
Towards Semantics-Based WCET Analysis ∗

Mihail Asăvoae1, Dorel Lucanu1, Grigore Roşu2

1Alexandru Ioan Cuza University, Romania

{mihail.asavoae, dlucanu}@info.uiac.ro
2University of Illinois at Urbana-Champaign, USA

grosu@illinois.edu

Abstract

This paper proposes the use of formal semantics as a basis for worst-case execution
time (WCET) analysis. Specifically, the semantics of a RISC assembly language is formally
defined using recent advances in rewrite-based semantics, and then is used to discover and
eliminate erroneous execution paths in the context of WCET analysis. This paper makes two
novel contributions: (1) it shows that using a formal semantics of the employed language can
be practically feasible in WCET analysis (not only theoretically desirable); and (2) it shows
that the discovery and elimination of erroneous execution paths can not only improve the
WCET estimation, but can also be achieved using off-the-shelf technology for rewrite-based
semantics.

1 Introduction

Ideally, program analysis tools should be based on rigorous semantics of the employed program-
ming languages. Unfortunately, giving a formal semantics (using conventional approaches) to a
real language is a non-trivial matter; moreover, even when a semantics is available, it is often
not easy to use it for program analysis. Recent research in rewriting logic semantics and in tool
development based on such semantics [18, 5] shows encouraging results with respect to both
expressiveness and scalability. Moreover, the application of these techniques in the context of
real-world low-level languages such as Verilog [13] gives us hope that the theoretically ideal
semantics-based approach to program analysis may be, after all, also practically feasible.

We propose a general methodology for worst-case execution time (WCET) analysis centered
around a formal executable semantics of the underlying language. We assert that the formal
definition of a language has all the necessary information to be used for WCET program anal-
ysis and verification. We use the K rewrite-based semantic framework [18, 5] to define a formal
executable semantics for a RISC assembly language, namely an integer restricted fragment of
Simplescalar [2]. With it, we can take C programs and “execute” them semantically as follows:
first compile them into executables, then extract assembly programs from them using the Sim-
plescalar disassembler [2], then execute the resulting assembly programs in our K semantics.
The choice of the Simplescalar toolset is inspired from [11]. K is highly-modular, allowing us to
start with a high-level semantics of the language and then plugging in the K description of var-
ious micro-architecture such as caches, pipelines or hardware speculation techniques. This way,
we specialize the original high-level semantics to one specific to a particular processor, which
is what we eventually analyze. The K tool suite (http://fsl.cs.uiuc.edu/K) provides support
for concrete and symbolic execution, for state space exploration of concurrent and/or non-
deterministic programs, for LTL model-checking, and for full-fledged verification (see also [17]).

∗This work has been supported by Project POSDRU/88/1.5/S/47646 and by Contract ANCS POS-CCE,
O2.1.2, ID nr 602/12516, ctr.nr 161/15.06.2010 (DAK).

1

To exemplify our semantics-based approach to WCET analysis, we picked a specific but im-
portant problem: detection and elimination of erroneous paths, a subset of infeasible execution
paths. Indeed, being able to identify such paths in a program and eliminate them from the
calculation of the WCET can significantly tighten the estimated WCET bounds.

WCET analysis determines, for all the possible input data, the longest execution path
of a program that runs on a particular architecture. Thus, WCET analysis addresses two
issues: longest path search and micro-architecture modeling. The former relies on the path
analysis ability to discover and eliminate the executions that cannot be exercised under any
input, executions called infeasible. Existing solutions for the path analysis problem include
static analyses [9, 19, 22] based on abstract interpretation [4], integer linear programming (ILP)
approaches [?, ?, 21] and measurement based methods [7, 15]. The longest path search could
exhibit a particular problem, with impact on timing bounds tightness and this current work
presents only that.

