
A FORMAL SEMANTICS OF C WITH APPLICATIONS

BY

CHARLES MCEWEN ELLISON III

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2012

Urbana, Illinois

Doctoral Committee:

Associate Professor Grigore Ros,u, Chair and Director of Research
Professor Gul Agha
Professor José Meseguer
Principal Researcher Wolfram Schulte, Microsoft Research

PhD Thesis, University of Illinois, July 2012

Abstract

This dissertation shows that complex, real programming languages can be
completely formalized in the K Framework, yielding interpreters and analysis
tools for testing and bug detection. This is demonstrated by providing, in K,
the first complete formal semantics of the C programming language. With
varying degrees of effort, tools such as interpreters, debuggers, and model-
checkers, together with tools that check for memory safety, races, deadlocks,
and undefined behavior are then generated from the semantics.
Being executable, the semantics has been thoroughly tested against the

GCC torture test suite and successfully passes 99.2% of 776 test programs.
The semantics is also evaluated against popular analysis tools, using a new
test suite in addition to a third-party test suite. The semantics-based tool
performs at least as well or better than the other tools tested.

ii

PhD Thesis, University of Illinois, July 2012

Acknowledgments

I would like to thank my family for supporting me and always being there
when I needed help. In particular, my father for giving me math problems
to solve and introducing me to interesting articles in the encyclopedia; my
mother for believing in me and always pushing me to do my best; my aunt
and uncle, Janet and Danny, for giving me my first taste of computers when
they let me play with their Kaypro II; my uncle Tim for letting me have all
of his old computer books; and everyone else for being so loving and caring.
I would also like to thank my adviser Grigore Ros,u. Grigore’s creation of

K, and his continued dedication and passion for the framework, made my
work possible. He always sought the best solution to every problem and he
never made me feel dumb for asking dumb questions. I would also like to
thank the rest of my committee—Gul Agha, José Meseguer, and Wolfram
Schulte—whose thoughtful contributions helped strengthen my thesis.
I never would have made it this far without my colleagues. Some of the

many who have touched my life while a grad student include: Nick Chen,
Dennis Griffith, Mark Hills, Michael Ilseman, Dongyun Jin, Mike Katelman,
David Lazar, Choonghwan Lee, Pat Meredith, Maurice Rabb, Ralf Sasse, and
Andrei S, tefănescu. In particular, I would like to thank Paul Adamczyk and
Traian S, erbănut,ă, whose kind words and patient support were my rock in so
many difficult times. Thank you all for making each day a little brighter.
My friends outside of school—Amie, Dixie, Heidy, Jeff, Megan, Miroslav,

Patrick, Rebecca, Robyn, Toria, Winna—thank you for listening to me
complain without complaint. Thanks for giving sound advice. Thanks for
being there when I felt down. Thank you.

My research has been supported in part by NSA contract H98230-10-C-0294,
by NSF grants CCF-0916893, CNS-0720512, and CCF-0448501, by NASA
contract NNL08AA23C, by a Samsung SAIT grant, by several Microsoft gifts,
and by (Romanian) SMIS-CSNR 602-12516 contract no. 161/15.06.2010.

iii

PhD Thesis, University of Illinois, July 2012

Table of Contents

Chapter 1 Introduction . 1
1.1 Problem Description and Contribution 1
1.2 Why Details Matter . 5

Chapter 2 Related Work . 8
2.1 Comparison with Existing Formal C Semantics 8
2.2 Other Formal Semantics . 13
2.3 Semantics and Formal Analysis Tools 19

Chapter 3 Background . 22
3.1 C Standard Information . 22
3.2 Rewriting Logic and K . 24

Chapter 4 Positive Semantics 29
4.1 Introduction . 29
4.2 The Semantics of C in K . 30

4.2.1 Syntax . 30
4.2.2 Configuration (Program + State) 31
4.2.3 Memory Layout . 32
4.2.4 Basic Semantics . 33
4.2.5 Static Semantics . 41
4.2.6 Concurrency Semantics 43
4.2.7 Parametric Behavior 47
4.2.8 Expression Evaluation Strategy 48
4.2.9 Putting It All Together with kcc 49

4.3 Testing the Semantics . 51
4.3.1 GCC Torture Tests . 51
4.3.2 Exploratory Testing 53

4.4 Applications . 53
4.4.1 Debugging . 54
4.4.2 State Space Search . 55

iv

PhD Thesis, University of Illinois, July 2012

Chapter 5 Negative Semantics 61
5.1 Introduction . 61
5.2 Undefinedness . 63

5.2.1 What Undefinedness Is 63
5.2.2 Undefinedness is Useful 64
5.2.3 Undefinedness is also a Problem 65
5.2.4 Strangeness of C Undefinedness 66
5.2.5 Implementation-Dependent Undefined Behavior 67
5.2.6 Difficulties in Detecting Undefined Behavior 69
5.2.7 Undefinedness in Other Languages 70

5.3 Semantics-Based Undefinedness Checking 71
5.3.1 Using Side Conditions and Checks to Limit Rules . . . 72
5.3.2 Storing Additional Information 76
5.3.3 Symbolic Behavior . 80
5.3.4 Suggested Semantic Styles for Undefinedness 83

5.4 Applications . 85
5.4.1 A Semantics-Based Undefinedness Checker 85
5.4.2 State Space Search Revisited 89

5.5 Evaluation . 93
5.5.1 Third Party Evaluation 93
5.5.2 Undefinedness Test Suite 97

5.6 Conclusion . 99

Chapter 6 Conclusion . 101
6.1 Limitations . 101
6.2 Future Work . 103

6.2.1 Semantics . 103
6.2.2 Tools . 103

6.3 Conclusion . 104

Appendix A Entire Annotated Semantics 106
A.1 Syntax . 107
A.2 Configuration . 127
A.3 Expressions . 130
A.4 Statements . 178
A.5 Typing . 202
A.6 Declarations . 244
A.7 Memory . 285
A.8 Standard Library . 309
A.9 Error Handling . 345
A.10 Miscellaneous . 364

References . 409

v

PhD Thesis, University of Illinois, July 2012

Chapter 1

Introduction

This dissertation shows that complex, real programming languages can be
completely formalized in the K Framework, yielding interpreters and analysis
tools for testing and bug detection. This is demonstrated by providing, in K,
the first complete formal semantics for C. From this definition, we extract a
number of useful tools.
In this chapter, we explain the problem context and our particular contri-

butions. In Chapter 2 we provide a detailed comparison with other formal
semantics of C, a brief overview of formal semantics for other programming
languages, and a brief comparison of different formalisms. Chapter 3 gives
background material necessary for understanding the rest of the dissertation,
including information on C and on the K framework. Chapter 4 focuses on the
semantics of defined programs, including how the semantics is organized, how
we evaluated it, and what tools are generated. Chapter 5 does the same for
undefined programs—it describes the consequences of having undefinedness
in C as well as what formal techniques are needed to identify such programs.
An evaluation and investigation of tools is also done in Chapter 5. Chapter 6
summarizes our work (including limitations) and suggests possible avenues
of research building on it. Finally, Appendix A contains the entire dynamic
semantics, annotated with excerpts from the C standard.

1.1 Problem Description and Contribution
Programming language semantics and program analysis are well developed
research areas with a long history. Many definitional formalisms have been
suggested over the years, each capturing the imagination of groups of re-
searchers with varying degrees of success. However, despite the abundance
of formalisms, programming languages are not designed or analyzed using
formal semantics as a matter of course. Very few languages have been formally

1

PhD Thesis, University of Illinois, July 2012

defined in their entirety, and very few analysis tools are based on even the
semantic subsets that exist.
This lack of semantics-based approach to software analysis is curious con-

sidering that it has been a goal of much of the research in the area in the last
30 years [19, 26, 60, 72, 107, 127]. The benefits of such a system would be
numerous, and include:

• when multiple tools for a language are based off of a single semantics
of that language, one gains confidence that the tools themselves are
trustworthy;

• it is simply more practical to describe the semantics in a single place
instead of many times across multiple tools;

• tools simply cannot be shown to be sound without a formal semantics
against which to compare them.

Given that the semantics-based approach to programming languages and
analysis tools has such strong advantages, there must be some reason why
it has not become mainstream. One theory is that each of the prevailing
formalisms suffer serious weaknesses, making them less than suitable for the
task [146]. One recent formalism whose goal is to meet these challenges and
that has been gaining traction is the K Framework [134, 148], a rewriting-
based formalism for defining programming languages, type systems, and
calculi. K has shown much promise, having been used to define the semantics
of many academic languages [73, 146, 147, 150], as well as subsets of a handful
of real programming languages [27, 53, 100, 102, 138]. K has many good
properties, including the ability to specify language rules modularly and
represent truly concurrent programming languages faithfully [146]. While
such properties are necessary for a definitional framework capable of fulfilling
this dream, they are not sufficient. Until now, K had not been used to describe
the complete semantics of any real programming language. It is possible that,
while being quite effective at describing toy languages or language subsets,
the complexity of a real language could overwhelm the capabilities of K.
We have allayed these fears with our definition of the C programming

language. C is a popular, complex language that provides just enough
abstraction above assembly language for programmers to get their work done
without having to worry about the details of the machines on which the

2

PhD Thesis, University of Illinois, July 2012

programs run. Despite this abstraction, C is also known for the ease in which
it allows programmers to write buggy programs. With no runtime checks and
little static checking, in C the programmer is to be trusted entirely. Despite
the abstraction, the language is still low-level enough that programmers can
take advantage of assumptions about the underlying architecture. Trust in
the programmer and the ability to write non-portable code are actually two
of the design principles under which the C standard was written [80]. These
ideas often work in concert to yield intricate, platform-dependent bugs. The
potential subtlety of C bugs makes it an excellent candidate for formalization,
as subtle bugs can often be caught only by more rigorous means.
Despite its continuing popularity for over 40 years, no complete formal

semantics for C was previously given in any formalism (Section 2.1). Our
definition of C in K thus represents the first complete formal semantics of
C—we say complete, in the sense that it covers the semantics of all correct
programs as defined by the C standard (see Sections 3.1 and 4.1 for more
details). We tested our semantics against the regression tests used by the
GCC compiler and found that our semantics ran 99.2% of the tests correctly,
which is better than GCC itself or Clang, and only one test fewer than ICC
(Section 4.3). Such a definition in K, produced in about a year and a half of
individual effort, proves that K is capable of representing the semantics of
real programming languages in all their detail. We discuss these semantics in
detail in Chapter 4.

In addition to the semantics of correct programs (which we call the positive
semantics), we have also formalized a significant portion of the negative
semantics of C, that is, the ability to identify semantically invalid programs.
Such a semantics allows one to determine whether or not a C program contains
undefined behavior, such as a division by zero. We show that this problem is
undecidable in theory, but it can often be answered in practice. The negative
semantics is discussed in depth in Chapter 5.
Faithful definitions alone do not solve the problem of semantics-based

analysis tools. There remains the issue of the tools themselves. We have
created a suite of tools directly from the single C semantics; of course we
build on the work of many others, including works specifically related to
K [7, 50, 53, 74, 133, 134, 138, 139, 146, 148] as well as the underlying
rewriting-logic theories to which K is compiled [29, 30, 46, 96, 104, 132].
These tools include interpreters, debuggers, state-space search tools, and

3

PhD Thesis, University of Illinois, July 2012

model-checkers, together with tools that check for memory safety, races,
and deadlocks. The positive semantics is enough for tools that explore the
behaviors of correct programs, while the negative semantics is necessary
for identifying or preventing incorrect behavior. Not only are these tools
possible, but we have shown that the tools are usable—a tool to identify and
report undefined behavior has been used as a component in work on test case
reduction (Section 5.4.1).

Contributions The specific contributions of this dissertation include:

• a detailed comparison of other C formalizations;

• the most comprehensive formal semantics of C to date, which is exe-
cutable and has been thoroughly tested;

• demonstrations as to its utility in exploring program behavior;

• constructive evidence that rewriting-based semantics scale;

• a systematic formal analysis of undefinedness in C;

• identification and comparison of techniques that can be used to define
undefinedness;

• a semantics-based tool for identifying undefined C programs;

• initial work on a test suite for undefined behavior in C.

The tool, the semantics, and the test suite can all be found at http://

c-semantics.googlecode.com/.

Features Our semantics captures every feature required by the C99 standard.
We include a partial list here to give an idea of the completeness, and explain
any shortcomings in Section 6.1. All aspects related to the below features
are included and are given a direct semantics (e.g., not translated to other
features using a parser or other informal frontend):

• Expressions: referencing and dereferencing, casts, array indexing (a[i]),
structure members (-> and .), arithmetic, bitwise, and logical opera-
tors, sizeof, increment and decrement, assignments, sequencing (_,_),
ternary conditional (_?_:_);

4

PhD Thesis, University of Illinois, July 2012

http://c-semantics.googlecode.com/
http://c-semantics.googlecode.com/

• Statements: for, do-while, while, if, if/else, switch, goto, break,
continue, return;

• Types and Declarations: enums, structs, unions, bitfields, initializers,
static storage, typedefs, variable length arrays;

• Values: regular scalar values (signed/unsigned arithmetic and pointer
types), structs, unions, compound literals;

• Standard Library: malloc/free, set/longjmp, basic I/O;

• Conversions: (implicit) argument and parameter promotions and arith-
metic conversion, and (explicit) casts.

1.2 Why Details Matter
Many features of C are crosscutting, in that their semantics have potential
ramifications for other features in the language. For example, supporting
bitfields might require changing the way memory is handled—suddenly, instead
of every access to memory being at the byte level, some are sub-byte or across
byte boundaries. Similarly, the memory returned by malloc() is a different
“kind” of memory than that created for local or global variables [81, §6.2.4,
§6.5:6, & §7.22.3]. Not only is the lifetime different, but the types of objects
stored in the memory can change. One final example is setjmp() and
longjmp(), which allow a programmer to save the program context and later
return to it. What counts as context changes depending on what features of
C are supported by an implementation. In many definitional frameworks, it
is likely that features would need to be written with consideration given to
their effect on longjmp().
Other features, while not crosscutting, are surprisingly intricate. It is

tempting to gloss over the details of C’s arithmetic and other low-level
features when giving it a formal semantics. However, C is designed to be
translatable to machine languages where arithmetic is handled by any number
of machine instructions. The effects of this overloading are easily felt at
the size boundaries of the types. It is a common source of confusion among
programmers, and so a common source of bugs. Here we give a few examples
that reveal even apparently simple C programs can involve complex semantics.

