
Maximal Causal Models for Sequentially

Consistent Multithreaded Systems

Traian Florin S, erbănut, ă, Feng Chen, and Grigore Ros,u

Department of Computer Science
University of Illinois at Urbana-Champaign
{tserban2,fengchen,grosu}@illinois.edu

Abstract

This paper shows that it is possible to build a theoretically maximal
and sound causal model for concurrent computations from a given execu-
tion trace. For an observed execution, the proposed model comprises all
consistent executions which can be derived from it using only knowledge
about the execution machine. The existence of such a model is of great
theoretical value. First, by comprising all feasible executions, it can be
used to prove soundness of other causal models: indeed, several models
underlying existing techniques are shown to be embedded into the maximal
model, so all these models are sound. Second, since it is maximal, the pro-
posed model allows for natural and causal-model-independent definitions of
trace-based properties; this paper proposes maximal definitions for causal
dataraces and causal atomicity. Finally, although defined axiomatically,
the set of traces comprised by the proposed model are shown to be effec-
tively constructed from an initial observed trace. Thus, maximal causal
models are not only theoretically relevant, but they are also amenable for
developing practical analysis tools.

1 Introduction

Traces of events describing concurrent computations have been employed in a
plethora of methods for testing and analyzing concurrent systems. A common
characteristic of all these methods is that one uses an abstraction of a trace,
i.e., a model, to “predict” (problematic) event patterns occurring in other traces
abstracted by the model. Consider, for example, the conventional happens-before
causality: if two conflicting accesses (i.e., at least one of them is a write) to
an object are not causally ordered, then a data-race is reported. But is this
the best one can do? Of course, not. A series of papers propose more relaxed
happen-before causal models where one can also permute blocks protected by
the same lock, provided that they access disjoint variables, thus discovering
new concurrency bugs not observable with plain happens-before. But is this

1

Technical Report http://hdl.handle.net/2142/17336, September 2010

the best one can do? Of course, not. Other papers propose models where
one can also permute semantic blocks (whose actions are possibly generated
by different threads) provided that each read access continues to correspond to
the same write access. Others go even further. Section 5 discusses a series of
existing causal models (we only study sound models here, i.e., ones which only
report real problems in the analyzed systems, allowing developers to focus on
fixing those real problems and not on additionally sorting them out from false
positive reports). We would naturally like to know whether there is an end to
the question “Is this the best we can do?”, that is, whether there is any causal
model that can be associated to a given execution trace which comprises the
maximum number of causally equivalent traces.

Although most runtime analysis techniques build upon some underlying
sound causal model, which is possibly being relaxed for efficiency reasons, each
paper seems to focus more on how to capture it efficiently rather than on proving
its soundness (often implicitly assumed) or studying its relationship to existing
models (other than empirically comparing the number of found bugs). Moreover,
since such approaches attempt to extract information from one observed trace
and to find property violations, they actually deal with causal properties (e.g.,
causal datarace, causal atomicity), which are instances of desired system-wise
properties that can be detected using only the causal information gathered from
one observed trace. Since what can be inferred from a trace is intrinsically
dependent on the chosen causal model, definitions of causal properties differ
from technique to technique, with the undesirable result that a causal property
(e.g., a datarace) in one model might not be recognized by another model.

Motivating Examples. Each example in Fig. 1(a) and (b) shows a two-
threaded program, together with one of its possible executions, in which Thread 1
is executed completely before Thread 2 starts. In this representation of executions,
synchronized blocks are boxed, while shared location write and read operations
are signified by ← (receiving a value), and → (yielding a value), respectively.
Both programs exhibit a race condition between the two write operations on y.
However, are the observed executions also exhibiting a causal datarace?

When analyzing the observed execution in Fig. 1(a), a simple happen-before
approach ordering all accesses to concurrent objects [18] cannot not observe
a causal datarace: the release operation of the lock in Thread 1 is required
to happen-before the acquire of the lock in Thread 2. Happen-before with
lock atomicity [16] is not able to infer a causal datarace either: although the
lock atomicity would allow for the two lock-blocks to be permuted, the read
of x in thread 1 is still required to happen-before the write of x in thread 2.
Yet, the race condition can be captured as a causal datarace of the observed
execution by weaker happen-before models [19, 22], since in those models, one
can additionally permute a write before a read of same location, as long as it is
permuted before the write corresponding to that read. Thus, the trace generated
by the program in Fig. 1(a) has or does not have a datarace, depending upon
the particular causal model employed.

2

Technical Report http://hdl.handle.net/2142/17336, September 2010

(a)

Thread 1 Thread 2
sync(l) {
y = 1;
x = 1;
if (x == 2)
z = 1;

}
sync(l){
x = 2;
}
y = 2;

Execution
1:

y ← 1
x← 1
x→ 1

2:

x← 2

y ← 2

(b)

Thread 1 Thread 2
sync(l) {
x = 1;
}
y = 1;
sync(l) {
x = 1;
}

sync(l) {
if (x > 0)
y = 2;

}

Execution
1:

x← 1

y ← 1

x← 1

2:

x→ 1
y ← 2

Figure 1: Motivating examples.

However, we were not able to find any existing (sound) causal model able to
perceive the race condition in Fig. 1(b) as a causal datarace for the observed
execution. The reason for this is that all models enforce at least the read-after-
write dependency (i.e., a read should always follow the latest write event of the
same variable), and therefore would not allow the permutation of the last two
lock-blocks of the execution, since the read of x in thread 2 must follow the last
write of x in thread 1. Nevertheless, there is enough information in the observed
execution to be able to detect the race: since both writes of x in thread 1 write
the same value, it is actually possible to permute the last two lock blocks, and
thus detect the race. Moreover, since one could conceive a technique specialized
for finding such cases, it can be rightfully claimed that the observed execution
has in fact a causal datarace, although not captured by any existing definition!