Most of the aforementioned approaches work on assembly language code, extracted from
executable files. The path analysis classifies the execution paths into feasible and infeasible.
The programs may also exhibit error execution paths, either for certain input value or under
special conditions (i.e. linking of recompiled code fragments). The most common errors have
numerical causes such as overflow/underflow and division by zero, or are memory-related, in
case of misaligned accesses. It is important to discover and to use error-related knowledge about
programs to improve the timing predictability [20]. For example, the single-path programming
technique [16, 10] advocates for predicated code generation, when division by zero errors are
possible. Timing analyzers further utilize this predicated instrumentation to improve on timing
bounds estimation. It is also possible that the underlying compiler generates preventive code
to test if certain numerical errors are possible. The extra tests in the generated code implicitly
cover the erroneous paths during the WCET analysis.

There are cases when undetected error paths lead to overestimation of timing bounds. We
consider the simple, straight line assembly program, in Figure 1, where, for simplicity, we assume
that each instruction executes in one time unit. All the registers, with the exception of r0 which
has value 0, are initialized to symbolic values to exhibit all program behaviors, in this particular
case, four possible executions. The longest executable path appears to be when both branches
are not taken, which is actually an erroneous path, due to a division by zero at instruction 8.
This comes after the following instructions: at program point 1, the register r2 gets value 1,
at line 3, register r3 is updated with value 1, which at line 7 is overwritten with value 0. The
division raises an error, the execution stops before the end of the program and the path should
be labeled as incorrect, and therefore removed as being the longest executable path.

In this particular work, we rely on K versatility to define both the programming language and
associated analysis methods for erroneous paths detection in WCET estimation. Definitions of
certain instructions explicitly state program error conditions such as integer overflow/underflow,
division by zero or misalignment. In this way, the erroneous paths are explicitly exposed by
the semantic rules. Using the formal semantics, we do not rely on the compiler to generate
preventive code, nor on manual instrumentation for error path detection. We use the concrete
executable semantics, augmented with timing information, to derive abstract semantics and
then we employ reachability analysis techniques to detect and eliminate erroneous paths in the
context of WCET analysis.

Related Work. We elaborate next on using model checking for WCET estimation. The
first use of model checking technology in WCET estimation is introduced in Metzner’s paper
[14], where a processor with simple cache is checked via multiple runs, selected in a binary
search fashion. More recent works are around the UPPAAL model checker [1], where the
control flow graph of the program and various micro-architecture features are represented as

2

1. addi r2, r0, 1;

2. beq r1, r0, 5;

3. add r3, r2, r0;

4. j 6;

5. add r4, r1, r2;

6. bne r4, r3, 9;

7. sub r3, r3, r2;

8. div r2, r3;

9. sub r3, r1, r4;

10.

©1
r2←1��

©2
r16=0

yy
r1=0

%%©3
r3←r2 ��

©5

r4←r1+r2

��

©4
%%©6

r4=r3

yy

r46=r3

xx

©7
r3←r3−r2 ��

©8
r2/r3 %%©9

r3←r1−r4��
©10

Figure 1: SSRISC program (left) with control flow graph (right)

timed automata. In [12], the focus is on multicore systems with timing information extracted
from the TDMA and FCFS memory bus models, whereas [6] proposes modular representations
of micro-architecture of several ARM processors. In both papers, UPPAAL explores the timed
automata models and the WCET of a program is extracted from their clock constraints.

The Maude system [3] is the implementation of rewriting logic and, together with a number
of integrated methodologies and tools such as a reachability states exploration tool, an LTL
model checker, an inductive theorem prover, as well as other specialized checkers, it enables
specification and analysis of programming languages. The K framework, described in [18],
supports the definitions of programming languages using a specialized notation for manipulating
program configurations. K shows its versatily when handling definitions of real languages, such
as C in [8] or Verilog in [13] as well as definitions for type systems, model checkers or a Hoare
style program verifier [17]. K-Maude tool [5] implements the K framework on top of Maude
system and provides, in this way, access to all Maude’s aforementioned supporting tools.

To the best of our knowledge, the methodology we propose is novel in several regards.
First, with respect to existing WCET estimation approaches, this is the first use of the formal
executable semantics of the underlying language to derive timing bounds. Second, our proposed
approach aim at erroneous path discovery to tighten the estimation.

Outline of the paper. The paper is organized as follows. Section 2 introduces a specialized
framework, called K, for design and analysis of programming languages. We present the K
definition for an integer subset of Simplescalar PISA assembly language. Section 3 describes
how to use a formal executable semantics to derive abstract semantics for erroneous paths
detection in WCET analysis. The last section contains the conclusions.

