics written
for C. One might (rightfully) ask, “Why yet another?” We claim
that the definitions so far have either made enough simplifying
assumptions that for many purposes they are not C, or have lacked
any way to use them other than on paper. While “paper semantics”
are useful for teaching and understanding the language, we believe
that without a mechanized definition, it is difficult to gain confidence
in a definition’s appropriateness for any other purpose. Below we
highlight the most prominent definitions and explain their successes
and shortcomings in comparison with our work.

Gurevich and Huggins (GH) One of the earliest formal descrip-
tions of ANSI C is given by Gurevich and Huggins [17], using
abstract state machines (ASMs) (then known as evolving algebras).
Their semantics describes C using four increasingly precise layers,
each formal and analyzable. Their semantics covers all the high-
level constructs of the language, and uses external oracles to capture

1 These features are handled implicitly by C Intermediate Language (CIL).

the underspecification inherent in the definition of C. Their seman-
tics was written without access to a standard, and so is based on
Kernighan and Ritchie [24]. However, many behavioral details of the
lowest-level features of C are now partially standardized, including
details of arithmetic, type representation, and evaluation strategies.
The latter has been investigated in the context of ASMs [40], but
none are present in the original definition. Based on our own ex-
perience, the details involving the lowest-level features of C are
incredibly complex (see Section 3), but we see no reason why the
ASM technique could not be used to specify them.

Their semantics was never converted into an executable tool, nor
has it been used in applications. However, their purpose and context
was different from ours. As pointed out elsewhere [29, p. 11], their
semantics was constructed without the benefit of any mechanization.
According to Gurevich,2 their purpose was to “discover the structure
of C,” at a time when “C was far beyond the reach of denotational
semantics, algebraic specifications, etc.”

Cook, Cohen, and Redmond (CCR) Soon after the previous defi-
nition, Cook et al. [7] describe a denotational semantics of C90 using
a custom-made temporal logic for the express purpose of proving
properties about C programs. Their grammar covers nearly the entire
C syntax, although they desugar some of it into other constructs to
reduce the number of primitives that need independent semantics.
We effectively do the same thing by using CIL (see Section 4.2).
Also like us, they give semantics for particular implementation-
defined behaviors in order to have a more concrete definition. These
choices are then partitioned off so that one could, in theory, choose
different implementation-defined values and behaviors.

They have given at least a basic semantics to most C constructs.
We say “at least” without malicious intent—although their work
was promising, they moved on to other projects before developing a
testable version of their semantics and without doing any concrete
evaluation.2 Additionally, no proofs were done using this semantics.

Cook and Subramanian (CS) The related work of Cook and
Subramanian [6, 38] is a semantics for a restricted subset of C,
based loosely on the semantics above. This semantics is embedded
in the theorem prover Nqthm [4] (a precursor to ACL2). They
were successful in verifying at least two functions: one that takes
two pointers and swaps the values at each, and one that computes
the factorial. They were also able to prove properties about the C
definition itself. For example, they prove that the execution of p
= &a[n] puts the address of the nth element of the array a into
p [6, p. 122]. Their semantics is, at its roots, an interpreter—it
uses a similar technique to that described by Blazy and Leroy [2]
to coax an interpreter from recursive functions—but there is no
description in their work of any reference programs they were
capable of executing. As above, it appears the work was terminated
before it was able to blossom.

Norrish (No) A more recent definition is presented by Nor-
rish [29], who gives both static and dynamic formal semantics
inside the HOL theorem proving system for the purpose of veri-
fying C programs (later extended to C++ [30]). His semantics is
in the SOS style, using small-step for expressions and big-step for
statements. One of the focuses of his work is to present a precise
description of the allowable evaluation orders of expressions. To
date, his semantics still stands as the most precise representation
of evaluation. In Section 6.3 we demonstrate how our definition
captures the same behaviors.

Working inside HOL provides an elegant solution to the un-
derspecification of the standard—he can state facts given by the
standard as axioms/theorems. To maintain executability, we chose
instead to parameterize the definition for those semantic choices

2 Personal communication, 2010.

A Formal Semantics of C with Applications 2 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

https://code.google.com/p/k-framework/wiki/DefinitionOfC
https://code.google.com/p/k-framework/wiki/DefinitionOfC

that are implementation-defined. In that respect, our definitions con-
ceptually complement each other—his is better for formal proofs
about C, while ours is better for searching for behaviors in C pro-
grams (see Section 6.3.1). Proofs of program correctness [36] as
well as semantics-level proofs [11] have already been demonstrated
in the framework used by our semantics, but we have not yet applied
these techniques to C.

Norrish uses his definition to prove some properties about C
itself, as well as to verify some strong properties of simple (≤ 5 line)
programs, but was unable to apply his work to larger programs. His
semantics is not executable, so it has not been tested against actual
programs. However, the proofs done within the HOL system help
lend confidence to the definition.

Papaspyrou (Pa) A denotational semantics for C99 is described
by Papaspyrou [31, 32] using a monadic approach to domain
construction. The definition includes static, typing, and dynamic
semantics, which enables him not only to represent the behavior of
executing programs, but also check for errors like redefinition of an
identifier in the same scope. Papaspyrou, Norrish, and Cook et al.
each give a typing semantics in addition to the dynamic semantics,
while we and Blazy and Leroy (below) give only dynamic semantics.

Papaspyrou represents his semantics in Haskell, yielding a tool
capable of searching for program behaviors. This was the only
semantics for which we were able to obtain a working interpreter,
and we were able to run it on a few examples. Having modeled
expression non-determinism, and being denotational, his semantics
evaluates a program into a set of possible return values. However,
we found his interpreter to be of limited capability in practice.
For example, using his definition, we were unable to compute the
factorial of 6 or the fourth Fibonacci number.

Blazy and Leroy (BL) A big-step operational semantics for a
subset of C is given by Blazy and Leroy [2]. While they do not
claim to have given semantics for the entirety of C, their semantics
does cover most of the major features of the language and has
been used in a number of proofs including the verification of the
optimizing compiler CompCert. Like us, they also use CIL as a front-
end, but decided to patch it so that it would not transform loops,
and therefore retain while, do-while, and for loops individually.
For them this was a necessity, as CIL also transforms continue
statements into gotos, which they do not handle.

To help validate the semantics, they have done manual reviews
of the definition as well as proved properties of the semantics
such as determinism of evaluation. They additionally have veri-
fied semantics-preserving transformations from their language into
simpler languages, which are easier to develop confidence in. Their
semantics is not directly executable, but they describe a mechanism
by which they could create an equivalent recursive function that
would act as an interpreter. This work has not yet been completed.
They are also working on a small-step and an axiomatic semantics
in order to prove relationships between the semantics—the small
step semantics has been completed since publication, and is now
being used in CompCert to handle goto.3

Their semantics does not handle sub-expressions with side
effects, which, because their semantics is big-step, represents a
significant barrier to obtaining a full semantics of C. Without
changing most of their current rules, adding expression side effects
(and the nondeterminism that comes along with that) would be
a difficult undertaking. It is important to point out that writing a
full semantics was not their intention—they deliberately made this
decision to cover a subset of features and behavior to simplify their
semantics and make corresponding proofs easier. Based on their
success with the related formal proofs, this appears to have paid off.

3 Personal communication, 2010.

Definition
Feature GH CCR CR No Pa BL —

Bitfields G# # # G# #
Enums G# # # #
Floats # # # # G#
String Literal # # #
Struct/Union G#
Struct as Value # # # # #

Arithmetic G# #
Bitwise # # #
Casts G# G# # G# G#
Functions G#
Exp. Side Effects # #
Variadic Funcs. # # # # # #

Alignment # # # # # #
Eval. Strategies # G# # #
Overflow # # # # # #
Volatile # # # # # G# #

Break/Continue G# G#
Goto G# # # # #
Switch G# # # G#

Longjmp # # # # # #
Malloc # # # # # #

Feature GH CCR CR No Pa BL —
 : Fully Described G#: Partially Described #: Not Described

GH represents Gurevich and Huggins [17], CCR is Cook et al. [7], CR is
Cook and Subramanian [6], No is Norrish [29], Pa is Papaspyrou [32], BL is
Blazy and Leroy [2], and — is our work.

Figure 1. Dynamic Semantics Features

There are other formal semantics of C (or fragments of C) that
we choose not to review here, including Black [1] and Bofinger [3],
as they either focus on subsets subsumed by the work previously
discussed, or do not give dynamic semantics.

We condense our study of related works into a simple chart
shown in Figure 1. For interested parties, this chart may be con-
tentious. However, we believe that it is useful, both for developers of
formal semantics of C and for users of them, to give a broad (though
admittedly incomplete) overview of the state of the art of the formal
semantics of C. Also, it may serve as an indication of the complexity
involved in the C language. Note that not all features are equally dif-
ficult. Adding additional rules to catch arithmetic overflow would be
much easier than adding support for bitfields, for example. Like the
example above with a big-step semantics and different evaluation or-
ders, adding new features can sometimes be difficult, depending on
the semantical style or way in which the constructs were described.

We did our best to give the authors the benefit of the doubt
with features they explicitly mentioned, but the other features were
based on our reading of their semantics. We have also discussed
our views with the authors, where possible, to try and establish a
consensus. Obviously the categories are broad, but our intention is
to give an overview of some of the more difficult features of C. We
purposefully left off any feature that all definitions had fully defined.

Finally, there are a number of other emergent features, such as
multi-dimensional arrays, that are difficult to discern correctness
through simple inspection of the formal semantics (i.e., without
testing or verifying it). It is also difficult to determine if feature pairs
work together—for example, does a definition allow bitfields inside
of unions? We decided to leave most of these features out of the

A Formal Semantics of C with Applications 3 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

chart because they are simply too hard to determine if the semantics
were complete enough for them to work properly.

3. Why Details Matter
It is tempting to gloss over the details of C’s arithmetic and other
low-level features when giving it a formal semantics. However,
the language is designed to be translatable to common machine
architectures where there are particular instructions for adding 16-
bit numbers, 32-bit numbers, etc. Although the language tries to hide
this overloading, its effects are easily felt at the size boundaries of
the types. It is a common source of confusion among programmers,
and so a common source of bugs. We give a few examples that
reveal that arithmetic in C is heavily overloaded, and that even
trivial programs can involve complex semantics. Keep in mind that
unless specified, in C a type is assumed to be signed.4

For the purposes of these examples, assume that ints are 2 bytes
(capable of representing the values −32768 to 32767) and long ints
are 4 bytes (−2147483648 to 2147483647). In the following pro-
gram, what value does c receive [39, Q3.14]?

int a = 1000, b = 1000;
long int c = a * b;

One is tempted to say 1000000, but that misses an important C-
specific detail. The two operands of the multiplication are ints, so
the multiplication is done at the int level. It therefore overflows
(1000 ∗ 1000 = 1000000 > 32767), which, according to the C
standard, makes the expression undefined.

Let us change the example slightly by making the types of a
and b unsigned (0 to 65535):

unsigned int a = 1000, b = 1000;
long int c = a * b;

Here, the arithmetic is again performed at the level of the operands,
but overflow on unsigned types is completely defined in C. It yields
a value by “repeatedly adding or subtracting one more than the
maximum value that can be represented in the new type until the
value is in the range of the new type” [21, §6.3.1.3:2]. So, we can
take our mathematical 1000000 and continually subtract 65536 from
it until the result in the correct range: 1000000−15∗65536 = 16960.
For unsigned types, this is essentially computing the modulus.

One last variation—signed chars are one byte in C (−128 to
127).5 What does c receive?

signed char a = 100, b = 100;
int c = a * b;

Since the chars are signed, then based on the first example above the
result would seem undefined (100 ∗ 100 = 10000 > 127). However,
this is not the case. In C, types smaller than ints are promoted to ints
before doing arithmetic. There are basically implicit casts on the two
operands: int c = (int)a * (int)b;. Thus, the result is actually 10000.

While the above examples might seem like a game, the conclusion
we draw is that it is critical when defining the semantics of C
to handle all of the details. The semantics at the higher level of
functions and statements is actually much easier than at the level of
expressions and arithmetic. These issues are subtle enough that they
are very difficult to catch just by manually inspecting the code, and
so need to be represented in the semantics if one wants to find bugs
in real programs. This is one of our primary reasons for wanting
an executable semantics.

4 Except char, where it is implementation-defined.
5 We should note that bytes are only required to be at least 8 bits long. The
particular numbers here are for the example only.

4. The Rewriting Semantics of C
In this section, we describe the different components of our defini-
tion and give a number of example rules from the semantics. We
additionally describe the rewriting formalism used.

4.1 Rewriting Logic and K
We use a rewriting-based semantic framework called the K formal-
ism [34], inspired by rewriting logic (RL) [25]. In particular, our
machine-readable semantics is written using the K-Maude tool [37],
which takes K rewrite rules and translates them into Maude [5].
Maude is a performant rewriting-logic engine that provides facilities
for the execution and/or analysis of rewriting-logic theories. This
enables us to use the definition as an interpreter (Section 4.7), as
well as allows us to demonstrate its suitability for program anal-
ysis (Section 6). For a complete introduction to this formalism,
see Appendix A.

RL organizes term rewriting modulo equations (namely associa-
tivity, commutivity, and identity) as a logic with a complete proof
system and initial model semantics. The central idea behind using
RL as a formalism for the semantics of programming languages is
that the evolution of a program can be described using rewrite rules.
A rewriting theory consists essentially of a signature describing
terms and a set of rewrite rules that describe the actual steps of
computation. Given some term allowed by signature (in most cases,
a program together with input), deduction consists of the application
of the rules to that term. This yields a transition system for any
program, and there are pre-existing generic tools that allow different
means to explore the transition system. A single path of rewrites
describes the behavior of an interpreter, while searching all paths
would yield all possible answers in a non-deterministic program.
These techniques are explored in Section 6.

For the purposes of this paper, the K formalism can be regarded
as a front-end to RL designed specifically for defining languages.
In K, parts of the state are represented as nested multisets, as
seen in Figure 2 and described in Section 4.3. These collections
contain pieces of the program state like a computation stack or
continuation (e.g., k), environments (e.g., env, types), stacks (e.g.,
callStack), etc. As this is all best understood through an example,
let us consider a rule of C:

〈 &X
tv(Loc, ptrType(T))

···〉k 〈··· X 7→ Loc ···〉env 〈··· X 7→ T ···〉types

First, recall that this is describing a rewrite-rule, not a natural
deduction system. It says that if the next thing to be evaluated (also
called a redex) is the application of the referencing operator (&) to
a variable X, then one should look up X in both the environment
and the map of types to find its location Loc in memory and type T ,
respectively. With this information, one should transform the redex
into a typed-value pair tv(Loc, ptrType(T)). That is to say, the result
of applying the “&” operator to variable X of type T is a value of
type pointer-to-T which is the location of X.

Although there is a lot going on here, this example exhibits a
number of features of our chosen formalism. First, rules only need
to mention those cells (again, see Figure 2) relevent to the rule.
Second, to omit a part of a cell we write “···”. For example, in the
above k cell, we are only interested in the current redex &X, but
not the rest of the context. Finally, we draw a line underneath parts
of the state that we wish to change—in the above case, we only
want to evaluate part of the computation, but neither the context
nor the environment or type maps change.

Again, since this formalism is relatively unknown, we must
spend a little time describing why this unconventional notation is
actually quite useful. The above rule would be written out as a

A Formal Semantics of C with Applications 4 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

〈 〈
〈·K〉k 〈·Map〉env 〈·Map〉types 〈·List〉loopStack 〈·Bag〉locsWrittenTo 〈·K〉currFunction

〉
control

〈·List〉callStack 〈·Map〉genv 〈·Map〉gtypes 〈·Map〉mem 〈·Map〉malloced 〈·Map〉structs 〈·Map〉gotoMap

〉
T

〈“ ”〉input 〈“ ”〉output 〈·K〉resultValue

Figure 2. Subset of the C Configuration

traditional rewrite rule like this:

〈&X y K〉k 〈Env X 7→ Loc〉env 〈TEnv X 7→ T〉types
⇒ 〈tv(Loc, ptrType(T)) y K〉k 〈Env X 7→ Loc〉env 〈TEnv X 7→ T〉types

This rule says the same thing as the original rule, but nearly the
entire rule is duplicated on the right-hand side (RHS).

4.2 Syntax
We use CIL [26], an “off-the-shelf” C parser and transformation tool,
to parse and simplify the original C syntax. After parsing, a custom
pretty-printer then writes the abstract syntax tree (AST) back out in
a form parsable by Maude. While CIL is an excellent parser, some
of its transformations cannot be disabled, which is disadvantageous
to us (see Section 5), although useful to many others. Blazy and
Leroy [2], who also use CIL as the front-end to their semantics,
chose to modify CIL’s source code to prevent some transformations
from taking place. In order to take advantage of any new versions
that might be introduced, we chose not to modify CIL.

In some rare instances we were able to find bugs in CIL. These
bugs were related to the interpretation of literals and the particular
type promotions applied to function arguments when prototype
information was not available. In some cases, the bug was simply
the omission of a necessary cast. We believe these have not been
detected by other users because the resulting code is not actually
wrong, it just did not match CIL’s claims (i.e., that all implicit casts
would be made explicit). Because of this, compilers operating on
the output of CIL would insert their own casts and no bug would
be detected. While we reported the bugs (two have been fixed,
but there is still one outstanding), in the end we also added the
semantics of these features to our definition so that we handle all
implicit type conversions.

4.3 Configuration
The configuration of a running program is represented by nested
multisets of labeled cells, and Figure 2 shows the most important
cells used in our semantics. The large T cell contains the cells used
during program evaluation: at the top, a control cell containing cells
related to local control flow, and below, a number of cells dealing
with global information.

In the control cell, there is a k cell containing the current
computation itself, a local variable environment (env), a local type
environment (types), a loop stack (Section 4.5.2), a record of the
locations that have been written to since the last sequence point
(Section 4.6), and the name of the current function. The cells inside
the control cell were separated in this manner because these are the
cells that get pushed onto the call stack when making a function call.
Outside the control cell are a number of global mappings, such as
the call stack, the global variable environment (genv), the global
type environment (gtypes), the heap (mem), the dynamic allocation
map (malloced), aggregate definitions (structs), and a map from
function-name/label pairs to continuations (for use by goto and
switch). Finally, outside the T cell, there are cells for input, output,
and a final cell for the value returned by main().

As mentioned above, we keep maps for the types of identifiers.
One could annotate variables and expressions with their types
at parse time (this is what Blazy and Leroy [2] do), but we are
not currently doing this. Annotations would make executing the
semantics more efficient, but it is otherwise equivalent.

4.4 Memory Model
Our memory is essentially a map from locations to blocks of bytes.
It is based on the memory model of both Blazy and Leroy [2] and
Roşu et al. [35] in the sense that the actual locations themselves
are symbolic numbers. However, it is more like the former in that
the actual blocks of bytes are really maps from offsets to bytes.
When new objects (arrays, structs, etc.) get allocated, each is created
as a new block and is mapped from a new symbolic number. The
block is allowed to contain as many bytes as in the object, and
accesses relative to that object must be contained in the block. We
represent information smaller than the byte (i.e., bitfields) by using
offsets within the bytes themselves. While it would make things
more consistent to treat memory as mappings from bit locations
to individual bits, bitfields themselves are not addressable in C, so
we decided on this hybrid approach.

4.5 Semantics
We now give the flavor of our semantics through a few of the simpler
rules. In the interests of space, we can only cover a small part of the
language. The full semantics can be found in Appendix B.

4.5.1 Lookup and Assignment
First, all assignments are converted to a helper operator called “as-
sign”, underneath which the left-hand sides (LHSs) are referenced,
then dereferenced. This is valid since the left operand of an assign-
ment operator is a modifiable lvalue [21, §6.5.16:2].

〈 E1=E2
assign(*(&E1), E2)

···〉k

We do this in order to give the semantics for “x = 5” the same
way as “*p = 10”, as the first becomes “assign(∗(&(x)), 5)”, and
the second “assign(∗(&(∗(p))), 10) ≡ assign(∗(p), 10)”, at which
point both have a dereference at the top of the LHS. The assign
operator is given strictness attributes (evaluation strategies) to cause
the appropriate positions to be evaluated: “context: assign(— ,�)”
and “context: assign(*(�) , —)”. These rules say that, first, the RHS
of an assignment is to be evaluated before the assignment can be
evaluated, and second, that any term inside a dereference operator
at the top of the LHS is to be evaluated before the assignment can
be evaluated. No restrictions are placed on the order or allowed
interleavings of these evaluations.