Given this ever increasing (regarding coverage) sequence of causal models and
definitions for causal properties, it is only natural to ask the following questions:

Is there any causal model that generalizes all existing models, and
which, morover, cannot be surpassed? Also, is there a unified defini-
tion for a causal property, which all present and future causal models
can relate to?

3

Technical Report http://hdl.handle.net/2142/17336, September 2010

We give positive answers to these questions in the context of sequential
consistency [12]. While we believe the presented approach can be applied to
other memory models, we chose sequential consistency here for three reasons:
(1) it is broadly accepted, popular and intuitive; (2) it is subsumed by other
memory models: errors detected under sequential consistency assumptions are
also errors for other memory models; (3) recent research in computer architecture
(e.g., [3]) shows that it actually can be efficiently supported and implemented in
multiprocessor hardware, strengthening the applicability of our approach.
Contributions. Our first contribution is a novel axiomatization for multi-
threaded computations, based on consistency and feasibility axioms, which yields
sound and maximal (by definition) causal models for observed executions. Next,
a series of existing causal models formally or informally used in runtime verifica-
tion [12, 19, 22] are shown to be subsumed by our model, thus also (re)proving
their soundness. Finally, a constructive representation of our proposed models is
provided, which could be useful for exploration and other analysis purposes.
Comparison with past work. There has been a considerable amount of
research on models and techniques to abstract executions for the purpose of infer-
ring causally equivalent executions satisfying/violating particular but important
properties, such as dataraces or atomicity/serializability [2, 7, 10, 15–19, 21].
Our axiomatic approach is closest in spirit to that of Netzer and Miller [15],
which proposes an axiomatization of a happens-before causal order between
memory accesses and semaphore operations. Instead, we directly axiomatize
legal multithreaded systems executions. Some recent model checking approaches
(e.g., [8]) make use of similar axiomatizations for sequential consistency. How-
ever, their purpose is to reduce the state space to be explored using sequential
consistency constraints. Our focus here is rather foundational, attempting to
unify existing causal models and causal definitions of execution-dependent prop-
erties, by building a maximum model to support them. Another interesting
and productive line of research attempts to use information about the actual
program code to either statically detect potential bad behaviors [5, 14], or to use
information about the program and about the property to be checked to further
relax the models of executions [4]. Our approach is complementary to these,
establishing a foundation on which code-based techniques can be developed.
Paper Structure. Section 2 introduces some notation and discuses sequential
consistency. Section 3 axiomatizes consistent multithreaded systems and defines
maximal sound causal models for their executions. Section 4 uses maximal causal
models to give uniform semantic definitions of trace-related properties, such
as causal dataraces and atomicity. Section 5 shows how existing models are
included in our maximal one, thus proving their soundness. Section 6 presents a
constructive characterization of the maximal model, and Section 7 concludes.
The appendix, included for reviewers’ convenience, contains proofs for all results
as well as a model checking algorithm based on the results from Section 6.

4

Technical Report http://hdl.handle.net/2142/17336, September 2010

2 Execution Model and Sequential Consistency

Assume a machine that can execute arbitrarily many threads in parallel. The
execution environment contains a set of concurrent objects (shared memory
locations, locks, . . .), which are accessed by threads to share data and synchro-
nize. Threads, which can only interact through the execution environment, are
abstracted as sequences of operations on concurrent objects. The only source of
thread non-determinism is the execution environment, that is, if the interaction
between a thread and the environment is the same across executions, the thread
will execute the same operations, in the same order. To simplify the presentation,
we assume no dynamic creation of threads (this presents no technical difficulty).

Concurrent Objects, Serial Specification. We adopt the Herlihy and Wing
[11] definition of concurrent objects and serial specifications. A concurrent object
is behaviorally defined through a set of atomic operations, which any thread can
perform on it, and a serial specification of its legal behavior in isolation. The serial
specification describes the valid sequences of operations which can be performed
on the object. We next describe two common types of concurrent objects.
Shared memory locations. Each shared memory location can be regarded as a
shared object with read and write operations, whose serial specification states
that each read yields the same value as the one of the previous write.
Mutexes. Each mutex can be regarded as a concurrent object providing acquire
and release operations. Their mutual exclusion property is achieved through the
serial specification which accepts only those sequences in which the difference
between the number of acquire and release operations is either 0 or 1 for each
prefix, and all consecutive pairs of acquire-release share the same thread.

Events and Traces. Operations performed by threads on concurrent objects
are recorded as events. We consider events to be abstract entities from an infinite
“collection” Events, and describe them as tuples of attribute-value pairs. The only
attributes considered here are: thread—the unique id of the thread generating the
event, op—the operation performed (e.g., write, read, acquire, or release), target

—the concurrent object accessed by the event, and data—the value sent/received
by the current event, if such exists (e.g., for the write/read operations). For
example, (thread=t1, op=write, target=x, data=1) describes an event recording a
write operation by thread t1 to memory location x with value 1. When there is
no confusion, we only list the attribute values in an event, e.g., (t1,write, x, 1).
For any event e and attribute attr, attr(e) denotes the value corresponding to the
attribute attr in e, and e[v/attr] to denote the event obtained from e by replacing
the value of attribute attr by v. An execution trace is abstracted as a sequence
of events. Given a trace τ , a concurrent object o and a thread t, let τ�o and τ�t
denote the restriction of τ to events involving only o, and only t, respectively.

