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ABSTRACT
Matching logic is a new program verification logic, which
builds upon operational semantics. Matching logic speci-
fications are constrained symbolic program configurations,
called patterns, which can be matched by concrete configu-
rations. By building upon an operational semantics of the
language and allowing specifications to directly refer to the
structure of the configuration, matching logic has at least
three benefits: (1) One’s familiarity with the formalism re-
duces to one’s familiarity with the operational semantics of
the language, that is, with the language itself; (2) The veri-
fication process proceeds the same way as the program exe-
cution, making debugging failed proof attempts manageable
because one can always see the “current configuration” and
“what went wrong”, same like in a debugger; and (3) Noth-
ing is lost in translation, that is, there is no gap between
the language itself and its verifier. Moreover, direct access
to the structure of the configuration facilitates defining sub-
patterns that one may reason about, such as disjoint lists or
trees in the heap, as well as supporting framing in various
components of the configuration at no additional costs.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Formal meth-
ods; F.3.1 [Specifying and Verifying and Reasoning
about Programs]: Mechanical verification

General Terms
Languages, Verification, Theory
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1. INTRODUCTION
Program verification is hard. There are many well-known

reasons for that, such as inherent complexity of programs,
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unexpected or missed assumptions, poor tools, lack of train-
ing and resources, etc., which we cannot detail here. One
less mentioned reason is the formal foundations on which
we build our current verification approaches. For example,
could it be possible that novel verification foundations, con-
ceptually different from Floyd-Hoare logic [4, 2], or separa-
tion logic [5, 6], or dynamic logic [3], wait to be unearthed in
order to make program verification more feasible and accessi-
ble to non-experts? Common scientific sense tells the answer
is more likely positive than negative. Without claiming that
it overcomes all the problems of the existing approaches, this
paper advances the possibility that matching logic [7] could
be a promising novel verification foundation.

Matching logic builds upon operational semantics. To use
it, one must understand at least the structure of the config-
urations that are used in the operational semantics of the
language. For example, the configuration of some language
may contain, besides the code itself, an environment, a heap,
stacks, synchronization resources, etc. Matching logic spec-
ifications, called patterns, allow one to refer directly to the
configuration of the program. For example, the pattern

〈 〈root 7→ ?root, E〉env 〈tree(?root)(T), H〉heap C 〉config

specifies the set of configurations where program variable
root points to tree T. More precisely: (1) the configuration
〈. . . 〉config contains at least an environment cell and a heap
cell, and the rest of the configuration is matched by C (the
configuration frame); (2) the environment 〈. . . 〉env holds at
least the binding root 7→ ?root, and the rest of the envi-
ronment is matched by E (the environment frame); (3) the
heap 〈. . . 〉heap holds at least the term tree(?root)(T), and the
rest of the heap is matched by H. The term tree(?root)(T)
matches a portion of the heap that contains a flattened rep-
resentation of the tree T in memory. As seen shortly, such
terms are not defined, they are axiomatized.

Matching logic patterns can be defined as first-order logic
(FOL) formulas [7] over a signature that includes all the
constructs for configurations and everything they can hold,
such as lists, sets, maps, trees, etc. Variables like ?root are
existentially quantified over the pattern, while E, T, H, C are
free. From a matching logic perspective, unlike in other pro-
gram verification logics, program variables like root are not
logical variables; they are simple syntactic constants. The
matching logic derivation rules are nothing else but the op-
erational semantic rules (allowed to work on configurations
with variables). For example, an assignment statement “x =
5” changes the pattern above into the pattern

〈 〈root 7→ 5, E〉env 〈tree(?root)(T), H〉heap C 〉config



There is no backwards substitution like in the Hoare rule for
assignment, as well as no introduction of existential quanti-
fiers like in the Floyd rule for assignment [7]. The variables
appearing in patterns often need to be constrained; as pat-
terns are just FOL formulas, one can conjunct them with a
formula expressing the desired constraints. For example:

〈〈root 7→?root,E〉env 〈tree(?root)(T),H〉heap C〉config ∧ T 6=empty

There is no need for explicit “separation”. In matching
logic, separation is implicitly achieved at the structural (i.e.,
term) level and not at the logical level. For example, if one
matches two terms in a multiset, then the two terms are
obviously distinct. In our pattern above, the structural sep-
aration tells that the binding of root is separated from the
rest of the environment E, the term tree(?root)(T) is sepa-
rated from the rest of the heap H, and the three mentioned
cells are separated from the rest of the configuration C.

Framing can appear in any cell of the configuration. Same
like separation, it needs no special logical support, in par-
ticular no derivation rules. Cell framing simply falls under
the general principle of matching. Consider, for example,
the assignment “x=5” discussed above, and the free variable
H. Since H appears free in both patterns, it must match the
same term. In other words, any concrete program configu-
ration that matches the first pattern will induce a binding
for H, which will be the same after the assignment.