We rely on these strictnesses to take care of transforming those
positions into values. We can then give the semantics of assignment
for when those positions are values:

〈assign(∗tv(Loc, ptrType(T)), tv(V, T))
putInMem(Loc, tv(V,T)) y tv(V, T)

···〉k

Recall the “tv” construct from Section 4.1: it is how values are
represented internally in our semantics (tv stands for “typed value”),
where the first argument is the raw data and the second argument
is the type. In C, all values are typed. Numerical literals must be
assigned a type in order to determine how they will behave (as seen
in Section 3), and blocks of memory must be accessed through
variables of a particular type. With that in mind, this rule says that
once operands have evaluated properly, the RHS value can be stored
in memory, and the assignment itself evaluates to that value. It also
ensures the types correspond properly.

Now we look at getting values back from memory. We will focus
on lookup done through a simple identifier. This is conceptually

A Formal Semantics of C with Applications 5 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

simpler than assignment, though there are three cases. The first is
a simple variable with some simple type:

〈 X
readMem(Loc, T)

···〉k 〈··· X 7→ Loc ···〉env 〈··· X 7→ T ···〉types

when ¬isArrayType(T) ∧ ¬isFunctionType(T)

We must look up, in the environment, the location of the variable
in memory. We also need to know the variable’s type (to eventually
figure out its representation in memory), so we look it up in a map
of the declared types of variables. With this information, we then
reduce the variable lookup to the helper operator “readMem”, which
deals with the actual details of gathering bytes from memory.

The other two cases are actually simpler. When the identifier is
of array type, it evaluates to its location [21, §6.3.2.1:3]:

〈 X
tv(Loc, ptrType(T))

···〉k 〈··· X 7→ Loc ···〉env 〈··· X 7→ arrType(T, —) ···〉types

Despite the common knowledge that “arrays are pointers”, this is
actually far from the truth. In C, arrays are second-class objects—
they have no value by themselves and so are evaluated to their
location.6 This is different from the way pointers (and other first-
class objects) evaluate. This can be seen clearly by examining the
two rules above. The first lookup rule applies to pointer types, while
the second rule handles array types. The former performs a lookup in
the environment, and then requests a read from memory. The latter
uses the environment only, at which point it is finished evaluating.
No read from memory is performed. It is because of this difference
that arrays cannot be assigned, passed as values, or returned.

Lastly, when the identifier is of function type, it also evaluates
to its location [21, §6.3.2.1:4]:

〈 X
tv(Loc, ptrType(T))

···〉k 〈··· X 7→ Loc ···〉env 〈··· X 7→ T ···〉types

when isFunctionType(T)

but the resulting type is different than with arrays.

4.5.2 While and Break
In comparison to expressions, the semantics of C statements is
simple (all together it takes up fewer than 10 pages in the C1X
standard [21, §6.8]). Still, we now show our semantics for while
and break. The first rule prepares a while loop for execution:

〈 while(B)S y K
preparedWhile(B)S y break

〉k 〈 ·

K
···〉loopStack

The remaining computation (K) following the while (i.e., the
context of the while) is pushed onto a loop stack. The effect is
a push, because “nothing” (represented by “·”) at the top of the
stack is being replaced by K. This loop stack will be used if the
loop terminates normally or a break statement is encountered. We
insert a break statement into the computation after the while to
use a single mechanism in either case.

The main rule for while loops simply unrolls the (marked) loop
once, turning the guard into an if-statement:

〈 preparedWhile(B)S
if(B)(S y preparedWhile(B)S)

···〉k

When the guard evaluates as true, the body and then the prepared
while will be up for evaluation again. Using the loop stack, the
break statement itself is trivial:

〈break y —
K

〉k 〈K
·

···〉loopStack

It simply pops the stack and replaces the current computation with
what was popped.

6 An exception to this would be if an array is inside of a sizeof operator.
We handle this by virtue of sizeof not being strict.

4.5.3 Goto
Finally, here is the rule for goto:

〈goto(X) y —
K

〉k 〈F〉currFunction 〈—
S
〉loopStack 〈··· (F, X) 7→ (K, S) ···〉gotoMap

This rule describes the high-level behavior of a goto statement. It
says that when the top item in the computation is a goto statement
to label X, then match the current function name F from the
currFunction cell, and use it together with the label to look up
in the gotoMap cell. This cell is a mapping from pairs (function
names and label names) to pairs (computations and loop stacks).
Finally, replace the current computation and loop stack with the
results of the lookup.

It is worth mentioning that the semantics of C allows gotos to
proceed over variable declarations or change scopes entirely, unlike
the semantics of C++. Because CIL hoists variable declarations to
the tops of functions, this difficulty is hidden from us.

4.5.4 Parametric Behavior
We chose to make our definition parametric in the implementation-
defined behaviors (and are not the first to do so [2, 7]). Thus, one
can configure the definition based on the architecture or compiler
one is interested in using, and then proceed to use the formalism
to explore behaviors. This parameterization allows the definition
to be “fleshed out” and made executable.

For a simple example of how the definition is parametric, our
K-Maude module C-SETTINGS starts with:

numBytes(signed-char) = 1 numBytes(short-int) = 2
numBytes(int) = 4 numBytes(long-int) = 4

numBytes(long-long-int) = 8 numBytes(float) = 4
numBytes(double) = 8 numBytes(long-double) = 16

These settings are then used to define a number of derived operators:

numBits(T) = numBytes(T) ∗ bitsPerByte if ¬hasBitfieldType(T)
min(int) = −(2numBits(int)−1)
max(int) = 2numBits(int)−1 − 1

and finally, a further derived equation defining how an integer V of
type T is cast to an unsigned integer type T ′:

cast(T ′, tv(V,T)) = tv(T ′,V%(max(T ′) + 1))
if isIntegerType(T)∧ isUnsignedIntegerType(T ′)∧V > max(T ′)

There are many similar equations to define other cases, but the
above is only meant to convey the idea.

In principle, there are many things that could be made customiz-
able like this, including how arithmetic is performed (one’s or two’s
complement or signed magnitude), how types are aligned, or the
way fields, including bitfields, are packed. In our current semantics,
only some of these are immediately changeable.

4.6 Expression Evaluation Strategy
The standard allows compilers as much freedom as possible in
optimizations, which includes allowing them to choose their own
expression evaluation order. This includes allowing them to:

• delay side effects: e.g., allowing the write to memory required
by x=5 or x++ to be made separately from its evaluation or use;
• interleave evaluation: e.g., A + (B + C) can be evaluated in the

order B, A, C.

At the same time, the programmer must be able to write programs
whose behaviors are reproducible, and only allow non-determinism
in a controlled way. Therefore, the standard also makes undefined
certain situations where reordering creates a “race condition”. The
latest treatment of this restriction is given by the C1X standard:

A Formal Semantics of C with Applications 6 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

If a side effect on a scalar object is unsequenced relative to ei-
ther a different side effect on the same scalar object or a value
computation using the value of the same scalar object, the
behavior is undefined. If there are multiple allowable order-
ings [...], the behavior is undefined if such an unsequenced
side effect occurs in any of the orderings [21, §6.5:2].

This essentially means that without crossing any sequence points,
any memory location can only be written to once, and never read
after being written to. Furthermore, it is the case that if there exists
any possible execution that violates the above restriction, then the
expression is to be considered undefined. We explore a number of
examples of this in Section 6.3.1.

“Sequenced before” is a relation defined in places throughout the
standard to make explicit the orderings that need to be considered.
One of the most important parts is that for any expression, the
evaluation of operands is sequenced before the evaluation of the
operator itself. This relation is related to the concept of “sequence
points”, also defined by the standard. All previous evaluations and
side effects must be complete before crossing sequence points.

Our semantics does not describe the reordering of side-effects,
because it turns out that such (rather expensive) reorderings are
unnecessary for the purposes of catching undefined expressions or
enumerating the behaviors of defined ones. What would it mean for
there to exist an expression whose definedness relied on whether or
not a side effect (a write) occurs later instead of earlier? There must
be three parts to the expression: a subexpression E generating a side
effect X, and, for generality’s sake, further subexpressions E′ and
E′′. The particular evaluation where we do side effects immediately
would look like E X E′ E′′. Because this is always a possible
execution, and we assume it does not show a problem, we can
conclude neither E′ nor E′′ may neither read or write to X. If there
is a problem only when we delay the side effect, it can be seen in
a path like E E′ X E′′. For this to be different than applying the
changes to X immediately, it means there must be some use of X in
the evaluation of E′. But this contradicts the previous assumption.

Therefore, for the purposes of determining if an expression is
undefined, as long as we are doing all possible interleavings of
evaluation and keeping track of reads and side effects, it is sufficient
to do the write immediately upon evaluation. Our semantics does
capture this behavior as seen in Section 6.3.1.

4.7 KCC
Using some simple shell and Perl scripts for handling output
and input, C programs are parsed with CIL and translated into
a Maude term, then reduced using the rules of our formal semantics,
producing indistinguishable behavior from the same C program
run as native code. We call this “compiler” KCC. Once KCC is
installed on a system, compilation of C programs generates a single
executable file (an “a.out”) containing the semantics of C, together
with a parsed representation of the program and a call to Maude.
The output is captured by a script and presented so that for working
programs the output and behavior is identical to that of a real C
compiler. To emphasize the seamlessness, here is a simple transcript:

$ kcc helloworld.c
$./a.out
Hello world

While it may seem like a gimmick, it helped our testing and
debugging tremendously. For example, we could run the definition
using the same test harness GCC uses for its testing (see Section 7).

5. Limitations
Here we delineate the limitations of our definition and explain their
causes and effects.

To use K-Maude to define our semantics, we had to rely on
the parsing capabilities of Maude itself when reading in programs.
The capabilities of Maude’s parser reflect the syntactic constraints
under which it operates—one can think of the Maude language itself
as having a user-definable syntax, which makes generic parsing
difficult. Because of this, we turned to CIL for frontend parsing.

CIL made getting started on the semantics much easier than
it otherwise would have been, but came at a price. In order to
keep their generated AST simple, CIL has a number of builtin
simplifications that are impossible to disable. However, this means
that some constructs never appear in the output of CIL, such as
for or do-while loops, static variables, the ternary expression
(_?_:_), boolean operators, and nested scope. CIL also has limited
or lacking support for variable length arrays and _Complex types.
Because of this, we do not give semantics for these constructs. Also,
CIL rewrites complex expressions into a series of statements using
temporary variables. This is a great inconvenience for us because it
requires us to restore the AST in order to explore different execution
strategies (as demonstrated in Section 6.3.1).

The behaviors we are describing as limiting were choices pur-
posefully made by the designers of CIL. In some sense, CIL is
intended to be a structured subset of C to help make analyses simple.
Their tool is good at the jobs for which it is intended. However,
we believe that for us, the only way to ensure we cover the se-
mantics of the entire language is by switching to using a C parser
only, which is future work.

We have not yet handled _Bool types or wide characters, as they
did not show up in a significant number of the programs we looked
at so far. We also do not handle any parts of the specification related
to alignment. We have no alignment restrictions, or equivilently, we
align all types to one-byte boundaries. This means we cannot catch
undefined behavior related to alignment restrictions. We should note
that others have worked on formalizing alignment requirements [27],
but it has never been incorporated into a full semantics for C.

We have not yet used our C definition for doing language or
program level proofs, even though the K Framework supports both
program level [36] and semantics level proofs [11]. To do so, we
need to extend our semantics with support for formal annotations
(e.g., assume, assert, invariant) and connect it to a theorem prover.
In future work, we intend to apply those techniques to C.

Finally, we support a relatively small subset of the standard
library, which has made it difficult to run many programs “in the
wild”. We also intend on addressing this, at the least by obtaining
available implementations written in C.

6. Applications
Here we describe applications of our formal semantics, other than
the interpreter already described.

6.1 Debugging
By introducing a special function “debug()” that acts as a break-
point, we can turn the Maude debugger into a simple debugger for
C programs. In the semantics, we handle this function specially by
giving a labeled rule that causes it to evaluate to a “void” value. It is
essentially a no-op, but one on which we can instruct Maude to break.
If this function is called during execution, it drops the user into a
debugger that allows her to inspect the current state of the program.
She can step through more rules individually from there, or simply
note the information and proceed. If the debug() call is inside a
loop, the user will see a snapshot each time it reaches the expression.
This debugging can be turned on or off at program invocation.

A Formal Semantics of C with Applications 7 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

6.2 Runtime Verification
There are two main avenues through which we can catch and identify
runtime problems with a program: catching undefined behavior,
and symbolic execution.

6.2.1 “Core Dumping”
The first mechanism is based around the idea that when something
lacks semantics (i.e., when its behavior is undefined according to
the standard) then the evaluation of the program will simply stop
when it reaches that point in the program. We use this mechanism
to catch errors like signed overflow or array out-of-bounds.

In this small piece of code, the programmer forgot to leave space
for a string terminator ('\0'). The call to strcpy() will read off
the end of the array:

char dest[5], src[5] = "hello";
strcpy(dest, src);

GCC will happily execute this, and depending on the state of
memory, even do what one would expect. It is still incorrect, and
our semantics will get stuck trying to read past the end of the array,
and report the state of the configuration (a concrete instance of that
shown in Figure 2) and what exactly it was trying to do next.

6.2.2 Symbolic Execution
Through the use of symbolic execution, we can further enhance the
above idea by expanding the behaviors that we consider undefined,
while maintaining the good behaviors. For example, we can treat
pointers not as concrete integers, but as symbolic values. These
values can then have certain behavior defined on them, such as
comparison, difference, etc. This technique is based on the idea of
strong memory safety, which had previously been explored with a
simple C-like language [35]. In this context, it takes advantage of
the fact that addresses of local variables and memory returned from
allocation functions like malloc() are unspecified [21, §7.20.3].
However, there are a number of restrictions on many addresses, such
as the elements of an array being completely contiguous and the
fields in a struct being ordered (though not necessarily contiguous).

For example, take the following small fragment of code:

int a, b;
if (&a < &b) { ... }

The behavior is conditioned on the particular allocation strategy
of an implementation to determine what code to execute. While it
could be argued that this should be allowed (it relies on unspecified
behavior, not undefined), we choose not to implement unspecified
behavior whenever possible. In our semantics, evaluation gets stuck
trying to determine if the two symbolic locations are comparable.
However, as in the case of the specification, sometimes locations
are comparable. If we take the following code instead:

struct { int a; int b; } s;
if (&s.a < &s.b) { ... }

the addresses of a and b are guaranteed to be in order [21, §6.2.5:20],
and in fact runs fine in our semantics.

Although we try to only give implementation-defined behavior,
in some cases we also give unspecified behavior. One such example
is a partially initialized struct. In order to copy a struct one byte at a
time (as in an implementation of memcpy()), every byte needs to be
copied. Uninitialized fields (or padding) should still be copied, and
no error should occur [21, §6.2.6.1:5–7]. Using concrete values here
would mean missing some incorrect programs, so we use symbolic
values that allow reading and copying to take place as long as the
program never uses those uninitialized values.

6.3 State Space Search
Again taking advantage of the tools provided by Maude, we can do
both matching-based state search or explicit state model-checking
with linear temporal logic. We show examples of the former to find
undefined behavior, but due to space concerns, only here mention the
latter as possible with this technique [12]. While the examples below
are basic, they show how our semantics captures the appropriate
expression evaluation semantics precisely.

6.3.1 Exploring Evaluation Order
To show our semantics captures the evaluation orders of C expres-
sions allowed by the specification, we show here some examples
from related works. When we say that our semantics gives a set of
results, we mean that we actually performed the search using the
tools provided by Maude. For these examples, note that the comma
operator provides a sequence point [21, §6.5.17:2].

To start with a simple example from Papaspyrou and Maćoš [33],
we take a look at x=0,x+(x=1). This expression is undefined
because it is possible that the right sub-expression of the addition
(the assignment) is evaluated before the left sub-expression (the
lone x). Using our semantics to do a search of the behaviors
of this expression yields two possible behaviors: {Error}7 and
{x=1,e=1}, where e is the result of the entire expression.

Norrish [29] offers the deceptively simple addition expression
(x=0) + (x=0), which in many languages would be valid. However,
in C it is again a technically undefined expression due to the multiple
assignments to x with no intervening sequence point. Our semantics
gives two {Error} states, one for each path. All paths are undefined,
so the naively-expected result {x=0,e=0} is not returned.

Another example in the literature is given by Papaspyrou [32],
which shows how C can exhibit non-deterministic behavior while
staying conformant. The driving expression is the addition of
two function calls. In C, function evaluation is not allowed to
interleave [21, 6.5.2.2:10], so the behavior of this program is
determined solely on which call happens last:

int r = 0;
int f (int x) { return (r = x); }
int main(void){ return (f(1) + f(2), r); }

If f() is called with the argument 2 last then the result will be 2,
and vice-versa. Searching with our semantics gives the behaviors
{r=1} and {r=2}, which are indeed the two possible results.

As a last example, we look at a more complex expression of
our own devising: f()(a(b(), c(d()))). Except for f(), each function
call simply prints out its name and returns 0. The function f(),
however, prints out its name and then returns a function pointer to
a function that prints e. The function represented by this function
pointer will be passed results of a(). We elide the actual function
bodies, because the behavior is more easily understood by this tree:

e
f a

b c

d

This tree (or Hasse diagram) describes the sequencing relation.
That is, it must be the case that d happens before c, that b and
c happen before a, and that f and a happen before e. Running
this example through our search tool gives precisely the fifteen
allowable behaviors.

7 We take the liberty to replace the “stuck state” with “Error”, as the actual
state itself is many pages long.

A Formal Semantics of C with Applications 8 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

7. Evaluation
No matter what the intended use is for a formal semantics, its use
is limited if one can not generate confidence in its correctness. To
this aim, we ensured that our formal semantics remained executable
and computationally practical.

7.1 GCC Torture Tests
As discussed in Section 4.7, our semantics is encapsulated inside
a drop-in replacement for GCC [15], which we call “KCC”. This
enables us to test the semantics as one would test a compiler. We
were then able to run our semantics against the GCC C-torture-
test [16] and compare its behavior to that of GCC itself, as well as
the Intel C++ Compiler (ICC) and a CIL+GCC combination (i.e.,
running GCC on the output of CIL).

We use the torture test for GCC 4.4.2, specifically those tests
inside the “testsuite/gcc.c-torture/execute” directory. We chose
these tests because they focus particularly on portable (machine
independent) executable tests. The README.gcc for the tests says,
“The ‘torture’ tests are meant to be generic tests that can run on
any target.” We found that generally this is the case, although there
are also tests that include GCC-specific features, which had to be
excluded from our evaluation. There were originally 1057 tests,
of which we excluded 299 tests because they used GCC specific
extensions or builtins, they used the Complex or Boolean data types
(which CIL does not support), they were machine dependent (based
on the presence of a .x file), they used non-standard library functions,
or because GCC, ICC, or CIL could not compile or parse the test.
This left us with 758 tests. Further manual inspection revealed an
additional 43 tests that were either non-conforming according to
the standard, or that CIL failed to generate the correct parse tree,
bringing us to a grand total of 715 viable tests.

In order to avoid “overfitting” our semantics to the tests, we
randomly extracted about 200 tests from the initial 1057. Some of
these were later disqualified, which left us with a 174 test subset,
or about 25% of the conforming tests. We developed our semantics
using only this subset (and other programs from Section 7.2).
After we were comfortable with the quality of our semantics
when running this subset, we ran the remaining tests. Out of 541
previously untested programs, we successfully ran 514 (95%). This
methodology helps show that our semantics is not an enumeration of
cases fit only for passing specific tests. Here is the full comparison:

Unseen (541) All (715)
Compiler Count Percent Count Percent

GCC 4.1.2 537 99.3 710 99.3
ICC 11.1 540 99.8 714 99.9
CIL+GCC 536 99.1 709 99.2
KCC 514 95.0 686 95.9

The 715 tests represent about 21,000 SLOC, or 29 SLOC/file. Our
semantics ran over 90% of these programs in under 5 seconds (each).
An additional 6% completed in 10 minutes, 1% in 40 minutes,
and 2% further in under 2 days. This leaves about 1% that never
finished. While this is not terribly fast performance, especially when
compared to compiled C, the reader should keep in mind that this is
an interpreter obtained for free from a formal semantics. There were
ten tests which we passed but at least one of the other compilers
did not. We did not investigate these in detail, but they generally
seem related to boundary conditions on literals.

Correctness Analysis While the real compilers did better than our
semantics, we consider these results a success. They have had years
to fix corner cases, and have been running against these tests under
no 25% constraint. Additionally, our semantics is mechanized—
we can add the missing parts of the language and compare again.

Because the semantics is executable, we can incorporate all passing
tests into a regression suite, so that adding features or fixing mistakes
can only increase our accuracy. Finally, these failing tests reveal
precisely what we are missing. Upon analysis of the failures, we
discovered they could be categorized as follows:

Cause Count Percent

Timeout 9 31
Pointer Arithmetic 6 21
Misc. Missing Cases 5 17
Parsing 4 14
Bitfields 3 10
Variadics 2 7

Some of the timeouts are actually caused by Maude parsing the
results of CIL’s transformation. We have requested more information
from the developers of Maude, but have not yet received any advice.
The other timeouts were at runtime, and represented programs that
are either computationally intensive or memory intensive.