Sequential consistency can be now elegantly defined as follows:

Definition 1 (Attiya and Welch [1]). Let τ be any trace. Then:
(1) τ is legal iff τ�o satisfies o’s serial specification for any object o;

5

Technical Report http://hdl.handle.net/2142/17336, September 2010

Figure 2: Consistent traces and feasible executions

(2) An interleaving of τ is a trace σ such that σ�t = τ�t for each thread t.
(3) A trace σ is (sequentially) consistent if it admits a legal interleaving.

Since we restrict ourselves to sequential consistency, from here on when we say
that a trace is sequentially consistent we automatically mean that it is also legal.

3 Feasibility Model

This section introduces a novel axiomatization for a machine producing consistent
executions, and uses it to associate to any observed execution a maximal sound
causal model, comprising all executions which can potentially be inferred from
that execution alone, without additional knowledge of the system generating it.

Fig. 2 highlights the two major concepts underlying our approach, namely
consistent traces and feasible executions. A consistent trace (Def. 1) disallows
“wrong” behaviors, such as reading a value different from the one which was
written, or proceeding when a lock cannot be acquired. Our novel notion, that
of feasible executions, refers to sets of execution traces and aims at capturing all
the behaviors that a given multithreaded system or program can manifest. No
matter what task a multithreaded system or program accomplishes, its possible
traces must obey some basic properties. First, feasible traces are generate-able,
meaning that any prefix of any feasible trace is also feasible; this is captured
by our first axiom of feasible traces, prefix closedness. Second, we assume that
thread interleaving is the only source of non-determinism in producing traces;
this is captured by our second axiom of feasible traces, thread determinism.

Each particular multithreaded system or programming environment, say S,
has its own notion of feasible execution, given by its specific intended semantics.
Let us call all (possibly incomplete) traces that S can yield S-feasible, and let
feasible(S) be their set. Instead of defining feasible(S) as we did in [20], which
requires a formal definition of S and is therefore S-specific (and tedious), we
here axiomatize it by what we believe are its crucial properties:

6

Technical Report http://hdl.handle.net/2142/17336, September 2010

Prefix Closedness: Events are indivisible and generated in execution order; hence,
feasible(S) must be prefix closed : if τ1τ2 is S-feasible, then τ1 is S-feasible.
Thread Determinism: The execution of a concurrent operation is determined by
the previous events in the same thread, and can happen at any consistent moment
after them. Formaly, if τe, τ ′ ∈ feasible(S) and τ�thread(e) = τ ′�thread(e) then: if
τ ′e is consistent then τ ′e ∈ feasible(S); moreover, if op(e) is a request for a value
from target(e) (e.g., op(e) = read) and there exists an event e′ such that e =
e′[data(e)/data] and τ ′e′ is consistent, then τ ′e ∈ feasible(S). The second part
says that if an operation requesting a value from a concurrent object (e.g., reading
the value of a memory location) is enabled, i.e., all previous events have been
generated, then it can be executed at any consistent time (despite the fact that
the value it receives might be different from that observed in the original trace).

Definition 2. S is consistent iff feasible(S) satisfies the axioms above.

A major goal of trace-based analysis is to infer/analyze as many traces as
possible using a recorded trace. When one does not know (or does not want to use)
the source code of the multithreaded program being executed, one can only infer
potential traces of the system resembling the observed trace. Let us now define
the maximal set of executions which can be inferred from an observed execution

—they correspond to the traces obtainable from τ using the feasibility axioms.

Definition 3. The feasibility closure of a consistent trace τ , written feasible(τ),
is the smallest set of traces containing τ which is prefix-closed and satisfies the
thread determinism property. A trace in feasible(τ) is called τ-feasible.

Proposition 1. If S consistent and τ ∈ feasible(S) then feasible(τ) ⊆ feasible(S).
Moreover, if σ is consistent and τ ∈ feasible(σ), then feasible(τ) ⊆ feasible(σ).

The intuition for τ ∈ feasible(σ) is that if a run of any program executed on
S can produce σ, then there is also some run of the same program executed also
on S that can can produce τ . Since feasible(σ) was chosen to be the smallest
set of traces closed under the axioms above, it follows, also intuitively, that if
τ 6∈ feasible(σ) then there is some program that yields σ but which cannot yield τ .
We say “intuitively” since, for simplicity, we here did not give a formal definition
of S, programs, and their execution; the interested reader can check [20].

Therefore, observing an execution trace τ , one can regard feasible(τ) and the
maximal causal model corresponding to τ , in that it comprises all the traces that
can be thought of as causally equivalent to τ . We are not concerned with how to
encode or represent this causal model (one can, e.g., regard τ as its representation).
In Section 6 we show that, even though it has an existential nature, the traces
comprised by this model can be effectively generated and thus analyzed.

4 Formal Definitions for Causal Properties

The benefits of having a maximal causal model are twofold: (1) one can use this
model to prove soundness of other causal models by showing that they can be

7

Technical Report http://hdl.handle.net/2142/17336, September 2010

embedded in the maximal one (we discuss this in Section 5); and (2) having a
maximal model allows for uniform and consistent along models definitions of
causal properties for traces, such as dataraces and atomicity. Indeed, having a
maximal model generalizing all possible sound models allows for unique semanti-
cal definitions which can be shared among all such models. Let us clarify this
idea below, using causal dataraces and atomicity as guiding examples.