Like in Hoare logic, each programming language undergo-
ing program verification needs to be associated a matching
logic proof system. However, unlike in Hoare logic where
there is an inherent gap between the operational semantics of
the programming language and the Hoare logic proof system
(which needs to be filled by proving corresponding sound-
ness results), the matching logic proof system associated to
a given programming language is derived directly from the
operational semantics of the programming language [7].

Matching logic is very new (the first non-report paper was
published in 2010 [7]). Hence, there is a lot of work to be
done, both at the foundational and at the implementation
levels. To test the practicality of the approach, we imple-
mented a proof-of-concept matching logic verifier for a frag-
ment of C, called MatchC; see http://fsl.cs.uiuc.edu/ml
for download and online execution. MatchC builds upon
an executable rewrite-based semantics of the fragment of C,
extending it (unchanged) with semantics for pattern specifi-
cations. Both the executable semantics and the verifier are
implemented using the K language definitional framework
[8], which compiles into Maude [1].

MatchC is the main motivation for this paper. More pre-
cisely, the unexpectedly good results in terms of generality
and automation obtained while using it on verifying chal-
lenging programs, like the ones in the next section. We have
collected many such programs from other program verifiers,
from colleagues, and from our own experience; they can be
reached through the web interface at the URL above. Two
factors guided us in our experiments: proving full correct-
ness of programs (as opposed to just memory safety which
is much easier) and doing so completely automatically (the
user only provides the pattern specifications).

A preliminary version of this work was presented at a
meeting on usable verification (UV’10) sponsored by the Na-
tional Science Foundation and Microsoft Research in Novem-
ber 2010. The UV’10 papers have been made available to
the participants, but no proceedings have been published.

2. MATCHC AT WORK
Here we discuss a few examples that MatchC can verify in

milliseconds. Figure 1 shows a collection of list manipulating
C functions: listReverse (reverses a linked list), listAppend
(appends two linked lists), listReadWrite (reads a sequence
of integers from standard input and writes it to standard
output in reverse order). Figure 2 shows a function that
flattens a tree into a list, traversing the tree in infix order.

Every function is annotated with pre and post pattern
conditions. When a function is verified, its precondition is
assumed as the (symbolic and constrained) configuration in
which its body is executed using the operational semantics
of the language. The semantics is extended with pattern
assertions as expected: when a pattern assertion is encoun-
tered, MatchC attempts to prove that the current (sym-
bolic and constrained) configuration matches the asserted
pattern. The verification fails if any such match fails. One
can assert patterns anywhere in the program. The post-
condition is automatically asserted at function return. We
call asserted patterns invariants when they are associated to
loops. An invariant always holds before each loop iteration
(we only consider partial correctness for the time being).

Note the patterns in Section 1 contain environment cells,
while those in Figures 1 and 2 do not. MatchC’s configu-
rations internally hold environment cells mapping program
variables to values, and the user can use them in patterns.
However, as a user convenience, we implemented a simple
shell to the semantics that computes and adds an environ-
ment cell to any configuration which does not already have
one. This syntactic sugar allows for more compact patterns.

The precondition of listReverse states that parameter x
points to a linked list holding the sequence A; the variable
A is free in both the pre and the post conditions, indicating
that it must be bound to the same sequence (defined alge-
braically in a trivial way; see below). There is another free
variable in the pre and the post conditions, H, which will
be bound to the remaining contents of the heap cell, that
is, to its corresponding frame. The postcondition binds pat-
tern existential variable ?x to the return value, which points
to a list with contents rev(A) (the reverse sequence of A,
also trivially defined algebraically). For the verification of
listReverse, one only needs to refer to the heap cell. All the
other cells of the configuration are captured by an implicit
universally quantified frame variable and remain unchanged.
The loop invariant asserts that the heap contains two lists,
one starting at p which contains the part of the sequence
that was already reversed (rev(?B)), and one starting at x
which contains the rest of the sequence (?C), and the initial
sequence A equals (rev(?B) followed by ?C. The remainder of
the heap (H) in the invariant happened to stay unchanged.

Similarly, the annotations of listAppend only mention the
heap cell, while the rest of the cells in the configuration
are again captured by the implicit frame. The precondition
states that there are two lists in the heap with contents A
and B, while the postcondition asserts that the return value
points to a list with contents the concatenation of A and
B. The invariant states that p splits the first list into a list
segment (with contents ?A1) and a list (with contents ?A2).
Heap frame !H subsumes the function frame (H) and the
second list, which is not used by the loop.