2 The Formal Executable Semantics of SSRISC in K

K [18] is a modular, rewrite-based executable programming language design and semantics
framework. A K specification consists of configuration, computation and rule declarations. A
configuration is a (potentially) nested structure formed of K cells. Computation structures,
or simply computations, extend the language syntax with a task sequentialization associative
operation y . The rules in K are divided into two classes: computational rules, that may be

3

Instr ::= add Reg , Reg , Reg ; [strict (2 3)]

addi Reg , Reg , Imm ; [strict (2)]

mult Reg , Reg ; [strict]

div Reg , Reg ; [strict]

j Addr ;

jr Reg ; [strict]

beq Reg , Reg , Addr ; [strict (1 2)]

bne Reg , Reg , Addr ; [strict (1 2)]

lw Reg , Off (Reg) ; [strict (3)]

sw Reg , Off (Reg) ; [strict (3)]

break ;

Figure 2: The K annotated SSRISC language syntax: BNF syntax of SSRISC instrutions on
the left and their K strictness attributes on the right. Reg, Addr, Imm and Off are of sort Int32.

interpreted as transitions in a program execution, and structural rules, that modify a term to
enable the application of computational rules.

We give practical insights into the K framework by defining the integer subset of the Sim-
plescalar [2] PISA assembly language (inspired from MIPS IV). We call this language SSRISC.
Whereas we defined the entire subset of integer-based instructions, for brevity we only describe
a representative snippet of it. Apart from the instruction set presented in [2], a number of
pseudo-instructions appear in the executables that we analyze; we have also defined those in
K, but we also omit them here. The general methodology for language definitions in K begins
with the (abstract) syntax, determines the configuration, and then gives the semantic rules.

The K annotated syntax of a subset of the SSRISC assembly language is given in Figure 2.
The left column shows the abstract syntax, in BNF form, while the right column states the
corresponding K strictness attributes that give the evaluation strategies of the declared opera-
tors. More precisely, the strict attribute tells that the enlisted operands are reduced to base
values of (K builtin) sort KResult. The strictness attributes are actually syntactic sugar in
K, compactly encoding a set of structural rules that achieve the same result as reduction via
evaluation contexts; this encoding is not needed here, the interested reader is referred to [18]
for more details. For example, the add instruction is strict on the second and third operands,
which implies that the last two registers, called sources, are reduced to values before the actual
addition takes place and the first, destination register, gets this value. When strict appears
without arguments, like for mult, it means strict in all the operands.

The program configuration is a wrapped multiset of cells, written as 〈cont 〉lbl , where cont is
the cell contents (possibly itself a multiset of cells) and lbl is the cell label. The K cells hold the
necessary semantic infrastructure (registers, instruction cache, memory, etc.). Two cells appear
in most K definitions: a cell whose label is > that encloses all the other cells, and a cell labeled
k that holds the computation (syntax). The K configuration for the SSRISC language is:

ConfigurationSSRISC ≡ 〈〈K 〉k 〈Reg 〉pc 〈Reg 〉lo 〈Reg 〉hi 〈Map[Reg 7→ Val]〉regs 〈Val 〉break 〉>

The k cell maintains the current computation, i.e., the current program or fragment of
program. The computations, i.e. terms of special sort K, are nested list structures of com-
putational tasks. Elements of such a list are separated by an associative operator y , as in
s1ys2, and are processed sequentially: s2 is computed after s1; the identity of y is denoted by
“·”. The cell pc has the program counter and its value indicates the executing instruction. We
opt to represent the program counter in a different cell than the other registers, as it improves
the readability of the semantics, especially on conditional and unconditional jumps. lo and hi

4

are special registers, required by the mult and div instructions to hold parts of the computed
results. The regs cell contains all the other registers and is a mapping from register names to
stored values. The program requires, as well, a representation of the main memory, that holds
both the program and the necessary data. We detach the memory modeling from that of the
registers as we plan to keep our specification modular to accommodate specifications of cache
memories. The break cell is used, in the strict sense, by the instruction break and, in the more
general sense, to capture program errors such as overflow or division by zero.