The pointer arithmetic errors were intricately related to casting.
While our semantics handles the case when a pointer with pointer
type is added to an integer type, it does not handle the case
where the pointer had first been cast to an integer type, as in
the code “int a[2]; (int)&a[0] + 4;”. This oversight on our part is
correctable by adding additional cases, but we would like to handle
the issue more generically. Although the behavior of pointer to
integer conversion is implementation-defined, the standard states
that, “The mapping functions for converting a pointer to an integer
or an integer to a pointer are intended to be consistent with the
addressing structure of the execution environment” [21, §6.3.2.3:3].
While a flat memory where pointers are concrete natural numbers
would suffice, we would like to maintain a separation in order to
catch more bugs. We believe a compromise can be found.

The parsing errors were simply rare cases that had not shown
up before, and so we were not handling them in our CIL pretty-
printer. For the bitfields, we were missing cases involving large
bitfields that straddle bytes boundaries. Finally, the problems with
variadics were due to the way we are handling the standard library
component. Specifically, we were not allowing one to pass or copy
va_list objects.

Coverage Analysis In order to have some measure of the effec-
tiveness of our testing, we recorded the application of every seman-
tic rule for 613 of the GCC torture tests we passed (we focused
on the quick-running programs). The GCC torture tests do not fo-
cus on the standard library, so we excluded those rules from our
analysis. We also excluded rules that were duplicating CIL’s be-
havior.8 These particular tests achieved semantic-rule coverage of
94% (309/329 rules).

In addition to getting a coverage measure, this process suggests
another interesting application. For example, in the GCC tests looked
at above, a rule that deals with casts to array types, e.g., “(int[5])p”,
was never applied. By looking at such rules, we can create new tests
to trigger them. These tests would improve both confidence in the
semantics as well as the test suite itself.

7.2 Exploratory Testing
We have also tested our semantics on programs gathered from around
the web, including programs of our own design and from open
source compilers. Not counting the GCC tests, we include nearly
10,000 SLOC in our regression tests which are run when making
changes to the semantics. Each test is deterministic, and the output
is compared automatically against the output of GCC. These tests
include a number of programs from the LCC [18] and CompCert [2]

8 We added a number of these rules to address bugs in CIL.

A Formal Semantics of C with Applications 9 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

compilers. We also execute the “C Reference Manual” tests (also
known as cq.c),9 which go through Kernighan and Ritchie [24]
and test each feature described in about 5,000 SLOC. When these
tests are added to the GCC tests described above, it brings our
rule-coverage to 97% (320/329 rules).

We can successfully execute Duff’s Device [10], an unstructured
switch statement where the cases are inside of a loop inside of the
switch statement itself, as well as quines (programs whose output
are precisely their source code), and a number of programs from
the Obfuscated C Code Contest [28].

8. Conclusion
In this paper we showed how one can give a detailed definition of a
real language using the rewriting semantics, and how that definition
can be used to analyze the behaviors of particular programs.

In the future, we would like to make the definition fully para-
metric, in the sense that there should be a module where each item
marked as “implementation-specific” in the standard should be rep-
resented in this module. This would increase our confidence that
the core of the definition was flexible with respect to the decisions
we took regarding the low-level details. We have also begun work
on eliminating our reliance on CIL.

The entire definition of C is reproduced in Appendix B and the
machine-readable code can be found at https://code.google.
com/p/k-framework/wiki/DefinitionOfC.

References
[1] P. E. Black. Axiomatic Semantics Verification of a Secure Web Server.

PhD thesis, Brigham Young University, February 1998.

[2] S. Blazy and X. Leroy. Mechanized semantics for the Clight subset
of the C language. Journal of Automated Reasoning, 43(3):263–288,
2009.

[3] M. Bofinger. Reasoning about C programs. PhD thesis, University of
Queensland, February 1998.

[4] R. S. Boyer and J. S. Moore. A Computational Logic Handbook.
Academic Press, second edition, 1998.

[5] M. Clavel, F. Durán, S. Eker, J. Meseguer, P. Lincoln, N. Martí-
Oliet, and C. Talcott. All About Maude, A High-Performance Logical
Framework, volume 4350 of LNCS. Springer, 2007.

[6] J. V. Cook and S. Subramanian. A formal semantics for C in Nqthm.
Technical Report 517D, Trusted Information Systems, November 1994.

[7] J. V. Cook, E. L. Cohen, and T. S. Redmond. A formal denotational
semantics for C. Technical Report 409D, Trusted Information Systems,
September 1994.

[8] T. F. Şerbănuţă. A Rewriting Approach to Concurrent Pro-
gramming Language Design and Semantics. PhD thesis, Uni-
versity of Illinois, 2010. URL fsl2.cs.uiuc.edu/~tserban2/
serbanuta-2010-thesis.pdf.

[9] O. Danvy and L. R. Nielsen. Refocusing in reduction semantics. RS RS-
04-26, BRICS, DAIMI, Department of Computer Science, University
of Aarhus, Aarhus, Denmark, November 2004. This report supersedes
BRICS report RS-02-04. A preliminary version appears in the informal
proceedings of the Second International Workshop on Rule-Based
Programming, RULE 2001, Electronic Notes in Theoretical Computer
Science, Vol. 59.4.

[10] T. Duff. On Duff’s device, 1988. URL http://www.lysator.liu.
se/c/duffs-device.html. Msg. to the comp.lang.c Usenet group.

[11] C. Ellison, T. F. Şerbănuţă, and G. Roşu. A rewriting logic approach
to type inference. In 19th International Workshop on Algebraic
Development Techniques (WADT’08), volume 5486 of LNCS, pages
135–151, 2009.

9 We have been unable to determine the author or origin of this test suite.
Please contact us with any information.

[12] A. Farzan, F. Chen, J. Meseguer, and G. Roşu. Formal analysis of Java
programs in JavaFAN. In 16th International Conference on Computer
Aided Verification (CAV’04), volume 3114 of LNCS, pages 501–505,
2004.

[13] M. Felleisen and D. P. Friedman. Control operators, the SECD-
machine, and the lambda-calculus. In 3rd Working Conference on
the Formal Description of Programming Concepts, pages 193–219,
Ebberup, Denmark, Aug. 1986.

[14] D. P. Friedman, M. Wand, and C. T. Haynes. Essentials of Programming
Languages. MIT Press, Cambridge, MA, 2nd edition, 2001. ISBN
0-262-06217-8. URL http://www.cs.indiana.edu/eopl/.

[15] FSF. GNU compiler collection, 2010. URL http://gcc.gnu.org.

[16] FSF. C language testsuites: “C-torture” version 4.4.2, 2010. URL
http://gcc.gnu.org/onlinedocs/gccint/C-Tests.html.

[17] Y. Gurevich and J. K. Huggins. The semantics of the C programming
language. In Computer Science Logic, volume 702 of LNCS, pages
274–308, 1993.

[18] D. R. Hanson and C. W. Fraser. A Retargetable C Compiler: Design
and Implementation. Addison-Wesley, 1995.

[19] ISO/IEC JTC 1, SC 22, WG 14. ISO/IEC 9899:1999: Programming
languages—C. Technical report, International Organization for Stan-
dardization, December 1999.

[20] ISO/IEC JTC 1, SC 22, WG 14. Rationale for international standard—
programming languages—C. Technical Report 5.10, International
Organization for Standardization, April 2003.

[21] ISO/IEC JTC 1, SC 22, WG 14. ISO/IEC 9899:201x: Programming
languages—C. Committee draft, International Organization for Stan-
dardization, August 2008.

[22] D. M. Jones. The New C Standard: An Economic and Cultural
Commentary. Self-published, December 2008. URL http://www.
knosof.co.uk/cbook/cbook.html.

[23] K semantic framework website. K semantic framework website, 2010.
URL https://code.google.com/p/k-framework/.

[24] B. W. Kernighan and D. M. Ritchie. The C Programming Language.
Prentice Hall, second edition, 1978.

[25] J. Meseguer. Conditional rewriting logic as a unified model of
concurrency. Theoretical Computer Science, 96(1):73–155, 1992.

[26] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermedi-
ate language and tools for analysis and transformation of C programs.
In International Conference on Compiler Construction, pages 213–228,
2002.

[27] M. Nita, D. Grossman, and C. Chambers. A theory of platform-
dependent low-level software. In 35th ACM Symposium on Principles
of Programming Languages (POPL’08), 2008.

[28] L. C. Noll, S. Cooper, P. Seebach, and L. A. Broukhis. The international
obfuscated C code contest, 2010. URL http://www.ioccc.org/.

[29] M. Norrish. C formalised in HOL. Technical Report UCAM-CL-TR-
453, University of Cambridge, December 1998.

[30] M. Norrish. A formal semantics for C++. Technical report,
NICTA, 2008. URL http://nicta.com.au/people/norrishm/
attachments/bibliographies_and_papers/C-TR.pdf.

[31] N. S. Papaspyrou. A Formal Semantics for the C Programming
Language. PhD thesis, National Technical University of Athens,
February 1998.

[32] N. S. Papaspyrou. Denotational semantics of ANSI C. Computer
Standards and Interfaces, 23(3):169–185, 2001.

[33] N. S. Papaspyrou and D. Maćoš. A study of evaluation order semantics
in expressions with side effects. Journal of Functional Programming,
10(3):227–244, 2000.

[34] G. Roşu and T. F. Şerbănuţă. An overview of the K semantic framework.
Journal of Logic and Algebraic Programming, 79(6):397–434, 2010.

[35] G. Roşu, W. Schulte, and T. F. Şerbănuţă. Runtime verification of
C memory safety. In Runtime Verification (RV’09), volume 5779 of
LNCS, pages 132–152, 2009.

A Formal Semantics of C with Applications 10 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

https://code.google.com/p/k-framework/wiki/DefinitionOfC
https://code.google.com/p/k-framework/wiki/DefinitionOfC
fsl2.cs.uiuc.edu/~tserban2/serbanuta-2010-thesis.pdf
fsl2.cs.uiuc.edu/~tserban2/serbanuta-2010-thesis.pdf
http://www.lysator.liu.se/c/duffs-device.html
http://www.lysator.liu.se/c/duffs-device.html
http://www.cs.indiana.edu/eopl/
http://gcc.gnu.org
http://gcc.gnu.org/onlinedocs/gccint/C-Tests.html
http://www.knosof.co.uk/cbook/cbook.html
http://www.knosof.co.uk/cbook/cbook.html
https://code.google.com/p/k-framework/
http://www.ioccc.org/
http://nicta.com.au/people/norrishm/attachments/bibliographies_and_papers/C-TR.pdf
http://nicta.com.au/people/norrishm/attachments/bibliographies_and_papers/C-TR.pdf

[36] G. Roşu, C. Ellison, and W. Schulte. Matching logic: An alternative
to Hoare/Floyd logic. In 13th International Conference on Algebraic
Methodology and Software Technology (AMAST’10), LNCS, 2010. To
appear.

[37] T. F. Şerbănuţă and G. Roşu. K-Maude: A rewriting based tool for
semantics of programming languages. In 8th International Workshop
on Rewriting Logic and its Applications (WRLA’09), volume 6381 of
LNCS, pages 104–122, 2010.

[38] S. Subramanian and J. V. Cook. Mechanical verification of C programs.
In ACM SIGSOFT Workshop on Formal Methods in Software Practice,
January 1996.

[39] S. Summit. C programming FAQs: Frequently asked questions, 2005.
URL http://www.c-faq.com/.

[40] W. Zimmermann and A. Dold. A framework for modeling the semantics
of expression evaluation with abstract state machines. In Abstract State
Machines 2003: Advances in Theory and Applications, volume 2589 of
LNCS, pages 391–406, 2003.

A Formal Semantics of C with Applications 11 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

http://www.c-faq.com/

〈〈〈
〈•K〉k 〈•Map〉env 〈0〉id

〉
thread∗

〉
threads

〈•Map〉locks 〈•Set〉cthreads

〈•Map〉funs 〈•List〉in 〈•List〉out 〈•Map〉mem 〈•Map〉ptr 〈1〉next

〉
T

Figure 3. The initial configuration for executing KernelC programs.

A. Short Introduction to K
This appendix gives a quick overview of the K framework—it is only an overview (and should be
skimmed if you are comfortable with K or rewriting logic). This overview has been adapted (with
permission) from Serbănută [8]. For a more extensive explanation of the K framework, see Rosu and
Serbănută [34], Serbănută [8], and Serbănută and Rosu [37]. There is also a Google code project
website [23] where the newest version of the K-Maude tool can be found.

In a nutshell, the K frameworks relies on computations, configurations, and K rules in giving
semantics to programming language constructs. Computations, which gave the name of the framework,
are lists of tasks, including syntax and have the role of capturing the sequential fragment of
programming languages. Configurations of running programs are represented in K as bags of nested
cells, with a great potential for concurrency and modularity. K rules distinguish themselves by
specifying only what is needed from a configuration, and by clearly identifying what changes, and
thus, being more concise, more modular, and more concurrent.

To exemplify the K framework, in this section we will use here a modified subset of C called
KernelC (the full C semantics can be found at the end of this document). KernelC defines a subset of
the C language which is nevertheless non-trivial, containing functions, memory allocation, pointers,
and pointer arithmetic, and input/output primitives. It is expressive enough to be able to write C
functions as the next one (which can be used for copying zero-terminated arrays):

void arrCpy(int ∗ a, int ∗ b) {
while (∗ a ++ = ∗ b ++) {}
}

Configurations. The initial running configuration of KernelC is presented in Figure 3. The
configuration is a nested multiset of labeled cells, in which each cell can contain either a list, a
set, a bag, or a computation. The initial KernelC configuration consists of a top cell, labeled “T”
holding a bag of cells, among which a map cell, labeled by “mem”, to map locations to values, a list
cell, labeled “in”, to hold input values and a bag cell, labeled “threads”, which can hold any number
of “thread” cells (signaled by the star ∗ attached to the name of the cell). The thread cell is itself a
bag of cells, among which the “k” cell which holds a computation, which plays the role of directing
the execution.

Syntax and Computations. Computations extend syntax with a task sequentialization operation,
“y”. The basic unit of computation is a task, which can either be a fragment of syntax, maybe with
holes in it, or a semantic task, such as the recovery of an environment. Most of the manipulation of
the computation is abstracted away from the language designer via intuitive PL syntax annotations
like strictness constraints which, when declaring the syntax of a construct also specify the order of
evaluation for its arguments. Similar decompositions of computations happen in abstract machines by
means of stacks [13, 14], and also in the refocusing techniques for implementing reduction semantics
with evaluation contexts [9]. However, what is different here is that K achieves the same thing formally,
by means of rules (there are heating/slashcooling rules behind the strictness annotations, as explained
below), not as an implementation means, which is what the others do.

The K BNF syntax specified below suffices to parse the program fragment t = * x; * x = * y;
* y = t; specifying a sequence of statements for swapping the values at two locations in the memory

syntax:
Exp ::= Id

| * Exp [strict]
| Exp = Exp [strict(2)]

Stmt ::= Exp ; [strict]
| Stmt Stmt [seqstrict]

The strictness annotations add semantic information to the syntax by specifying the order of
evaluation of arguments for each construct. The heating/cooling rules automatically generated for the
strictness annotations above are:

* ERed
 ERed y * �
E = ERed
 ERed y E = �

ERed ;
 ERed y � ;
SRed S
 SRed y � S

Val SRed
 SRed y Val �

A Formal Semantics of C with Applications 12 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

The heating/cooling rules specify that the arguments mentioned in the strictness constraint can be
taken out for evaluation at any time and plug back in their original context. Note that the statement
composition generates two such rules (as, by default, strictness applies to each argument); however,
since the constraint specifies sequential strictness, the second statement can be evaluated only once
the first statement was completely evaluated (specified by the Val variable which should match a
value) and its side effects were propagated.

By successively applying these heating rules (from bottom towards top) on the statement sequence
above we obtain the following computations:

t = * x; * x = * y; * y = t; ⇀
t = * x; y � * x = * y; * y = t; ⇀

t = * x y �; y � * x = * y; * y = t; ⇀
* x y t = � y �; y � * x = * y; * y = t; ⇀

x y * � y t = � y �; y � * x = * y; * y = t;

To begin, because statement composition is declared sequentially strict, the left statement must be
evaluated first. The strictness rule will pull the statement out for evaluation, and leave a hole in
its place. Now an expression statement construct is at the top and, being strict, it requires that the
assignment be puled out. Next, the assignment construct being strict in the second argument, its right
hand side must be pulled out for evaluation. Finally, the dereferencing construct is strict, and the
heating rule will pull out the identifier x. Thus, through the strictness rules, we have obtained the
order of evaluation as a sequence of tasks.

K rules. Consider the following “swap” function for swapping the values at the locations pointed to
by the arguments:

void swap(int * x, int * y){
int t = * x; * x = * y; * y = t;
}

Assume we are in the middle of a call to “swap” with arguments “a” and “b” (which are mapped to
memory locations 4 and 5, respectively), and assume that all statements but the last have already been
executed, and that only the last statement is left to be executed and that y has already been evaluated
to location 4. A running configuration corresponding to this situations could be the top configuration
in Figure 4. By the strictness rules, we know that the next task to be executed is evaluating t.

Figure 4 shows how the K rule for reading the value of a local variable from the environment
can be derived directly from the running configuration in which evaluating a local variable is the
next task. First, through a process named cell comprehension we focus only on the parts of the cells
which are relevant for this rule. At the same time, we can declare our intention to replace t by its
value in the environment (which is 1) by underlining the part that needs to change and writing its
replacement under the line, through what we call in-place rewriting. Finally, through the process of
configuration abstraction, only the relevant cells are kept, and through generalization we replace
the concrete instances of identifiers and constants with variables of corresponding types. The jagged
edges are used to specify that there could be more content in the cell in addition to what is explicitly
specified

The thus obtained K rule succinctly describes the intuitive semantics for reading a local variable: if
a local variable X is the next thing to be evaluated and if X is mapped to a value V in the environment,
then replace that occurence of X by V . Moreover, it does that by only specifying what is needed from
the configuration, which is essential for obtaining modular definitions, and by precisely identifying
what changes, which significantly enhances the concurrency.

Modularity. As mentioned above the configuration abstraction process is instrumental in achieving
the desired modularity goal for the K framework. Relying on the initial configuration being specified
by the designer, and the fact that usually the structure of such an configuration does not change during
the execution of a program, the K rules are essentially invariant under change of structure. This
effectively means that the same rule can be re-used in different definitions as long as the required
cells are present, regardless or the additional context, which can be automatically inferred from
the initial configuration. As an example, the K rule for reading the value of a local variable can be
used for a configuration as the one specified above, for the full KernelC configuration, and even
for a configuration in which the computation and the environment cells are in separate parts of the
configuration like in the following case:〈

〈〈t y * 5 = � y � ; y env(a 7→ 4 b 7→ 5)〉k〉thread
〈〈x 7→ 4 t 7→ 1 y 7→ 5〉env 〈4 7→ 7 5 7→ 7〉mem〉state

〉
T

Power of expression. The structure of the computations, and the fact that the current task is always
at the top of the computation as a similar effect on the power of expression, as configuration abstraction
has for modularity. Let us give some examples of the easiness to define in K constructs which are
known to be hard in other frameworks, thus arguing that the K framework reached the expressibility
goal for an ideal definitional framework.

A Formal Semantics of C with Applications 13 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

cell comprehension ⇓ in-place rewriting

configuration abstraction ⇓ generalization

X
V

k

X 7→ V

env

Figure 4. From running configurations to K rules

One first such example is the control intensive call with current continuation (call/cc), which is
present in several functional languages (like Scheme), and to some extent, even in some imperative
programming languages (such as the long-jump construct in C). Call/cc is known to be hard to capture
in most frameworks (except reduction semantics with evaluation contexts) due to lack of access to
execution context, which is there captured by the logical context, which lives at a meta-level which is
not observable in the framework. Having the entire remainder of computation always following the
current redex, allows K to capture this construct in a simple and succinct manner by the following
two rules:

Passing computation as value: 〈callcc V
V cc(K)

y K〉k

Applying computation as function: 〈cc(K) V y —
V y K

〉k

The first rule wraps the current reminder of the computation as a value and passes it to the argument
of “callcc”, which is supposed to evaluate to a function. If during the evaluation of that function
call, the continuation value is applied to some value, then the reminder of the computation at that
time is replaced by the saved computation to which the passed value is prefixed (as the result of the
original callcc expression).

We cannot conclude the survey on the expressivity of the K framework without mentioning its
reflective capabilities. Based on the fact that K regards all computational tasks as being abstract syntax
trees, all language constructs become labels applied to other ASTs; for example the expression a + 3
is represented in K as _ + _(a(•List{K}) , 3(•List{K})). This abstract view of syntax allows reducing the
computation-creating constructs to the following minimal core:

K ::= KLabel(List{K}) | •K | K y K
List{K} ::= K | •List{K} | List{K} , List{K}

Moreover, this approach allows one to define a generic AST visitor, and in turn use that to define
powerful reflective features such as code generation or a binder-independent substitution.