5

PhD Thesis, University of Illinois, July 2012

For the purposes of these examples, assume that ints are 2 bytes (capable
of representing the values −32768 to 32767) and long ints are 4 bytes
(−2147483648 to 2147483647). Also, unless specified, in C a type is assumed
to be signed.1 In the following program, what value does c receive [158,
Q3.14]?

int a = 1000, b = 1000;

long int c = a * b;

One is tempted to say 1000000, but that misses an important C-specific detail.
The two operands of the multiplication are ints, so the multiplication is done
at the int level. It therefore overflows (1000 ∗ 1000 = 1000000 > 32767),
which, according to the C standard, makes the expression undefined.

What if we make the types of a and b unsigned (0 to 65535)?

unsigned int a = 1000, b = 1000;

long int c = a * b;

Here, the arithmetic is again performed at the level of the operands, but
overflow on unsigned types is completely defined in C. The result is computed
by simply reducing the value modulo one more than the max value [81,
§6.3.1.3:2]. 1000000 mod 65536 gives us 16960.

One last variation—signed chars are one byte in C (−128 to 127).2 What
does c receive?

signed char a = 100, b = 100;

int c = a * b;

Since the chars are signed, then based on the first example above the re-
sult would seem undefined (100 ∗ 100 = 10000 > 127). However, this is
not the case. In C, types smaller than ints are promoted to ints before
doing arithmetic. There are essentially implicit casts on the two operands:
int c = (int)a * (int)b;. Thus, the result is actually 10000.

While the above examples might seem like a game, the conclusion we draw
is that it is critical when defining the semantics of C to handle all of the
details. The semantics at the higher level of functions and statements is
actually much easier than at the level of expressions and arithmetic. These
issues are subtle enough that they are very difficult to catch just by manually
inspecting the code, and so need to be represented in the semantics if one

1Except chars and bitfields, whose signedness is implementation-defined.
2Bytes are only required to be at least 8 bits long.

6

PhD Thesis, University of Illinois, July 2012

wants to find bugs in real programs. Even though errors related to the above
details continue to be found in real compilers [168], previous semantics for C
either did not give semantics at this level of detail, or were not suitable for
identifying programs that misused these features. This is one of our primary
reasons for wanting an executable semantics.
As seen in the next chapter, more than half of existing C semantics leave

out details related to arithmetic, conversions, or bitfields, and none handle
malloc() or longjmp().

7

PhD Thesis, University of Illinois, July 2012

Chapter 2

Related Work

There is an enormous amount of work in the area of formal semantics and
program analysis. Here we look at existing formal semantics of programming
languages, in addition to definitional frameworks that come with tool support.
We start with a particular focus on existing semantics of C.

2.1 Comparison with Existing Formal C
Semantics

There have already been a number of formal semantics written for C. One
might (rightfully) ask, “Why yet another?” We claim that the definitions so
far have either made enough simplifying assumptions that for many purposes
they are not C, or have lacked any way to use them other than on paper. While
“paper semantics” are useful for teaching and understanding the language, we
believe that without a mechanized definition, it is difficult to gain confidence
in a definition’s appropriateness for any other purpose. Below we highlight
the most prominent definitions and explain their successes and shortcomings
in comparison with our work.

Gurevich and Huggins (1993) One of the earliest formal descriptions of
ANSI C is given by Gurevich and Huggins [67], using abstract state machines
(ASMs) (then known as evolving algebras). Their semantics describes C using
four increasingly precise layers, each formal and analyzable. Their semantics
covers all the high-level constructs of the language, and uses external oracles to
capture the underspecification inherent in the definition of C. Their semantics
was written without access to a standard, and so is based on Kernighan and
Ritchie [88]. However, many behavioral details of the lowest-level features
of C are now partially standardized, including details of arithmetic, type

8

PhD Thesis, University of Illinois, July 2012

representation, and evaluation strategies. The latter has been investigated
in the context of ASMs [170], but none are present in the original definition.
Based on our own experience, the details involving the lowest-level features
of C are incredibly complex (see Section 1.2), but we see no reason why the
ASM technique could not be used to specify them.

Their semantics was never converted into an executable tool, nor has it been
used in applications. However, their purpose and context was different from
ours. As pointed out elsewhere [119, p. 11], their semantics was constructed
without the benefit of any mechanization. According to Gurevich,1 their
purpose was to “discover the structure of C,” at a time when “C was far
beyond the reach of denotational semantics, algebraic specifications, etc.”

Cook, Cohen, and Redmond (1994) Soon after the previous definition,
Cook et al. [33] describe a denotational semantics of C90 using a custom-made
temporal logic for the express purpose of proving properties about C programs.
Like us, they give semantics for particular implementation-defined behaviors
in order to have a more concrete definition. These choices are then partitioned
off so that one could, in theory, choose different implementation-defined values
and behaviors.
They have given at least a basic semantics to most C constructs. We

say “at least” without malicious intent—although their work was promising,
they moved on to other projects before developing a testable version of their
semantics and without doing any concrete evaluation.2 Additionally, no proofs
were done using this semantics.

Cook and Subramanian (1994) The work of Cook and Subramanian [32,
157] is a semantics for a restricted subset of C, based loosely on the semantics
above. This semantics is embedded in the theorem prover Nqthm [21] (a
precursor to ACL2). They were successful in verifying at least two functions:
one that takes two pointers and swaps the values at each, and one that
computes the factorial. They were also able to prove properties about the C
definition itself. For example, they prove that the execution of p = &a[n]
puts the address of the nth element of the array a into p [32, p. 122]. Their
semantics is, at its roots, an interpreter—it uses a similar technique to that

1Personal communication, 2010.
2Personal communication, 2010.

9

PhD Thesis, University of Illinois, July 2012

described by Blazy and Leroy [13] to coax an interpreter from recursive
functions—but there is no description in their work of any reference programs
they were capable of executing. As above, it appears the work was terminated
before it was able to blossom.

Norrish (1998) The next major semantics was provided by Norrish [119],
who gives both static and dynamic formal semantics inside the HOL theorem
proving system for the purpose of verifying C programs (later extended to
C++ [120]). His semantics is in the Structural Operational Semantics (SOS)
style, using small-step for expressions and big-step for statements. One of
the focuses of his work is to present a precise description of the allowable
evaluation orders of expressions. In Sections 4.2.8 and 4.4.2 we demonstrate
how our definition captures the same behaviors.

Working inside HOL provides an elegant solution to the underspecification
of the standard—Norrish can state facts given by the standard as axioms/the-
orems. For example, the standard says that the number of bits in a byte is
defined by the macro CHAR_BIT, and must be at least 8. In turn, Norrish’s
semantics contains the theorem ` CHAR_BIT ≥ 8 [119, p. 30], which describes
precisely this information. In general, he pays a lot of attention to underspec-
ification, using HOL to his advantage, as above. To maintain executability,
we chose instead to parameterize our definition for those implementation-
defined choices. In that respect, our definitions conceptually complement
each other—his is better for formal proofs about C, while ours is better for
searching for behaviors in programs (see Section 4.4.2). Proofs of program
correctness [139] as well as semantics-level proofs [50] have already been
demonstrated in the framework used by our semantics, but we have not yet
applied these techniques to C.

Norrish uses his definition to prove some properties about C itself, as well
as to verify some strong properties of simple (≤ 5 line) programs, but was
unable to apply his work to larger programs. His semantics is not executable,
so it has not been tested against actual programs. However, the proofs done
within the HOL system help lend confidence to the definition.

Papaspyrou (2001) A denotational semantics for C99 is described by
Papaspyrou [124, 125] using a monadic approach to domain construction. The
definition includes static, typing, and dynamic semantics, which enables him

10

PhD Thesis, University of Illinois, July 2012

not only to represent the behavior of executing programs, but also check for
errors like redefinition of an identifier in the same scope. Papaspyrou, Norrish,
and Cook et al. each give a typing semantics in addition to the dynamic
semantics, while we and Blazy and Leroy (below) give only dynamic semantics.
Papaspyrou represents his semantics in Haskell, yielding a tool capable

of searching for program behaviors. This was the only semantics for which
we were able to obtain a working interpreter, and we were able to run it
on a few examples. Having modeled expression non-determinism, and being
denotational, his semantics evaluates a program into a set of possible return
values. However, we found his interpreter to be of limited capability in
practice. For example, using his definition, we were unable to compute the
factorial of six or the fourth Fibonacci number.

Blazy and Leroy (2009) A big-step operational semantics for a subset
of C, called Clight, is given by Blazy and Leroy [13]. While they do not
claim to have given semantics for the entirety of C, their semantics does cover
most of the major features of the language and has been used in a number of
proofs including the verification of the optimizing compiler CompCert. Their
semantics includes coinductive rules for divergence, enabling proofs of non-
termination or properties of non-terminating programs, which traditionally
has been difficult with big-step semantics.
To help validate their semantics, they have done manual reviews of the

definition as well as proved properties of the semantics such as determinism of
evaluation. They additionally have verified semantics-preserving transforma-
tions from their language into simpler languages, which are easier to develop
confidence in. Their semantics is not directly executable, but they describe
a mechanism by which they could create an equivalent recursive function
that would act as an interpreter. This work was eventually completed in
version 1.9 of the Compcert C compiler [77], though we have not had time to
evaluate it against our tools.

Clight does not handle non-determinism or sub-expressions with side effects.
However, since publication, they have added a new front-end small-step
definition called CompCert C that does handle these features, and is also
being used to handle goto.3

3Personal communication, 2011.

11

PhD Thesis, University of Illinois, July 2012

Definition
Feature GH CCR CR No Pa BL ER
Bitfields G# # # G# #
Enums G# # # #
Floats # # # #
String Literal # # #
Struct as Value # # # # #

Arithmetic G# #
Bitwise # # #
Casts G# G# # G# G#
Functions G#
Exp. Side Effects # #

Break/Continue G# G#
Goto G# # # # #
Switch G# # # G#

Longjmp # # # # # #
Malloc # # # # # #
Variadic Funcs. # # # # # #

Feature GH CCR CR No Pa BL ER

 : Fully Described G#: Partially Described #: Not Described

GH represents Gurevich and Huggins [67], CCR is Cook et al. [33], CR is Cook
and Subramanian [32], No is Norrish [119], Pa is Papaspyrou [125], BL is Blazy
and Leroy [13], and ER is our work.

Figure 2.1: Dynamic Semantics Features

There are other formal semantics of C (or fragments of C) that we choose
not to review here, including Black [12], Bofinger [15], and Bortin et al. [20],
as they either focus on subsets subsumed by the work previously discussed,
or do not give dynamic semantics.

We condense our study of related works in Figure 2.1. For interested parties,
this chart may be contentious. However, we believe that it is useful, both for
developers of formal semantics of C and for users of them, to give a broad
(though admittedly incomplete) overview of the state of the art of the formal
semantics of C. Also, it may serve as an indication of the complexity involved
in the C language, although not all features are equally difficult.

We did our best to give the authors the benefit of the doubt with features
they explicitly mentioned, but the other features were based on our reading

12

PhD Thesis, University of Illinois, July 2012

of their semantics. We have also discussed our views with the authors, where
possible, to try and establish a consensus. Obviously the categories are broad,
but our intention is to give an overview of some of the more difficult features
of C. We purposefully left off any feature that all definitions had fully defined.
Finally, there are a number of other emergent features, such as multi-

dimensional arrays [81, §6.5.2.1:3], that are difficult to discern correctness
through simple inspection of the formal semantics (i.e., without testing or
verifying it). It is also difficult to determine if feature pairs work together—for
example, does a definition allow bitfields inside of unions? We decided to leave
most of these features out of the chart because they are simply too hard to
determine if the semantics were complete enough for them to work properly.

2.2 Other Formal Semantics
Other languages than C, of course, have also been formalized to varying degrees
of completeness. We take a brief look at many of these other semantics in this
section in order to gain a perspective of where the C definitions lie. Due to
the already vast numbers of existing semantics, we limit our focus to general
purpose programming languages and to semantics written in the last 30 years.

Looking through these semantics paints a broad picture of the state of the
art in language formalization. First, nearly all of the semantics are incomplete
in some way. Those that are complete are either complete by definition
(e.g., the official definition of SML [109]) or are for relatively small languages
(e.g., the definitions of Prolog). Further, very few have been used for any
purpose other than to push the various formalisms or techniques. A few
have been used to assist the development of the languages they define, or
at least provide formal evidence that certain features need changes [37, 166].
Others have been used for proofs about either the language or programs in
the language [44, 95, 120, 142, 161, 169]. Finally, less than one third yielded
tools either directly or with a little extra work. Three of these were definitions
that use the K framework, the same formalism we use for our semantics of C.

This chart makes it clear that programming languages, at least in part, can
be formalized. It is much less clear that formal semantics can be useful; we
hope that our focus on tool support (Sections 4.4 and 5.4) may address this
weakness.

13

PhD Thesis, University of Illinois, July 2012

Language Year Work Formalism Machn. Exec. Description

Java

1990
Attali, Caromel,
and Russo [8]

Centaur & TYPOL (big-
step and small-step SOS)

! !
Generates programming environment; excludes ex-
ceptions, arrays, packages

1997
Comstedt and
Holmén [31, 75]

RML ! !
Started as Java 1.0, extended to cover most of 1.2;
contains formal, executable translation to JVM

1997 Wallace [163] ASMs with Montages # #
Covers Java 1.0; excludes volatiles and definite
assignment of variables before use

1999
Alves-Foss and
Lam [2]

Denotational # #
specification based (1996); excludes concurrency
and APIs

1999
Börger and
Schulte [17]

ASMs # #
Standards-based; leaves out packages, I/O, for,
do, switch, loading/linking classes, and GC

1999
Brown and
Watt [22]

Action Semantics # # Covers much of Java 1.0; leaves out concurrency

2000
Drossopoulou,
Valkevych, and
Eisenbach [43, 44]

Small-step, RSwEC for
Exceptions

#
Used for proof of type soundness; leaves out library,
arithmetic

2001
Stärk, Schmid,
and Börger [155]

ASMs in AsmGofer ! ! Comes with GUI for exploring evaluation

2004
Farzan, Chen,
Meseguer, and
Ros,u [27, 53]

K-style ! !