Next, we present the concrete formal executable semantics for the SSRISC assembly language
and, in the next section, we show how to derive useful abstractions out of it. We introduce the K
rules by means of defining the semantic rules of SSRISC. K rules generalize the usual rewriting
rules, in the sense that the K rule manipulates only parts of the rewrite term, in three different
ways: read, write and don’t care. K proposes a bidimensional representation of a rule, with the
left-hand side placed above a horizontal line and the right-hand side below.

We capture the execution of each SSRISC instruction in a number of succesive steps: in-
struction request for instruction cache or memory, data request from data cache or memory,
actual processing and finally, machine state update. Our design target is to capture the lan-
guage semantics in a correct and concise manner, and, as a result, we propose a single rewrite
rule per each SSRISC instruction. To achive this, we extract some common functionality, as
general register lookup and update, or use some wrappers as in the case of pc register update.
Before we describe the instruction semantics, we cover these general rules.

The register lookup and update operations require only the cells k and regs. If the current
computational task is a register lookup, for a register R, as shown in the first rule in Figure 3
(left-hand side), the resulting configuration has the corresponding value I of R from the register
cell. This K rule brings a new element of the K notation, the “don’t care” part of a list or
multiset term, represented with ellipses.

The pc register update consists of the following three cases as shown in the right-hand side,
in Figure 3. The first rule represents the automated incrementation before an instruction is
fetched. The second rule addresses the case of a mandatory jump and updates the pc with
a specified target address, NewV. The last rule represents the fall-through case of a branch
instruction and leaves the value of the pc register only with the previous normal incrementation.

All the K rules for the arithmetic-logic (ALU) instructions, in Figure 4, transform the task in
the k cell into a register update, using either updateReg or updateLo/Hi. The former takes two
arguments, the register and the value to be written, whereas updateLo and updateHi require
only the value. The add and div instructions have extra checks as they could lead to errors,
from overflow and respectively division by zero. Therefore, the first K rule states that the add

instruction with the source registers having values V1 and V2 reduces to an overflow check for the
signed addition between these two values and, if necessary, followed by the destination register
Rd update with the result. The div instruction in the k cell reduces to a division by zero check
for the denominator value and, if necessary, followed by the updates for the lo and hi registers.

The branch and jump instructions, in Figure 5, transform the task in the k cell into a correct
pc register update, which has the next instruction program counter, as a result of instruction
fetch. All these K rules use the setPC operation; with the first argument 1 it overwrites the
value in the pc, and with 0 leaves it unchanged. The two rules for jump instructions change the
program counter register with the values Addr, respectively the content of the Rs register. For
the branch instructions, the ”fall-through” and ”taken” cases correspond to value 0, respectively
1 as the first argument of setPC.

Figure 6 shows the K rules for load and store. The load instruction is reduced to a memory
read request via getd, which takes as arguments the memory address and the destination
register Rd. Similarly, the store instruction is reduced to a memory write request via putd,

5

rule:
〈R ···〉k 〈··· R 7→ I ···〉regs
I

rule:
〈updateReg(I,Rd) ···〉k 〈···Rd 7→ ···〉regs

· I

rule:
〈incPC(PC) ···〉k 〈 PC 〉regs

· PC +Int32 4

rule:
〈setPC(1,NewV) ···〉k 〈 〉pc

· NewV

rule:
〈setPC(0,NewV) ···〉k

·

Figure 3: Rules for register look-up and update (left) and pc update (right)

rule:
〈 add Rd , V1 , V2 ; ···〉k
ovf(V1, V2)yupdateReg(V1 +Int32 V2,Rd)

rule:
〈 addi Rd , V1 , V2 ; ···〉k
updateReg(V1 +Int32 V2,Rd)

rule:
〈 mult V1 , V2 ; ···〉k
updateLo(V1 ∗Int32 V2 %Int321�Int3232)yupdateHi(V1 ∗Int32 V2 /Int321�Int3232)

rule:
〈 div V1 , V2 ; ···〉k
div0(V2)yupdateLo(V1/Int32V2)yupdateHi(V1%Int32V2)

Figure 4: Semantics rules for SSRISC ALU instructions

which has the memory address and the source register Rd as arguments. The caches and the
main memory, which are omitted from this presentation, process the getd and putd requests.
The last discussed SSRISC semantic rule treats the special break instruction. The k cell gets the
last term that ends the computation, while the special break cell updates to reflect a program
error. We mention that last is also used for normal termination of computation.