Dataraces. Two events have a data conflict if they belong to different threads,
both access the same memory location, and at least one access is a write. In
our notation, events e1 and e2 have a data conflict if thread(e1) 6= thread(e2),
target(e1)= target(e2), and write ∈ {op(e1), op(e2)}. A datarace occurs when an
execution contains two events having a data-conflict, without proper synchro-
nization between them [18]. An obvious datarace between events e1 and e2 in
a consistent trace τ can be observed when the two data-conflicting events (e1
and e2) are consecutively generated (i.e., τ=τ1e1e2τ2), so the second part of the
definition above is trivially satisfied. However, this definition, although “model
independent”, is rather restrictive, since the chances of noticing the two accesses
occurring consecutively are really low. For this reason, the notion of causal
datarace is more appropriate. Informally, an execution admits a causal datarace
between two memory accesses if the two accesses could have been executed con-
currently under an alternative scheduling, inferable from the observed execution.

As previously discussed in Section 1, many techniques have been proposed
for finding causal dataraces. However, the formal definition of a datarace for
an execution in such a model is typically operational, that is, constrained by
the model itself. For example, in the techniques based on happens-before, the
datarace is defined as two events having a data conflict which are not ordered
by the happens-before causal order induced by the observed execution [18]; if
considering happens before with locksets [16], the happens-before ordering is
relaxed to only order memory location accesses, with the additional requirement
that the lock-protected blocks be maintained atomic. Therefore, each causal
model encountered in the literature defines its own model-dependent definition
for a causal datarace, to take full advantage of its particularities.

Since our feasibility closure is obtained directly from an axiomatization of
a consistent system, and is thus maximal by definition, we can precisely give a
definition of causal datarace which only depends on the observed execution:

Definition 4. A trace τ = τ1e1τ2e2 admits a causal datarace on data-
conflicting events e1 and e2 iff there exists a τ -feasible trace σ such that σ�thread(e1) =
τ1�thread(e1) and σ�thread(e2) = τ1e1τ2�thread(e2).

The above definition states that we can predict a datarace from an observed
trace τ if there exists a τ -feasible trace which makes the datarace apparent. We
chose as a witness a trace stopped at the moment when both threads are about
to execute the events in a race. This is indeed a clear witness for the race, since,
by the thread determinism axiom, the execution of the conflicting operations
is allowed to proceed in any order from this point; moreover this saves us the

8

Technical Report http://hdl.handle.net/2142/17336, September 2010

trouble of specifying that the value of an event involved in the trace might change
if it corresponds to a read operation. Nevertheless, one should note that, unlike
in other causal models, the witness traces containing the events in an observable
race, in both orderings, are also part of the feasibility closure of τ .

Using this definition, the race in Fig. 1 is finally captured by the causal
datarace definition, having (1, acquire, l)(1,write, x, 1)(1, release, l)(2, acquire, l)(2, read, x, 1)
as a witness belonging to the feasibility closure of the observed execution.

Atomicity. Similarly, one can easily define within this model a proper notion of
atomicity associated to a consistent trace. Assume the existence of an additional
concurrent object, named transaction monitor, with two operations begin and
end and the serial specification requiring that for each thread the first transaction
monitor operation is a begin and, for each thread, there are no two transaction
begin operations without a transaction end between them. That is, transaction
monitors are similar to but weaker than locks, in the sense that the mutual
exclusion is not enforced, although desired. A transaction of a consistent trace τ
is then a subsequence of events σ of τ having the same thread, starting with a
transaction begin operation and ending with the next transaction end operation.

Within this framework, one can either define global atomicity, which amounts
to serializability of transactions [22], or local atomicity [6], which requires each
transaction be serializable, but not necessarily the entire execution.

Definition 5. A transaction σ of τ is atomic for consistent trace τ if there
exists a τ -feasible trace τ1στ2. τ is locally atomic if each of its transactions
are atomic for τ . τ is (globally) atomic, or serializable, if there exists a
τ -feasible trace τ ′ such that each transaction σ of τ is a contiguous subsequence
of τ ′.

Although these definitions are similar to those found in the above mentioned
papers, they are now model-independent. Being defined using the maximal causal
model, they become universal, applicable to all conceivable sound causal models.

5 Relationship with Existing Models

In this section we analyze the relationships between our model and other existing
(sound) models for (consistent) multithreaded computations. Proving that
existing models are faithfully captured by our model strengthens the intuition
for the maximality of our model and, moreover, shows that these rather adhoc
(from a theoretical perspective) models are indeed sound. We start with the
following result, which can be regarded as a sufficient criterion for feasibility:

Theorem 1. Any consistent prefix σ1 of an interleaving σ1σ2 of τ is τ -feasible.

Theorem 1, in combination with Proposition 1, additionally shows that the
feasibility closure does not depend on the representative legal trace chosen for
an observed sequentially consistent trace σ in Definition 1, and thus it can be
rightfully called the legal feasibility closure of the sequentially consistent trace σ.

9

Technical Report http://hdl.handle.net/2142/17336, September 2010

Happens Before Relation on Mazurkiewicz Traces. One elegant way to
capture the happens-before trace equivalence is the Mazurkiewicz trace associated
to the dependence given by the happens-before relation [9].

The happens-before dependence is a set T ∪D, where T =
⋃
t{(e1, e2) : τ�t=

τ1e1e2τ2} is the intra-thread sequential dependence relation and D=
⋃
x{(e1, e2) :

τ�x = τ1e1e2τ2 such that e1 or e2 is a write of x} is the sequential memory
dependence relation. Given this happens-before dependence, the Mazurkiewicz
trace associated with τ is defined as the least set [τ] of traces containing τ
and being closed under permutation of consecutive independent events [13]: if
τ1e1e2τ2 ∈ [τ] and (e1, e2) 6∈ T ∪ D, then τ1e2e1τ2 ∈ [τ].