583 rules; used for model checking concurrent pro-
grams; leaves out certain features like super, bit-
wise operations, and the library

14

PhD Thesis, University of Illinois, July 2012

Language Year Work Formalism Machn. Exec. Description

C++

1993 Wallace [162] ASMs # # Written before standard existed

2008 Norrish [120] Small-step in HOL ! #

Used to prove simple “sanity” theorems about lan-
guage and theorems about behavior of concrete
programs; ignores overloading, function pointers,
enums, typedefs, unions, bit fields, goto, and
switch

C# 2003

Börger, Fruja,
Gervasi, and
Stärk [18], Jula
and Fruja [85]

ASMs ! ! Standards-based

SML

1990

Milner, Tofte,
Harper, and
MacQueen [108,
109]

Big-step # #
186 rules; official standard for SML; complete (by
definition)

1994
VanInwegen and
Gunter [161]

Big-step in HOL ! #

Used semantics to prove some properties about
language (e.g., determinism); focuses on dynamic
semantics of the Core and ignores reals

1994
Maharaj and
Gunter [95]

Big-step in HOL ! #

Adds support for Module system to above work;
used to prove that this is a conservative extension;
focuses on dynamic evaluation only

15

PhD Thesis, University of Illinois, July 2012

Language Year Work Formalism Machn. Exec. Description

1999 Watt [164] Action Semantics # #

Author argues his semantics is more readable, mod-
ular, and formal than official standard; does not
give static semantics for the Module layer

2000
Cater and
Huggins [24]

ASMs # # Defines only dynamic semantics of the core

LLVM 2012

Zhao,
Nagarakatte,
Martin, and
Zdancewic [169]

Small-step SOS ! !

Formalized in Coq; used to prove program trans-
formation correct; leaves out exceptions, variadic
argument functions, vector types

SmallTalk 1987 Wolczko [166] Denotational # #

Used to argue about language design; does not han-
dle concurrency, global variables, difficult details
of blocks, or machine ints

Prolog

1992
Deransart and
Ferrand [37]

Logic Programming ! ! Used in the standardization of Prolog

1995
Börger and
Rosenzweig [16]

ASMs # #

Standards-based; used for reasoning about im-
plementations and clarifying disputable features;
nearly complete—leaves out only syntax, OS inter-
face, and arithmetic

2000
Kulaš and
Beierle [90]

Rewriting Logic ! ! Continuation based; complete

16

PhD Thesis, University of Illinois, July 2012

Language Year Work Formalism Machn. Exec. Description

2011

Ströder, Emmes,
Schneider-Kamp,
Giesl, and
Fuhs [156]

Linear inference rules # #
153 rules; standards-based; used for termination
analysis; complete

Scheme

2007
Meredith, Hills,
and
Ros,u [100, 101]

K-style ! ! 682 rules; incomplete support for macros

2010

Sperber, Dybvig,
Flatt, van
Straaten, Findler,
and
Matthews [154]

RSwEC in PLT Redex ! !
Does not support macros, I/O, or the numerical
tower; handles some underspecified behaviors

Verilog

1998 Pace and He [123]
Relational Duration Cal-
culus

#

Used to prove properties about different algorithms;
leaves out major features like non-blocking assign-
ments

1999 Sasaki [142] ASMs # # Deterministic

2010

Meredith,
Katelman,
Meseguer, and
Ros,u [102]

K-style ! !

582 rules; used to run programs and search behav-
iors; does not support analog features, tasks, or
functions

17

PhD Thesis, University of Illinois, July 2012

Language Year Work Formalism Machn. Exec. Description

XQuery
& XPath

2010

Draper,
Fankhauser,
Fernández,
Malhotra, Rose,
Rys, Siméon, and
Wadler [42]

Big-step # #
442 rules; gives both static and dynamic semantics;
complete (by definition)

Python 2009 Smeding [153] Small-step in Haskell ! !

Used to run small programs; leaves out standard
library, garbage collection, threading, FFI, and
reflection

Haskell

1992
Jones and
Wadler [84]

Big-step # #

Static semantics only; gives translation into a lan-
guage without overloading; leaves out a few fea-
tures such as constant and n+k patterns

1993
Hammond and
Hall [69]

Big-step # #

83 rules; builds on above static semantics; covers
most of Haskell 1.0; leaves out definitions of most
PreludeCore functions

2002 Faxén [54] Big-step # #

Static semantics only; does not handle ambiguous
overloading and its resolution, newtype declara-
tions, or deriving clauses in ADT declarations

18

PhD Thesis, University of Illinois, July 2012

2.3 Semantics and Formal Analysis Tools
As our goal is to explore how a complete language can be defined in K, we
do not focus much on other formalisms. However, here we give a brief (and
incomplete) list of other frameworks from the perspective of supported tools.
For a more in-depth analysis of competing formalisms and how they relate to
K and rewriting-based formalisms, please see S, erbănut,ă [146] and S, erbănut,ă
et al. [149].
Probably the work that comes closest, from a practical standpoint, to

the kind of tool suite we are aiming for would be Frama-C [25, 34]. Frama-
C is a suite of analysis tools for C based around a plug-in architecture,
including tools for value analysis, deductive verification, LTL specification
verification, slicing, and more. The tools are not semantics-based, although
each individual analysis can query the other tools, which allows for less
redundancy among the tools together. However, because the tools are based
on informal models of the language, they can often allow you to prove false
things. Using Caduceus [56, 57], the predecessor of Frama-C,4 we were able
to “prove” correct the following program:

int abs(int x){
if (x >= 0) { return x; } else { return -x; }

}

At first glance, this program does look correct. However, on most systems
utilizing two’s complement arithmetic, -INT_MIN = INT_MIN. This is obvious
if you think about it, as (for a two byte int) −(−32768) cannot be 32768,
because 32768 is not even in the set of possible signed two byte numbers. In
fact, this is a signed overflow, and by the semantics of C, is actually undefined.
Simply evaluating -INT_MIN results in a signed overflow, which is undefined
in C. This could result in any behavior, including looping or crashing the
computer. Because the model of integers used in the Caduceus tool was too
simple, it allowed an incorrect program to be verified.

There has been a lot of work done specifically in generating interpreters and
compilers from formal definitions. Andrews et al. [3] describes an interpreter
derived from a formal definition of Modula-2, but we could not find any evi-
dence that they completed work on the proposed algorithms to automatically

4We have not attempted to re-verify this result in the newest version of Frama-C; it is
only being used here as an example of a larger methodological issue.

19

PhD Thesis, University of Illinois, July 2012

generate the interpreter. CENTAUR [19] is an older system that can generate
interpreters from formal specifications of a language. They experimented with
using both ASF [11] and “Natural Semantics” [86] (big-step SOS). Although
big-step definitions lend themselves to executability, they lack many other
features useful in a definitional framework such as modularity or concurrency,
which K handles naturally.

The ASF+SDF Meta-Environment [38], a successor to CENTAUR, supports
the ASF+SDF Compiler [160]. This compiler can translate specifications
written in the ASF+SDF framework to C code which can then be compiled
and run natively. Their framework does not support full matching modulo
commutativity, which means it is difficult to ignore order of program state.
This, in turn, may lead to less modular definitions. Additionally, ASF+SDF
has no concept of rules as in rewriting logic, so there is no natural way to
represent that certain operations are concurrent.

The LISA system [103] can generate compilers and interpreters (as well as
a number of other useful tools) from FSM and attribute grammar descriptions
of programming languages. However, their formal specification language is
fairly limited—while the attribute grammars can be used to specify some
simple semantic constructs, any moderately difficult construct (assignment,
conditionals, etc.) is specified informally in Java. With this in mind, it is
understandable that they are able to execute specifications but also raises
questions about the formality of much of their semantics.

The Maude system [30], to which K is currently compiled for executability
and search, can also be used directly as a platform for semantic develop-
ment [105, 106, 149]. Maude allows users to describe rewriting logic [104]
theories, yielding interpreters, state-space search tools, model checkers [46],
and debuggers [132]. Maude has been used to give a complete semantics of
Prolog [90]. It has also been used to define the semantics of much of the C
preprocessor [64].
Like K, Maude serves as the basis for an MSOS [112] platform called

Maude-MSOS [26, 36]. With the Maude backing, the Maude-MSOS tool
yields executable specifications and the same kinds of analysis tools available
under Maude directly. MSOS was designed to address the inherent modularity
issues in traditional SOS specifications, where feature additions or changes
would require changes to unrelated features.

The relational meta-language (RML) can also be used in the generation of

20

PhD Thesis, University of Illinois, July 2012

interpreters and development environments from formal specifications [60].
Their tool takes operational (mostly big-step) specifications of programming
languages in RML and translates them to efficient C code, complete with op-
timizations. For the Mini-Freja language, the generated code was significantly
faster than that of hand-written Prolog code and at least 10,000 times faster
than the interpreter obtained from the Maude-MSOS tool [26]. There do not
appear to be benchmarks against any languages with direct implementations.

The ASM formalism [66] has been wildly successful, with many languages
defined, including Java [155] and C# [18] (many others listed in the table found
in the previous section). Their success has spawned a number of semantic
tools, including ASMETA [63], AsmL [68], CoreASM [52], AsmGofer [143],
TASM [121], and XASM [4]. These systems take ASM specifications and
yield interpreters, GUIs for inspecting execution traces, model checkers, and
test-case generators. The ASM approach continues to be developed, with
recent work on service-oriented architectures [131] and runtime monitoring [6].
Another system for mechanized formal semantics is the PLT Redex sys-

tem [55, 97]. Redex has been used to define a large subset of Scheme [154]
as well as Datalog [98]. Their system yields tools for debugging definitions,
testing, execution, and exploration of state-space. Many of the same tools
are available for users of K, so the differences between the two systems lie
mostly in the supported formalisms used (reduction semantics with evaluation
contexts for Redex, and K for the K system).
The Ott [152] tool is a semanticist’s assistant, helping with typesetting

and lightweight consistency checks of a definition. The Ruler [40] tool is
similar, though targetted toward type systems. It can additionally generate
an executable implementation based on attribute grammars. A thorough
comparison of Redex, K, Ott [152], and Ruler [40], as well as the additional
tools αML [91] and αProlog [28] can be found in Klein et al. [89].

21

PhD Thesis, University of Illinois, July 2012

Chapter 3

Background

In this chapter we give a little background on the C standard, including some
important definitions. We additionally explain K, the rewriting formalism in
which we give our semantics of C.

3.1 C Standard Information
The C programming language, developed in the early 1970s by Dennis
Ritchie [88], has become one of the most important programming languages
to date. It has influenced countless other languages and is still widely used.
According to 2010 usage information for open source projects on Google
Code [165], C is used by more projects than any other programming language.
It also stands at the top of the TIOBE index of programming language
popularity [159] in May 2012, and has been in either of the top two positions
since 2001.

The popularity of C meant many competing compilers have been developed
over the years [83, p. 14]. To ensure programs written for one compiler would
work when compiled using a different compiler, a standard version of C needed
to be created, which defined the language. According to the forward of the
ANSI C standard [167]:

The need for a single clearly defined standard had arisen in the C
community due to a rapidly expanding use of the C programming
language and the variety of differing translator implementations
that had been and were being developed. The existence of similar
but incompatible implementations was a serious problem for pro-
gram developers who wished to develop code that would compile
and execute as expected in several different environments.

22

PhD Thesis, University of Illinois, July 2012

Part of this problem could be traced to the fact that implementors
did not have an adequate definition of the C language upon which
to base their implementations. The de facto C programming
language standard, The C Programming Language by Brian W.
Kernighan and Dennis M. Ritchie, is an excellent book; however,
it is not precise or complete enough to specify the C language
fully. In addition, the language has grown over years of use to
incorporate new ideas in programming and to address some of the
weaknesses of the original language.

[ANSI] C addresses the problems of both the program developer
and the translator implementor by specifying the C language
precisely.

The ANSI C standard was completed in 1989, and was quickly turned into
the ISO C90 standard [78] in 1990. The C standard has been an evolving
entity, and C90 was bolstered with two technical corrigenda (ISO/IEC 9899
TCOR1 and ISO/IEC 9899 TCOR2) and an amendment (AMD1), which
together with the C90 standard make the C95 standard [80, p. 1]. The C99
standard [79] was the latest C standard between 1999 and 2011, when it was
finally replaced by the C11 standard [81]. C99 added many features to C,
including restricted pointers, variable length arrays, flexible array members,
long long int, compound literals, and designated initializers. C99 also
reworked many features, such as rules of effective type, integer division and
modulus, and integer promotion rules, in order to clarify their meanings.
Finally, C99 removed certain behaviors, such as implicit int declarators
or function declarations. C11 continued adding features and clarifying the
language, although with arguably more restraint than the C99 committee (15
major changes in C11 as opposed to 54 in C99 [81, pp. xiii–xvi]). Most notably,
it adds support for concurrency, something that was previously handled by
external library calls to things like POSIX threads [76].

The C standard uses the idea of undefined and partially defined behaviors in
order to avoid placing difficult requirements on implementations. It categorizes
the particular behaviors of any C implementation that are not fully defined
into four categories [81, §3.4]:

unspecified behavior Use of an unspecified value, or other behavior [with]
two or more possibilities and [. . .] no further requirements on which is

23

PhD Thesis, University of Illinois, July 2012

chosen in any instance.

implementation-defined Unspecified behavior where each implementation
documents how the choice is made.

undefined behavior Behavior, upon use of a non-portable or erroneous
program construct or [data, with] no requirements.

locale-specific behavior Behavior that depends on local conventions of
nationality, culture, and language that each implementation documents.

An example of unspecified behavior is the order in which the arguments to
a function are evaluated. An example of implementation defined behavior
is the size of an int. An example of undefined behavior is referring to
an object outside of its lifetime. An example of locale-specific behavior is
whether islower() (is-lower-case) returns true for characters other than the
26 lowercase Latin letters. In this dissertation, we focus on the first three
such behaviors and consider the fourth as implementation-defined.
To put these definitions in perspective, for a C program to be maxi-

mally portable, “it shall not produce output dependent on any unspecified,
undefined, or implementation-defined behavior” [81, §4.5]. This is called
“strictly conforming”. However, programmers use C for many inherently non-
portable tasks, such as writing device drivers. The standard offers another
level of conformance (called “conforming”) where the program may rely on
implementation-defined or even unspecified (but never undefined) behavior.
Based on this, our definition is parametric in implementation-defined behav-
iors (Section 4.2.7), and uses symbolic computation to describe unspecified
behaviors (Section 5.3.3).

3.2 Rewriting Logic and K

To give our semantics, we use a rewriting-based semantic framework called
K [134], inspired by rewriting logic (RL) [104]. In particular, our semantics
is written using the K-Maude tool [148, 150], which takes K rewrite rules
and translates them into Maude [30]. Maude is a rewriting-logic engine that
provides facilities for the execution and analysis of rewriting-logic theories.
RL organizes term rewriting modulo equations (namely associativity, com-

mutativity, and identity) as a logic with a complete proof system and initial

24

PhD Thesis, University of Illinois, July 2012

model semantics. The central idea behind using RL as a formalism for the
semantics of languages is that the evolution of a program can be clearly
described using rewrite rules. A rewriting theory consists essentially of a
signature describing terms and a set of rewrite rules that describe steps of
computation. Given some term allowed by signature (e.g., a program together
with input), deduction consists of the application of the rules to that term.
This yields a transition system for any program. A single path of rewrites
describes the behavior of an interpreter, while searching all paths would yield
all possible answers in a nondeterministic program.