3 Abstract Semantics for WCET Analysis

The K-semantic rules of some SSRISC instructions, i.e. add and div embed tests to prevent
numerical errors such as overflow and division by zero, respectively. The language definition
also poses memory-related error checks such as misaligned data accesses, for a double word load
instruction - an instruction that is not featured in this work. Next, we describe how abstract
semantics for error paths detection can be obtained from the language definition. The first step
is to consider the input program variables initialized with an unknown value, that we name
symb. While the language definition remains unmodified, the abstraction triggers extensions in
the support operations. A newly defined module for symbolic 32-bit integer operations replaces
the corresponding built-in module used by the concrete semantics. For example, the addition
operation between two concrete values, denoted by +Int32 , is extended to handle symb abstract
value such that, if any of the operands is symbolic, the result is symbolic. This abstraction
indeed enables all the possible executions, as the K rewrite rules for the branch instructions
handle potentially symbolic values.

The program in Figure 1 has four execution paths, all of them could be exercised under
appropriate input data. There are two paths having the division instruction, and using this
abstraction, we are able to accurately catch only the path going through lines 3 and 7. The
second path that could terminate with a division by zero error goes through lines 5 and 7. The
value for the denominator register, r3 is unknown as the abstraction does not learn from the
conditions of the two branch instructions. The unknown denominator produces two possible
behaviors, for zero and non-zero values. The former yields an erroneous path, while the latter
turns out to be the longest execution in the program.

6

rule:
〈 j Addr ; ···〉k
setPC(1,Addr)

rule:
〈 jr Rs ; ···〉k
setPC(1,Rs)

rule:
〈 beq V1 , V2 , Addr ; ···〉k
setPC(Bool2Int(V1 =Bool V2),Addr)

rule:
〈 bne V1 , V2 , Addr ; ···〉k
setPC(Bool2Int(V1 6=Bool V2),Addr)

Figure 5: Semantics rules for SSRISC branch and jump instructions

rule:
〈 lw Rd , Off (V1) ; ···〉k
updateReg(getd(Off +Int32 V1),Rd)

rule:
〈 sw Rd , Off (V1) ; ···〉k
putd(Off +Int32 V1,Rd)

rule:
〈break ; ···〉k 〈 〉break
last 1

Figure 6: Semantics rules for SSRISC load, store and break instructions

X 1→ 2→ 3→ 4→ 6→ 7→ 8→ 9 (error path)√
1→ 2→ 5→ 6→ 7→ 8→ 9→ 10 (undetected infeasible 8 t.u.)

X 1→ 2→ 5→ 6→ 7→ 8→ 9 (error path)√
1→ 2→ 3→ 4→ 6→ 9→ 10 (7 t.u.)√
1→ 2→ 5→ 6→ 9→ 10 (6 t.u.)

The longest executable path in the program is an undetected infeasible path, introduced
by the abstraction. Our goal now is to improve the initial simple abstraction to detect the
erroneous path that goes through lines 5 and 7. We refine the first abstract semantics to update
the values of the registers, when the program execution encounters a branch instruction, as we
keep the state information unchanged, and modify only two semantic rules, for the bne and
beq instructions, shown in Figure 7. We enhance new information learning, when one of the
compared registers contains exact information that is used to update the other. Informally, the
new operation, called updReg uses its first argument, the value of the program counter PC,
to get the branch instruction and identify the registers. Using this abstraction, we are able to
identify, for the example program, both erroneous paths.

X 1→ 2→ 3→ 4→ 6→ 7→ 8→ 9 (error path)
X 1→ 2→ 5→ 6→ 7→ 8→ 9 (error path)√

1→ 2→ 3→ 4→ 6→ 9→ 10 (7 t.u.)√
1→ 2→ 5→ 6→ 9→ 10 (6 t.u.)