The following result shows that the feasibility closure is closed under the
equivalence relation generated by happens-before, that is, happens-before is
captured by our model, and thus re-shown sound for consistent executions:

Theorem 2. If τ1e1e2τ2 is τ -feasible and (e1, e2) 6∈ T ∪D, then τ1e2e1τ2 is τ -
feasible. Given any τ -feasible trace τ ′, [τ ′] ⊆ feasible(τ). Hence, [τ] ⊆ feasible(τ).

Weak Happens Before. Several more recent trace analysis techniques [19, 22]
argue that the happens-before model can be further relaxed, noticing that
the only purpose of the write-after-read happens-before order is to guarantee
that a read event always reads the same write event as before in any feasible
interleaving of the original trace. Therefore, one only needs to preserve the
read-after-write dependence:

Definition 6. e2 write-read depends on e1 in τ=τ1e1τ2e2τ3, written e1 <wr
τ

e2, if target(e1) = target(e2), op(e1) = write, op(e2) = read, and for all e ∈ Eτ2 ,
either target(e) 6= target(e1), or op(e) 6= write.

That is, e1 <wr
τ e2 iff the value read by e2 is the value written by e1.

Sen et al. [19] introduce the notion of atomic sets associated to each write
event, containing itself and all read events which write-read depend on it,
accepting as feasible executions all linearizations of the transitive closure of the
combined <wr

τ and thread ordering, satisfying the additional requirement that
the atomic sets are preserved. However, as also noticed by Wang and Stoller
[22], this can be simply restated as follows:

Definition 7. τ ∼ σ if τ is an interleaving of σ and <wr
τ =<wr

σ .

That is, the ∼-equivalence class of τ contains all interleavings of τ which have
exactly the same write-read dependence relation.

Next result shows that this model is also captured by the maximal model.

Theorem 3. If σ1 is τ -feasible, and σ1 ∼ σ2, then σ2 is also τ -feasible.

Happens-Before with synchronization. A conservative, sound, and requir-
ing no implementation changes approach to handling locks in happens-before-
based trace analysis techniques is to assume that acquire and release operations

10

Technical Report http://hdl.handle.net/2142/17336, September 2010

on the same lock yield the same happen-before dependence as if they were partic-
ular write and read operations (on the lock variable) [18]. However, this prevents
synchronized blocks from being permuted, and thus imposes coverage limitations.
The lock-set approaches, also called hybrid happen-before [16], propose to handle
locks separately, associating to each event the set of locks [17] protecting them,
hereby not enforcing any particular order between synchronized blocks.

We here group the events protected by locks in atomic blocks. Events e1
and e2 from a consistent trace τ , both generated by thread t, are l-atomic in τ ,
written e1 mτl e2, if and only if there is some acquire event e on lock l generated
by t before both e1 and e2, and there is no release event e′ on l generated by
t between e and either of e1, e2. For each lock l, let [e]l denote the l-atomic
equivalence class of e. A trace τ ′ is consistent with the lock atomicity of τ if
there exists no lock l and decomposition τ1e1τ2e2τ3e3τ4e4τ5 such that e1 mτl e3
and e2 mτl e4 and [e1]l 6= [e2]l. Let ≺τhb be the transitive closure of the union
between happens-before and thread orderings of τ . The following holds:

Theorem 4. Let σ be a τ -feasible trace. Any linearization of ≺σhb consistent
with the lock atomicity of σ is τ -feasible.

Weak-Happens-Before with synchronization. We next present two ap-
proaches to handling synchronization in weak-happens-before models and show
they are both embeddable in our maximal model advocated in this paper.
Lock atomicity via write-read atomicity [19]. Since the notion of write-read
atomicity already allows atomic sets to be permuted, it seems reasonable to use
the conservative idea from standard happens-before methods, and treat acquire
as a write event and release as a read event. Formally, given the consistent
trace τ , one could additionally introduce an atomic dependence relation <a

τ

given by e1 <
a
τ e2 if τ = τ1e2τ2e2τ3, target(e1) = target(e2), op(e1) = acquire,

op(e2) = release, and there is no event e in τ2 such that target(e) = target(e1),
and op(e) = acquire. With this definition, equivalent traces to an observed trace
τ are those interleavings of τ having the same write-read and atomic dependences.

However, this definition needs a careful approach. Consider the example
in Fig. 1(b), and suppose that we observe a similar execution, but that the
program is stopped after the read of x in thread 2. Since no release event has
been generated, the acquire in thread 2 has no event depending on it, and thus it
can be permuted (without the read event on x it was supposed to protect) before
the last lock-block of thread 1. Then, the final read of x itself can be permuted
past the final release of l in thread 1, exhibiting a spurious causal datarace.

Nevertheless, these models are sound for synchronization complete traces,
that is, traces in which each acquired lock is eventually released.

Theorem 5. Let σ be a synchronization complete τ -feasible trace. Any inter-
leaving σ′ of σ satisfying that <wr

σ′ =<wr
σ and <a

σ′=<a
σ is τ -feasible.

Lock atomicity via locksets. Wang and Stoller [22] propose a weak-happens-before
model based on write-read dependence, while using locksets to handle locks as
individual objects. In this model, a trace τ ′ is equivalent with a consistent trace

11

Technical Report http://hdl.handle.net/2142/17336, September 2010

τ if τ ′ is an interleaving of τ having the same write-read dependence relation
and being consistent with the lock atomicity of τ .