For the purposes of this dissertation, the K formalism can be regarded as a
front-end to RL designed specifically for defining languages. In K, parts of
the state are represented as labeled, nested multisets, as seen in Figure 3.1.
These collections contain pieces of the program state like a computation
stack or continuation (e.g., k), environments (e.g., env, types), stacks (e.g.,
callStack), etc.

As this is all best understood through an example, let us consider a typical
rule for a simple imperative language (see Section 4.2.4 for the equivalent rule
in C) for dereferencing a variable:

〈 * X
V

···〉k 〈··· X 7→ L ···〉env 〈··· L 7→ V ···〉mem

We see here three cells: k, env, and mem. The k cell represents a list (or stack)
of computations waiting to be performed. The left-most (i.e., top) element
of the stack is the next item to be computed. The env cell is simply a map
of variables to their locations. The mem cell is a map of locations to their
values. The rule above says that if the next thing to be evaluated (which
here we call a redex) is the application of the dereferencing operator (*) to a
variable X, then one should match X in the environment to find its location L
in memory, then match L in memory to find the associated value V . With
this information, one should transform the redex into V .

This example exhibits a number of features of K. First, rules only need to
mention those cells (again, see Figure 3.1) relevant to the rule. The rest of
the cell infrastructure can be inferred, making the rules robust under most
extensions to the language. Second, to omit a part of a cell we write “···”. For
example, in the above k cell, we are only interested in the current redex &X,

25

PhD Thesis, University of Illinois, July 2012

〈 〈K〉k 〈Map〉genv 〈Map〉gtypes 〈Map〉gstructs 〈Map〉mem 〈Map〉malloced 〈Map〉gotoMap 〈Set〉notWritable〈 〈
〈Map〉env 〈Map〉types 〈Map〉structs 〈List〉loopStack 〈Bag〉locsWrittenTo

〉
control

〈List〉callStack
〉
local

〉
T

Figure 3.1: Subset of the C Configuration

26

PhD Thesis, University of Illinois, July 2012

but not the rest of the context. Finally, we draw a line underneath parts of
the state that we wish to change—in the above case, we only want to evaluate
part of the computation, but neither the context nor the environment change.
This unconventional notation is quite useful. The above rule, written out

as a traditional rewrite rule, would be:

〈* X y κ〉k 〈ρ1,X 7→ L, ρ2〉env 〈σ1,L 7→ V , σ2〉mem

⇒ 〈V y κ〉k 〈ρ1,X 7→ L, ρ2〉env 〈σ1,L 7→ V , σ2〉mem

Items in the k cell are separated with “y”, which can now be seen. The
κ and ρ1, ρ2, σ1, σ2 take the place of the “···” above. The most important
thing to notice is that nearly the entire rule is duplicated on the right-hand
side. Duplication in a definition requires that changes be made in concert,
in multiple places. If this duplication is not kept in sync, it leads to subtle
semantic errors. In a complex language like C, the configuration structure
is much more complicated, and would require actually including additional
grouping cells like control and local (Figure 3.1) in the rule. These intervening
cells are automatically inferred in K, which keeps the rules more modular.

Notationally, we use “·” to represent the unit element of any algebraic lists
or sets (including the “y” list). We also use “—” to stand for a term that
we do not care to name. Finally, in order to get the redexes to the top of
the k cell (i.e., in order to identify which positions in the syntax tree can be
reduced next), the grammar of C is annotated with additional “strictness”
annotations. For example, for addition, we say that

Exp ::= Exp + Exp [strict]

meaning that either argument of the addition operator can be taken out for
evaluation, nondeterministically. In contrast, the if construct looks like this:

Stmt ::= if (Exp) Stmt [strict(1)]

indicating that only the first argument can be taken out for evaluation. The
two annotations above cause the following six rules to be automatically

27

PhD Thesis, University of Illinois, July 2012

generated:

〈 E1+E2

E1 y 2+E2

···〉k 〈 E1+E2

E2 y E1+2
···〉k 〈 if (E)S

E y if (2)S
···〉k

〈 V y 2+E2

V +E2

···〉k 〈 V y E1+2
E1+V

···〉k 〈 V y if (2)S
if (V)S

···〉k

Here, E1, E2, and E represent unevaluated expressions and V represents an
evaluated expression (i.e., a value). While these are the rules generated by
K-Maude, in the theory of K they can apply anywhere (not just at the top of
the k cell). There are additional annotations for specifying more particular
evaluation strategies, and can be found in documentation on K [134]. We also
give names to certain contexts that are evaluated differently. For example,
the left-hand side (LHS) of an assignment is evaluated differently than the
right-hand side (RHS). The use of this is described in Section 4.2.4.
For the remainder of this dissertation, we use the following convention

with respect to the types of variables—the names given below, and common
variations such as X ′ for X shall be given the following types, unless other
types are specified: X and F have type Id; L has type Location; T has
type Type; S has type Struct; E has type Expression; I has type Integer;
N , B, and O have type Natural; C has type Configuration (i.e., Bag); M
has type Map.
At this point, we have only looked at the very basics of K, but enough

to understand the semantics presented in this dissertation. For readers
interested in more detail, a tremendous amount can be found in Ros,u and
S, erbănut,ă [134], in addition to other sources [133, 146, 148]. Everything that
was explained above, as well as a number of other important features have
been precisely defined in those sources.

28

PhD Thesis, University of Illinois, July 2012

Chapter 4

Positive Semantics

This chapter describes our positive semantics of C, which include all the
components necessary to describe the behavior of correct (defined) programs.
We describe components of the semantics, how we tested it, and applications
that can be derived from it. Much of the work in this section is from Ellison
and Ros,u [48] and Ellison and Ros,u [47].

4.1 Introduction
In this chapter, we present a formal semantics of C that gives meaning to
all correct C programs. Rather than being an “on paper” semantics, it is
executable, machine readable, and has been tested against the GCC torture
tests (see Section 4.3). The semantics describes the features of the C99
standard [79], but we often cite the text from the C11 standard [81]. We
use the C11 text because it has superseded the C99 standard, and because
it offers clearer wording and more explicit descriptions of certain kinds of
behavior. To a great extent, the semantics we offer is compatible with the
C11 semantics; we do not target it because it had not yet been completed
during the majority of our development.
Our semantics can be considered a freestanding implementation of C99.

The standard defines a freestanding implementation as a version of C that
includes every language feature except for _Complex and _Imaginary types,
and that includes only a subset of the standard library. We additionally
provide a number of functions found in math.h, stdio.h, stdlib.h, and
string.h, including malloc() and longjmp().

Above all else, our semantics has been motivated by the desire to develop
formal, yet practical tools. Our semantics was developed in such a way that
the single definition could be used immediately for interpreting, debugging, or
analysis (described in Section 4.4). At the same time, this practicality does not

29

PhD Thesis, University of Illinois, July 2012

mean that our definition is not formal. Being written inK, a front-end of RL, it
comes with a complete proof system and initial model semantics [104]. Briefly,
a rewrite system is a set of rules over terms constructed from a signature.
The rewrite rules match and apply everywhere, making RL a simple, uniform,
and general formal computational paradigm. This is explained in greater
detail in Section 3.2.

Our C semantics defines 150 C syntactic operators. The definitions of these
operators are given by 1,163 semantic rules spread over 5,884 source lines
of code (SLOC). However, it takes only 77 of those rules (536 SLOC) to
cover the behavior of statements, and another 163 for expressions (748 SLOC).
There are 505 rules for dealing with declarations and types, 115 rules for
memory, and 189 technical rules defining helper operators. Finally, there are
114 rules for the core of our standard library.

4.2 The Semantics of C in K

In this section, we describe the different components of our definition and
give a number of example rules from the semantics. The rules found in this
section are sometimes slightly simplified to focus on the semantics of correct
programs. Techniques related to detecting undefined programs can be found
in the next chapter. The complete semantics can be found in Appendix A,
though the rules there come with less explanatory text than the rules found
in this section.

4.2.1 Syntax

We use the FrontC parser, with additions made and included in CIL [114],
an “off-the-shelf” C parser and transformation tool. FrontC itself parses
only ANSI C (C90), but CIL extended it with syntax for C99. We use only
the parser here, and none of the transformations of CIL; we give semantics
directly to the abstract syntax tree generated by the parser. The FrontC
parser (with C99 extensions) is used by a number of other tools, including
CompCert [13] and Frama-C [34].
We also made our own changes to the parser. First, we made it stricter,

in that it no longer accepts certain deprecated features of C like implicit
int declarators. We additionally added syntactic support for the new fea-

30

PhD Thesis, University of Illinois, July 2012

tures of C11, including _Noreturn, _Thread_local, and _Atomic(type-name)
(though we do not yet give these constructs semantics; see Section 6.1). Finally,
we added our own #pragma for declaring LTL predicates (see Section 4.4.2).

We do not define any part of the C preprocessor (Cpp), even though it
is specified in the standard. The Cpp is essentially a second language on
top of C used for static transformation of code, including code generation
and conditional compilation—it is the language of #include and #define.
Instead, we simply use an off-the-shelf preprocessor (gcc -E), which takes C
containing Cpp directives and outputs pure C.

4.2.2 Configuration (Program + State)

The configuration of a running program is represented by nested multisets
of labeled cells, and Figure 3.1 shows the most important cells used in our
semantics. While this figure only shows 17 cells, we use over 90 in the full
semantics. The entire configuration is shown in Section A.2.The outer T
cell contains the cells used during program evaluation: at the top, a k cell
contains the current computation itself and a local cell holds a number of
cells related to control flow, and below, there are a number of cells dealing
with global information.

In the local cell, there is a callstack used for calling and returning from
functions, and a control cell which gets pushed onto the call stack. Inside
the control cell, there is a local variable environment (env), a local type
environment (types), local aggregate definitions (structs), a loop stack, a
record of the locations that have been written to since the last sequence point
(Section 5.3.2), and the name of the current function. The cells inside the
control cell were separated in this manner because these are the cells that get
pushed onto the call stack when making a function call.

Outside the local cell are a number of global mappings, such as the global
variable environment (genv), the global type environment (gtypes), global
aggregate definitions (gstructs), the heap (mem), the dynamic allocation map
(malloced), and a map from function-name/label pairs to continuations (for
use by goto and switch).

31

PhD Thesis, University of Illinois, July 2012

4.2.3 Memory Layout

Our memory is essentially a map from locations to blocks of bytes. It is based
on the memory model of both Blazy and Leroy [13] and Ros,u et al. [138] in
the sense that the actual locations themselves are symbolic numbers. However,
it is more like the former in that the actual blocks of bytes are really maps
from offsets to bytes.
Below we see a snippet of a memory cell, holding four bytes:

〈··· 〈··· 〈17〉basePtr 〈0 7→ 7, 1 7→ 23, 2 7→ 140, 3 7→ 4〉bytes ···〉object ···〉mem

This says that at symbolic location 17, there is an object whose size is 4 bytes;
those bytes are 7, 23, 140, and 4. All objects are broken into individual bytes,
including aggregate types like arrays or structs, as well as base types like
integers.
Our pointers are actually base/offset pairs, which we write as loc(B,O),

where B corresponds to the base address of an object itself, while the O
represents the offset of a particular byte in the object. The base is symbolic—
despite representing a location, it is not appropriate to, e.g., directly compare
B < B′ (Section 5.3.3). It is better to think of the 17 above as representing
“object 17”, as opposed to “location 17”.

When looked up, the bytes are interpreted depending on the type of the
construct used to give the address. The simplest example possible is derefer-
encing a pointer loc(17, 2) of type unsigned char*, which would simply yield
the value 140 of type unsigned char. Looking up data using different pointer
types requires taking into account a number of implementation-defined details
such as the use of signed magnitude, one’s, or two’s complement representa-
tion, or the order of bytes (endianness). These choices are made parametric
in the semantics, and can be configured depending on which implementation
a user is interested in working with (Section 4.2.7).

When new objects (ints, arrays, structs, etc.) get allocated, each is created
as a new block and is mapped from a new symbolic number. The block is
allowed to contain as many bytes as in the object, and accesses relative to
that object must be contained in the block. We represent information smaller
than the byte (i.e., bitfields) by using offsets within the bytes themselves.
While it might seem that it would be more consistent to treat memory as

32

PhD Thesis, University of Illinois, July 2012

mappings from bit locations to individual bits, bitfields themselves are not
addressable in C [81, §6.5.3.2:1], so we decided on this hybrid approach.

4.2.4 Basic Semantics

We now give the flavor of our semantics by examining a few of the 1,163 rules.
For the rules below, recall that in K what is above the line is considered
the LHS of the rule, while what is below the line is considered the RHS.
Parts of a rule without a line at all are considered to be on both sides of the
rule. Furthermore, because we are only focusing on positive semantics in this
chapter, these rules only cover the cases where a program is defined—they do
not take into consideration the different ways a program could be undefined.
However, such rules can be found in Section 5.3 in the next chapter.

Lookup and Assignment

We first consider one of the most basic expressions—the identifier. According
to the standard, “An identifier is a primary expression, [. . .] designating
an object (in which case it is an lvalue) or a function (in which case it is a
function designator)” [81, §6.5.1:2]. Although in informal language an “lvalue”
is an expression that appears on the LHS of an assignment, this is not the case
according to the C standard. An lvalue can be more accurately thought of as
any expression that designates a place in memory; a footnote in the standard
suggests it might better be called a “locator value” [81, §6.3.2.1:1]. We denote
lvalues with brackets; an lvalue that points to location L which is of type T
is denoted by [L] :T . With this in mind, here then is our lookup rule:

〈 X
[L] : T

···〉k 〈··· X 7→ L ···〉env 〈··· X 7→ T ···〉types(lookup)

This rule is actually very similar to the example address-of rule we gave in
Section 3.2. It says that when the next thing to evaluate is the program
variable X, both its location L and its type T should be looked up (in the env
and types cells), and the variable should be replaced by an lvalue containing
those two pieces of information. We distinguish between objects and functions
based on type.

33

PhD Thesis, University of Illinois, July 2012

In almost all contexts, this lvalue will actually get converted to the value
at that location:

Except when it is the operand of the sizeof operator, the unary &
operator, the ++ operator, the -- operator, or the left operand of
the . operator or an assignment operator, an lvalue that does not
have array type is converted to the value stored in the designated
object (and is no longer an lvalue) [79, §6.3.2.1:2].