A Formal Semantics of C with Applications 14 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

B. C Semantics
Here we present the full C semantics, generated directly from the original source code (which can be found on our Google project page at https:
//code.google.com/p/k-framework/wiki/DefinitionOfC). The LATEX is being generated through a very new backend, and as such, there may be a
number of typesetting/formatting or even correctness errors in the LATEX. In particular, sometimes important parentheses have been discarded, which can change the
meaning of side conditions. If there is any doubt, please consult the original source code at the above URL.

Module C-SEMANTICS
imports C-SYNTAX
imports C-CONFIGURATION
imports COMMON-C-SEMANTICS
imports DYNAMIC-C-SEMANTICS
end module

A Formal Semantics of C with Applications 15 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

https://code.google.com/p/k-framework/wiki/DefinitionOfC
https://code.google.com/p/k-framework/wiki/DefinitionOfC

Module COMMON-C-SYNTAX
imports PL-BOOL
imports PL-EXT-BOOL
imports PL-NAT
imports PL-INT
imports PL-RAT
imports PL-FLOAT
imports PL-STRING
imports PL-CONVERSION
imports PL-QID
imports PL-RANDOM
imports PL-ID
Program ::= SeqList
Constant ::= Integer-Constant | Floating-Constant
Integer-Constant ::= Int

| U(Integer-Constant)
| L(Integer-Constant)
| UL(Integer-Constant)
| LL(Integer-Constant)
| ULL(Integer-Constant)
| hex(String)

Floating-Constant ::= Float
| L(Floating-Constant)
| F(Floating-Constant)

String-Literal ::= String
List{Expression} ::= Expression

| ·

| List{Expression} , List{Expression} [id: · strict hybrid assoc]
Expression ::= Id | Constant | String-Literal | Direct-Declarator

| Expression [Expression]
| Apply(Expression , List{Expression})
| Apply(Expression)
| Expression . Id
| Expression -> Id [strict(1)]
| Expression ++
| Expression -- [strict(1)]
| ++ Expression
| -- Expression
| & Expression
| * Expression [strict]
| - Expression [strict]
| ∼ Expression [strict]
| ! Expression [strict]
| sizeof(Expression)
| Cast(Type-Name , Expression) [strict]
| Expression * Expression [strict]
| Expression / Expression [strict]
| Expression % Expression [strict]
| Expression + Expression [strict]
| Expression - Expression [strict]
| Expression « Expression [strict]
| Expression » Expression [strict]
| Expression < Expression [strict]
| Expression > Expression [strict]

A Formal Semantics of C with Applications 16 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

| Expression <= Expression [strict]
| Expression >= Expression [strict]
| Expression == Expression [strict]
| Expression != Expression [strict]
| Expression & Expression [strict]
| Expression ^ Expression [strict]
| Expression | Expression [strict]
| Expression *= Expression
| Expression /= Expression
| Expression %= Expression
| Expression += Expression
| Expression -= Expression
| Expression «= Expression
| Expression »= Expression
| Expression ^= Expression
| Expression |= Expression
| Expression &= Expression
| Expression = Expression [strict(2)]
| Initializer(Expression)
| InitList(List{Expression})
| InitItem(Expression)
| Designation(Expression , Expression)
| ArrayDesignator(Expression)
| FieldDesignator(Id)

Init-Declarator-List ::= Init-Declarator
Init-Declarator ::= Declarator

| Declaration = Expression [strict(1)]
| Declaration={List{Expression} } [strict(1)]

Type-Specifier ::= Typedef-Name | Struct-Or-Union-Specifier | Enum-Specifier | Base-Type
| Pointer(Type-Specifier) [strict(1)]

Declarator ::= Direct-Declarator
Direct-Declarator ::= Type-Specifier | Id

| Direct-Declarator [Expression]
| Pointer(Direct-Declarator) [strict(1)]
| Pointer(Direct-Declarator , Direct-Declarator) [strict(1)]
| Pointer
| Direct-Function-Declarator(Direct-Declarator , Parameter-Type-List)
| Direct-Function-Declarator(Parameter-Type-List)
| BitField(Expression)
| BitField(Declarator , Expression)

List{Parameter} ::= Struct-Declaration | Parameter-Declaration
| ·

| List{Parameter} , List{Parameter} [id: · strict hybrid assoc]
Type-Name ::= SeqList
SeqList ::= Type-Specifier | Storage-Class-Specifier | Type-Specifier | Declarator | Block-Item | External-Declaration

| Pointer(SeqList)
| SeqList SeqList

Statement ::= Labeled-Statement | Jump-Statement | Compound-Statement | Iteration-Statement | Expression-Statement | Selection-Statement
Block-Item ::= Init-Declarator | Statement | Declaration
External-Declaration ::= Function-Definition

| Global(SeqList) [strict]
| Global()

Nat ::= loc(Nat , Nat)
Id ::= NULL

A Formal Semantics of C with Applications 17 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

| calloc
| cos
| sin
| exit
| free
| main
| malloc
| printf
| putchar
| rand
| sqrt
| abort
| debug
| getchar
| exp
| log
| atan
| File-Scope
| fslOpenFile
| fslCloseFile
| fslFGetC
| fslPutc
| longjmp
| setjmp
| floor
| tan
| fmod
| atan2
| asin
| spawn
| sync
| lock
| unlock

Declaration ::= Local(Declaration) [strict]
| Declaration(SeqList) [strict]
| Declaration(SeqList , Init-Declarator-List) [strict(1)]
| Typedef(SeqList , Declarator) [strict(1)]

Storage-Class-Specifier ::= typedef
| extern
| static
| auto
| register

Typedef-Name ::= typedefName(Id)
Base-Type ::= void

| no-type
| float
| double
| long-double
| short-int
| unsigned-short-int
| char
| unsigned-char
| signed-char
| int

A Formal Semantics of C with Applications 18 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

| unsigned-int
| short
| unsigned-short
| long-int
| unsigned-long-int
| long
| unsigned-long
| long-long
| unsigned-long-long
| long-long-int
| unsigned-long-long-int

Struct-Or-Union-Specifier ::= structDef(Id , List{Parameter}) [strict(2)]
| unionDef(Id , List{Parameter}) [strict(2)]
| structDef(Id)
| unionDef(Id)
| struct(Id)
| union(Id)

Struct-Declaration ::= Field(SeqList , Declarator) [strict(1)]
Enum-Specifier ::= enum(Id , List{Expression})

| enum(Id)
Parameter-Type-List ::= Parameter-Type-List(List{Parameter}) [strict]

| Parameter-Type-List()
Parameter-Declaration ::= ...

| Parameter-Declaration(SeqList) [strict]
| Parameter-Declaration(SeqList , Declarator) [strict(1)]

Labeled-Statement ::= Id : SeqList
| case(Nat) Expression : SeqList [strict(2)]
| default(Nat): SeqList

Compound-Statement ::= Block(SeqList)
| Block()

Expression-Statement ::= EmptyStatement;
| Expression ; [strict]

Selection-Statement ::= if(Expression) Statement [strict(1)]
| if(Expression) Statement else Statement [strict(1)]
| switch(Nat)(Expression) Statement [strict(2)]

Iteration-Statement ::= while(Expression) Statement
Jump-Statement ::= goto Id

| break
| return
| return Expression [strict]

Function-Definition ::= Declaration{SeqList } [strict(1)]
end module

A Formal Semantics of C with Applications 19 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

Module C-CONFIGURATION
imports C-SYNTAX
imports COMMON-C-CONFIGURATION
initial configuration:〈 〈

·Map
〉

gotoMap

〈
·Map

〉
genv

〈
·Map

〉
mem

〈
loc (1 , 0)

〉
nextLoc

〈
0

〉
freshNat

〈
3

〉
nextFile

〈
·Map

〉
malloced

〈
·Map

〉
statics

〈
·Map

〉
typedefs

〈
·Map

〉
sizes

〈
0 7→ “stdin” 1 7→ “stdout” 2 7→ “stdout”

〉
openFiles〈

·Map
〉

structs

〈
·Bag

〉
busy

〈
·List

〉
callStack

〈 〈
·List

〉
buffer

〈
false

〉
blocked

〈
·K

〉
k

〈
·Map

〉
registers

〈
·Bag

〉
locsWrittenTo

〈
File-Scope

〉
currentFunction

〈
·K

〉
type

〈
·Map

〉
env

〈
·List

〉
loopStack

〈
·Bag

〉
locals

〈
·Map

〉
types

〉
control

〉
T〈

·Map
〉

files

〈
“”

〉
input

〈
“”

〉
output

〈
·K

〉
resultValue

end module

A Formal Semantics of C with Applications 20 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

Module INCOMING-MODULES
imports K
imports C-SYNTAX
imports C-CONFIGURATION
imports K-CONTEXTS
imports K-PROPER
imports K-QUOTED-LABELS
end module

A Formal Semantics of C with Applications 21 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

Module COMMON-SEMANTIC-SYNTAX
imports INCOMING-MODULES
KResult ::= Field | Value | Type

| skipval
| typedParameterList(List{K}) [strict]
| typedDeclaration(Type , K)
| definedType(Type , K)
| typedField(Type , Id)

Expression ::= BaseValue | Value | SeqList
| sizeof(Type)
| HOLE
| sizeofType(K) [strict]

State ::= String
Type ::= Base-Type

| arrayType(Type , Nat)
| bitfieldType(Type , Nat)
| functionType(Type , List{K})
| pointerType(Type)
| structType(Id)
| unionType(Id)
| qualifiedType(Type , K)

BaseValue ::= Nat | Int | Rat | Float | Bool
ListItem ::= List(BagItem)

| bwrite(Nat , BaseValue)
Nat ::= piece(Nat , Nat)

| trueUnknown
| unknown(Nat)
| bitloc(Nat , Nat , Nat)
| inc(Nat)
| charToAscii(String)
| numBytes(Type) [strat(1 0)memo]
| numBits(Type) [strat(1 0)memo]
| numBitsPerByte

Float ::= unknownF
K ::= debugK
| discard
| memblock(Nat , Map)
| l(KLabel)
| bind(List{KResult} , List{KResult})
| declare(K , K) [strict(1)]
| converted(K , K)
| evalToType
| concretize(Value)
| addTypes(K , K)
| addGlobalTypes(K , K)
| addGlobalTypes(K)
| putInMem(Nat , K) [strict(2)]
| putInMem-aux(Nat , Value , Type , K) [strict(4)]
| putBytesInMem(Nat , List{K} , Type , K) [strict(4)]
| calcStructSize(List{KResult})
| calcUnionSize(List{KResult})
| calcStructSize-aux(List{KResult} , Rat)
| calcUnionSize-aux(List{KResult} , Rat)
| necessaryBytes(K) [strict]

A Formal Semantics of C with Applications 22 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

| cast(Type , K) [strict(2)]
| arithInterpret(Type , BaseValue)
| interpret(Type , BaseValue)
| leftShiftInterpret(Type , BaseValue , K)
| rightShiftInterpret(Type , BaseValue)
| addLocals(Nat)
| typeof(Expression)
| writeToFD(Nat , Nat)
| writeToFD(Nat , String)
| readFromFD(Nat)
| readFromFD(Nat , Nat)
| figureOffset(Nat , K , Type) [strict(2)]
| calculateGotoMap(Id , K)
| kpair(K , K)
| kpair(K , List)
| promote(K)
| readFromMem(Nat , Type)
| extractField(List{K} , Type , Id)
| allocString(Nat , String)
| popLoop
| giveGlobalType(Type , K)
| giveLocalType(Type , K)
| application(K , List{K}) [strict(1)]
| case(K , BaseValue)
| defaultCase(K)
| sequencePoint
| append(Nat , Nat , Value)
| store Nat New K atLoc Nat [strict(2)]
| storeNew K atLoc Nat [strict(1)]
| store K atLoc Nat [strict(1)]
| alloc(Nat , K) [strict(2)]
| allocWithDefault(Nat , K , Nat) [strict(2)]

Id ::= unnamedBitField
| anonymousId

Set ::= locations(List)
| setOfTypes [strat(0)memo]
| integerTypes [strat(0)memo]
| unsignedIntegerTypes [strat(0)memo]
| signedIntegerTypes [strat(0)memo]

Value ::= registerLocation(Id)
| tv(BaseValue , Type)
| atv(List{K} , Type)
| Closure(K , K , K)

Bool ::= Set contains K [strat(1 2 0)memo]
| isIntegerType(Type) [strat(1 0)memo]
| isUnsignedIntegerType(Type) [strat(1 0)memo]
| isSignedIntegerType(Type) [strat(1 0)memo]
| isFloatType(Type) [strat(1 0)memo]
| isArrayType(Type)
| isFunctionType(Type)

Base-Type ::= enumType(Id)
| registerInt

Char ::= firstChar(String)
String ::= butFirstChar(String)

A Formal Semantics of C with Applications 23 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

List{K} ::= Nat to Nat
Int ::= min(Type) [strat(1 0)memo]

| max(Type) [strat(1 0)memo]
Map ::= undefRange(Map , Nat , Nat)
Bag ::= range(Nat , Nat)
Statement ::= loopMarked
macro: loc (Block , N) <Int loc (Block , N′) = N <Int N′
macro: loc (Block , N) >Int loc (Block , N′) = N >Int N′
macro: loc (Block , N) ≤Int loc (Block , N′) = N ≤Int N′
macro: loc (Block , N) ≥Int loc (Block , N′) = N ≥Int N′
macro: locations (·) = ·
macro: locations (bwrite (Loc , —) L) = Loc locations (L)
macro: setOfTypes = Set(l (arrayType) ,, l (bitfieldType) ,, l (functionType) ,, l (pointerType) ,, l (structType) ,, l (unionType) ,, l (qualifiedType))
macro: putInMem (Loc , tv (V , T)) = putInMem-aux (Loc , tv (V , T) , T , sizeofType (T))

end module

A Formal Semantics of C with Applications 24 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

Module C-SETTINGS
imports INCOMING-MODULES
imports COMMON-SEMANTIC-SYNTAX
Type ::= cfg:sizeut

| cfg:ptrdiffut
Nat ::= rank(Type)

K rules:
rule: char⇀ signed-char

rule: NULL⇀ tv (loc (0 , 0) , pointerType (void))

macro: numBitsPerByte = 8
macro: numBytes (signed-char) = 1
macro: numBytes (short-int) = 2
macro: numBytes (int) = 4
macro: numBytes (long-int) = 4
macro: numBytes (long-long-int) = 8
macro: numBytes (float) = 4
macro: numBytes (double) = 8
macro: numBytes (long-double) = 16
macro: numBytes (enumType (X)) = numBytes (int)
macro: cfg:sizeut = unsigned-long-int
macro: cfg:ptrdiffut = int
macro: min (enumType (—)) = min (int)
macro: max (enumType (—)) = max (int)
macro: sizeofType (T) = tv (numBytes (T) , cfg:sizeut)
macro: sizeofType (pointerType (—)) = tv (numBytes (unsigned-long-int) , cfg:sizeut)
macro: rank (char) = 1
macro: rank (signed-char) = 1
macro: rank (unsigned-char) = 1
macro: rank (short-int) = 2
macro: rank (unsigned-short-int) = 2
macro: rank (int) = 3
macro: rank (unsigned-int) = 3
macro: rank (long-int) = 4
macro: rank (unsigned-long-int) = 4
macro: rank (long-long-int) = 5
macro: rank (unsigned-long-long-int) = 5
macro: rank (enumType (—)) = rank (int)

end module

A Formal Semantics of C with Applications 25 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

Module SEMANTIC-HELPERS
imports COMMON-SEMANTIC-SYNTAX
imports C-SETTINGS
Bool ::= K isa KLabel

K rules:
discard rule: 〈V y discard

·

···〉k

firstChar rule: firstChar (S)⇀ substrString (S , 0 , 1)

charToAscii rule: charToAscii (C)⇀ asciiString (C)

butFirstChar rule: butFirstChar (S)⇀ substrString (S , 1 , lengthString (S))

calcStructSize rule: 〈 calcStructSize (L)
necessaryBytes (calcStructSize-aux (L , 0))

···〉k

calcUnionSize rule: 〈 calcUnionSize (L)
necessaryBytes (calcUnionSize-aux (L , 0))

···〉k

calcStructSize-heat rule: 〈calcStructSize-aux (typedField (T , X) ,, L , R)
sizeofType (T) y calcStructSize-aux (L , R)

···〉k when T isa bitfieldType

calcStructSize-heat rule: 〈 calcStructSize-aux (typedField (T , X) ,, L , R)
sizeofType (T) y calcStructSize-aux (L , truncRat (R +Rat 7 /Rat 8))

···〉k when ¬Bool T isa bitfieldType

calcUnionSize-heat rule: 〈calcUnionSize-aux (typedField (T , X) ,, L , R)
sizeofType (T) y calcUnionSize-aux (L , R)

···〉k

calcStructSize-cool rule: 〈tv (R′ , —) y calcStructSize-aux (L , R)
calcStructSize-aux (L , R +Rat R′)

···〉k

calcUnionSize-cool rule: 〈tv (R′ , —) y calcUnionSize-aux (L , R)
calcUnionSize-aux (L , maxRat (R , R′))

···〉k

calcStructSize-done rule: 〈calcStructSize-aux (·List{K} , R)
tv (R , cfg:sizeut)

···〉k

calcUnionSize-done rule: 〈calcUnionSize-aux (·List{K} , R)
tv (R , cfg:sizeut)

···〉k

macro: numBytes (unsigned-char) = numBytes (signed-char)
macro: numBytes (unsigned-short-int) = numBytes (short-int)
macro: numBytes (unsigned-int) = numBytes (int)
macro: numBytes (unsigned-long-int) = numBytes (long-int)
macro: numBytes (unsigned-long-long-int) = numBytes (long-long-int)
macro: numBytes (registerInt) = numBytes (int)
equation: numBits (T) = numBitsPerByte ∗Nat numBytes (T) when getKLabel(T) ,Bool bitfieldType
macro: numBits (bitfieldType (— , N)) = N
macro: max (registerInt) = max (int)
macro: min (registerInt) = min (int)

A Formal Semantics of C with Applications 26 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

macro: min (signed-char) = −Int 2 ˆNat | numBits (signed-char) −Int 1 |Int
macro: max (signed-char) = 2 ˆNat | numBits (signed-char) −Int 1 |Int −Int 1
macro: min (short-int) = −Int 2 ˆNat | numBits (short-int) −Int 1 |Int
macro: max (short-int) = 2 ˆNat | numBits (short-int) −Int 1 |Int −Int 1
macro: min (int) = −Int 2 ˆNat | numBits (int) −Int 1 |Int
macro: max (int) = 2 ˆNat | numBits (int) −Int 1 |Int −Int 1
macro: min (long-int) = −Int 2 ˆNat | numBits (long-int) −Int 1 |Int
macro: max (long-int) = 2 ˆNat | numBits (long-int) −Int 1 |Int −Int 1
macro: min (long-long-int) = −Int 2 ˆNat | numBits (long-long-int) −Int 1 |Int
macro: max (long-long-int) = 2 ˆNat | numBits (long-long-int) −Int 1 |Int −Int 1
macro: min (unsigned-char) = 0
macro: max (unsigned-char) = 2 ˆNat | numBits (unsigned-char) |Int −Int 1
macro: min (unsigned-short-int) = 0
macro: max (unsigned-short-int) = 2 ˆNat | numBits (unsigned-short-int) |Int −Int 1
macro: min (unsigned-int) = 0
macro: max (unsigned-int) = 2 ˆNat | numBits (unsigned-int) |Int −Int 1
macro: min (unsigned-long-int) = 0
macro: max (unsigned-long-int) = 2 ˆNat | numBits (unsigned-long-int) |Int −Int 1
macro: min (unsigned-long-long-int) = 0
macro: max (unsigned-long-long-int) = 2 ˆNat | numBits (unsigned-long-long-int) |Int −Int 1
macro: N to N = ·List{K}
equation: N to N′ = N ,, N +Nat 1 to N′ when N <Nat N′
macro: S K contains K = true
equation: S K1 contains K2 = S contains K2 when K1 ,Bool K2
macro: · contains K = false
macro: isArrayType (arrayType (— , —)) = true
equation: isArrayType (T) = false when getKLabel(T) ,Bool arrayType
macro: isFunctionType (functionType (— , —)) = true
equation: isFunctionType (T) = false when getKLabel(T) ,Bool functionType
equation: isFloatType (T) = true when T =Bool float ∨Bool T =Bool long-double ∨Bool T =Bool double
equation: isIntegerType (T) = true when integerTypes contains T
equation: isIntegerType (T) = false when setOfTypes contains l (getKLabel(T)) ∧Bool getKLabel(T) ,Bool bitfieldType
macro: isIntegerType (bitfieldType (— , —)) = true
equation: isUnsignedIntegerType (T) = true when unsignedIntegerTypes contains T
equation: isUnsignedIntegerType (T) = false when setOfTypes contains l (getKLabel(T)) ∧Bool getKLabel(T) ,Bool bitfieldType
equation: isUnsignedIntegerType (bitfieldType (T , —)) = true when isUnsignedIntegerType (T) =Bool true
equation: isUnsignedIntegerType (bitfieldType (T , —)) = false when isUnsignedIntegerType (T) =Bool false
equation: isSignedIntegerType (T) = true when signedIntegerTypes contains T
macro: isIntegerType (enumType (—)) = true
equation: isSignedIntegerType (T) = false when setOfTypes contains l (getKLabel(T)) ∧Bool getKLabel(T) ,Bool bitfieldType
equation: isSignedIntegerType (bitfieldType (T , —)) = true when isSignedIntegerType (T) =Bool true
equation: isSignedIntegerType (bitfieldType (T , —)) = false when isSignedIntegerType (T) =Bool false
equation: min (bitfieldType (T , N)) = 0 when unsignedIntegerTypes contains T
equation: max (bitfieldType (T , N)) = 2 ˆNat | N |Int −Int 1 when unsignedIntegerTypes contains T
equation: min (bitfieldType (T , N)) = −Int 2 ˆNat | N −Int 1 |Int when signedIntegerTypes contains T
equation: max (bitfieldType (T , N)) = 2 ˆNat | N −Int 1 |Int −Int 1 when signedIntegerTypes contains T
macro: necessaryBytes (tv (R , T)) = tv (truncRat (R +Rat 7 /Rat 8) , T)
macro: KL (—) isa KL = true
macro: — isa — = false

end module

A Formal Semantics of C with Applications 27 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