Theorem 6. Let σ be a τ -feasible trace. Any interleaving σ′ of σ, consistent
with the lock atomicity of σ and satisfying that <wr

σ′ =<wr
σ is τ -feasible.

6 Characterizing the Feasibility Closure

Section 3 showed how the maximal causal model can be naturally defined by
characterizing feasibility axiomatically rather than constructively. Closure axioms
guarantee that all equivalent traces which can be derived based on the consistency
axioms are considered. However, for analysis purposes, it is preferable to have
a constructive way of computing the feasibility closure. This section presents
a constructive characterization of the feasibility closure.

As might have been suggested by Theorem 1, consistent interleaving prefixes
cover all possibilities of generating τ -feasible traces using only the events in τ .
However, the definition of interleaving (prefix) overlooks the final part of the
thread determinism axiom, that is, the one regarding operations which might
receive different values from their objects. To achieve a complete constructive
characterization of feasibility closures, we have to go beyond prefixes of interleav-
ings, more exactly, one request operation per thread beyond. This is because,
as guaranteed by thread determinism, whenever all events before an event have
been generated in a thread, the operation on the concurrent object specified
in that event can also take place, but its data attribute might now retrieve a
different value from the one it had in the observed trace. However, once such
an event whose data is different from the one in the original trace is derived,
the execution cannot be continued for that thread, because that event might
influence/prevent the generation of the following events. An extended interleaving
prefix is a (partial) trace which behaves similarly to the observed trace up to
its final event for each thread, which might have a different value:

Definition 8. Trace τ ′ = τ1e
′ is an extended prefix of τ = τ1eτ2 if either e =

e′, or op(e) requests a value from the concurrent object, and e = e′[data(e)/data].
τ ′ is an extended interleaving prefix of τ if τ ′�t is an extended prefix of

τ�t for any thread t.

We can now give a sound and complete characterization for the τ -feasible traces:

Theorem 7. Given a consistent trace τ , a trace τ ′ is τ -feasible iff it is a
consistent extended interleaving prefix of τ .

7 Conclusion and Future Work

We have developed theoretically sound and maximal causal models for concurrent
executions, which can be naturally associated to each observed trace, capturing
all the feasible and causally equivalent traces which could be inferred from the

12

Technical Report http://hdl.handle.net/2142/17336, September 2010

observed trace. The maximality result has two important theoretical implications.
First, verifying the soundness claims for any causal model is reduced to proving
that it is a submodel of the maximal one. Second, since the maximal model
captures all causally equivalent traces, it allows for universal, model-independent
definitions for causal properties. Finally, the maximal model can effectively be ex-
plored (and model checked), suggesting that it may also have practical potential.

An especially promising line of research is studying the complexity of verifying
candidates for a causal property (violation) against the maximal model, and
finding efficient algorithms for doing so.

13

Technical Report http://hdl.handle.net/2142/17336, September 2010

References

[1] H. Attiya and J. L. Welch. Sequential consistency versus linearizability.
TOCS, 12(2):91–122, 1994.

[2] U. Banerjee, B. Bliss, Z. Ma, and P. Petersen. A theory of data race
detection. In PADTAD, pages 69–78, 2006.

[3] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas. BulkSC: bulk enforcement
of sequential consistency. In ISCA, pages 278–289, 2007.

[4] F. Chen and G. Ros,u. Parametric and sliced causality. In CAV, volume
4590 of LNCS, pages 240 – 253, 2007.

[5] P. A. Emrath and D. A. Padua. Automatic detection of nondeterminacy in
parallel programs. In PADD, pages 89–99, 1988.

[6] A. Farzan and M. Parthasarathy. Causal atomicity. In CAV:315–328, 2006.

[7] C. Flanagan and S. N. Freund. Atomizer: a dynamic atomicity checker for
multithreaded programs. In POPL, pages 256–267, 2004.

[8] M. K. Ganai and A. Gupta. Efficient modeling of concurrent systems in
BMC. In SPIN, pages 114–133, 2008.

[9] P. Godefroid. Partial-Order Methods for the Verification of Concurrent
Systems, volume 1032 of LNCS. Springer, 1996.

[10] D. P. Helmbold, C. E. McDowell, and J. Z. Wang. Determining possible
event orders by analyzing sequential traces. TPDS, 4(7):827–840, 1993.

[11] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for
concurrent objects. TOPLAS, 12(3):463–492, 1990.

[12] L. Lamport. How to make a multiprocessor computer that correctly executes
multiprocess programs. Transactions on Computers, 28(9):690–691, 1979.

[13] A. Mazurkiewicz. Trace theory. In Advances in Petri Nets, volume 255 of
LNCS, pages 279–324, 1987.

[14] M. Naik, A. Aiken, and J. Whaley. Effective static race detection for Java.
In PLDI, pages 308–319, 2006.

[15] R. H. B. Netzer and B. P. Miller. Detecting data races in parallel program
executions. In LCPC, pages 109–129. MIT, 1990.

[16] R. O’Callahan and J.-D. Choi. Hybrid dynamic data race detection. In
PPoPP, pages 167–178, 2003.

[17] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser:
a dynamic data race detector for multi-threaded programs. In SOSP, pages
27–37, 1997.

14

Technical Report http://hdl.handle.net/2142/17336, September 2010

[18] E. Schonberg. On-the-fly detection of access anomalies. In PLDI, pages
285–297, 1989.

[19] K. Sen, G. Ros,u, and G. Agha. Detecting errors in multithreaded programs
by generalized predictive analysis. In FMOODS, pages 211–226, 2005.