Function listReadWrite reads an integer sequence from
standard input, stores it into a list, then writes it at the
standard output and frees the list. To prove its correctness,



struct listNode { int val ; struct listNode ∗next; };

struct listNode∗ listReverse(struct listNode ∗x)
pre 〈list(x)(A),H〉heap

post 〈list(?x)(rev(A)),H〉heap ∧ returns ?x

{
struct listNode ∗p; struct listNode ∗y;
p = 0;

inv 〈list(p)(?B), list(x)(?C),H〉heap ∧ A = rev(?B)@?C

while(x) {
y = x−>next;
x−>next = p;
p = x;
x = y;
}
return p;
}

struct listNode∗
listAppend(struct listNode ∗x, struct listNode ∗y)

pre 〈list(x)(A), list(y)(B),H〉heap

post 〈list(?x)(A@B),H〉heap ∧ returns ?x

{
struct listNode ∗p;
if (x == 0) return y;
p = x;

inv 〈lseg(x, p)(?A1), list(p)(?A2), !H〉heap

∧ A = ?A1@?A2 ∧ ¬(p = 0)

while (p−>next) p = p−>next;
p−>next = y ;
return x;
}

void listReadWrite(int n)

pre 〈A@ In〉in 〈Out〉out ∧ len(A) = n
post 〈In〉in 〈Out@ rev(A)〉out

{
int i ;
struct listNode ∗x; struct listNode ∗y;
i = 0; x = 0;

inv 〈?B@ In〉in 〈list(x)(?A), !H〉heap

∧ i ≤ n ∧ len(?B) = n− i ∧ A = rev(?A)@ ?B

while (i < n) {
y = x;
x = (struct listNode∗)

malloc(sizeof(struct listNode));
scanf(”%d”, &(x−>val));
x−>next = y;
i += 1;
}
i = 0;

inv 〈Out@ ?A〉out 〈list(x)(?B), !H〉heap ∧ A = rev(?A@ ?B)

while (x) {
y = x−>next;
printf (”%d ”,x−>val);
free (x);
x = y;
}
}

Figure 1: Collection of C functions manipulating
linked lists and standard I/O

struct treeNode {
int val ;
struct treeNode ∗left;
struct treeNode ∗right;
};

struct listNode { int val ; struct listNode ∗next; };
struct treeNodeList {
struct treeNode ∗val;
struct treeNodeList ∗next;
};

struct listNode ∗treeToList(struct treeNode ∗root)
pre 〈tree(root)(T),H〉heap

post 〈list(?a)(tree2list(T)),H〉heap ∧ returns ?a

{
struct listNode ∗a; struct listNode ∗node;
struct treeNode ∗t;
struct treeNodeList ∗stack; struct treeNodeList ∗x;
if (root == 0) return 0;
a = 0;
stack = (struct treeNodeList ∗)

malloc(sizeof(struct treeNodeList));
stack−>val = root; stack−>next = 0;

inv 〈list{tree}(stack)(?TS), list(a)(?A),H〉heap

∧ tree2list(T) = list{tree}2list(rev(?TS))@?A

while (stack != 0) {
x = stack;
stack = stack−>next;
t = x−>val;
free (x);
if (t−>left != 0) {
x = (struct treeNodeList ∗)

malloc(sizeof(struct treeNodeList));
x−>val = t−>left; x−>next = stack;
stack = x;
}
if (t−>right != 0) {
x = (struct treeNodeList ∗)

malloc(sizeof(struct treeNodeList));
x−>val = t; x−>next = stack;
stack = x;
x = (struct treeNodeList ∗)

malloc(sizeof(struct treeNodeList));
x−>val = t−>right; x−>next = stack;
stack = x;
t−>left = t−>right = 0;
} else {
node = (struct listNode ∗)

malloc(sizeof(struct listNode));
node−>val = t−>val; node−>next = a;
a = node;
free (t );

}
}
return a;
}

Figure 2: Iterative C program flattening a tree into
a list: traverses the tree in infix order and, as it
reaches each tree node, it deallocates it and allocates
a corresponding list node. The matching logic an-
notations state the full correctness of this program:
the tree is completely deallocated, the resulting list
is allocated and contains exactly the same elements
in the desired order, and that nothing else changes.
MatchC automatically verifies the annotated pro-
gram above in milliseconds.



one needs the input and the output cells in addition to the
heap cell. The precondition states that in the input cell
there is a sequence A of length n, while the postcondition
states that the sequence has been read and written to the
output in reverse order (rev(A)). Note that the heap cell
does not appear in either the pre or the post conditions,
which means that the function can use the heap, but upon
return it must be restored to its initial content. The first
loop invariant asserts that x points to a list with contents
the reverse sequence of the read elements. The second loop
invariant asserts that x points to a list with contents the
sequence of the yet to be written elements. Heap frame
variable !H matches the initial contents of the heap.