We work with the current implementation of the K framework, called K-Maude. It is
developed on top of Maude system and, in this way, it has access to all verification tools that
Maude offers: a command for reachability analysis, an LTL model checker, an inductive theorem
prover. We choose the first method, and perform reachability analysis on our K specifications, to
determine the WCET bounds. K-Maude takes K specifications and generates rewrite theories
in Maude. A rewrite theory has an underlying equational theory, containing equations and
membership statements, plus rewrite rules. A rewrite theory defines an abstract transitional
system, where the equations represent, via equivalence classes, the states, while the rewrite rules

7

rule:
〈 beq V1 , V2 , Addr ; ···〉k 〈PC 〉pc
updReg(PC, V1, V2)ysetPC(Bool2Int(V1 =Bool V2),Addr)

rule:
〈 bne V1 , V2 , Addr ; ···〉k 〈PC 〉pc
updReg(PC, V1, V2)ysetPC(Bool2Int(V1 6=Bool V2),Addr)

Figure 7: Modified semantics rules for SSRISC branch instructions

K-Specification

syntax

semantics

+3

+3

+3

Abstract semantics 1

(symb propagation)

Abstract semantics 2

(refined symb propagation)
+

implicit

state exploration
//WCET bound

...

Abstract semantics n +
explicit

state explotation
//WCET bound

K-Specification
for Microarchitecture

Figure 8: General methodology for WCET estimation, based on the K framework

represent the transitions between these classes. If the left-hand side of a rewrite rule matches
the (fragment) of a current state, and the rule condition is satisfied, the system evolves into the
state of the right-hand side of the particular rewrite rule. Maude system offers the possibility of
unfolding this transition system and proving properties, or getting counterexample information.

To obtain a safe WCET bound for a given program, we need to consider all the possible
program executions, implicitly or explicitly. The transition system that a rewrite theory provides
could be unfolded using the special search command. The class of hard real-time programs
assume that program terminates and, in our formal semantics, we denote the final computational
task with the token last. Therefore, all the program executions should terminate in a state
which has last in the k cell. There are two possible situations: termination when there are no
more instructions to be executed and error termination. Both cases are handled via pseudo-
instructions that generate a break instruction, last rule in Figure 6.

We perform reachability analysis, using the search command, for the state that has last as
the current computational task. The timing information is updated along each execution path
and, when the path terminates, the WCET is the maximum of these computed time values.
Since we work on straight-line hard real-time programs, the state space exploration guarantees
to terminate.

4 Conclusions

A WCET analysis determines, for all possible input data, what is the longest program execution
on a particular architecture. Thus, the two important issues are: the longest path search, usually
based on an annotated control-flow graph of a program and the micro-architecture modeling
for a processor behavior analysis. We focused on techniques to improve the longest path search
problem. In the context of WCET analysis, our proposed approach is new under two aspects:
(1) it is the first framework based on the formal definition of an underlying language in the
context of WCET analysis (2) it is the first unitary framework to express both concrete and

8

abstract executions of hard real-time programs. A direct application of (1) is to eliminate
erroneous execution paths to improve the results of the WCET estimation.

Our approach towards WCET analysis started with the formal definition of SSRISC, an
integer subset of Simplescalar PISA assembly language. The concrete executable semantics was
defined using K, a rewrite-based definitional framework for design and analysis of programming
languages. We used the formal semantics, extended with timing information, to derive two
abstract semantics that expose the whole set of program executions, via symbolic values for
program variables. During reachability state space exploration, we executed the semantic rules
and update the global timing information. We identified and eliminated the erroneous paths,
using error prevention mechanisms, presented in the language definition. This approach did not
require special program instrumentation, nor rely on the compiler to generate preventive code.

The obvious improvement of our semantics-based WCET analysis is to derive more powerful
abstract semantics and to eliminate not only error paths, but much of the infeasible execution
paths. We place equal importance on micro-architecture modeling for processor behavior anal-
ysis and, in short term, we plan to to integrate K-based pipeline models. These steps converge
towards the first WCET analyzer using the rewrite-based technology.

References

[1] Gerd Behrmann, Alexandre David, Kim Guldstrand Larsen, Paul Pettersson, and Wang
Yi. Developing uppaal over 15 years. Softw., Pract. Exper., 41(2):133–142, 2011.