[20] T. F. S, erbănut, ă, F. Chen, and G. Ros,u. Maximal causal models for
multithreaded systems. Technical Report http://fsl.cs.uiuc.edu/pubs/
mm.pdf.

[21] M. Vaziri, F. Tip, and J. Dolby. Associating synchronization constraints
with data in an object-oriented language. In POPL, pages 334–345, 2006.

[22] L. Wang and S. D. Stoller. Accurate and efficient runtime detection of
atomicity errors in concurrent programs. In PPOPP, pages 137–146, 2006.

15

Technical Report http://hdl.handle.net/2142/17336, September 2010

A Proofs of the results

Proposition 1. If S consistent, and τ ∈ feasible(S), then feasible(τ) ⊆ feasible(S).
Moreover, if σ is consistent and τ ∈ feasible(σ), then feasible(τ) ⊆ feasible(σ).

Proof. Both feasible(S) and feasible(σ) are closed under the feasibility axioms.
Since τ belongs to both of them, and feasible(τ) is the smallest set closed under
the same axioms, it follows that it must be included in both.

Theorem 1. Any consistent prefix σ1 of an interleaving σ1σ2 of τ is τ -feasible.

Proof. Induction on the length of the interleaving prefix. The base case is trivial.
Let τ ′e be a consistent interleaving prefix of τ , and assume that τ ′ is τ -feasible.
Let n = thread(e), and let τ1, τ2 be such that τ = τ1eτ2. By prefix closedness, it
follows that τ1e is feasible. Moreover, since (τ ′e)�n = τ ′�ne is a prefix of τ�n, it
follows that τ ′�n = τ1�n. Using the thread determinism for τ1e and τ ′, we obtain
that τ ′e is τ -feasible (since it is consistent).

Theorem 2. If τ1e1e2τ2 is τ -feasible and (e1, e2) 6∈ T ∪D, then τ1e2e1τ2 is τ -
feasible. Given any τ -feasible trace τ ′, [τ ′] ⊆ feasible(τ). Hence, [τ] ⊆ feasible(τ).

Proof. Let τ1e1e2τ2 be a τ -feasible trace such that (e1, e2) 6∈ T ∪D. We will show
that τ1e2e1τ2 is also τ -feasible. First, all prefixes of τ1e1e2τ2, including τ1, τ1e1,
τ1e1e2, τ1e1e2τ ′

2e
′
2 (for any prefix τ ′

2e
′
2 of τ2), are τ -feasible, since feasible(τ) is

prefix closed. Now, we can iteratively use closedness under thread determinism
(1) for τ1e1e2 and τ1, to derive that τ1e2 is τ -feasible; (2) for τ1e1 and τ1e2 to
derive that τ1e2e1 is also τ -feasible; (3) by finitary induction for each prefix τ ′

2e
′
2

of τ2, for τ1e1e2τ ′
2e

′
2 and τ1e2e1τ

′
2 to derive that τ1e2e1τ ′

2e
′
2 is also τ -feasible.

Therefore, for any τ -feasible trace τ ′, feasible(τ ′) is closed under permutation
of consecutive independent events; hence, [τ ′] ⊆ feasible(τ ′) ⊆ feasible(τ).

Theorem 3. If σ1 is τ -feasible, and σ1 ∼ σ2, then σ2 is also τ -feasible.

Proof. We show that we are in the conditions of Theorem 1: Since σ1 is consistent,
and <wr

σ2
=<wr

σ1
, it follows that σ2 must also be consistent, since all read events

follow the same write events as in the σ1, which, by the consistency of σ1,
precisely implies that each read event returns the value of the previous write
event.

Theorem 4. Let σ be a τ -feasible trace. Any linearization of ≺σhb consistent
with the lock atomicity of σ is τ -feasible.

Proof. Again, we reduce our proof to Theorem 7. First, any linearization of ≺σhb
is an interleaving of σ. Moreover, since σ is consistent, preservation of happens-
before ensures that the serial specification of the memory locations is satisfied.
Finally, consistency with lock atomicity implies that the serial specifiaction for
mutexes is also satisfied. Therefore, any linearization of ≺σhb consistent with the
lock atomicity of σ, is a consistent interleaving of σ, thus σ-feasible.

16

Technical Report http://hdl.handle.net/2142/17336, September 2010

Theorem 5. Let σ be a synchronization complete τ -feasible trace. Any inter-
leaving σ′ of σ satisfying that <wr

sigma′=<wr
σ and <a

σ′=<a
σ is τ -feasible.

Proof. Since we already shown that <wr
sigma′=<wr

σ implies that the serial spec-
ification of memory locations is verified, we only need to show that <a

σ′=<a
σ

implies the satisfaction of the mutex specification for synchronization complete
traces, that is, that any prefix of σ′ has at most one more acquire operations than
release operations, and all consecutive pairs of acquire-release have the same
thread. The second part is easily guaranteed by the fact that <a

σ′=<a
σ, since <a

enforces the acquire-release in relation are consecutive, and, since σ is consistent,
this definition additionally implies that they have the same thread. The first
part comes from the fact that, since σ is synchronization complete, every acquire
has a corresponding release, with whom is in the <a

σ relation.

Theorem 6. Let σ be a τ -feasible trace. Any interleaving σ′ of σ, consistent
with the lock atomicity of σ and satisfying that <wr

σ′ =<wr
σ is τ -feasible.

Proof. From the proof of Theorem 3, <wr
σ′ =<wr

σ implies the serial specification
of memory locations is obeyed in σ′. Additionally, from the proof of Theorem 4,
consistency with the lock atomicity of a consistent trace implies that the serial
specification of mutexes is obeyed. We can therefore apply Theorem 1.