We call these contexts “reval”, for “right” evaluation. Here is the rule for
simplifying lvalues in the “right value” context:

reval([L] : T)
read(L,T)

when ¬(isArrayType(T) ∨ isFunctionType(T))

The rule for “read” then does the actual read from memory. Its evaluation
involves a series of rules whose job is to determine the size of the type, pull
the right bytes from memory, and to piece them together in the right order
to reconstruct the value. There are over 10 highly technical rules defining
“read”, just for integer types alone. This process results in a normal value,
instead of an lvalue, which we represent simply as V :T .

Despite the common knowledge that “arrays are pointers”, this is actually
far from the truth. In C, arrays are second-class objects—they have no value
by themselves and so are usually evaluated to their location as pointers. The
corresponding paragraph for this array conversion is:

Except when it is the operand of the sizeof operator or the
unary & operator, or is a string literal used to initialize an array,
an expression that has type “array of type” is converted to an
expression with type “pointer to type” that points to the initial
element of the array object and is not an lvalue. [79, §6.3.2.1:3]

It is because of this difference that arrays cannot be assigned, passed as values,
or returned. In our semantics, we handle it with the following rule for reval
contexts:

reval([L] : T)
L : pointerType(innerType(T))

when isArrayType(T)

34

PhD Thesis, University of Illinois, July 2012

To handle the contexts included by this paragraph but not the first (e.g., the
left hand side of assignment operators), we invent an additional context called
“peval” for pointer evaluation. The rule for peval behaves the identically to
reval for arrays, so we do not repeat it here. The peval rule for non-array
types is to simply not change its arguments:

peval([L] : T)
[L] : T

when ¬(isArrayType(T) ∨ isFunctionType(T))

Reference and Dereference

We can now take a look at the rule for the & operator:

〈 & ([L] :T)
L : pointerType(T)

···〉k(ref)

This rule says that when the next computation to be performed is taking
the address of an lvalue, it should simply be converted into a “true value”
holding the same address, but whose type is a pointer type to the original
type. We can expect to find an lvalue as the argument because the “reval”
context does not include the arguments of the address operator.
The rule for dereference is similarly simple:

〈 *(L : pointerType(T))
[L] : T

···〉k(deref)

This will turn the non-lvalue into an lvalue of the same location. As with
lookup, no memory is read by default. To see why, consider the expression
*x = y; where we do not actually want to read the memory at x). For different
options of extending this rule to catch undefined behaviors, see Section 5.3.1.

Structure Members

The standard says, “A postfix expression followed by the . operator and an
identifier designates a member of a structure or union object. The value
is that of the named member, and is an lvalue if the first expression is an
lvalue” [81, §6.5.2.3:3].

35

PhD Thesis, University of Illinois, July 2012

Here is the rule for when the first expression is an lvalue:

〈 ([L] : structType(S)).F
[L + Offset] :T

···〉k 〈··· S 7→ (F 7→ (Offset,T)—) ···〉structs
(lvalue-dot)

This rule finds the offset Offset and type T of the field F in struct S and
simply adds the offset to the base address L of the struct to evaluate the
expression. The result is another lvalue of the type of the field. In contrast,
the rule for when the first expression is not an lvalue cannot simply work
with pointers:

〈 (V : structType(S)).F
extractField(V, SD, S ,F)

···〉k 〈··· S 7→ (F 7→ SD —) ···〉structs
(rvalue-dot)

One situation in which this arises is when a function returns a struct, and
the programmer uses the function call to access a particular field, as in the
expression fun().field. The call to fun() will result in a struct value,
represented in the rule above by V : structType(S). The helper function
extractField will look at the bytes of the struct (represented by V) and “read”
a value of the appropriate type (SD contains the offset and type of the field).
There are many rules shared by the extractField and read helpers, since
both have to piece together bytes in implementation-defined orders to make
new values.

The semantics for the arrow operator (p->f) is identical to that of the dot
operator above after dereferencing the first subexpression:

E -> F ⇒ (*E).F(arrow)

There are similar rules as above for union, where all offsets of a union’s fields
are 0.

Multiplication (and Related Conversions)

As mentioned in Section 1.2, the rules for arithmetic in C are nontrivial. To
show this in more detail, here we give many of the rules related to integer

36

PhD Thesis, University of Illinois, July 2012

multiplication. Here is the core multiplication rule:

(I1 :T) * (I2 :T)
arithInterpret(T, I1 ∗Int I2)

where hasBeenPromoted(T)

This rule matches when multiplying values with identical, promoted types
(more on promotion shortly). It then uses a helper operator “arithInterpret”
to convert the resulting product into a proper value:

arithInterpret(T, I)
I :T

when min(T) ≤ I ∧max(T) ≥ I

arithInterpret(T , I)
arithInterpret(T , I −Int (max(T) +Int 1))

when I > max(T)

arithInterpret(T , I)
arithInterpret(T , I +Int (max(T) +Int 1))

when I < min(T)

The first rule creates a value as long as the product is the range of the type.
The next two rules collapse out-of-range products into range [81, §6.3.1.3:2].

With the above rules defined, the question becomes how to promote and
convert the types of the operands so that the core multiplication rule can
take effect. First, all arithmetic in C takes place at or above the size of ints.
This means smaller types need to be coerced into int or unsigned int.

〈(— : T

promote(T)
) * — ···〉k when ¬hasBeenPromoted(T)

The above rule (and its commutative partner) cause unpromoted multipli-
cation operands to be promoted. Of the actual promotion, the standard
says, “If an int can represent all values of the original type [. . .], the value
is converted to an int; otherwise, it is converted to an unsigned int” [81,

37

PhD Thesis, University of Illinois, July 2012

§6.3.1.1:2]:

promote(T)
int

when min(int) ≤ min(T) ∧max(int) ≥ max(T)

promote(T)
unsigned int

when ¬(min(int) ≤ min(T) ∧max(int) ≥ max(T))

Finally, in order to perform the multiplication, the types of the operands have
to be identical. If the types are not identical, an implicit conversion takes
place to convert the different types to a common type. There are eight rules
for this given in the standard. To give an idea of their flavor, we give a few
of the rules for integer conversions here. First, the rule to enable conversion:

〈 I1 :T
cast(τ, I1 :T)

* I2 :T ′

cast(τ, I2 :T ′)
···〉k when T 6= T ′

∧ τ = arithConv(T, T ′)

The standard says, “if both operands have signed integer types or both have
unsigned integer types, the operand with the type of lesser integer conversion
rank is converted to the type of the operand with greater rank” [81, §6.3.1.8:1]:

arithConv(T, T ′)
maxType(T, T ′)

when hasSameSignedness(T, T ′)

Rank is a partial ordering on integer types based on their ranges and signed-
ness, e.g., rank(short int) < rank(int). Additionally, the ranks of unsigned
integer types equal the ranks of the corresponding signed integer types [81,
§6.3.1.1:1]. Continuing with the conversion rules, “Otherwise, if the operand
that has unsigned integer type has rank greater or equal to the rank of the type
of the other operand, then the operand with signed integer type is converted
to the type of the operand with unsigned integer type” [81, §6.3.1.8:1]:

〈 arithConv(T, T ′)
T

···〉k when
isUnsigned(T)
∧ isSigned(T ′)
∧ rank(T) ≥ rank(T ′)

and similarly for the commutative case.

38

PhD Thesis, University of Illinois, July 2012

The above equations use a number of helper operators in their side
conditions—the definitions for “min” and “max” are given in Section 4.2.7;
the other operators are defined as expected.

Malloc and Free

Here we show our semantics of malloc and free. These are functions from the
standard C library that perform dynamic memory allocation and deallocation.
The declarations of these functions are:

void *malloc(size_t size);
void free(void *ptr);

where size_t is an unsigned integer type that is implementation defined.
When a programmer calls malloc(), an implementation can return a new
pointer pointing to a new block of memory the size specified by the program-
mer, or it can return NULL (e.g., if there is no memory available).
Here is the rule for a successful call to malloc:

(malloc)
〈 malloc(N : size_t)
alloc(L,N) y L : pointerType(void)

···〉k 〈··· ·
L 7→ N

···〉malloced

when L is fresh

If the user requests N bytes, the semantics will schedule that many bytes to
be allocated at a new location and record that this memory was dynamically
allocated in the malloced cell. Here is the related rule for a failed call
to malloc:

〈 malloc(—)
NullPointer : pointerType(void)

···〉k(malloc-fail)

This rule is usually only useful when searching the state space.
A call to free is meant to deallocate space allocated by malloc. Its rule is

also straightforward:

〈 free(L)
·

···〉k 〈··· L 7→ N

·
···〉malloced 〈··· 〈··· 〈L〉basePtr ···〉object

·
···〉mem

(free)

39

PhD Thesis, University of Illinois, July 2012

When the user wants to free a pointer L, it is removed from both the malloced
and mem cells. By matching these cells, the rule ensures that the pointer has
not already been freed, and once applied, ensures no other rules that use that
address can match into the memory.

Setjmp and Longjmp

Finally, we show our semantics of setjmp and longjmp. These are functions
from the standard C library that perform complex control flow. They are
reminiscent of call/cc, and are often used as a kind of exception handling
mechanism in C. The declarations of these functions are:

int setjmp(jmp_buf env);
void longjmp(jmp_buf env, int val);

where jmp_buf is an array type “suitable for holding the information needed
to restore a calling environment.” A call to setjmp “saves its calling environ-
ment [. . .] for later use by the longjmp function.” Additionally, the call to
setjmp evaluates to zero [81, §7.13.1]. Here is our rule for setjmp:

〈 setjmp(L : jmp_buf)
write(L, C 〈κ〉k) y 0 : int

y κ〉k 〈C〉local(setjmp)

Because jmp_buf is an array type, it will evaluate to an address L. In the rule
above, we match the remaining computation κ (similar to a continuation),
as well as the local execution environment C. This includes cells like the
call stack and the map from variables to locations (which we also call the
environment). The rule then causes this information to be written at the
location of the jmp_buf.

A call to longjmp “restores the environment saved by the most recent invo-
cation of [setjmp] with the corresponding jmp_buf argument” [81, §7.13.2].
When the user calls longjmp, this address is read to find that previous context:

〈 longjmp
longjmp-aux

(L :T
read(L, T)

,—) ···〉k(longjmp)

40

PhD Thesis, University of Illinois, July 2012

and it is then restored:

〈 longjmp-aux((C 〈κ〉k :—), I : int)
(if I = 0 then 1 else I fi) : int

y —
κ

〉k 〈—
C

〉local(longjmp-aux)

This function returns the val that the user passes, unless this is a 0, in which
case it returns 1.
It should be clear that these rules operate on the configuration itself,

treating it as a first-class term of the formalism. The fact that K allows
one to grab the continuation κ as a term is what makes the semantics of
these constructs so easy to define. This is in sharp opposition to semantic
formalisms like SOS [128] where the context is a derivation tree and not
directly accessible as an object inside a definition.

4.2.5 Static Semantics

Although our focus is on the dynamic semantics of C, some aspects of the
dynamic semantics involve types. In particular, the sizeof construct, when
applied to an expression, requires that the type of that expression be known
in order to calculate its size. The meaning of initializers also involves the
calculation of the type of an expression. While these types could be computed
statically, we compute them dynamically as needed.

Whereas in the dynamic semantics, the majority of the action happens at
the top of the k cell, the same is true of the type cell in the static semantics.
We use a different cell because although we need a computational cell, it
should not behave in the same way as for the dynamic semantics. For example,
if we are to type a variable, we do not want this action to involve reading
memory, despite the fact that the dynamic semantics would have it read
memory. Not using the k cell is enough to prevent such rules of the dynamic
semantics from applying. Moreover, the static evaluation of operators require
different strictnesses than the dynamic evaluation. For example, in evaluating
the ternary condition expression (_?_:_) in the dynamic semantics, only the
first argument should be evaluated before the branch is chosen. However,
in the static semantics, both branches need to be evaluated, as the types
of both are needed in order to determine a common type for the result [81,
§6.5.15:5–6]. Again, using a different cell for evaluation enables these changes.

41

PhD Thesis, University of Illinois, July 2012

The static semantics contains rules for giving types to each C expression. As
with the dynamic semantics, we now give a few example rules. For variables,
it has a lookup rule:

〈 X
T

···〉type 〈··· X 7→ T ···〉types(static-lookup)

that simply looks up the declared type of a variable in a map. There are also
rules for literal values such as strings:

〈 S

arrayType(char, lengthString(S) +Int 1)
···〉type(static-string)

The additional element in the array type is for the null terminator ('0') at
the end of a string literal. For most arithmetic operators, the semantics has
a rule similar to the following rule for multiplication:

〈 T * T ′

arithConv(T, T ′)
···〉type(type-mult)

The standard says of multiplication (and other similar arithmetic operators)
that the “usual arithmetic conversions are performed on the operands” [81,
§6.5.5]. The arithConv operator determines a common type for the result
based on the types of the arguments and is partially defined in Section 4.2.4.
Other binary operators, such as bitwise shifts, behave slightly differently. The
standard says of bitwise shifts, “The type of the result is that of the promoted
left operand” [81, §6.5.7:3]. In the semantics, it looks like this:

〈 T << —
promote(T)

···〉type(type-lshift)

For these rules to apply, the operands of the expressions need to be first
evaluated to a type. Using strictness annotations (Section 3.2) to indicate
which operands are to be first evaluated, these arguments are pulled out
for evaluation. After which, the rules of the static semantics (and further
applications of strictness) apply recursively until a primary expression is at
the top of the type cell, in which case the corresponding rule applies. These
sub-values are then cooled, and further rules can apply to their surrounding

42

PhD Thesis, University of Illinois, July 2012

expressions.

4.2.6 Concurrency Semantics

Despite being used for concurrent programming, C99 as a language has
no mechanisms for spawning threads. In most systems, this capability is
provided by the operating system through external calls, such as in POSIX [76].
Although we focus on the semantics of C99 in this dissertation, we decided
to add some of the new concurrency extensions of the newer C11 standard.
We add enough detail to show that the remaining C11 concurrency features
could be supported with minimal effort.

Concurrency Primitives

We handle thread creation (thrd_create) and joining (thrd_join) as well
as mutex locking (mtx_lock) and unlocking (mtx_unlock). Although there
are a number of varieties of locks allowed by the C11 standard, we only give
semantics to the simplest variety. The above are the only functions we support
from the threads.h header. Other concurrency features that we do not cover
include _Atomic types, explicit memory order synchronization operations, or
_Thread_local storage.