Function treeToList in Figure 2 flattens a binary tree into
a list, traversing the tree in infix order. Each node of the
initial tree (structure treeNode) has three fields: the value,
and two pointers, for the left and the right subtrees. Each
node of the final list (structure listNode) has two fields: the
value and a pointer to the next node of the list. The pro-
gram makes use of an auxiliary structure (treeNodeList) to
represent a stack of trees. For demonstration purposes (to
highlight the invariant capability of our verifier), we prefer
an iterative version of this program. We need a stack to keep
track of our position in the tree. Initially that stack contains
the tree passed as argument (as a pointer). The loop repeat-
edly pops a tree from the stack, and it either pushes back
the left tree, the root, and the right tree onto the stack, or
if the right tree is empty it pushes back the left subtree and
appends the value in the root node at the beginning of the
list of tree elements. As the loop processes the tree, it frees
the tree nodes and it allocates the corresponding list nodes.

The precondition states that the parameter root points
to a binary tree holding the contents T. The postcondition
binds ?a to the return value of the function, which points to
a list with contents tree2list(T) (the infix traversal sequence
of T, also trivially defined algebraically). In matching logic,
list, tree, and tree2list are ordinary operation symbols added
to the signature and constrained through. The invariant of
our function asserts that the heap contains a stack of trees
(represented as a list of trees) with contents ?TS and a list
with contents ?A, and that the infix traversal sequence of T,
tree2list(T), is equal to the concatenation in reverse order of
the infix traversal sequences of the trees in the stack con-
catenated with the contents of the list. All these operations
on trees and lists are axiomatized below.

We next list the axioms added in the mathematical library
of MatchC in order to verify the programs above automat-
ically. Our axiom for lists is the FOL formula:

〈〈list(p, α),H〉heapC〉config ∧ φ
⇔ 〈〈H〉heapC〉config ∧ 〈p = 0 ∧ α = nil ∧ φ〉form

∨ 〈〈p 7→ [?a, ?q], list(?q, ?β),H〉heapC〉config

∧ α = [?a]@?β ∧ φ
The above captures the two cases, one in which the list is
empty and the other in which it has at least one element. We
borrowed the notation p 7→ [?a, ?q] from separation logic; it
stands for two bindings, namely for “p 7→ ?a, p+1 7→ ?q”.
we also borrowed the notation for lists from OCAML: [?a]
is a one-element list and @ concatenates two lists. All the
non-existential variables in the axiom above are assumed
universally quantified, not free; in other words, the H and C
variables in this axiom have nothing to do with the homony-
mous variables in the program annotations.

The tree pattern is axiomatized similarly (tree(p, τl, τr) is

our constructor for trees as mathematical objects):

〈〈tree(p, τ),H〉heapC〉config ∧ φ
⇔〈〈H〉heapC〉config ∧ p = 0 ∧ τ = empty ∧ φ
∨ 〈〈p 7→ [?a, ?l, ?r], tree(?l, ?τl), tree(?r, ?τr),H〉heapC〉config

∧ τ = tree(?a, ?τl, ?τr) ∧ φ
The axiomatization for list{tree} is similar to that of list,
but the data field is a pointer to a tree.

The only thing left to show is our axioms for reasoning
within the mathematical domains that provided the data
stored in the heap patterns above. The equations below are
self-explanatory; we only mention that rewrite engines like
Maude are quite suitable for handling such axiomatizations:

rev(nil) = nil
rev([a]) = [a]

rev(A1@A2) = rev(A2)@rev(A1)
tree2list(empty) = nil

tree2list(tree(a, τl, τr)) = tree2list(τl)@[a]@tree2list(τr)
list{tree}2list(nil) = nil
list{tree}2list([τ ]) = tree2list(τ)

list{tree}2list(A1@A2) = list{tree}2list(A1)@list{tree}2list(A2)

3. CONCLUSIONS AND FUTURE WORK
This paper advanced the idea that the recently introduced

matching logic approach can be a viable alternative to ex-
isting program verification approaches, avoiding their limi-
tations. For example, notoriously difficult aspects such as
heap separation or framing fall as special cases of a general
and relatively easy to understand notion of pattern match-
ing. Even though it only took a few months to develop,
our current matching logic prototype verifier, MatchC, can
automatically verify rather challenging programs, proving
not only memory safety but also full data-correctness as
well as properties about the I/O (see the MatchC URL
for stack properties, too). While the current practical re-
sults are encouraging, there is much work to be done, such
as: formal proofs of soundness and relative completeness,
preferably in a generic manner that applies to all program-
ming languages; proving termination of programs, too (we
only considered partial correctness so far); inferring pattern
invariants; proving consistency of axiomatic definitions of
heap or other configuration sub-patterns.
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