Module COMMON-INCLUDE
imports INCOMING-MODULES
imports SEMANTIC-HELPERS
imports C-SETTINGS
imports COMMON-SEMANTIC-SYNTAX
end module

A Formal Semantics of C with Applications 28 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

Module COMMON-PARAMETER-BINDING
imports COMMON-INCLUDE
K ::= bindVariadic(K , List{KResult})
| bindVariadic-pre(K , List{K})

List{K} ::= promoteList(List{K})

K rules:
void-to-id rule: Parameter-Declaration (void)⇀ ·

rule: 〈bind (tv (V , arrayType (T , —)) ,, L , PD)
bind (tv (V , pointerType (T)) ,, L , PD)

···〉k

bind-one rule: 〈 bind (tv (V , T) ,, L , typedDeclaration (T ′ , X) ,, P)
giveLocalType (T ′ , X) y addLocals (Loc) y storeNew cast (T ′ , tv (V , T)) atLoc Loc y bind (L , P)

···〉k 〈 M
M [Loc / X]

〉env

〈 Loc
inc (Loc)

〉nextLoc

bind-struct rule: 〈 bind (atv (V , T) ,, L , typedDeclaration (T , X) ,, P)
giveLocalType (T , X) y storeNew atv (V , T) atLoc Loc y addLocals (Loc) y bind (L , P)

···〉k 〈 M
M [Loc / X]

〉env 〈 Loc
inc (Loc)

〉nextLoc

bind-variadic-prepare rule: 〈 bind (L , typedDeclaration (no-type , ...))
bindVariadic-pre (loc (Block , Offset +Nat Len) , promoteList (L))

···〉k 〈··· Block 7→ memblock (Len , —) ···〉mem

〈loc (sNat Block , Offset)〉nextLoc

bind-variadic-start rule: 〈bindVariadic-pre (N , L)
bindVariadic (N , L)

···〉k

bind-variadic rule: 〈 bindVariadic (Loc , V ,, L)
sizeof (V) y bindVariadic (Loc , V ,, L)

···〉k

bind-variadic-done rule: 〈bindVariadic (— , ·List{K})
sequencePoint

···〉k

bind-variadic-withSize rule: 〈 tv (Len , —) y bindVariadic (loc (Block , Offset) , V ,, L)
append (loc (Block , Offset) , Len , V) y bindVariadic (loc (Block , Offset +Nat Len) , L)

···〉k

bind-bad-prototype rule: 〈 bind (tv (V , T) ,, L , ·List{K})
addLocals (Loc) y storeNew tv (V , T) atLoc Loc y bind (L , typedDeclaration (no-type , ...))

···〉k 〈 Loc
inc (Loc)

〉nextLoc

equation: promoteList (tv (V , T) ,, L) = promote (tv (V , T)) ,, promoteList (L) when isIntegerType (T) ∧Bool rank (T) <Int rank (int) ∨Bool T =Bool float
equation: promoteList (tv (V , T) ,, L) = tv (V , T) ,, promoteList (L) when¬Bool isIntegerType (T) ∨Bool rank (T) ≥Int rank (int) ∨Bool T =Bool double ∨Bool T =Bool long-double
macro: promoteList (atv (LV , T) ,, L) = atv (LV , T) ,, promoteList (L)
macro: promoteList (·List{K}) = ·List{K}

end module

A Formal Semantics of C with Applications 29 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

Module COMMON-GLOBAL-DECLARATION
imports COMMON-INCLUDE
K ::= initialize(K , K)
| initList(K , List{K})
| computeStructType(K , Type , List{K})

K rules:
rule: 〈 Global (typedDeclaration (T , X))

giveGlobalType (T , X) y alloc (Loc , sizeofType (T))
···〉k 〈··· ·

X 7→ Loc
···〉env 〈··· ·

X 7→ Loc
···〉genv 〈 Loc

inc (Loc)
〉nextLoc when

getKLabel(T) ,Bool functionType

rule: 〈 Local (typedDeclaration (T , X))
giveLocalType (T , X) y alloc (Loc , sizeofType (T)) y addLocals (Loc)

···〉k 〈··· ·

X 7→ Loc
···〉env 〈 Loc

inc (Loc)
〉nextLoc when T ,Bool

registerInt

rule: 〈Local (typedDeclaration (registerInt , X))
giveLocalType (registerInt , X)

···〉k 〈 M
M [0 / X]

〉registers

function-prototype rule: 〈Global (typedDeclaration (functionType (— , —) , —))
·

···〉k

global-variable-declaration-init rule: 〈 typedDeclaration (T , X) = E
Global (typedDeclaration (T , X)) y initialize (X , E) y skipval

···〉k

rule: 〈initialize (K , InitList (L))
initList (K , L)

···〉k

rule: 〈initialize (K , InitItem (E))
* & K = E ;

···〉k

rule: 〈initList (K , Designation (ArrayDesignator (N) , E) ,, L)
initialize (K [N] , E) y initList (K , L)

···〉k

rule: 〈initList (K , Designation (FieldDesignator (F) , E) ,, L)
initialize (K . F , E) y initList (K , L)

···〉k

rule: 〈initList (K , ·List{K})
·

···〉k

function-definition rule: 〈 typedDeclaration (T , X){B }
storeNew Closure (X , T , B) atLoc Loc y calculateGotoMap (X , B) y skipval

···〉k 〈··· ·

X 7→ Loc
···〉env 〈··· ·

X 7→ Loc
···〉genv 〈··· ·

X 7→ T
···〉types 〈··· ·

X 7→ T
···〉typedefs

〈 Loc
inc (Loc)

〉nextLoc

rule: 〈 Global (K1 y K2)
Global (K1) y Global (K2)

···〉k

rule: 〈 enum (X , X′ = E , L)
Global (Declaration (int , X′) = InitItem (E)) y enum (X , L)

···〉k

rule: 〈 enum (X , ·)
definedType (enumType (X) , enum (X))

···〉k

A Formal Semantics of C with Applications 30 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

rule: 〈 Field (T , X)
typedField (T , X)

···〉k

context: computeStructType (— , — , — ,, � ,,—)
rule: 〈 structDef (X)

definedType (structType (X) , struct (X))
···〉k

rule: 〈 unionDef (X)
definedType (unionType (X) , union (X))

···〉k

rule: 〈 structDef (X , K)
giveGlobalType (structType (X) , struct (X)) y computeStructType (struct (X) , structType (X) , K)

···〉k

rule: 〈 unionDef (X , K)
giveGlobalType (unionType (X) , union (X)) y computeStructType (union (X) , unionType (X) , K)

···〉k

rule: 〈computeStructType (K , T , L)
definedType (T , K)

···〉k 〈··· ·

K 7→ L
···〉structs

end module

A Formal Semantics of C with Applications 31 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

Module COMMON-LOCAL-DECLARATION
imports COMMON-INCLUDE

K rules:
rule: 〈addLocals (Loc)

·

···〉k 〈··· ·

Loc
···〉locals

end module

A Formal Semantics of C with Applications 32 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

ModuleMEMORY
imports COMMON-INCLUDE
K ::= skipme
| readFromMem-aux(Nat , Type , K , List{K}) [strict(3)]
| dontCountWrite(Nat)
| putByteInMem(Nat , BaseValue)
| putBitInMem(BaseValue , BaseValue)

Bool ::= isLocation(K)
| known(Nat)

K rules:
rule: 〈 readFromMem (N , T)

readFromMem-aux (N , T , sizeofType (T) , ·List{K}) y skipme
···〉k

rule: readFromMem-aux (— , T , tv (0 , —) , L)⇀ concretize (atv (L , T))

rule: 〈alloc (loc (Block , —) , tv (Len , —))
·

···〉k 〈··· ·

Block 7→ memblock (Len , ·)
···〉mem

rule: 〈allocWithDefault (loc (Block , —) , tv (Len , —) , N)
·

···〉k 〈··· ·

Block 7→ memblock (Len , 0 to Len 7→ piece (N , numBitsPerByte))
···〉mem

store-closure rule: 〈store Closure (K1 , K2 , K3) atLoc loc (Block , Offset)
·

···〉k 〈··· Block 7→ memblock (Len , M
M [Closure (K1 , K2 , K3) / Offset]

) ···〉mem

append-existing rule: 〈append (loc (Block , Offset) , Len , V)
store V atLoc loc (Block , Offset)

···〉k 〈··· Block 7→ memblock (OldLen , M)
memblock (Len +Nat OldLen , M)

···〉mem

store-scalar rule: 〈 store tv (V , T) atLoc Loc
putInMem (Loc , tv (V , T))

···〉k

store-composite rule: 〈 store atv (V , T) atLoc Loc
putBytesInMem (Loc , V , T , sizeofType (T))

···〉k

storeNew rule: 〈 storeNew V atLoc Loc
alloc (Loc , sizeof (V)) y store V atLoc Loc

···〉k

store-N-New rule: 〈store Len New tv (N , —) atLoc Loc
allocWithDefault (Loc , Len , N)

···〉k

read-byte rule:

 〈readFromMem-aux (loc (Block , Offset
sNat Offset

) , T , tv (sNat Left
Left

, T ′) , L ,, ·List{K}
V

) ···〉k

〈··· Block 7→ memblock (— , — Offset 7→ V) ···〉mem 〈Locs〉locsWrittenTo 〈Mem〉buffer

 when¬Bool loc (Block , Offset) in Locs ∧Bool

¬Bool loc (Block , Offset) in locations (Mem)

read-byte-buffer rule: 〈 readFromMem-aux (Loc , T , tv (sNat Left , T ′) , L)
readFromMem-aux (sNat Loc , T , tv (Left , T ′) , L ,, V)

···〉k 〈Locs〉locsWrittenTo 〈··· bwrite (Loc , V) Mem〉buffer when

¬Bool Loc in Locs ∧Bool ¬Bool Loc in locations (Mem)

rule: 〈readFromMem-aux (loc (Block , Offset
sNat Offset

) , T , tv (sNat Left
Left

, T ′) , L
L ,, piece (unknown (Fresh) , numBitsPerByte)

) ···〉k 〈··· Block 7→ memblock (BlockLen , M
M [piece (unknown (Fresh) , numBitsPerByte) / Offset]

) ···〉mem

A Formal Semantics of C with Applications 33 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

〈Locs〉locsWrittenTo 〈 Fresh
sNat Fresh

〉freshNat 〈Mem〉buffer when¬Bool $hasMapping(M , Offset) ∧Bool ¬Bool loc (Block , Offset) in Locs ∧Bool ¬Bool loc (Block , Offset) in locations (Mem) ∧Bool

Offset <Nat BlockLen

rule: 〈dontCountWrite (Loc)
·

···〉k 〈··· Loc
·

···〉locsWrittenTo

alloc-string rule: 〈 allocString (Loc , S)
putByteInMem (Loc , charToAscii (firstChar (S))) y dontCountWrite (Loc) y allocString (sNat Loc , butFirstChar (S))

···〉k

when lengthString (S) >Int 0

alloc-empty-string rule: 〈 allocString (Loc , “”)
putByteInMem (Loc , 0) y dontCountWrite (Loc)

···〉k

rule: 〈 putBytesInMem (Loc , piece (N , BitLen) ,, piece (N′ , 1) ,, L , T , tv (sNat Len , J))
putBytesInMem (Loc , piece (N |Nat N′ �Nat BitLen , sNat BitLen) ,, L , T , tv (sNat Len , J))

···〉k when BitLen <Nat 8

rule: 〈putBytesInMem (loc (Block , Offset) , V ,, L , T , tv (sNat Len , J))
putBytesInMem (loc (Block , sNat Offset) , L , T , tv (Len , J))

···〉k 〈··· ·

bwrite (loc (Block , Offset) , V)
〉buffer 〈Locs ·

loc (Block , Offset)
〉locsWrittenTo

when ¬Bool loc (Block , Offset) in Locs

rule: 〈false〉blocked 〈bwrite (loc (Block , Offset) , V)
·

···〉buffer 〈··· Block 7→ memblock (— , M
M [V / Offset]

) ···〉mem

rule: 〈putBytesInMem (Loc , ·List{K} , T , tv (0 , —))
·

···〉k

rule: 〈putInMem-aux (— , — , — , tv (0 , —))
·

···〉k

rule: 〈putInMem-aux (Loc , tv (N , pointerType (functionType (T , L))) , pointerType (functionType (T , L′)) , tv (Len , J))
putInMem-aux (Loc , tv (N , pointerType (functionType (T , L′))) , pointerType (functionType (T , L′)) , tv (Len , J))

···〉k when

L ,Bool L′

rule: 〈 putInMem-aux (loc (Block , Offset) , tv (N , T) , T , tv (sNat Len , J))
putByteInMem (loc (Block , Offset) , 256 +Int N %Int 256 %Int 256) y putInMem-aux (loc (Block , sNat Offset) , tv (N �Int 8 , T) , T , tv (Len , J))

···〉k

when ¬Bool isLocation (N)

rule: 〈putInMem-aux (Target , tv (F , T) , T , —)
·

···〉k 〈··· ·

bwrite (Target , F)
〉buffer 〈Locs ·

Target
〉locsWrittenTo when ¬Bool Target in Locs ∧Bool

isFloatType (T)

rule: 〈putInMem-aux (— , tv (loc (0 , 0) , T)
tv (0 , T)

, — , —) ···〉k

rule: 〈putInMem-aux (Target , tv (loc (Block , Offset) , T) , T , —)
·

···〉k 〈Locs ·

Target
〉locsWrittenTo 〈··· ·

bwrite (Target , loc (Block , Offset))
〉buffer

when ¬Bool Target in Locs ∧Bool Block ,Bool 0 ∨Bool Offset ,Bool 0

rule: 〈 putInMem-aux (bitloc (Block , Base , Offset) , tv (N , T) , T , tv (sNat Len , J))
putBitInMem (bitloc (Block , Base , Offset) , 2 +Int N %Int 2 %Int 2) y putInMem-aux (bitloc (Block , Base , sNat Offset) , tv (N �Int 1 , T) , T , tv (Len , J))

···〉k

when Offset <Nat 8

A Formal Semantics of C with Applications 34 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

rule: 〈 putInMem-aux (bitloc (Block , Base , 8) , tv (N , T) , T , tv (sNat Len , J))
putInMem-aux (bitloc (Block , sNat Base , 0) , tv (N , T) , T , tv (sNat Len , J))

···〉k

rule: 〈putByteInMem (loc (Block , Offset) , N)
·

···〉k 〈Locs ·

loc (Block , Offset)
〉locsWrittenTo 〈··· ·

bwrite (loc (Block , Offset) , piece (N , 8))
〉buffer

when ¬Bool loc (Block , Offset) in Locs

rule: 〈putBitInMem (bitloc (Block , Base , —) , —) ···〉k 〈··· Block 7→ memblock (— , M
M [piece (0 , numBitsPerByte) / Base]

) ···〉mem when

¬Bool $hasMapping(M , Base)

rule: 〈putBitInMem (bitloc (Block , Base , Offset) , N)
·

···〉k 〈··· Block 7→ memblock (— , — Base 7→ piece (Old , 8)
piece (Old &Nat 255 xorNat 1 �Nat Offset |Nat N �Nat Offset , 8)

) ···〉mem

when known (Old)

macro: V y skipme = V
macro: inc (loc (N , M)) = loc (inc (N) , M)
macro: sNat loc (N , M) = loc (N , sNat M)
macro: inc (N) = sNat N
macro: isLocation (loc (— , —)) = true
macro: isLocation (bitloc (— , — , —)) = true
macro: isLocation (K) = false
macro: known (unknown (—)) = false
macro: known (—) = true

end module

A Formal Semantics of C with Applications 35 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

Module COMMON-SEMANTICS-PROMOTIONS
imports COMMON-INCLUDE
K ::= arithConversion(KLabel , K , K) [strict]
| arithConversion-int(KLabel , K , K) [strict]

Bool ::= isArithBinOp(KLabel)
| isArithBinConversionOp(KLabel)

Set ::= arithBinOps [strat(0)memo]
| arithBinConversionOps [strat(0)memo]

Type ::= maxType(Type , Type)

K rules:
rule: 〈L (tv (V , T)

promote (tv (V , T))
,,—) ···〉k when isIntegerType (T) ∧Bool isArithBinOp (L) ∧Bool rank (T) <Int rank (int)

rule: 〈L (— ,, tv (V , T)
promote (tv (V , T))

) ···〉k when isIntegerType (T) ∧Bool isArithBinOp (L) ∧Bool rank (T) <Int rank (int)

rule: 〈 L (tv (V , T) ,, tv (V ′ , T ′))
arithConversion-int (L , tv (V , T) , tv (V ′ , T ′))

···〉k when isIntegerType (T) ∧Bool isIntegerType (T ′) ∧Bool isArithBinConversionOp (L) ∧Bool rank (T) ≥Int rank (int) ∧Bool rank (T ′) ≥Int rank (int) ∧Bool

T ,Bool T ′

rule: promote (tv (V , T))⇀ tv (V , int) when isIntegerType (T) ∧Bool min (int) ≤Int min (T) ∧Bool rank (T) ≤Int rank (int) ∧Bool max (int) ≥Int max (T)

rule: promote (tv (V , T))⇀ cast (unsigned-int , tv (V , T)) when¬Bool min (int) ≤Int min (T) ∧Bool max (int) ≥Int max (T) ∧Bool isIntegerType (T) ∧Bool
rank (T) ≤Int rank (int)

rule: promote (tv (F , float))⇀ tv (F , double)

rule: 〈arithConversion-int (L , tv (V , T) , tv (V ′ , T))
L (tv (V , T) ,, tv (V ′ , T))

···〉k

rule: 〈 arithConversion-int (L , tv (V , T) , tv (V ′ , T ′))
L (cast (maxType (T , T ′) , tv (V , T)) ,, cast (maxType (T , T ′) , tv (V ′ , T ′)))

···〉k when isUnsignedIntegerType (T) ∧Bool isUnsignedIntegerType (T ′) ∨Bool isSignedIntegerType (T) ∧Bool isSignedIntegerType (T ′) ∧Bool

T ,Bool T ′

macro: arithBinOps = arithBinConversionOps Set(l (_«_) ,, l (_»_))
macro: arithBinConversionOps = Set(l (_*_) ,, l (_/_) ,, l (_%_) ,, l (_+_) ,, l (_-_) ,, l (_<_) ,, l (_>_) ,, l (_<=_) ,, l (_>=_) ,, l (_==_) ,, l (_!=_) ,, l (_&_) ,, l (_|_))
macro: isArithBinOp (KL) = if arithBinOps contains l (KL) then true else false fi
macro: isArithBinConversionOp (KL) = if arithBinConversionOps contains l (KL) then true else false fi
equation: maxType (T , T ′) = T when rank (T) ≥Int rank (T ′)
equation: maxType (T , T ′) = T ′ when rank (T ′) ≥Int rank (T)

end module

A Formal Semantics of C with Applications 36 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

Module COMMON-SEMANTICS-CAST
imports COMMON-INCLUDE

K rules:
rule: Cast (T , E)⇀ cast (T , E)

rule: 〈cast (T , tv (B , T))
tv (B , T)

···〉k

rule: 〈cast (T , tv (I , T ′))
tv (I , T)