Spawning a new thread (using thrd_create) is relatively simple. The
signature for this function is:

int thrd_create(thrd_t *thr, thrd_start_t func, void *arg);
The type thrd_t is the type of thread identifiers, the type thread_start_t is
the same as type int (*)(void*) (a function pointer taking a void-pointer
and returning an int). According to the standard, the “thrd_create function
creates a new thread executing func(arg),” and also “sets the object pointed
to by thr to the identifier of the newly created thread” [81, §7.26.5.1:2]. To
handle this in K, we first find the next available thread id an assign it at the
location given as a first argument:

〈 thrd_create(L, F, V)
*L := (Id : int); y thrd_create′(Id, F, V)

···〉k 〈 Id
Id +Int 1

〉nextThreadId
(thrd-create)

43

PhD Thesis, University of Illinois, July 2012

This delegates the rest of the thread creation to a helper thrd_create′. This
helper will do the actual spawning of the thread. First, it always succeeds (in
our semantics), so it always returns thrd_success, an enum constant that, “is
returned by a function to indicate that the requested operation succeeded” [81,
§7.26.1:5]. It also updates the threadStatus map to say that the new thread
Id is running. Most importantly, it creates a new thread with the proper
starting cells (in particular the right environment and translation unit), and
enforces the first action of that new thread to call F with the argument A:



〈··· 〈thrd_create′(Id, F, V)
thrd_success

···〉k 〈Tu〉currTU ···〉thread

〈Env〉genv 〈 Status
Status [threadRunning / Id]

〉threadStatus

·
〈··· 〈F (A)〉k 〈Tu〉currTU 〈Id〉threadId 〈Env〉env ···〉thread



(thrd-create’)

Joining threads is an even more straightforward procedure. The signature
for the thrd_join function is:

int thrd_join(thrd_t thr, int *res);
This function blocks until the thread identified by thr terminates, at which
point it stores thr’s return value at res and returns. As a special case, if
res is NULL, then thrd_join simply returns when thr exits [81, §7.26.5.6:2].
Below we give the main case, as the NULL case is a straightforward variation.

(thrd-join)
〈 thrd_join(Id, L)
*L := (V : int); y thrd_success

···〉k 〈··· 〈V 〉k 〈Id〉threadId ···〉thread

when L 6= NULL

The above rule causes a call to thrd_join to block until the thread it is
waiting for has finished evaluating to a result V , in which case it stores V at
location L and returns thrd_success.

The locking and unlocking operations we define also come from C11. The
operations are handled by two similar functions:

44

PhD Thesis, University of Illinois, July 2012

int mtx_lock(mtx_t *mtx);
int mtx_unlock(mtx_t *mtx);

The lock operation records a mutex pointed to by the argument as being
registered in the locking thread:

〈mtx_lock(Loc :—)
thrd_success

···〉k 〈B ·
Loc
〉glocks 〈··· ·

Loc
···〉locks when Loc 6∈ B

(mtx-lock)

while the unlock operation simply reverses this process:

〈mtx_unlock(Loc :—)
thrd_success

···〉k 〈··· Loc
·
···〉glocks 〈··· Loc

·
···〉locks

(mtx-unlock)

The glocks cell is a shared, global bag of locations, while the locks cell is local
to the thread. The two cells together ensure that a thread can only lock
locations that are not locked by any thread, and that they can only unlock
locations locked by themselves.
When first formalizing the semantics of C, we did not plan to introduce

concurrency. Despite that, as hoped for, nearly all rules could be were left
unchanged upon adding thread cells. Program termination had to be adjusted,
and a new rule for thread termination had to be added. Other than these
small changes, no other rules of the semantics had to be adjusted.

Concurrent Memory Model

Expressing concurrency in K is relatively straightforward and has been done
for a number of languages already [146]. However, the naive semantics yields
a sequentially strict memory model—a model that is not supported by most
hardware implementations and is too strict to capture the allowed behaviors of
C. Instead, C gives “relaxed” memory guarantees that allow many operations
to execute out of order. In the years preceding the formalization of the new C
standard, there were many papers exploring the implications of such a memory
model [9, 10, 141, 151]. This too has been captured in K previously [146],
but only for a small language. In the previous work, the language started
with a sequentially consistent memory model and was modified to match

45

PhD Thesis, University of Illinois, July 2012

the x86-TSO [122] relaxed memory model. In addition, the search facilities
of Maude allowed them to create a race detector that works with this new
memory model. We were able to replicate their findings.

The TSO memory model has been used as a model to evaluate implementa-
tions of the C11 memory model, and is now considered to be consistent with
it [9, 151]. Therefore, it makes sense to incorporate it into our semantics. For
demonstration purposes, we make a few simplifying assumptions. First, we
assume each thread has access to its own processor, and thus each thread has
its own memory write-buffer. Additionally, we assume local variables may
only be read by the thread that created them (this assumption is allowed by
the standard [81, §6.2.4:5]).
To do this, we add one new cell to the configuration, to keep track of

pending changes to the global state. We had to change some of the existing
rules for reading and writing to use this new cell, as well as the operations that
act as fences, including all the concurrency primitives. These fence operations
correspond to synchronization events dictated by the standard (e.g., [81,
§7.26.5.1:2] for thrd_create). Essentially, they are no longer allowed to take
place without flushing the buffer. We go into more detail about the changes
to reading and writing operations below.
First, we changed the original rule for writing a byte:

〈writeByte(loc(B,O), V)
·

···〉k 〈··· 〈B〉basePtr 〈··· M

M [V/O]
···〉bytes ···〉object

Here we are assigning the byte V to offset O from the object at base B. This
rule looks up the object whose base pointer is B and then updates the bytes
map with the new byte at offset O. To accommodate a relaxed memory mode,
this rule was split into two rules—one that puts the byte into a buffer local
to the thread:

〈writeByte(Loc, V)
·

···〉k 〈··· ·
bwrite(Loc, V)

〉buffer(write-byte-buffer)

46

PhD Thesis, University of Illinois, July 2012

and another that can commit buffered bytes to memory at any time:

〈··· bwrite(loc(B,O), V)
·

〉buffer 〈··· 〈B〉basePtr 〈 M

M [V/O]
〉bytes ···〉object

(commit-byte)

The original rule for reading a byte from memory is simple:

〈readByte(loc(B,O))
V : no-type

···〉k 〈··· 〈B〉basePtr 〈··· O 7→ V ···〉bytes ···〉object

Given a pointer with base B and offset O, the object at base B is looked
up and the byte given at offset O is retrieved from it. As with the rule for
writing bytes above, the rule for reading bytes also becomes two rules in the
relaxed memory model—one for reading bytes from the buffer:

(read-byte-buffer) 〈readByte(Loc)
V : no-type

···〉k 〈··· bwrite(Loc, V) M 〉buffer

when Loc 6∈ locations(M)

and one for reading committed bytes from memory:

(read-byte-memory)
〈readByte(loc(B,O))

V : no-type
···〉k 〈··· 〈B〉basePtr 〈···O 7→ V ···〉bytes ···〉object 〈M 〉buffer

when loc(B,O) 6∈ locations(M)

In Section 4.4.2 we show how our semantics can run programs under a
sequentially consistent memory model, or under a relaxed memory model,
and can identify program problems due to the memory model.

4.2.7 Parametric Behavior

We chose to make our definition parametric in the implementation-defined
behaviors (and are not the first to do so [13, 33]). Thus, one can configure the
definition based on the architecture or compiler one is interested in using, and
then proceed to use the formalism to explore behaviors. This parameterization
allows the definition to be “fleshed out” and made executable.

47

PhD Thesis, University of Illinois, July 2012

For a simple example of how the definition is parametric, our module
C-SETTINGS starts with:

numBytes(signed-char)⇒ 1 numBytes(short-int)⇒ 2
numBytes(int)⇒ 4 numBytes(long-int)⇒ 4

numBytes(long-long-int)⇒ 8 numBytes(float)⇒ 4
numBytes(double)⇒ 8 numBytes(long-double)⇒ 16

These settings are then used to define a number of operators:

numBits(T)⇒ numBytes(T) ∗ bitsPerByte where ¬isBitfieldType(T)
min(int)⇒ −Int(2numBits(int)−Int1)
max(int)⇒ 2numBits(int)−Int1 −Int 1

Here we use a side condition to check when a type is not a bitfield. Finally,
the above rules are used to define how an integer I of type T is cast to an
unsigned integer type T ′:

cast(T ′, I : T)⇒ (I %Int (max(T ′) +Int 1))) : T ′

where isIntegerType(T) ∧ isUnsignedIntType(T ′) ∧ I > max(T ′)

Here we use helper predicates in our side conditions to make sure this rule
only applies when casting from integer types to unsigned integer types. There
are similar equations used to define other cases.

4.2.8 Expression Evaluation Strategy

The C standard allows compilers freedom in optimizing code, which includes
allowing them to choose their own expression evaluation order. This includes
allowing them to:

• delay side effects: e.g., allowing the write to memory required by x=5
or x++ to be made separately from its evaluation or use;

• interleave evaluation: e.g., A + (B * C) can be evaluated in the order
B, A, C.

To correctly capture the intended evaluation orders, we use a combination of
evaluation contexts and strictness annotations. The basics of these constructs

48

PhD Thesis, University of Illinois, July 2012

are explained in Section 3.2. The strictness annotations are easiest to use, but
least expressive. They are used when an operand should simply be evaluated
before the operator can be evaluated. For example, when evaluating the type
of an addition expression, both arguments must first be evaluated to a type.
This is expressed by saying that the “+” operator is strict in the type cell:

syntax Expression ::= K + K [type-strict]

This says that the arguments of the addition operator should be taken out for
evaluation when the addition is being evaluated in the type cell. For dynamic
evaluation, things are trickier. As explained in Section 4.2.4, addition is a
so-called rvalue context, so its arguments must turn lvalues to rvalues. This
is done with two contexts:

context _+_((HOLE⇒ reval(HOLE)),_) [superheat]
context _+_(_, (HOLE⇒ reval(HOLE))) [superheat]

These contexts say three things. First, the operands of the addition operator
need to taken out for evaluation before the addition can be evaluated. Second,
when doing so, they should be wrapped with the reval operator. Section 4.2.4
also gives the definition of reval. Third, (via the superheat annotation) that
these strictness annotations are to be counted as truly nondeterministic actions
in the transition system. Without the superheat annotation, it is assumed
that either operand could be chosen first without affecting the result. K
allows the semanticist to choose this in order to help abstract the state space.
Our semantics does capture the appropriate state space, as seen in Sec-

tion 4.4.2.

4.2.9 Putting It All Together with kcc

Using a simple frontend that mimics the behavior of GCC [58], C programs
are parsed and translated into a Maude term, then reduced using the rules
of our formal semantics. For defined programs, this process produces indis-
tinguishable behavior from the same C program run as native code. We call
this interpreter, obtained automatically from our formal semantics, kcc. As
we will show in Section 4.4, kcc is significantly more than an interpreter—in
addition to simple interpretation, it is also capable of debugging, catching

49

PhD Thesis, University of Illinois, July 2012

undefined behaviors, state space search, and model checking. Once kcc is
installed on a system, compilation of C programs generates a single executable
file (an “a.out”) containing the semantics of C, together with a parsed repre-
sentation of the program and a call to Maude. The output is captured by a
script and presented so that for working programs the output and behavior is
identical to that of a real C compiler. To emphasize the seamlessness, here is
a simple transcript:

$ kcc helloworld.c
$./a.out
Hello world

While it may seem like a gimmick, it helped our testing and debugging
tremendously. For example, we could run the definition using the same test
harness GCC uses for its testing (see Section 4.3). It also means people with
no formal background can get use out of our semantics simply by using it as
they would a compiler.
The following outlines the entire process of running a program using kcc.

As shown in the above listing, all of this happens automatically when running
kcc and the compiled program. Further, much of this is handled automatically
by the K Framework itself [150].

1. kcc

(a) The program is run through an off-the-shelf preprocessor (gcc -E)

(b) The program is parsed to an AST;

(c) The AST is converted to a format recognizable by K;

(d) Multiple translation units are kept as separate subtrees;

2. a.out

(a) Any available input is collected (useful for search where input
cannot be given at runtime);

(b) Environmental settings are taken into consideration, like DEBUG
(Section 4.4.1) and SEARCH (Section 4.4.2);

(c) An “eval(ast)” term is constructed containing the program’s AST;

3. Static Semantics

50

PhD Thesis, University of Illinois, July 2012

(a) The “eval” term above is turned into an initial configuration, that
is, an concrete instantiation of the C configuration;

(b) All translation units are processed for their global declarations;

(c) A resolution phase identifies the use of identifiers with their appro-
priate declaration (i.e., the program is linked);

(d) A helper map for goto and switch is constructed based on the
defined labels;

4. Dynamic Semantics

(a) An appropriate call to main is performed depending on how it was
declared;

(b) The program is run or searched, depending on mode;

(c) The output is collected and displayed/returned for normal execu-
tions, or an error is reported for undefined executions.

4.3 Testing the Semantics
No matter what the intended use is for a formal semantics, its actual use is
limited if one cannot generate confidence in its correctness. To this aim, we
ensured that our formal semantics remained executable and computationally
practical.

4.3.1 GCC Torture Tests

As discussed in the previous section, our semantics is encapsulated inside
a drop-in replacement for GCC, which we call kcc. This enables us to test
the semantics as one would test a compiler. We were then able to run our
semantics against the GCC C-torture-test [61] and compare its behavior to
that of GCC 4.1.2, as well as the Intel C Compiler (ICC) 11.1 and Clang
3.0 r132915 (C compiler for LLVM). We ran all compilers with optimizations
turned off.
We use the torture test for GCC 4.4.2, specifically those tests inside the

“testsuite/gcc.c-torture/execute” directory. We chose these tests because they
focus particularly on portable (machine independent) executable tests. The
README.gcc for the tests says, “The ‘torture’ tests are meant to be generic

51

PhD Thesis, University of Illinois, July 2012

tests that can run on any target.” We found that generally this is the case,
although there are also tests that include GCC-specific features, which had to
be excluded from our evaluation. There were originally 1093 tests, of which
we excluded 267 tests because they used GCC-specific extensions or builtins,
they used the _Complex data type or certain library functions (which are
not required of a freestanding implementation of C), or they were machine
dependent. This left us with 826 tests. Further manual inspection revealed
an additional 50 tests that were non-conforming according to the standard
(mostly signed overflow or reading from uninitialized memory), bringing us to
a grand total of 776 viable tests.
In order to avoid “overfitting” our semantics to the tests, we randomly

extracted about 30% of the conforming tests and developed our semantics
using only this small subset (and other programs discussed in Section 4.3.2).
After we were comfortable with the quality of our semantics when running this
subset, we ran the remaining tests. Out of 541 previously untested programs,
we successfully ran 514 (95%). After this initial test, we began to use all of
the tests to help develop our semantics; we now pass 770 (99.2%) of the 776
compliant tests.