[2] Doug Burger and Todd M. Austin. The simplescalar tool set, version 2.0. SIGARCH
Comput. Archit. News, 25:13–25, June 1997.

[3] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Mart́ı-Oliet, José
Meseguer, and Carolyn L. Talcott, editors. All About Maude - A High-Performance Logical
Framework, How to Specify, Program and Verify Systems in Rewriting Logic, volume 4350
of Lecture Notes in Computer Science. Springer, 2007.

[4] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Symposium
on Principles of Programming Languages, pages 238–252. ACM Press, 1977.

[5] Traian Florin Şerbanuţă and Grigore Roşu. K-Maude: A rewriting based tool for seman-
tics of programming languages. In Peter Csaba Ölveczky, editor, Rewriting Logic and Its
Applications - 8th International Workshop, WRLA 2010, volume 6381 of Lecture Notes in
Computer Science, pages 104–122, 2010.

[6] Andreas E. Dalsgaard, Mads Chr. Olesen, Martin Toft, René Rydhof Hansen, and
Kim Guldstrand Larsen. Metamoc: Modular execution time analysis using model checking.
In WCET, pages 113–123, 2010.

[7] Jean-François Deverge and Isabelle Puaut. Safe measurement-based wcet estimation. In
WCET, 2005.

[8] Chucky Ellison and Grigore Roşu. A formal semantics of C with applications. Technical
Report http://hdl.handle.net/2142/17414, University of Illinois, November 2010.

[9] Christopher A. Healy, Mikael Sjödin, Viresh Rustagi, and David B. Whalley. Bounding loop
iterations for timing analysis. In IEEE Real Time Technology and Applications Symposium,
pages 12–21, 1998.

9

[10] Raimund Kirner and Peter Puschner. Time-predictable computing. In Proc. 8th IFIP
Workshop on Software Technologies for Future Embedded and Ubiquitous Systems, Oct.
2010.

[11] Xianfeng Li, Liang Yun, Tulika Mitra, and Abhik Roychoudhury. Chronos: A timing
analyzer for embedded software. Sci. Comput. Program., 69(1-3):56–67, 2007.

[12] Mingsong Lv, Guan Nan, Wang Yi, and Ge Yu. Combining abstract interpretation with
model checking for timing analysis of multicore software. In IEEE Real-Time Systems
Symposium, 2010. forthcoming.

[13] Patrick O’Neil Meredith, Michael Katelman, José Meseguer, and Grigore Roşu. A formal
executable semantics of Verilog. In Eighth ACM/IEEE International Conference on Formal
Methods and Models for Codesign (MEMOCODE’10), pages 179–188. IEEE, 2010.

[14] Alexander Metzner. Why model checking can improve wcet analysis. In CAV, pages 334–
347, 2004.

[15] Stefan M. Petters. Comparison of trace generation methods for measurement based wcet
analysis. In WCET, pages 75–78, 2003.

[16] Peter Puschner. The single-path approach towards wcet-analysable software. In Proc.
IEEE International Conference on Industrial Technology, pages 699–704, Dec. 2003.

[17] Grigore Roşu, Chucky Ellison, and Wolfram Schulte. Matching logic: An alternative to
Hoare/Floyd logic. In Thirteenth International Conference on Algebraic Methodology And
Software Technology (AMAST ’10). LNCS, 2010. forthcoming.

[18] Grigore Roşu and Traian Florin Şerbănuţă. An overview of the K semantic framework.
Journal of Logic and Algebraic Programming, 79(6):397–434, 2010.

[19] Friedhelm Stappert and Peter Altenbernd. Complete worst-case execution time analysis
of straight-line hard real-time programs. Journal of Systems Architecture, 46(4):339–355,
2000.

[20] Lothar Thiele and Reinhard Wilhelm. Design for time-predictability. In Design of Systems
with Predictable Behaviour, 2004.

[21] Reinhard Wilhelm. Why ai + ilp is good for wcet, but mc is not, nor ilp alone. In VMCAI,
pages 309–322, 2004.

[22] Reinhard Wilhelm and Björn Wachter. Abstract interpretation with applications to timing
validation. In CAV, pages 22–36, 2008.

10