···〉k when isIntegerType (T) ∧Bool isIntegerType (T ′) ∧Bool min (T) ≤Int I ∧Bool max (T) ≥Int I

rule: 〈 cast (T , tv (I , T ′))
cast (T , tv (I +Int 1 +Int max (T) , T ′))

···〉k when isIntegerType (T ′) ∧Bool I <Int min (T) ∧Bool unsignedIntegerTypes contains T

rule: 〈 cast (T , tv (I , T ′))
tv (I %Int 1 +Int max (T) , T)

···〉k when isIntegerType (T ′) ∧Bool I >Int max (T) ∧Bool unsignedIntegerTypes contains T

rule: 〈 cast (T , tv (I , T ′))
cast (T , tv (I +Int 2 ˆNat | numBits (T) |Int , T ′))

···〉k when¬Bool unsignedIntegerTypes contains T ∧Bool isIntegerType (T) ∧Bool isIntegerType (T ′) ∧Bool

I <Int min (T)

rule: 〈 cast (T , tv (I , T ′))
cast (T , tv (I −Int 2 ˆNat | numBits (T) |Int , T ′))

···〉k when¬Bool unsignedIntegerTypes contains T ∧Bool isIntegerType (T) ∧Bool isIntegerType (T ′) ∧Bool

I >Int max (T)

rule: 〈 cast (T , tv (V , double))
cast (T , tv (truncRat (Float2Rat (V)) , long-long-int))

···〉k when isIntegerType (T)

rule: 〈 cast (T , tv (V , float))
cast (T , tv (truncRat (Float2Rat (V)) , long-long-int))

···〉k when isIntegerType (T)

rule: 〈 cast (T , tv (V , long-double))
cast (T , tv (truncRat (Float2Rat (V)) , long-long-int))

···〉k when isIntegerType (T)

rule: 〈 cast (T ′ , tv (I , T))
tv (Rat2Float (I) , T ′)

···〉k when isIntegerType (T) ∧Bool T ′ =Bool float ∨Bool T ′ =Bool double ∨Bool T ′ =Bool long-double

rule: 〈cast (T ′ , tv (F , T))
tv (F , T ′)

···〉k when T =Bool float ∨Bool T =Bool double ∨Bool T =Bool long-double ∧Bool T ′ =Bool float ∨Bool T ′ =Bool double ∨Bool T ′ =Bool long-double

rule: 〈cast (T , tv (loc (N , M) , T ′))
tv (loc (N , M) , T)

···〉k when isIntegerType (T) ∧Bool isIntegerType (T ′)

rule: 〈cast (pointerType (T) , tv (I , T ′))
tv (I , pointerType (T))

···〉k when isIntegerType (T ′) ∧Bool I ,Bool 0

rule: 〈cast (T , tv (loc (N , M) , pointerType (T ′)))
tv (loc (N , M) , T)

···〉k when ¬Bool N =Bool 0 ∧Bool M =Bool 0 ∧Bool isIntegerType (T)

rule: 〈cast (T , tv (N , pointerType (T ′)))
cast (T , tv (N , unsigned-long-int))

···〉k when isIntegerType (T) ∧Bool N >Nat 0

A Formal Semantics of C with Applications 37 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

rule: 〈cast (pointerType (T) , tv (0 , T ′))
tv (loc (0 , 0) , pointerType (T))

···〉k when isIntegerType (T ′)

rule: 〈cast (T , tv (loc (0 , 0) , pointerType (T ′)))
tv (0 , T)

···〉k when isIntegerType (T)

rule: 〈cast (pointerType (T) , tv (N , pointerType (—)))
tv (N , pointerType (T))

···〉k

end module

A Formal Semantics of C with Applications 38 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

Module COMMON-C-CONVERSIONS
imports COMMON-SEMANTICS-CAST
imports COMMON-SEMANTICS-PROMOTIONS
K ::= concretize-aux(Value , Nat)

K rules:
rule: interpret (T , I)⇀ tv (I , T) when isIntegerType (T) ∧Bool min (T) ≤Int I ∧Bool max (T) ≥Int I

rule: interpret (T , I)⇀ interpret (T , I −Int 2 ˆNat | numBits (T) |Int) when isIntegerType (T) ∧Bool I >Int max (T) ∧Bool I −Int 2 ˆNat | numBits (T) |Int ≥Int min (T)

rule: arithInterpret (T , I)⇀ tv (I , T) when isIntegerType (T) ∧Bool min (T) ≤Int I ∧Bool max (T) ≥Int I

rule: tv (I , bitfieldType (T , N))⇀ tv (I , T)

rule: leftShiftInterpret (T , I , tv (E1 , T))⇀ tv (I %Int 1 +Int max (T) , T) when unsignedIntegerTypes contains T

rule: leftShiftInterpret (T , I , tv (E1 , T)) ⇀ interpret (T , I) when ¬Bool unsignedIntegerTypes contains T ∧Bool isIntegerType (T) ∧Bool
I ≤Int 2 ˆNat | numBits (T) |Int

rule: rightShiftInterpret (T , I)⇀ tv (I , T) when integerTypes contains T

rule: arithInterpret (T , F)⇀ tv (F , T) when T =Bool float ∨Bool T =Bool double ∨Bool T =Bool long-double

rule: arithInterpret (T , I)⇀ tv (I %Int 1 +Int max (T) , T) when I >Int max (T) ∧Bool unsignedIntegerTypes contains T

rule: arithInterpret (T , I) ⇀ arithInterpret (T , I +Int 1 +Int max (T)) when I <Int min (T) ∧Bool I +Int 1 +Int max (T) ≤Int max (T) ∧Bool
unsignedIntegerTypes contains T

equation: concretize (atv (L , T)) = concretize-aux (atv (L , T) , 0) when isIntegerType (T) ∧Bool getKLabel(T) ,Bool pointerType
macro: concretize (atv (piece (N , Len) ,, L , pointerType (T))) = concretize-aux (atv (piece (N , Len) ,, L , pointerType (T)) , 0)
macro: concretize (atv (F ,, L , float)) = tv (F , float)
macro: concretize (atv (F ,, L , double)) = tv (F , double)
macro: concretize (atv (F ,, L , long-double)) = tv (F , long-double)
equation: concretize (atv (loc (N , M) ,, L , T)) = tv (loc (N , M) , T) when ¬Bool N =Bool 0 ∧Bool M =Bool 0
equation: concretize (atv (loc (0 , 0) ,, L , T)) = tv (0 , T) when isIntegerType (T)
macro: concretize (atv (loc (0 , 0) ,, L , pointerType (T))) = tv (loc (0 , 0) , T)
macro: concretize (atv (piece (0 , 8) ,, L , pointerType (T))) = tv (loc (0 , 0) , pointerType (T))
macro: concretize (atv (L , structType (X))) = atv (L , structType (X))
macro: concretize (atv (L , unionType (X))) = atv (L , unionType (X))
macro: concretize-aux (atv (L ,, piece (N′ , Len) , T) , N) = concretize-aux (atv (L , T) , N′ |Nat N �Nat Len)
equation: concretize-aux (atv (·List{K} , T) , N) = interpret (T , N) when getKLabel(T) ,Bool pointerType
macro: concretize-aux (atv (·List{K} , pointerType (T)) , 0) = tv (loc (0 , 0) , pointerType (T))
equation: concretize-aux (atv (·List{K} , pointerType (T)) , N) = tv (N , pointerType (T)) when N >Nat 0
equation: concretize-aux (atv (loc (N , M) , T) , unknown (—) |Nat unknown (—) |Nat unknown (—) �Nat 8 �Nat 8) = tv (loc (N , M) , T)

when ¬Bool N =Bool 0 ∧Bool M =Bool 0
equation: concretize-aux (atv (loc (0 , 0) , T) , unknown (—) |Nat unknown (—) |Nat unknown (—) �Nat 8 �Nat 8) = tv (0 , T) when

getKLabel(T) ,Bool pointerType
equation: concretize-aux (atv (loc (N , M) , T) , 0) = tv (loc (N , M) , T) when ¬Bool N =Bool 0 ∧Bool M =Bool 0
equation: concretize-aux (atv (loc (0 , 0) , T) , 0) = tv (0 , T) when getKLabel(T) ,Bool pointerType
macro: integerTypes = signedIntegerTypes unsignedIntegerTypes
macro: unsignedIntegerTypes = Set(unsigned-char ,, unsigned-short-int ,, unsigned-int ,, unsigned-long-int ,, unsigned-long-long-int)
macro: signedIntegerTypes = Set(char ,, signed-char ,, short-int ,, int ,, long-int ,, long-long-int)

end module

A Formal Semantics of C with Applications 39 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

Module COMMON-SEMANTICS-TYPE-DECLARATIONS
imports COMMON-INCLUDE
Set ::= declarators [strat(0)memo]

K rules:
type-variadic rule: 〈 ...

typedDeclaration (no-type , ...)
···〉k

semantic-declare rule: 〈 Declaration (T , X)
typedDeclaration (T , X)

···〉k

typedef-declaration rule: 〈 Typedef (T , X)
definedType (T , X)

···〉k

give-global-type rule: 〈giveGlobalType (T , X)
·

···〉k 〈 M
M [T / X]

〉types 〈 M′

M′ [T / X]
〉typedefs

rule: 〈giveLocalType (T , X)
·

···〉k 〈 M
M [T / X]

〉types

global-declaration rule: 〈Global (definedType (T , X))
giveGlobalType (T , X)

···〉k

rule: 〈X + I
X
···〉type

rule: 〈X - I
X
···〉type

rule: T [N]⇀ arrayType (T , N)

rule: Pointer (T)⇀ pointerType (T)

rule: Pointer (T , —)⇀ pointerType (T)

rule: Direct-Function-Declarator (PTL)⇀ Direct-Function-Declarator (anonymousId , PTL)

rule: 〈Global (skipval)
·

···〉k

rule: 〈 L (T ,, Pointer (D))
L (pointerType (T) ,, D)

···〉k when declarators contains l (L)

rule: 〈L (T ,, Direct-Function-Declarator (D , PTL))
L (functionType (T , PTL) ,, D)

···〉k when declarators contains l (L)

rule: 〈L (X
T
,, D) ···〉k 〈··· typedefName (X) 7→ T ···〉typedefs when declarators contains l (L)

rule: 〈 L (T ,, K [tv (N , —)])
L (arrayType (T , N) ,, K)

···〉k when declarators contains l (L)

A Formal Semantics of C with Applications 40 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

rule: L (T ,, BitField (D , N))⇀ L (bitfieldType (T , N) ,, D) when declarators contains l (L)

rule: L (T ,, BitField (N))⇀ L (bitfieldType (T , N) ,, unnamedBitField) when declarators contains l (L)

macro: declarators = Set(l (Declaration) ,, l (Field) ,, l (Parameter-Declaration) ,, l (Typedef) ,, l (Pointer))
end module

A Formal Semantics of C with Applications 41 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

Module COMMON-SEMANTICS-TYPE-STRICTNESS
imports COMMON-INCLUDE

K rules:
context: — (— ,, Direct-Function-Declarator (D , �))
rule: 〈Parameter-Type-List (V)

typedParameterList (V)
···〉k

rule: 〈Parameter-Declaration (T , X)
typedDeclaration (T , X)

···〉k

rule: 〈 Parameter-Declaration (T)
typedDeclaration (T , anonymousId)

···〉k

context: Field (— , — [�])
context: Declaration (— , — [�])
context: Parameter-Declaration (— , — [�])
context: Typedef (— , — [�])
type-arrow-heat rule: 〈 Kp -> X

Kp y HOLE -> X
···〉type

type-arrow-cool rule: 〈T y HOLE -> X
T -> X

···〉type

type-dot-heat rule: 〈 Kp . X
Kp y HOLE . X

···〉type

type-dot-cool rule: 〈T y HOLE . X
T . X

···〉type

rule: 〈 Kp [E]
Kp y * HOLE

···〉type

rule: 〈T y * HOLE
* T

···〉type

type-heat-deref rule: 〈 * Kp
Kp y * HOLE

···〉type

end module

A Formal Semantics of C with Applications 42 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

Module COMMON-C-TYPING
imports COMMON-SEMANTICS-TYPE-STRICTNESS
imports COMMON-SEMANTICS-TYPE-DECLARATIONS
K ::= normalizeType(K , K)
| typedef(K , K)

Bool ::= isAType K

K rules:
rule: qualifiedType (T , —)⇀ T

rule: unsigned-short⇀ unsigned-short-int

rule: unsigned-long⇀ unsigned-long-int

rule: unsigned-long-long⇀ unsigned-long-long-int

rule: short⇀ short-int

rule: long⇀ long-int

rule: long-long⇀ long-long-int

rule: 〈 typeof (E)
evalToType y typeof (HOLE)

···〉k ·

〈E〉type

rule: 〈evalToType y typeof (HOLE)
T

···〉k 〈T〉type

·

when isAType T

rule: 〈 F
double

〉type

rule: 〈atv (— , T)
T

〉type

rule: 〈 S
arrayType (char , lengthString (S))

〉type

rule: 〈E
T
···〉type 〈··· E 7→ T ···〉types

rule: 〈X
T
···〉type 〈··· typedefName (X) 7→ T ···〉types

rule: 〈tv (— , T)
T

···〉type

rule: 〈cast (T , —)
T

···〉type

type-struct-arrow rule: 〈pointerType (structType (S)) -> X
T

···〉type 〈··· struct (S) 7→— ,, typedField (T , X) ,,— ···〉structs

A Formal Semantics of C with Applications 43 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

type-union-arrow rule: 〈pointerType (unionType (S)) -> X
T

···〉type 〈··· union (S) 7→— ,, typedField (T , X) ,,— ···〉structs

type-struct-dot rule: 〈structType (S) . X
T

···〉type 〈··· struct (S) 7→— ,, typedField (T , X) ,,— ···〉structs

type-union-dot rule: 〈unionType (S) . X
T

···〉type 〈··· union (S) 7→— ,, typedField (T , X) ,,— ···〉structs

rule: 〈Closure (— , T , —)
T

···〉type

rule: 〈 Pointer (Kp)
Kp y Pointer (HOLE)

···〉type

rule: 〈T y Pointer (HOLE)
Pointer (T)

···〉type

type-deref-value rule: 〈* tv (— , pointerType (T))
T

···〉type

type-deref-type rule: 〈* pointerType (T)
T

···〉type

type-deref-array rule: 〈* arrayType (T , —)
T

···〉type

rule: extern⇀ ·

rule: static⇀ ·

equation: isAType T = true when setOfTypes contains l (getKLabel(T))
macro: isAType T = true
macro: int y register = registerInt
macro: register y int = registerInt
equation: register y K = K when K ,Bool int
equation: K y register = K when K ,Bool int
macro: pointerType (registerInt) = pointerType (int)

end module

A Formal Semantics of C with Applications 44 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

Module COMMON-SEMANTICS-EXPRESSIONS-INCLUDE
imports COMMON-INCLUDE
K ::= assign(K , K)
end module

A Formal Semantics of C with Applications 45 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

Module COMMON-SEMANTICS-SIZEOF
imports COMMON-INCLUDE

K rules:
rule: 〈 sizeof (E)

sizeofType (typeof (E))
···〉k

rule: 〈 sizeofType (arrayType (T , N))
sizeofType (T) * tv (N , cfg:sizeut)

···〉k

rule: sizeofType (bitfieldType (T , N))⇀ tv (N /Rat 8 , cfg:sizeut)

rule: sizeofType (functionType (— , —))⇀ tv (1 , cfg:sizeut)

sizeof-struct rule: 〈sizeofType (structType (X))
calcStructSize (L)

···〉k 〈··· struct (X) 7→ L ···〉structs

sizeof-union rule: 〈sizeofType (unionType (X))
calcUnionSize (L)

···〉k 〈··· union (X) 7→ L ···〉structs

macro: sizeofType (qualifiedType (T , —)) = sizeofType (T)
end module

A Formal Semantics of C with Applications 46 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

Module COMMON-SEMANTICS-IDENTIFIERS
imports COMMON-SEMANTICS-EXPRESSIONS-INCLUDE

K rules:
lookup rule: 〈 X

readFromMem (Loc , T)
···〉k 〈··· X 7→ Loc ···〉env 〈··· X 7→ T ···〉types when¬Bool isArrayType (T) ∧Bool ¬Bool isFunctionType (T)

lookup-register rule: 〈 X
tv (V , int)

···〉k 〈··· X 7→ V ···〉registers 〈··· X 7→ registerInt ···〉types

lookup-array rule: 〈 X
tv (Loc , pointerType (T))

···〉k 〈··· X 7→ Loc ···〉env 〈··· X 7→ arrayType (T , —) ···〉types

lookup-closure rule: 〈 X
tv (Loc , pointerType (functionType (T , L)))

···〉k 〈··· X 7→ Loc ···〉env 〈··· X 7→ functionType (T , L) ···〉types

end module

A Formal Semantics of C with Applications 47 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

Module COMMON-SEMANTICS-FUNCTION-CALLS
imports COMMON-SEMANTICS-EXPRESSIONS-INCLUDE

K rules:
context: application (— , — ,, � ,,—)
rule: Apply (E)⇀ Apply (E , ·)

rule: 〈 Apply (E , L)
application (E , L)

···〉k

function-application-pre rule: 〈application (tv (loc (Block , Offset) , pointerType (functionType (— , —))) , L)
application (V , L)

···〉k 〈··· Block 7→ memblock (— , — Offset 7→ V) ···〉mem

function-application rule:


〈application (Closure (X , functionType (R , typedParameterList (P)) , B) , L) y K

sequencePoint y bind (L , P) y B
〉k 〈Fun

X
〉currentFunction 〈E

G
〉env 〈G〉genv 〈L

·

〉locals 〈 T
GT
〉types 〈GT〉typedefs 〈LS

·

〉loopStack

〈 ·

List (〈〈Fun〉currentFunction 〈K〉continuation 〈L〉locals 〈E〉env 〈T〉types 〈LS〉loopStack〉stackFrame)
···〉callStack


end module

A Formal Semantics of C with Applications 48 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

Module COMMON-SEMANTICS-ARRAY-SUBSCRIPTING
imports COMMON-SEMANTICS-EXPRESSIONS-INCLUDE

K rules:
rule: 〈 E1 [E2]

* E1 + E2

···〉k

end module

A Formal Semantics of C with Applications 49 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

Module COMMON-SEMANTICS-LITERALS
imports COMMON-SEMANTICS-EXPRESSIONS-INCLUDE
Bool ::= inRange(Int , Type)

K rules:
const-string-notfound rule: 〈 ·

alloc (Loc , 1 +Nat lengthString (S)) y allocString (Loc , S)
y S ···〉k 〈 Loc

inc (Loc)
〉nextLoc 〈M ·

S 7→ tv (Loc , arrayType (char , 1 +Nat lengthString (S)))
〉statics

when ¬Bool $hasMapping(M , S)

const-string-found rule: 〈 S
tv (N , pointerType (T))

···〉k 〈··· S 7→ tv (N , arrayType (T , —)) ···〉statics

rule: 〈 I
if inRange (I , int) then tv (I , int) else if inRange (I , long-int) then tv (I , long-int) else if inRange (I , long-long-int) then tv (I , long-long-int) else tv (I , no-type) fi fi fi

···〉k

rule: U (I)⇀ if inRange (I , unsigned-int) then tv (I , unsigned-int) else if inRange (I , unsigned-long-int) then tv (I , unsigned-long-int) else if inRange (I , unsigned-long-long-int) then tv (I , unsigned-long-long-int) else tv (I , no-type) fi fi fi

rule: L (I)⇀ if inRange (I , long-int) then tv (I , long-int) else if inRange (I , long-long-int) then tv (I , long-long-int) else tv (I , no-type) fi fi

rule: UL (I)⇀ if inRange (I , unsigned-long-int) then tv (I , unsigned-long-int) else if inRange (I , unsigned-long-long-int) then tv (I , unsigned-long-long-int) else tv (I , no-type) fi fi

rule: LL (I)⇀ if inRange (I , long-long-int) then tv (I , long-long-int) else tv (I , no-type) fi

rule: ULL (I)⇀ if inRange (I , unsigned-long-long-int) then tv (I , unsigned-long-long-int) else tv (I , no-type) fi

rule: 〈 F
tv (F , double)

···〉k

rule: L (F)⇀ tv (F , long-double)

rule: F (F)⇀ tv (F , float)

macro: inRange (I , T) = I ≤Int max (T) ∧Bool I ≥Int min (T)
end module

A Formal Semantics of C with Applications 50 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