Torture Tests Run (of 776)
Compiler Count Percent

GCC 768 99.0
ICC 771 99.4
Clang 763 98.3
kcc 770 99.2

The 776 tests represent about 23,500 SLOC, or 30 SLOC/file.

Correctness Analysis Our executable formal semantics performed nearly
as well as the best compiler we tested, and better than the others. We
incorporated the passing tests into our regression suite that gets run every
time we commit a change. This way, upon adding features or fixing mistakes,
our accuracy can only increase.

Three of the six failed tests rely on floating point accuracy problems. Two
more rely on evaluating expressions inside of function declarators, as in:

int fun(int i, int array[i++]) { return i; }

52

PhD Thesis, University of Illinois, July 2012

which we are not handling properly. The last is a problem with the lifetime
of variable length arrays.

Coverage Analysis In order to have some measure of the effectiveness of
our testing, we recorded the application of every semantic rule for all of the
torture tests. Out of 887 core rules (non-library, non-helper operator), the
GCC torture tests exercised 805 (91%).
In addition to getting a coverage measure, this process suggests an inter-

esting application. For example, in the GCC tests looked at above, a rule
that deals with casting large values to unsigned int was never applied. By
looking at such rules, we can create new tests to trigger them. These tests
would improve both confidence in the semantics as well as the test suite itself.

4.3.2 Exploratory Testing

We have also tested our semantics on programs gathered from around the
web, including programs of our own design and from open source compilers.
Not counting the GCC tests, we include over 17,000 SLOC in our regression
tests that are run when making changes to the semantics. These tests include
a number of programs from the LCC [70] and CompCert [13] compilers. We
also execute the “C Reference Manual” tests (also known as cq.c), which go
through Kernighan and Ritchie [88] and test each feature described in about
5,000 SLOC. When these tests are added to the GCC tests described above,
it brings our rule-coverage to 98% (867/887 rules).
We can successfully execute Duff’s Device [45], an unstructured switch

statement where the cases are inside of a loop inside of the switch statement
itself, as well as quines (programs whose output are precisely their source
code), and a number of programs from the Obfuscated C Code Contest [118].
All of these test programs, as well as our semantics, are available from our
project webpage: http://c-semantics.googlecode.com/.

4.4 Applications
Here we describe applications of our formal semantics, which are in addition
to the interpreter already mentioned. These tools are automatically derived
from the semantics—changes made to the semantics immediately affect the

53

PhD Thesis, University of Illinois, July 2012

http://c-semantics.googlecode.com/

tools. We are permitted this luxury because we take advantage of general
purpose tools available to RL theories, of which our semantics is one. Contrast
this to the nearly universal strategy of writing analysis tools independently
of semantics. Instead of developing a different model for each tool, a plethora
of tools can be created around a single semantic definition. These tools are
essentially wrappers, or views, of the semantics.

4.4.1 Debugging

By introducing a special function “__debug” that acts as a breakpoint, we
can turn the Maude debugger into a simple debugger for C programs. This
provides the ability to step through interesting parts of execution to find out
what rules of semantics are invoked in giving meaning to a program.

In the semantics, we handle this function by giving a labeled rule that
causes it to evaluate to a “void” value. It is essentially equivalent to
void __debug(int i) { }. If this function is called during execution, it
starts a debugger that allows the user to inspect the current state of the
program. One can step through more rules individually from there, or simply
note the information and proceed. If the __debug call is inside a loop, the
user will see a snapshot each time it reaches the expression. For example:

int main(void){
for (int i = 0; i < 10; i++){ __debug(i); }
printf("done!\n");

}
We can run or debug the program above as follows:

$ kcc debug.c
$./a.out # run the program normally
done!
$ DEBUG=1 ./a.out # or run it in the debugger

Debug(1)> where .

〈__debug(0 : int) ···〉k 〈··· i 7→ L ···〉env · · ·

Debug(1)> resume .

〈__debug(1 : int) ···〉k 〈··· i 7→ L ···〉env · · ·

54

PhD Thesis, University of Illinois, July 2012

The user can use this to see what the value of the __debug argument is each
time through the loop, as well as the entire state of the program when the
breakpoint was reached. The state presented to the user includes all of the
cells of the language (Figure 3.1). This elided state is represented by the
ellipses above. In addition to the “where” and “resume” commands, there is
also a “step” command to step through the application of a single semantic
rule [30, §22.1].

4.4.2 State Space Search

We can also use our semantics to do both matching-based state search and
explicit state model-checking with linear temporal logic (LTL). The basic
examples below show how our semantics captures the appropriate expression
evaluation semantics precisely.

Exploring Evaluation Order

To show our semantics captures the evaluation orders of C expressions allowed
by the specification, we examine some examples from related works. The
results given below are not just theoretical results from our semantics, but
are actual results obtained from executing the tools provided by our semantic
framework.
One example in the literature is given by Papaspyrou [125], which shows

how C can exhibit nondeterministic behavior while staying conforming. The
driving expression is the addition of two function calls. In C, function
evaluation is not allowed to interleave [81, 6.5.2.2:10], so the behavior of this
program is determined solely on which call happens last:

int r = 0;
int f (int x) { return (r = x); }
int main(void){ f(1) + f(2); return r; }

If f() is called with the argument 2 last, then the result will be 2, and
similarly for 1. Searching with our semantics gives the behaviors {r=1} and
{r=2}, which are indeed the two possible results.

As a last example, we look at a more complex expression of our own
devising: f()(a(b(), c(d()))). Except for f(), each function call prints
out its name and returns 0. The function f(), however, prints out its name

55

PhD Thesis, University of Illinois, July 2012

and then returns a function pointer to a function that prints “e”. The function
represented by this function pointer will be passed results of a(). We elide
the actual function bodies, because the behavior is more easily understood
by this tree:

e
f a

b c

d

This tree (or Hasse diagram) describes the sequencing relation for the above
expression. That is, it must be the case that d happens before c, that b
and c happen before a, and that f and a happen before e. Running this
example through our search tool gives precisely the behaviors allowed by
the standard:

$ kcc nondet.c ; SEARCH=1 ./a.out
15 solutions found
bdcafe bdcfae bdfcae bfdcae dbcafe dbcfae dbfcae dcbafe
dcbfae dcfbae dfbcae dfcbae fbdcae fdbcae fdcbae

Model Checking

In addition to the simple state search we showed above, one can also use
our semantics for LTL model checking. For example, consider the following
program:

typedef enum {green, yellow, red} state;
state lightNS = green; state lightEW = red;
int changeNS() {

switch (lightNS) {
case(green): lightNS = yellow; return 0;
case(yellow): lightNS = red; return 0;
case(red):

if (lightEW == red) { lightNS = green; } return 0;
}

}
...
int main(void) { while(1) { changeNS() + changeEW(); } }

This program is meant to represent two orthogonal traffic lights (lightNS

56

PhD Thesis, University of Illinois, July 2012

and lightEW) at the same intersection. It provides an implementation of an
algorithm to change the state of the lights from green to yellow to red and
back. We elide the nearly identical changeEW() function. The program takes
advantage of the unspecified order of evaluation of addition in the expression
changeNS() + changeEW() to nondeterministically choose the order in which
the lights are changed.
There are a number of properties one might like to prove about this

program, including safety and liveness properties. One safety property is
that it should always be the case that at least one of the lights is red,
or �((lightNS == red) ∨ (lightEW == red)). We have added a special
#pragma1 allowing the programmer to write and name LTL formulae. If
we call the above formula “safety”, then we can invoke the model checker
as follows:

$ kcc lights.c ; MODELCHECK=safety ./a.out
result Bool: true

Similarly, it is important that the lights always make progress, i.e., that it
is always the case the lights will eventually become green. If we try to check
�3(lightNS == green), we find that it does not hold of the above program:

$ kcc lights.c ; MODELCHECK=progress ./a.out
result ModelCheckResult: counterexample ...

The reason this property is not verified is that the algorithm is wrong! Be-
cause the calls to changeNS() and changeEW() can occur in any order, it is
possible for either of the lights to get stuck on red. The program starts with
ns=gre, ew=red. Consider the following execution:

changeNS, changeEW => ns=yel, ew=red
changeEW, changeNS => ns=red, ew=red
changeNS, changeEW => ns=gre, ew=red

By alternating evaluation orders, the program can change the N/S light with-
out ever changing the E/W light. This evaluation order is highly implausable
in most C compilers, but the semantics allows it. If we fix an evaluation or-
der by changing changeNS() + changeEW(); to changeNS(); changeEW();,
then the property holds:

1A conforming way to add implementation-defined behavior to C.

57

PhD Thesis, University of Illinois, July 2012

$ kcc lights.c ; MODELCHECK=progress ./a.out
result Bool: true

Applying this formula to our program yields, “result Bool: true”, in
400ms. If we break the algorithm by changing a while to an if, the tool
instead returns a list of rules, together with the resulting states, that represent
a counterexample. It is impossible to represent the entire trace here, as it is
over 14MB, but it consists of 41 function applications and instances of the
if-then-else and if-then rules.

Model Checking of Concurrent C Programs

Dekker’s Algorithm We now take a look at the classical Dekker’s algo-
rithm, in order to explore thread interleavings. The code below is based on
that of Engblom [51]:

void dekker1(void) {
flag1 = 1;
turn = 2;
while((flag2 == 1)

&& (turn == 2)) ;
critical1();
flag1 = 0;

}

void dekker2(void) {
flag2 = 1;
turn = 1;
while((flag1 == 1)

&& (turn == 1)) ;
critical2();
flag2 = 0;

}

These two functions get called by the two threads respectively to ensure
mutual exclusion of the calls to criticaln(). In the program we used for
testing, these threads each contain infinite loops of repeated dekker calls,
while the function main() waits on thrd_join()s. Thus, the program never
terminates.
To test the mutual exclusion property, we can model check the following

LTL formula: 2¬(enabled(critical1) ∧ enabled(critical2)), stating that the
two critical sections can never be called at the same time. Applying this
formula to our program yields, “result Bool: true”, in 400ms. If we break
the algorithm by changing a while to an if, the tool instead returns a list
of rules, together with the resulting states, that represent a counterexample.
It is impossible to represent the entire trace here, as it is over 14MB, but

58

PhD Thesis, University of Illinois, July 2012

it consists of 41 function applications and instances of the if-then-else and
if-then rules.
However, the mutual exclusion property is only guaranteed by Dekker’s

algorithm for sequential memory models. By slightly modifying the semantics,
as described in Section 4.2.6, we can change from a memory model with
sequential consistency to a more relaxed model. Re-running the example, we
see that the property no longer holds, and the tool provides a counterexample
where the two critical sections can be executed concurrently. This happens
because of the potential delay of updates in a truly concurrent system.
Dekker’s algorithm was investigated when the Maude model checker was

introduced [46], where the authors state, “[This] algorithm example illustrates
a general capability to model check in Maude any program (or abstraction of
a program, having finitely many states) in any programming language: we
just have to define in Maude the language’s rewriting semantics and the state
predicates” [emphasis in original]. That we could use the same technique for
a fully defined language lends some manner of validation to their claim.

Dining Philosophers Another classic example is the dining philosophers
problem. This code is based on that of Senning [145]:

void philosopher(int n) {
while(1) {

// Hungry: obtain chopsticks

if (n % 2 == 0) { // Even number: Left, then right

lock(&chopstick[(n+1) % NUM_PHILOSOPHERS]);
lock(&chopstick[n]);

} else { // Odd number: Right, then left

lock(&chopstick[n]);
lock(&chopstick[(n+1) % NUM_PHILOSOPHERS]);

}
// Eating

// Finished Eating: release chopsticks

unlock(&chopstick[n]);
unlock(&chopstick[(n+1) % NUM_PHILOSOPHERS]);

}
}

59

PhD Thesis, University of Illinois, July 2012

The above code shows a solution that has even-numbered philosophers picking
up their left chopstick first, while odd-numbered philosophers pick up their
right chopstick first. This strategy ensures that there is no deadlock. We
can use Maude’s search command to verify there is no deadlock simply by
searching for final states. Here are the results:

No Deadlock With Deadlock
n no. states time (s) no. states time (s)

1 19 0.1 – –
2 92 0.8 63 0.6
3 987 14.0 490 7.2
4 14,610 293.5 5,690 119.8
5 288,511 8,360.3 84,369 2,376.5

In the “No Deadlock” column we see the results for the code above. We were
able to verify that with this algorithm, there were no deadlocks for up to five
philosophers. In the “With Deadlock” column, we altered the code so that
all philosophers would try to pick up their left chopstick first. Under this
algorithm, we were able to find counterexamples showing that the program
has deadlocks.

60

PhD Thesis, University of Illinois, July 2012

Chapter 5

Negative Semantics

In this chapter we discuss the negative semantics of C, that is, semantic rules
to identify undefined programs. We discuss exactly what undefinedness is
and what consequences it has for C, techniques to describe it formally, and
evaluate our semantic rules against popular analysis tools for C on a third
party benchmark and one of our own devising. Much of the work in this
chapter comes from Ellison and Ros,u [49] and Regehr et al. [130].

5.1 Introduction
A programming language specification or semantics has dual duty: to describe
the behavior of correct programs and to identify incorrect programs. The
process of identifying incorrect programs can also be seen as describing which
programs do not belong to the language. Many languages come with static
analyses (such as type systems) that statically exclude a variety of programs
from the language, and there are rich formalisms for defining these restrictions.
However, well-typed programs that “go bad” dynamically are less explored.
Some languages choose to give these programs semantics involving exceptions,
or similar constructs, while others choose to exclude these programs by fiat,
stating that programs exhibiting such behaviors do not belong to the language.
Regardless of how they are handled, semantic language definitions must specify
these situations in some manner. This chapter is about these behaviors and
such specifications.

In the previous chapter, we focused primarily on giving semantics to correct
programs, and showed how our formal definition could yield a number of tools
for exploring program evaluation. The evaluation we performed was against
defined programs, and the completeness we claimed was for defined programs.
In contrast, in this work we focus on identifying undefined programs. We

61

PhD Thesis, University of Illinois, July 2012

go into detail about what this means and how to do it, and evaluate our
semantics against test suites of undefined programs.