Theorem 7. Given a consistent trace τ , a trace τ ′ is τ -feasible iff it is a
consistent extended interleaving prefix of τ .

Proof. Proving that any consistent extended interleaving prefix of τ is τ -feasible
proceeds similarly to the proof of Theorem 1. For the reverse, one needs to show
that the set of consistent extended interleaving prefixes of τ contains τ , is prefix
closed, and closed under thread determinism. First two are obvious: τ is an
interleaving prefix of itself, and any prefix of an extended interleaving prefix of
τ is an extended interleaving prefix of τ by the definition. Now let τ1e and τ2 be
consistent interleaving prefixes of τ such that thread(e) = n, and πn(τ1) = πn(τ2).
Since πn(τ1e) is an extended prefix of πn(τ), then either πn(τ1e) is a prefix of
τ , or op(e) = read, and there exists e′, such that thread(e′) = n, op(e′) = read,
target(e′) = target(e), and πn(τ1)e′ is a prefix of πn(τ).

Let e′′ be e, if op(e) 6= read, or e′′ = e[data(ew)/data], if ew is the last
write operation in τ2�target(e). Then τ2e

′′ is an extended interleaving prefix.
If op(e) 6= read, and τ2e is consistent, then it also is a consistent extended
interleaving prefix. If op(e) = read, then, since τ2e′′ is consistent (by the choice
of e′′), the property follows.

17

Technical Report http://hdl.handle.net/2142/17336, September 2010

B Model Checking Algorithm.

The algorithm in Fig. 3 can be used to explore (and check properties against) the
feasibility closure of a given trace. It takes as input a trace τ0 and a procedure
ϕ saying whether a property is satisfied by a (partial) trace (and state), and
checks whether all traces in the feasibility closure of τ0 (and their corresponding
states) satisfy the property of ϕ.
In the initialization phase (lines 1–4), the original trace is split into threads and
each thread projection is loaded into a stack, with first events in the thread at top
of the stack, and the store initialized with 0 for variables and 1 for semaphores.
We additionally maintain a set of enabled threads, that is, threads for which all
events generated had the same state as in the original execution, therefore they
can still be advanced. The trace created, τ , is also maintained as a stack, but
with first events at bottom of the stack; it is initially empty. Variable t keeps
track of the index of the thread which should be advanced next. The main loop
is a backtracking loop, exiting only when the entire space has been explored.
Inside the loop, the first part (lines 3–6) checks whether the next thread can be
advanced. If a thread is found, the state is modified accordingly (lines 12–15),
disabling further advances to the thread, if the state of the added event differs
from the one in the observed trace (lines 8–10); note that in the latter case, the
top event in the corresponding thread needs not be removed, since the thread is
disabled. Then, τ is advanced and added to the result set, property ϕ is checked
(line 16), and the search for the next advance-able thread is restarted (line 17). If
no additional thread can be advanced from this state, the algorithm backtracks,
undoing the effects of previous advances (lines 18–26).

A simple amortized analysis of our algorithm shows that, without any addi-
tional knowledge about the property to check ϕ, it essentially performs a minimal
amount of work: it generates and checks against ϕ each consistent extended
interleaving prefix of τ0, searching for each next event through the tops of at most
k thread stacks. Supposing that ϕ is a simple safety property taking constant
time and memory to evaluate in any given state σ, which is frequently the case
in many situations, the time complexity of our algorithm is O(|feasible(τ0)| × k)
and its memory complexity is O(|τ0|); recall that feasible(τ0) is prefix-closed.

Happens-before based model checkers can exploit the property being checked
or the structure of the program to gain efficiency (but not coverage). We envision
similar techniques could potentially be applied to our models. However, here
we are not trying to propose an optimal model checker but rather to show that
the maximum model is algorithmically analyzable, not just an existential entity,
and it can be the basis on which other analysis techniques can be built.

18

Technical Report http://hdl.handle.net/2142/17336, September 2010

Input: Trace τ0 of size n over k threads.
Maps: thread : {1, . . . , k} → Stack

σ : Locations→ Int
Initial: σ[x]← 0, for all variables

σ[l]← 0, for all semaphores
thread[t]← τ0�t, for all threads
Advanceable← {1, . . . , k}

τ ← ε; t← 0;1

while t < k do2

t← t+ 1;3

if t ∈ Advanceable then4

e← top(thread[t]);5

if op(e) 6= acquire ∨ σ[target(e)] > 0 then // advance6

l← target(e);7

if op(e)=read ∧ data(e) 6=σ[l] then // extended prefix8

Advanceable← Advanceable \ {t} ;9

data(e)← σ[l];10

else // update state11

pop(thread[t]);12

if op(e)=write then σ[l]←data(e);13

if op(e)=acquire then σ[l]←σ[l]− 1;14

if op(e)=release then σ[l]←σ[l] + 1;15

end16

push(τ ,e); check τ against ϕ;17

t← 0;18

end19

end20

while t=k ∧ τ 6= ε do // backtrack21

e←pop(τ); t← thread(e); l← target(e);22

if t 6∈ Advanceable then // extended prefix23

Advanceable← Advanceable ∪ {t};24

else // restore state25

push(thread[t],e);26

if op(e)=write then σ[l]← data(latest(τ, l));27

if op(e)=acquire then σ[l]← σ[l] + 1;28

if op(e)=release then σ[l]← σ[l]− 1;29

end30

end31

end32

Figure 3: Exploring the feasibility closure

19

Technical Report http://hdl.handle.net/2142/17336, September 2010