Module COMMON-SEMANTICS-ASSIGNMENT
imports COMMON-SEMANTICS-EXPRESSIONS-INCLUDE

K rules:
context: assign (* � , —)
context: assign (— , �)
for-assignment rule: 〈 E1 = E2

assign (* & E1 , E2)
···〉k

assign-times rule: E1 *= E2 ⇀ E1 = E1 * E2

assign-divide rule: E1 /= E2 ⇀ E1 = E1 / E2

assign-mod rule: E1 %= E2 ⇀ E1 = E1 % E2

assign-plus rule: E1 += E2 ⇀ E1 = E1 + E2

assign-subtract rule: E1 -= E2 ⇀ E1 = E1 - E2

assign-lshift rule: E1 «= E2 ⇀ E1 = E1 « E2

assign-rshift rule: E1 »= E2 ⇀ E1 = E1 » E2

assign-bit-and rule: E1 &= E2 ⇀ E1 = E1 & E2

assign-bit-xor rule: E1 ^= E2 ⇀ E1 = E1 ^ E2

assign-bit-or rule: E1 |= E2 ⇀ E1 = E1 | E2

rule: 〈 assign (* tv (Loc , pointerType (T)) , tv (V , T ′))
assign (* tv (Loc , pointerType (T)) , cast (T , tv (V , T ′)))

···〉k when isIntegerType (T) ∧Bool isIntegerType (T ′) ∧Bool T ,Bool T ′

rule: 〈assign (* registerLocation (X) , tv (V , int))
tv (V , int)

···〉k 〈··· X 7→—
V
···〉registers

assign rule: 〈assign (* tv (Loc , pointerType (T)) , tv (V , T))
putInMem (Loc , tv (V , T)) y tv (V , T)

···〉k

assign-bitfield rule: 〈 assign (* tv (bitloc (Block , N , O) , pointerType (bitfieldType (T , Len))) , tv (V , T))
putInMem-aux (bitloc (Block , N , O) , tv (V , T) , T , tv (Len , cfg:sizeut)) y tv (V , T)

···〉k

assign-fp rule: 〈assign (* tv (Loc , pointerType (pointerType (functionType (T , L)))) , tv (V , pointerType (functionType (T , L′))))
putInMem (Loc , tv (V , pointerType (functionType (T , L)))) y tv (V , pointerType (functionType (T , L)))

···〉k

assign-struct rule: 〈 assign (* tv (Loc , pointerType (T)) , atv (L , T))
putBytesInMem (Loc , L , T , sizeofType (T)) y atv (L , T)

···〉k

end module

A Formal Semantics of C with Applications 51 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

Module COMMON-SEMANTICS-BITWISE
imports COMMON-SEMANTICS-EXPRESSIONS-INCLUDE

K rules:
rule: tv (I , T) « tv (N , T ′)⇀ leftShiftInterpret (T , I �Int N , tv (I , T)) when isIntegerType (T) ∧Bool isIntegerType (T ′) ∧Bool N <Int numBits (T)

rule: tv (I , T) » tv (N , T ′)⇀ rightShiftInterpret (T , I �Int N) when isIntegerType (T) ∧Bool isIntegerType (T ′) ∧Bool N <Int numBits (T)

rule: tv (I1 , T) | tv (I2 , T)⇀ arithInterpret (T , I1 |Int I2) when isIntegerType (T)

rule: tv (I1 , T) & tv (I2 , T)⇀ arithInterpret (T , I1 &Int I2) when isIntegerType (T)

rule: ∼ tv (I , T)⇀ arithInterpret (T , ∼Int I) when isIntegerType (T)

rule: tv (I1 , T) ^ tv (I2 , T)⇀ arithInterpret (T , I1 xorInt I2) when isIntegerType (T)

end module

A Formal Semantics of C with Applications 52 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

Module COMMON-SEMANTICS-ARITHMETIC
imports COMMON-SEMANTICS-EXPRESSIONS-INCLUDE
K ::= waitingForOffset(Nat , Type)
| computePointerDifference(Int , Int , K) [strict(3)]

K rules:
rule: 〈tv (Offset , T ′) y waitingForOffset (Base , T)

tv (loc (Base , Offset) , T)
···〉k when T ′ =Bool cfg:sizeut

rule: 〈 tv (loc (Block , Offset) , pointerType (T ′)) + tv (I2 , T)
tv (Offset , cfg:sizeut) + sizeofType (T ′) * tv (I2 , cfg:sizeut) y waitingForOffset (Block , pointerType (T ′))

···〉k when isIntegerType (T) ∧Bool

T ′ ,Bool void

rule: 〈 tv (loc (Block , Offset) , pointerType (T ′)) - tv (I2 , T)
tv (Offset , cfg:sizeut) - sizeofType (T ′) * tv (I2 , cfg:sizeut) y waitingForOffset (Block , pointerType (T ′))

···〉k when isIntegerType (T) ∧Bool

T ′ ,Bool void

start-pointer-difference rule: tv (I1 , pointerType (T)) - tv (I2 , pointerType (T))⇀ computePointerDifference (I1 , I2 , sizeofType (T))

pointer-difference rule: computePointerDifference (loc (Block , Offset1) , loc (Block , Offset2) , tv (Size , —))⇀ tv (Offset1 −Int Offset2 ÷Int Size , cfg:ptrdiffut)
when Offset1 −Int Offset2 %Int Size =Bool 0

rule: tv (I1 , T) + tv (I2 , T)⇀ arithInterpret (T , I1 +Rat I2) when isIntegerType (T)

rule: tv (I1 , T) - tv (I2 , T)⇀ arithInterpret (T , I1 −Int I2) when isIntegerType (T)

rule: tv (I1 , T) * tv (I2 , T)⇀ arithInterpret (T , I1 *Int I2) when isIntegerType (T)

rule: tv (I1 , T) / tv (I2 , T)⇀ arithInterpret (T , I1 ÷Int I2) when isIntegerType (T)

rule: tv (I1 , T) % tv (I2 , T)⇀ arithInterpret (T , I1 %Int I2) when isIntegerType (T)

rule: - tv (I1 , T)⇀ arithInterpret (T , −Int I1) when isIntegerType (T)

rule: tv (F1 , T) + tv (F2 , T)⇀ arithInterpret (T , F1 +Float F2)

rule: tv (F1 , T) - tv (F2 , T)⇀ arithInterpret (T , F1 -Float F2)

rule: tv (F1 , T) * tv (F2 , T)⇀ arithInterpret (T , F1 *Float F2)

rule: tv (F1 , T) / tv (F2 , T)⇀ arithInterpret (T , F1 /Float F2)

rule: - tv (F , T)⇀ arithInterpret (T , -Float F)

rule: tv (F1 , T) < tv (F2 , T)⇀ if F1 ensuremath<Float F2 then tv (1 , int) else tv (0 , int) fi

rule: tv (F1 , T) <= tv (F2 , T)⇀ if F1 ≤Float F2 then tv (1 , int) else tv (0 , int) fi

rule: tv (F1 , T) > tv (F2 , T)⇀ if F1 >Float F2 then tv (1 , int) else tv (0 , int) fi

rule: tv (F1 , T) >= tv (F2 , T)⇀ if F1 ≥Float F2 then tv (1 , int) else tv (0 , int) fi

A Formal Semantics of C with Applications 53 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

rule: tv (F1 , T) == tv (F2 , T)⇀ if F1 =Bool F2 then tv (1 , int) else tv (0 , int) fi

rule: tv (F1 , T) != tv (F2 , T)⇀ if F1 ,Bool F2 then tv (1 , int) else tv (0 , int) fi

rule: tv (I1 , T) < tv (I2 , T)⇀ if I1 <Int I2 then tv (1 , int) else tv (0 , int) fi

rule: tv (I1 , T) <= tv (I2 , T)⇀ if I1 ≤Int I2 then tv (1 , int) else tv (0 , int) fi

rule: tv (I1 , T) > tv (I2 , T)⇀ if I1 >Int I2 then tv (1 , int) else tv (0 , int) fi

rule: tv (I1 , T) >= tv (I2 , T)⇀ if I1 ≥Int I2 then tv (1 , int) else tv (0 , int) fi

rule: tv (I1 , T) == tv (I2 , T)⇀ if I1 =Bool I2 then tv (1 , int) else tv (0 , int) fi

rule: tv (I1 , T) != tv (I2 , T)⇀ if I1 ,Bool I2 then tv (1 , int) else tv (0 , int) fi

rule: ! tv (V , —)⇀ tv (0 , int) when ¬Bool V =Bool 0 ∨Bool V =Bool 0.0 ∨Bool V =Bool loc (0 , 0)

rule: ! tv (V , —)⇀ tv (1 , int) when V =Bool 0 ∨Bool V =Bool 0.0 ∨Bool V =Bool loc (0 , 0)

end module

A Formal Semantics of C with Applications 54 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

Module COMMON-SEMANTICS-MEMBERS
imports COMMON-SEMANTICS-EXPRESSIONS-INCLUDE
K ::= dot-aux(K , Id , K) [strict(3)]

K rules:
arrow-struct rule: 〈 tv (Base , pointerType (structType (S))) -> X

* tv (Base , pointerType (structType (S))) . X
···〉k

arrow-union rule: 〈 tv (Base , pointerType (unionType (S))) -> X
* tv (Base , pointerType (unionType (S))) . X

···〉k

rule: 〈 E . F
dot-aux (E , F , typeof (E . F))

···〉k

rule: 〈dot-aux (E , F , arrayType (— , —))
& E . F

···〉k

rule: 〈 dot-aux (E , F , T)
E y dot-aux (HOLE , F , T)

···〉k

rule: 〈 dot-aux (E , F , pointerType (T))
E y dot-aux (HOLE , F , pointerType (T))

···〉k

rule: 〈 dot-aux (E , F , structType (X))
E y dot-aux (HOLE , F , structType (X))

···〉k

rule: 〈 dot-aux (E , F , unionType (X))
E y dot-aux (HOLE , F , unionType (X))

···〉k

rule: 〈 dot-aux (E , F , bitfieldType (T , N))
E y dot-aux (HOLE , F , bitfieldType (T , N))

···〉k

rule: 〈atv (L , T) y dot-aux (HOLE , F , —)
extractField (L , T , F)

···〉k

end module

A Formal Semantics of C with Applications 55 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

Module COMMON-SEMANTICS-DEREFERENCE
imports COMMON-SEMANTICS-EXPRESSIONS-INCLUDE

K rules:
rule: 〈* tv (Loc , pointerType (arrayType (T , N)))

tv (Loc , pointerType (T))
···〉k

lookup-function rule: 〈* tv (loc (Block , Offset) , pointerType (functionType (T , L)))
V

···〉k 〈··· Block 7→ memblock (— , — Offset 7→ V) ···〉mem

deref rule: 〈* tv (Loc , pointerType (T))
readFromMem (Loc , T)

···〉k

deref-pointer rule: 〈* tv (Loc , pointerType (pointerType (T)))
readFromMem (Loc , pointerType (T))

···〉k

deref-struct rule: 〈* tv (Loc , pointerType (structType (X)))
readFromMem (Loc , structType (X))

···〉k

deref-union rule: 〈* tv (Loc , pointerType (unionType (X)))
readFromMem (Loc , unionType (X))

···〉k

end module

A Formal Semantics of C with Applications 56 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

Module COMMON-SEMANTICS-REFERENCE
imports COMMON-SEMANTICS-EXPRESSIONS-INCLUDE
Type ::= fixPointerType(Type)

K rules:
context: & � -> X
rule: & * E⇀ E

rule: & E1 [E2]⇀ E1 + E2

ref-register rule: 〈 & X
registerLocation (X)

···〉k 〈··· X 7→— ···〉registers

ref rule: 〈 & X
tv (Loc , pointerType (T))

···〉k 〈··· X 7→ Loc ···〉env 〈··· X 7→ T ···〉types

address-of-arrow-struct rule: 〈 & tv (Base , pointerType (structType (S))) -> X
cast (fixPointerType (T) , figureOffset (Base , calcStructSize-aux (L1 , 0) , T))

···〉k 〈··· struct (S) 7→ L1 ,, typedField (T , X) ,,— ···〉structs

address-of-arrow-union rule: 〈 & tv (Base , pointerType (unionType (S))) -> X
cast (fixPointerType (T) , tv (Base , pointerType (void)))

···〉k 〈··· union (S) 7→— ,, typedField (T , X) ,,— ···〉structs

address-of-dot rule: 〈 & E . X
& & E -> X

···〉k

macro: fixPointerType (T) = pointerType (T)
macro: fixPointerType (arrayType (T , —)) = pointerType (T)
macro: fixPointerType (structType (X)) = pointerType (structType (X))
macro: fixPointerType (unionType (X)) = pointerType (unionType (X))
macro: fixPointerType (pointerType (T)) = pointerType (pointerType (T))
macro: fixPointerType (bitfieldType (T , N)) = pointerType (bitfieldType (T , N))

end module

A Formal Semantics of C with Applications 57 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

Module COMMON-SEMANTICS-INCREMENT-AND-DECREMENT
imports COMMON-SEMANTICS-EXPRESSIONS-INCLUDE
K ::= postOpRef(K , KLabel)
| postInc(K , K , Type) [strict(2)]
| postDec(K , K , Type) [strict(2)]

K rules:
context: postOpRef (* � , —)
make-postinc-ref rule: 〈 E ++

postOpRef (* & E , _++)
···〉k

make-postdec-ref rule: 〈 E --
postOpRef (* & E , _--)

···〉k

post-increment-start rule: 〈postOpRef (* tv (Loc , pointerType (T)) , _++)
postInc (Loc , readFromMem (Loc , T) , T)

···〉k

post-increment rule: 〈 postInc (Loc , tv (I , T) , T)
assign (* tv (Loc , pointerType (T)) , tv (I , T) + tv (1 , T)) y discard y tv (I , T)

···〉k when isIntegerType (T)

post-increment-promote rule: 〈 postInc (Loc , tv (I , pointerType (T)) , pointerType (T))
assign (* tv (Loc , pointerType (pointerType (T))) , tv (I , pointerType (T)) + tv (1 , int)) y discard y tv (I , pointerType (T))

···〉k

post-decrement-start rule: 〈postOpRef (* tv (Loc , pointerType (T)) , _--)
postDec (Loc , readFromMem (Loc , T) , T)

···〉k

post-decrement rule: 〈 postDec (Loc , tv (I , T) , T)
assign (* tv (Loc , pointerType (T)) , tv (I , T) - tv (1 , T)) y discard y tv (I , T)

···〉k when isIntegerType (T)

post-decrement-promote rule: 〈 postDec (Loc , tv (I , pointerType (T)) , pointerType (T))
assign (* tv (Loc , pointerType (pointerType (T))) , tv (I , pointerType (T)) - tv (1 , int)) y discard y tv (I , pointerType (T))

···〉k

end module

A Formal Semantics of C with Applications 58 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

Module COMMON-C-EXPRESSIONS
imports COMMON-SEMANTICS-SIZEOF
imports COMMON-SEMANTICS-IDENTIFIERS
imports COMMON-SEMANTICS-FUNCTION-CALLS
imports COMMON-SEMANTICS-ARRAY-SUBSCRIPTING
imports COMMON-SEMANTICS-ASSIGNMENT
imports COMMON-SEMANTICS-LITERALS
imports COMMON-SEMANTICS-BITWISE
imports COMMON-SEMANTICS-ARITHMETIC
imports COMMON-SEMANTICS-MEMBERS
imports COMMON-SEMANTICS-DEREFERENCE
imports COMMON-SEMANTICS-REFERENCE
imports COMMON-SEMANTICS-INCREMENT-AND-DECREMENT
end module

A Formal Semantics of C with Applications 59 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

Module COMMON-STATEMENTS-INCLUDE
imports COMMON-INCLUDE
K ::= preparedWhile(K , K)
end module

A Formal Semantics of C with Applications 60 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

Module COMMON-SEMANTICS-IF-THEN
imports COMMON-STATEMENTS-INCLUDE

K rules:
if-then-true rule: 〈 if(tv (V , —)) S

sequencePoint y S
···〉k when ¬Bool V =Bool 0 ∨Bool V =Bool 0.0 ∨Bool V =Bool loc (0 , 0)

if-then-false rule: 〈if(tv (V , —)) S
sequencePoint

···〉k when V =Bool 0 ∨Bool V =Bool 0.0 ∨Bool V =Bool loc (0 , 0)

if-then-else-true rule: 〈if(tv (V , —)) S else S ′

sequencePoint y S
···〉k when ¬Bool V =Bool 0 ∨Bool V =Bool 0.0 ∨Bool V =Bool loc (0 , 0)

if-then-else-false rule: 〈if(tv (V , —)) S else S ′

sequencePoint y S ′
···〉k when V =Bool 0 ∨Bool V =Bool 0.0 ∨Bool V =Bool loc (0 , 0)

end module

A Formal Semantics of C with Applications 61 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

Module COMMON-SEMANTICS-WHILE
imports COMMON-STATEMENTS-INCLUDE

K rules:
while-mark rule: 〈 while(B) S y K

preparedWhile (B , S) y break
〉k 〈 ·

K
···〉loopStack

while rule: 〈 preparedWhile (B , S)
if(B) S y preparedWhile (B , S)

···〉k

end module

A Formal Semantics of C with Applications 62 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

Module COMMON-SEMANTICS-SWITCH
imports COMMON-STATEMENTS-INCLUDE

K rules:
rule: 〈switch(SN)(tv (V , —)) K1 y —

K2

〉k 〈F〉currentFunction 〈—
S
〉loopStack 〈··· kpair (F , case (SN , V)) 7→ kpair (K2 , S) ···〉gotoMap

rule: 〈switch(SN)(tv (V , —)) K1 y —
K2

〉k 〈F〉currentFunction 〈—
S
〉loopStack 〈LM kpair (F , defaultCase (SN)) 7→ kpair (K2 , S)〉gotoMap when

¬Bool $hasMapping(LM , kpair (F , case (SN , V)))

rule: 〈switch(SN)(tv (V , —)) K1

·

···〉k 〈F〉currentFunction 〈LM〉gotoMap when¬Bool $hasMapping(LM , kpair (F , defaultCase (SN))) ∨Bool $hasMapping(LM , kpair (F , case (SN , V)))

case-fall-through rule: 〈case(—) — : K
K

···〉k

default-fall-through rule: 〈default(—): K
K

···〉k

end module

A Formal Semantics of C with Applications 63 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

Module COMMON-SEMANTICS-GOTO
imports COMMON-STATEMENTS-INCLUDE
K ::= calculateGotoMap(Id , K , List , K)

K rules:
context: calculateGotoMap (— , case(—) � : — y — , — , —)
goto rule: 〈goto X y —

K
〉k 〈F〉currentFunction 〈—

S
〉loopStack 〈··· kpair (F , X) 7→ kpair (K , S) ···〉gotoMap

rule: 〈calculateGotoMap (— , · , — , —)
·

···〉k

rule: 〈calculateGotoMap (X , L (Args) y K , S , Tail)
calculateGotoMap (X , K , S , Tail)

···〉k when L =Bool Local ∨Bool L =Bool _; ∨Bool L =Bool break ∨Bool L =Bool goto_ ∨Bool L =Bool return_ ∨Bool

L =Bool return

rule: 〈calculateGotoMap (X , Block (·List{K}) y K , S , Tail)
calculateGotoMap (X , K , S , Tail)

···〉k

rule: 〈calculateGotoMap (X , Block (Arg) y K , S , Tail)
calculateGotoMap (X , Arg y K , S , Tail)

···〉k

rule: 〈calculateGotoMap (X , L (— ,, Arg) y K , S , Tail)
calculateGotoMap (X , Arg y K , S , Tail)

···〉k when L =Bool if(_)_

rule: 〈 calculateGotoMap (X , if(—) Arg1 else Arg2 y K , S , Tail)
calculateGotoMap (X , Arg1 , S , Tail y K) y calculateGotoMap (X , Arg2 , S , Tail y K) y calculateGotoMap (X , K , S , Tail)

···〉k

rule: 〈calculateGotoMap (X , Target : Arg y K , S , Tail)
calculateGotoMap (X , Arg y K , S , Tail)

···〉k 〈··· ·

kpair (X , Target) 7→ kpair (Arg y K y Tail , S)
···〉gotoMap

rule: 〈calculateGotoMap (X , case(SN) tv (Target , T) : Arg y K , S , Tail)
calculateGotoMap (X , Arg y K , S , Tail)

···〉k 〈··· ·

kpair (X , case (SN , Target)) 7→ kpair (Arg y K y Tail , S)
···〉gotoMap

rule: 〈calculateGotoMap (X , default(SN): Arg y K , S , Tail)
calculateGotoMap (X , Arg y K , S , Tail)

···〉k 〈··· ·

kpair (X , defaultCase (SN)) 7→ kpair (Arg y K y Tail , S)
···〉gotoMap

rule: 〈 calculateGotoMap (X , while(B) S y K , S ′ , Tail)
calculateGotoMap (X , S y preparedWhile (B , S) y break , K y Tail S ′ , Tail)

···〉k

rule: 〈calculateGotoMap (X , preparedWhile (B , S) y break y — , K S ′ , Tail)
calculateGotoMap (X , K , S ′ , Tail)

···〉k

rule: 〈 calculateGotoMap (X , switch(—)(B) S y K , S , Tail)
calculateGotoMap (X , S y break y popLoop , K y Tail S , Tail)

···〉k

rule: 〈calculateGotoMap (X , popLoop , K S , Tail)
calculateGotoMap (X , K , S , Tail)

···〉k

macro: calculateGotoMap (X , K) = calculateGotoMap (X , K , · , ·)
end module

A Formal Semantics of C with Applications 64 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

Module COMMON-SEMANTICS-RETURN
imports COMMON-STATEMENTS-INCLUDE

K rules:
return-value-clean-local rule: 〈return V ···〉k 〈··· loc (Block , —)

·

···〉locals 〈·〉buffer 〈··· Block 7→—
·

···〉mem

return-clean-local rule: 〈return ···〉k 〈··· loc (Block , —)
·

···〉locals 〈·〉buffer 〈··· Block 7→—
·

···〉mem

return rule: 〈return y —
skipval y K

〉k 〈—
E
〉env 〈 ·

L
〉locals 〈—

LS
〉loopStack 〈—

T
〉types 〈—

X
〉currentFunction 〈List (〈··· 〈X〉currentFunction 〈K〉continuation 〈L〉locals 〈E〉env 〈LS〉loopStack 〈T〉types〉stackFrame)

·

···〉callStack

return-value rule: 〈 return V y —
sequencePoint y V y K

〉k 〈—
E
〉env 〈 ·

L
〉locals 〈LS ′

LS
〉loopStack 〈—

T
〉types 〈—

X
〉currentFunction 〈List (〈··· 〈X〉currentFunction 〈K〉continuation 〈L〉locals 〈E〉env 〈LS〉loopStack 〈T〉types〉stackFrame)

·

···〉callStack

end module

A Formal Semantics of C with Applications 65 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

Module COMMON-C-STATEMENTS
imports COMMON-STATEMENTS-INCLUDE
imports COMMON-SEMANTICS-IF-THEN
imports COMMON-SEMANTICS-WHILE
imports COMMON-SEMANTICS-SWITCH
imports COMMON-SEMANTICS-GOTO
imports COMMON-SEMANTICS-RETURN

K rules:
rule: EmptyStatement‘;⇀ ·

rule: Block()⇀ ·

rule: S1 S2 ⇀ S1 y S2

skip-label rule: 〈L : S
S
···〉k

dissolve-block rule: 〈Block (B)
B

···〉k

value-statement rule: 〈 V ;
sequencePoint

···〉k

break rule: 〈break y —
K

〉k 〈K
·

···〉loopStack

end module

A Formal Semantics of C with Applications 66 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

Module COMMON-C-STANDARD-LIBRARY
imports COMMON-INCLUDE
Value ::= builtin(Id)
K ::= BagK(Bag)
| printf-aux(Nat , Nat , List{KResult})
| printf-string(Nat , Nat)
| printf-%(Nat , Nat , List{KResult})
| addPrintfString

Int ::= zeroToOne(Int)

K rules:
debug-is-value rule: 〈 debug

builtin (debug)
···〉k

debug rule: 〈application (builtin (debug) , —)
skipval

···〉k

setjmp-is-value rule: 〈 setjmp
builtin (setjmp)

···〉k

setjmp rule:


〈B 〈application (builtin (setjmp) , tv (loc (Block , Offset) , pointerType (structType (—))))

tv (0 , int)
y K〉k〉control 〈CallStack〉callStack

〈··· Block 7→ memblock (— , M
M [BagK (〈B 〈K〉continuation〉control 〈CallStack〉callStack) / Offset]

) ···〉mem


longjmp-is-value rule: 〈 longjmp

builtin (longjmp)
···〉k

longjmp rule: 〈— 〈application (builtin (longjmp) , tv (loc (Block , Offset) , pointerType (structType (—))) ,, tv (I , int)) y —〉k
B 〈tv (zeroToOne (I) , int) y K〉k

〉control 〈 —
CallStack

〉callStack

〈··· Block 7→ memblock (— , — Offset 7→ BagK (〈B 〈K〉continuation〉control 〈CallStack〉callStack)
piece (unknown (Fresh) , 8)

) ···〉mem 〈 Fresh
sNat Fresh

〉freshNat

exit-is-value rule: 〈 exit
builtin (exit)

···〉k

exit rule: 〈application (builtin (exit) , tv (I , int)) y —
tv (I , int)

〉k

sqrt-is-value rule: 〈 sqrt
builtin (sqrt)

···〉k

sqrt rule: 〈application (builtin (sqrt) , tv (F , double))
tv (sqrtFloat (F) , double)

···〉k

log-is-value rule: 〈 log
builtin (log)

···〉k

log rule: 〈application (builtin (log) , tv (F , double))
tv (logFloat (F) , double)

···〉k

A Formal Semantics of C with Applications 67 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

exp-is-value rule: 〈 exp
builtin (exp)

···〉k

exp rule: 〈application (builtin (exp) , tv (F , double))
tv (expFloat (F) , double)

···〉k

atan-is-value rule: 〈 atan
builtin (atan)

···〉k

atan rule: 〈application (builtin (atan) , tv (F , double))
tv (atanFloat (F) , double)

···〉k

asin-is-value rule: 〈 asin
builtin (asin)

···〉k

asin rule: 〈application (builtin (asin) , tv (F , double))
tv (asinFloat (F) , double)

···〉k

atan2-is-value rule: 〈 atan2
builtin (atan2)

···〉k

atan2 rule: 〈application (builtin (atan2) , tv (F , double) ,, tv (F′ , double))
tv (atanFloat (F , F′) , double)

···〉k

tan-is-value rule: 〈 tan
builtin (tan)

···〉k

tan rule: 〈application (builtin (tan) , tv (F , double))
tv (tanFloat (F) , double)

···〉k

floor-is-value rule: 〈 floor
builtin (floor)

···〉k

cos-is-value rule: 〈 cos
builtin (cos)

···〉k

cos rule: 〈application (builtin (cos) , tv (F , double))
tv (cosFloat (F) , double)

···〉k

fmod-is-value rule: 〈 fmod
builtin (fmod)

···〉k

fmod rule: 〈application (builtin (fmod) , tv (F , double) ,, tv (F′ , double))
tv (F %Float F′ , double)

···〉k

sin-is-value rule: 〈 sin
builtin (sin)

···〉k

sin rule: 〈application (builtin (sin) , tv (F , double))
tv (sinFloat (F) , double)

···〉k

A Formal Semantics of C with Applications 68 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

malloc-is-value rule: 〈 malloc
builtin (malloc)

···〉k

malloc rule: 〈 application (builtin (malloc) , tv (N , T))
alloc (Loc , tv (N , T)) y tv (Loc , pointerType (void))

···〉k 〈··· ·

Loc 7→ N
···〉malloced 〈 Loc

inc (Loc)
〉nextLoc

rand-is-value rule: 〈 rand
builtin (rand)

···〉k

rand rule: 〈 application (builtin (rand) , ·List{K})
tv (| randomRandom (Fresh) |Int %Int max (int) , int)

···〉k 〈 Fresh
sNat Fresh

〉freshNat

free-is-value rule: 〈 free
builtin (free)

···〉k

free rule: 〈application (builtin (free) , tv (loc (Block , Offset) , pointerType (T)))
skipval

···〉k 〈··· Block 7→ memblock (N , —)
·

···〉mem 〈··· loc (Block , Offset) 7→ N
·

···〉malloced

calloc-is-value rule: 〈 calloc
builtin (calloc)

···〉k

calloc rule: 〈 application (builtin (calloc) , tv (N , —) ,, tv (Size , —))
store N ∗Nat Size New tv (0 , char) atLoc Loc y tv (Loc , pointerType (void))

···〉k 〈··· ·

Loc 7→ N ∗Nat Size
···〉malloced 〈 Loc

inc (Loc)
〉nextLoc

putchar-is-value rule: 〈 putchar
builtin (putchar)

···〉k

putchar rule: 〈application (builtin (putchar) , tv (N , —))
writeToFD (1 , N) y tv (N , int)

···〉k

lib-printf-is-value rule: 〈 printf
builtin (printf)

···〉k

lib-printf-start rule: 〈application (builtin (printf) , tv (Loc , pointerType (—)) ,, L)
printf-aux (0 , Loc , L)

···〉k

lib-printf-prepare-string rule: 〈 ·

readFromMem (Loc , char)
y printf-string (— , Loc) ···〉k

lib-printf-string rule: 〈 tv (N , —) y printf-string (Len , Loc)
writeToFD (1 , N) y printf-string (sNat Len , sNat Loc)

···〉k when N ,Bool 0

lib-printf-string-done rule: 〈tv (0 , —) y printf-string (Len , —)
tv (Len , int)

···〉k

lib-printf-prepare-normal rule: 〈 ·

readFromMem (Loc , char)
y printf-aux (— , Loc , —) ···〉k

lib-printf-normal rule: 〈 tv (N , —) y printf-aux (Len , Loc , L)
writeToFD (1 , N) y printf-aux (sNat Len , sNat Loc , L)

···〉k when N ≤Nat 255 ∧Bool N ≥Nat 0 ∧Bool N ,Bool 0 ∧Bool

N ,Bool asciiString (“%”)

A Formal Semantics of C with Applications 69 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

lib-printf-done rule: 〈tv (0 , —) y printf-aux (Len , — , —)
tv (Len , int)

···〉k

lib-printf-null rule: 〈 printf-aux (0 , loc (0 , 0) , ·List{K})
writeToFD (1 , “(null)”) y tv (6 , int)

···〉k

lib-printf-%-prepare rule: 〈tv (N , —) y printf-aux (Len , Loc , L)
printf-% (Len , sNat Loc , L)

···〉k when N =Bool asciiString (“%”)

lib-printf-% rule: 〈 ·

readFromMem (Loc , char)
y printf-% (— , Loc , —) ···〉k

lib-printf-%% rule: 〈 tv (N , —) y printf-% (Len , Loc , L)
writeToFD (1 , N) y printf-aux (sNat Len , sNat Loc , L)

···〉k when N =Bool asciiString (“%”)

lib-printf-0 rule: 〈tv (N , —) y printf-% (Len , Loc , L)
printf-% (Len , sNat Loc , L)

···〉k when N =Bool asciiString (“0”)

lib-printf-width rule: 〈tv (N , —) y printf-% (Len , Loc , L)
printf-% (Len , sNat Loc , L)

···〉k when N ≤Int asciiString (“9”) ∧Bool N >Int asciiString (“0”)

lib-printf-%x-1 rule: 〈 tv (N , —) y printf-% (Len , Loc , tv (D , —) ,, L)
writeToFD (1 , “0” +String Rat2String (D , 16)) y printf-aux (Len +Nat 2 , sNat Loc , L)

···〉k when N =Bool asciiString (“p”) ∨Bool N =Bool asciiString (“x”) ∧Bool

lengthString (Rat2String (D , 16)) =Bool 1

lib-printf-%x-2 rule: 〈 tv (N , —) y printf-% (Len , Loc , tv (D , —) ,, L)
writeToFD (1 , Rat2String (D , 16)) y printf-aux (Len +Nat lengthString (Rat2String (D , 16)) , sNat Loc , L)

···〉k when

N =Bool asciiString (“p”) ∨Bool N =Bool asciiString (“x”) ∧Bool lengthString (Rat2String (D , 16)) ,Bool 1

lib-printf-%d rule: 〈 tv (N , —) y printf-% (Len , Loc , tv (D , —) ,, L)
writeToFD (1 , Rat2String (D , 10)) y printf-aux (Len +Nat lengthString (Rat2String (D , 10)) , sNat Loc , L)

···〉k when

N =Bool asciiString (“d”) ∨Bool N =Bool asciiString (“u”)

lib-printf-%c rule: 〈 tv (N , —) y printf-% (Len , Loc , tv (C , —) ,, L)
writeToFD (1 , C) y printf-aux (Len +Nat 1 , sNat Loc , L)

···〉k when N =Bool asciiString (“c”)

lib-printf-%f rule: 〈 tv (N , —) y printf-% (Len , Loc , tv (D , —) ,, L)
writeToFD (1 , Float2String (D)) y printf-aux (Len +Nat lengthString (Float2String (D)) , sNat Loc , L)

···〉k when N =Bool asciiString (“f”) ∨Bool

N =Bool asciiString (“g”)

lib-printf-%s rule: 〈 tv (N , —) y printf-% (Len , Loc , tv (S , pointerType (—)) ,, L)
printf-string (0 , S) y addPrintfString y printf-aux (Len , sNat Loc , L)

···〉k when N =Bool asciiString (“s”)

lib-printf-%s-done rule: 〈tv (Len′ , int) y addPrintfString y printf-aux (Len , Loc , L)
printf-aux (Len +Nat Len′ , Loc , L)

···〉k

macro: debugK = application (builtin (debug) , 0) y discard
macro: zeroToOne (I) = if I =Bool 0 then 1 else I fi
macro: Rat2String (loc (N , M) , 16) = “loc(” +String Rat2String (N , 16) +String “,” +String Rat2String (M , 16) +String “)”

end module

A Formal Semantics of C with Applications 70 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

Module COMMON-C-SEMANTICS
imports COMMON-INCLUDE
imports COMMON-GLOBAL-DECLARATION
imports COMMON-LOCAL-DECLARATION
imports COMMON-C-STANDARD-LIBRARY
imports COMMON-PARAMETER-BINDING
importsMEMORY
imports COMMON-C-CONVERSIONS
imports COMMON-C-EXPRESSIONS
imports COMMON-C-STATEMENTS
imports COMMON-C-TYPING
Bag ::= eval(Program)

| eval(Program , List{K} , String)
K ::= extractField-pre(List{K} , Type , K , K) [strict(3 4)]
| extractField-aux(List{K} , Type , Nat , Nat , List{K})

List{K} ::= explodeToBits(List{K})

K rules:
rule: 〈X

T
···〉k 〈··· typedefName (X) 7→ T ···〉types

rule: 〈struct (X)
T

···〉k 〈··· struct (X) 7→ T ···〉types

rule: 〈union (X)
T

···〉k 〈··· union (X) 7→ T ···〉types

rule: 〈enum (X)
T

···〉k 〈··· enum (X) 7→ T ···〉types

rule: 〈sequencePoint
·

···〉k 〈—
·

〉locsWrittenTo

extractField-from-struct-start rule: 〈 extractField (L , structType (S) , F)
extractField-pre (L , T , figureOffset (loc (0 , 0) , calcStructSize-aux (L1 , 0) , T) , sizeofType (T))

···〉k

〈··· struct (S) 7→ L1 ,, typedField (T , F) ,,— ···〉structs

extractField-from-union-start rule: 〈 extractField (L , unionType (S) , F)
extractField-pre (L , T , tv (loc (0 , 0) , cfg:sizeut) , sizeofType (T))

···〉k 〈··· union (S) 7→— ,, typedField (T , F) ,,— ···〉structs

extractField-bitfield-start rule: 〈 extractField-pre (L , bitfieldType (T , N) , tv (bitloc (— , Offset1 , Offset2) , —) , tv (Len , —))
extractField-aux (explodeToBits (L) , bitfieldType (T , N) , Offset2 +Nat Offset1 ∗Nat 8 , | truncRat (Len *Rat 8) |Int , ·List{K})

···〉k

extractField-normal-start rule: 〈 extractField-pre (L , T , tv (loc (— , Offset) , —) , tv (Len , —))
extractField-aux (explodeToBits (L) , T , Offset ∗Nat 8 , | truncRat (Len *Rat 8) |Int , ·List{K})

···〉k when

getKLabel(T) ,Bool bitfieldType

rule: 〈extractField-aux (piece (— , N) ,, L , T , Offset , Len , ·List{K})
extractField-aux (L , T , | Offset −Int N |Int , Len , ·List{K})

···〉k when N ≤Nat Offset

explode-skip-floats rule: 〈extractField-aux (explodeToBits (—) ,, L , T , sNat Offset ˆ8 , Len , ·List{K})
extractField-aux (L , T , Offset , Len , ·List{K})

···〉k

A Formal Semantics of C with Applications 71 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

explode-skip-locs rule: 〈extractField-aux (explodeToBits (loc (— , —)) ,, L , T , sNat Offset ˆ8 , Len , ·List{K})
extractField-aux (L , T , Offset , Len , ·List{K})

···〉k

rule: 〈 extractField-aux (piece (N , Size) ,, L , T , 0 , Len , L′)
extractField-aux (L , T , 0 , | Len −Int Size |Int , L′ ,, piece (N , Size))

···〉k when Size ≤Nat Len

explode-read-float rule: 〈extractField-aux (explodeToBits (F) ,, L , T , 0 , sNat Len ˆ8 , L′)
extractField-aux (L , T , 0 , Len , L′ ,, F)

···〉k

explode-read-loc rule: 〈extractField-aux (explodeToBits (loc (N , M)) ,, L , T , 0 , sNat Len ˆ8 , L′)
extractField-aux (L , T , 0 , Len , L′ ,, loc (N , M))

···〉k

rule: 〈extractField-aux (explodeToBits (F) ,, L , float , 0 , — , ·List{K})
tv (F , float)

···〉k

rule: 〈extractField-aux (F ,, L , double , 0 , — , ·List{K})
tv (F , double)

···〉k

rule: 〈extractField-aux (F ,, L , float , 0 , — , ·List{K})
tv (F , float)

···〉k

rule: 〈extractField-aux (F ,, L , long-double , 0 , — , ·List{K})
tv (F , long-double)

···〉k

rule: 〈extractField-aux (— , T , 0 , 0 , L)
concretize (atv (L , T))

···〉k

writeToFD-char rule: 〈writeToFD (FD , N)
·

···〉k 〈··· FD 7→ Filename ···〉openFiles 〈··· Filename 7→ S
S +String charString (N %Nat 256)

···〉files

writeToFD-string rule: 〈writeToFD (FD , S ′)
·

···〉k 〈··· FD 7→ Filename ···〉openFiles 〈··· Filename 7→ S
S +String S ′

···〉files

macro: 0 |Nat N = N
macro: hex (S) = String2Rat (S , 16)
macro: Parameter-Type-List() = Parameter-Type-List (·)
equation: figureOffset (loc (Block , Offset) , tv (R , —) , T) = tv (bitloc (Block , | Offset +Int truncRat (R) |Int , | truncRat (8 *Rat R -Rat truncRat (R)) |Int) , pointerType (void))

when T isa bitfieldType
equation: figureOffset (loc (Block , Offset) , tv (R , —) , T) = tv (loc (Block , | truncRat (7 /Rat 8 +Rat Offset +Rat R) |Int) , pointerType (void))

when ¬Bool T isa bitfieldType
macro: explodeToBits (K ,, L) = explodeToBits (K) ,, explodeToBits (L)
macro: explodeToBits (piece (N , sNat Len)) = piece (N &Nat 1 , 1) ,, explodeToBits (piece (N �Nat 1 , Len))
macro: explodeToBits (piece (N , 0)) = ·List{K}
macro: explodeToBits (·List{K}) = ·List{K}

end module

A Formal Semantics of C with Applications 72 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

Module DYNAMIC-C-SEMANTICS
imports COMMON-C-SEMANTICS
Id ::= argArray
K ::= args(List{K})
| args-aux(List{K} , Nat)

K rules:
terminate rule: 〈··· 〈··· 〈V〉k 〈·〉buffer ···〉control ···〉T

〈V〉resultValue

〈··· “stdin” 7→ S1 “stdout” 7→ S2

·

···〉files ·

〈S1〉input 〈S2〉output

macro: args (L) = args-aux (L , 0)
macro: args-aux (E ,, L , N) = argArray [N] = Cast (Pointer (char) , E) ; y args-aux (L , sNat N)
macro: args-aux (·List{K} , N) = argArray [N] = Cast (Pointer (char) , NULL) ;
macro: eval (P) = eval (P , ·List{K} , “”)
macro: eval (P , L , Input) = 〈··· 〈··· 〈P y Global (Declaration (char , Pointer (argArray [sNat lengthListK(L)]))) y args (L) y Apply (main , lengthListK(L) , argArray)〉k ···〉control ···〉T 〈“stdin” 7→ Input “stdout” 7→ “”〉files

end module

A Formal Semantics of C with Applications 73 2010/11/23

Technical Report http://hdl.handle.net/2142/17414, November 2010

	Introduction
	Comparison with Existing Formal C Semantics
	Why Details Matter
	The Rewriting Semantics of C
	Rewriting Logic and K
	Syntax
	Configuration
	Memory Model
	Semantics
	Lookup and Assignment
	While and Break
	Goto
	Parametric Behavior

	Expression Evaluation Strategy
	KCC

	Limitations
	Applications
	Debugging
	Runtime Verification
	``Core Dumping''
	Symbolic Execution

	State Space Search
	Exploring Evaluation Order

	Evaluation
	GCC Torture Tests
	Exploratory Testing

	Conclusion
	Short Introduction to K
	C Semantics