Although there have been a number of formal semantics of various subsets
of C (see Section 2.1 for an in-depth comparison), they generally focus on the
semantics of correct programs only (though Norrish [119] is an exception).
While it might seem that semantics will naturally capture undefined behavior
simply by exclusion, because of the complexity of undefined behavior, it takes
active work to avoid giving many undefined programs semantics. In addition,
capturing the undefined behavior is at least as important as capturing the
defined behavior, as it represents a source of many subtle program bugs.
While a semantics of defined programs can be used to prove their behavioral
correctness, any results are contingent upon programs actually being defined—
it takes a semantics capturing undefined behavior to decide whether this
is the case.
C, together with C++, is the king of undefined behavior—C has over 200

explicitly undefined categories of behavior, and more that are left implicitly
undefined [81]. Many of these behaviors can not be detected statically, and
as we show later (Section 5.2.6), detecting them is actually undecidable
even dynamically. C is a particularly interesting case study because its
undefined behaviors are truly undefined—the language has nothing to say
about such programs. Moreover, the desire for fast execution combined with
the acceptance of danger in the culture surrounding C means that very few
implementations try to detect such errors at runtime.

Concern about undefined programs has been increasing due to the growing
interest in security and safety-critical systems. However, not only are these
issues broadly misunderstood by the developer community, but many tools
and analyses underestimate the perniciousness of undefined behavior (see
Section 5.2 for an introduction to its complexity), or even limit their input
to only defined programs. For example, CompCert [94], a formally verified
optimizing compiler for C, assumes its input programs are completely defined,
and gives few guarantees if they contain undefined behavior. We provide
this study of undefined behaviors in the hope of alleviating this obstacle to
correct software.

Undefinedness tends to be considered of secondary importance in semantics,
particularly because of the misconception that capturing undefined behaviors
comes “for free” simply by not defining certain cases. There has been a

62

PhD Thesis, University of Illinois, July 2012

semantic treatment of some undefined behaviors [119], as well as a practical
study of arithmetic overflow in particular [39]; both of which went to great
lengths to specify undefined behavior. It can be quite difficult to cleanly
separate the defined from the undefined. To see how this might be the case,
consider that the negation of a context free language may not be context free,
or that not all semidecidable systems are decidable. While it is true that
capturing undefinedness is about not defining certain cases, this is easier said
than done (see Section 5.3).

5.2 Undefinedness
In this section we examine what undefinedness is and why it is useful in
C. We also look into some of the complexity and strangeness of undefined
behavior. We finish with a brief overview of undefinedness in other popular
languages. Other good introductions to undefinedness in C (and C++) include
Regehr [129] and Lattner [92]. The fact that the best existing summaries are
blog posts should indicate that there is a significant lack of academic work
on undefinedness.

5.2.1 What Undefinedness Is

According to the C standard, undefined behavior is “behavior, upon use of a
nonportable or erroneous program construct or of erroneous data, for which
this International Standard imposes no requirements” [81, §3.4.3:1]. It goes
on to say:

Possible undefined behavior ranges from ignoring the situation
completely with unpredictable results, to behaving during transla-
tion or program execution in a documented manner characteristic
of the environment (with or without the issuance of a diagnostic
message), to terminating a translation or execution (with the
issuance of a diagnostic message). [81, §3.4.3:2]

This effectively means that, according to the standard, undefined behavior
is allowed to do anything at any time. This is discussed in more detail
in Section 5.2.4. Undefined programs are invalid C programs, because the

63

PhD Thesis, University of Illinois, July 2012

standard imposes no restrictions on what they can do. Of course, particu-
lar implementations of C may guarantee particular semantics for otherwise
undefined behaviors, but these are then extensions of the actual C language.

5.2.2 Undefinedness is Useful

The C standard ultimately decides which behaviors are to be undefined and
which are to be defined. The most common source of undefined behaviors are
behaviors that are exceptional in some way, while also hard (or impossible)
to detect statically.1 If these behaviors are undefined, an implementation of
C does not need to handle them by adding complex static checks that may
slow down compilation, or dynamic checks that might slow down execution
of the program. This makes programs run faster.

For example, dereferencing an invalid pointer may cause a trap or fault (e.g.,
a Segmentation Fault); more importantly, it does not do the same thing on
every platform. If the language required that all platforms behave identically,
for example by throwing an exception when dereferencing an invalid pointer,
a C compiler would have to generate more complicated code for dereference.
It would have to generate something like: for dereference of a pointer p, if p
is a valid pointer, go ahead and dereference p; otherwise, throw an exception.
This additional condition would mean slower code, which is something that
the designers of C try to avoid: two of the design principles of C are that it
should be “[made] fast, even if it is not guaranteed to be portable”, and that
implementations should “trust the programmer” [80].

To keep the language fast, the standard states that dereferencing an invalid
pointer is undefined [81, §6.5.3.3:4]. This means programs are allowed to
exhibit any behavior whatsoever when they dereference an invalid pointer.
However, it also means that programmers now need to worry about it, if
they are interested in writing portable code. The upshot of liberal use of
undefined behavior is that no runtime error checking needs to be provided
by the language. This leads to the fastest possible generated code, but the
tradeoff is that fewer programs are portable.

1There are also undefined behaviors that are not hard to detect statically, such as
“If two identifiers differ only in nonsignificant characters, the behavior is undefined” [81,
§6.4.2:6], but are there for historical reasons or to make a compiler’s job easier.

64

PhD Thesis, University of Illinois, July 2012

5.2.3 Undefinedness is also a Problem

Even though undefined behavior comes with benefits, it also comes with
problems. It can often confuse programmers who upon writing an undefined
program, think that a compiler will generate “reasonable” behavior. In fact,
compilers do many unexpected things when processing undefined programs.
For example, in the previous section we mentioned that dereferencing

invalid pointers is undefined. When given this code:
int main(void){

(char)NULL;
return 0;

}

GCC,2 Clang,3 and ICC4 will not generate code that segfaults, because they
simply ignore the dereference of NULL. They are allowed to do this because
dereferencing NULL is undefined—a compiler can do anything it wants to such
an expression, including totally ignoring it.
Even worse is that compilers are at liberty to assume that undefined

behavior will not occur. This assumption can lend itself to more strange
consequences. One nice example is this piece of C code [113]:

int x;
...
if (x + 1 < x) { ... }

Programmers might think to use a construct like this in order to handle a
possible arithmetic overflow. However, according to the standard, x + 1 can
never be less than x unless undefined behavior occurred (signed overflow is
undefined [81, §6.5:5]). A compiler is allowed to assume undefined behav-
ior never occurs—even if it does occur, it does not matter what happens.
Therefore, a compiler is entirely justified in removing the branch entirely. In
fact, GCC 4.1.2 does this at all optimization levels and Clang and GCC 4.4.4
do this at optimization levels above 0. Even though Clang and GCC only
support two’s complement arithmetic, in which INT_MAX + 1 == INT_MIN,
both compilers clearly take advantage of the undefinedness.

2v. 4.1.2 unless otherwise noted. All compilers on x86_64 with -O0 unless otherwise
noted.

3v. 3.0
4v. 11.1

65

PhD Thesis, University of Illinois, July 2012

Here is another example where compilers take advantage of undefined
behavior and produce unexpected results:

int main(void){
int x = 0;
return (x = 1) + (x = 2);

}
Because assignment is an expression in C that evaluates to “the value of the
left operand after the assignment” [81, §6.5.16:3], this piece of code would
seem to return 3. However, it is actually undefined because multiple writes
to the same location must be sequenced (ordered) [81, §6.5:2], but addition is
nondeterministic. GCC returns 4 for this program, because it transforms the
code similar to the following:

int x = 0;
x = 1;
x = 2;
return x + x;

For defined programs, this transformation is completely behavior preserving.
However, because it is undefined, the behavior can be, and in the case of
GCC is, different than what most programmers expect.

5.2.4 Strangeness of C Undefinedness

In one sense, all undefined behaviors are equally bad because compiler op-
timizers are allowed to assume undefined behavior can never occur. This
assumption means that really strange things can happen when undefined
behavior does occur. For example, undefined behavior in one part of the
code might actually affect code “that ran earlier”, because the compiler can
reorder things. For example:

66

PhD Thesis, University of Illinois, July 2012

int main(void){
int r = 0, d = 0;
for (int i = 0; i < 5; i++) {

printf("%d\n", i);
r += 5 / d; // divides by zero

}
return r;

}
Even though the division by zero occurs after the printf lexically, it is not
correct to assume that this program will “at least” print 0 to the screen.
Again, this is because an undefined program can do anything. In practice, an
optimizing compiler will notice that the expression 5 / d is invariant to the
loop and move it before the loop. Both GCC and ICC do this at optimization
levels above 0. This means on a machine that faults when doing division by
zero, nothing will be printed to the screen except for the fault. Again, this is
correct behavior according to the C standard because the program triggers
undefined behavior.

5.2.5 Implementation-Dependent Undefined Behavior

The C standard allows implementations to choose how they behave for
certain kinds of behavior. So far in this chapter we have discussed only
undefined behavior, for which implementations may do whatever they want.
However, there are other kinds of behavior, including unspecified behavior and
implementation-defined behavior, which we recall the definitions of here [81,
§3.4]:

unspecified behavior Use of an unspecified value, or other behavior [with]
two or more possibilities and [. . .] no further requirements on which is
chosen in any instance.

implementation-defined Unspecified behavior where each implementation
documents how the choice is made.

An example of unspecified behavior is the order in which summands are
evaluated in an addition. An example of implementation-defined behavior is
the size of an int. Whether or not a program is undefined may actually depend

67

PhD Thesis, University of Illinois, July 2012

on the choices made for an implementation regarding implementation-defined
or unspecified behaviors.

Undefinedness Depending on Implementation-Defined Behavior

Depending on choices of implementation-defined behavior, behavior can be
defined or not. For example:

int* p = malloc(4);
if (p) { *p = 1000; }

In this code, if ints are 4 bytes long, then the above code is free from
undefined behaviors. If instead, ints are 8 bytes long, then the above will
make an undefined memory read outside the bounds of the object pointed to
by p. In practice, this means that programmers must be intimately familiar
with the implementation-defined choices of their compiler in order to avoid
potential undefinedness arising from it.

Undefinedness Depending on Unspecified Behavior

Like implementation-defined undefined behavior above, undefined behavior
can also depend on unspecified behavior. However, while implementation-
defined behavior must be documented [81, §3.19.1] so that programmers may
rely on it, unspecified behavior has no such requirement. An implementation
is allowed to have different unspecified behaviors in different situations, and
may even change them at runtime.

One such example is evaluation order. Because evaluation order is almost
completely unspecified in C, an implementation may take advantage of un-
defined behavior found on only some of these orderings. For example, any
implementation is allowed to “miscompile” this code:

int d = 5;
int setDenom(int x){

return d = x;
}
int main(void) {

return (10/d) + setDenom(0);
}

because there is an evaluation strategy (e.g., right-to-left) that would set d to

68

PhD Thesis, University of Illinois, July 2012

0 before doing the division. While GCC compiles this code and generates an
executable containing no runtime error, CompCert [94], a formally verified
optimizing compiler for C, generates code that exhibits a division by zero.
Both of these behaviors are correct because the program contains reachable
undefined behavior. In practice, this means that any tool seeking to identify
all undefined behaviors must search all possible evaluation strategies.

5.2.6 Difficulties in Detecting Undefined Behavior

In general, detecting undefined behavior is undecidable even with dynamic
information. Consider the following example:

int main(void){
guard();
5 / 0;

}
The undefinedness of this program is based on what happens in the guard()
function. Only if one can show that guard() will terminate can one conclude
that this program has undefined behaviors. However, showing that guard()
terminates, even with runtime information, is undecidable.

Although it is impossible (in general) to prove that a program is free from
undefined behaviors, this raises the question of whether one can monitor for
undefined behaviors. The question is somewhat hard to pin down—as we saw
in Section 5.2.3, a smart compiler may detect undefined code statically and
generate target code that does not contain the same behaviors. This means
a monitor or even state-space search tool would not be able to detect such
undefined behavior at runtime, even though the original program contained
it. If we instead assume we will monitor the code as run on an “abstract
machine”, we can give more concrete answers.

First, it is both decidable and feasible to monitor an execution and detect
any undefined behavior, as long as the program is deterministic. By deter-
ministic we mean there is only a single path of execution (or all alternatives
join back to the main path after a bounded number of steps). It is feasible
because one could simply check the list of undefined behaviors against all the
alternatives before executing any step. Because all decisions would be joinable,
only a fixed amount of computation would be needed to check each step.

69

PhD Thesis, University of Illinois, July 2012

For nondeterministic single-threaded5 programs, one may need to keep arbi-
trary amounts of information, making the problem decidable but intractable.
Consider this program:

int r = 0;
int flip() {

// return 0 or 1 nondeterministically

}
int main(void){

while(true){
r = (r << 1) + flip();

}
}

At iteration n of the loop above, r can be any one of 2n values. Because
undefinedness can depend on the particular value of a variable, all these pos-
sible states would need to be stored and checked at each step of computation
by a monitor. The above argument could be reformulated to encode r using
allocated memory, avoiding the limited sizes of builtin types like int, but the
presentation would be more complicated.

If multiple threads are introduced, then the problem becomes undecidable.
The reason is similar to the original argument—because there are no fairness
restrictions on thread scheduling, at any point, the scheduler can decide to
let a long-running thread continue running.

// thread 1

while (guard()) {}
d = 0;

// thread 2

5 / d;

In this example, if one could show that the loop must eventually terminate,
then running thread 1 to completion followed by thread 2 would exhibit
undefined behavior. However, showing that the loop terminates is undecidable.

5.2.7 Undefinedness in Other Languages

It should be clear at this point that undefinedness is a huge part of the C
language, but other languages also have undefined behavior. The documenta-
tion or specifications of many popular languages identify undefined programs

5Threads were added to C in C11 [81].

70

PhD Thesis, University of Illinois, July 2012

that are allowed to do anything (including crash). For example, LLVM in-
cludes a number of undefined behaviors, including calling a function using
the wrong calling convention [93]. Scheme’s specification describes undefined
behavior in relation to callcc and dynamic-wind [87, p. 34]. Even Haskell,
an otherwise safe and pure language, has undefined behavior in a number
of unsafe libraries, such as Unsafe.Coerce and System.IO.Unsafe. There
are many other examples of this in other programming languages, including
Perl [41] and Ruby [140].6

Even languages without undefined behavior run into many of the same
specification problems. Any language with constructs having exceptional
behavior, such a division by zero, needs to be able to specify or define the
behavior of these cases. These kinds of behavior are invariably of the form,
“the —– construct is defined as —–. However, in some special case —–, it
raises an exception instead.” For example, the Java standard states,

The binary / operator performs division, producing the quotient of
its operands [. . .] if the value of the divisor in an integer division
is 0, then an ArithmeticException is thrown. [65, §15.17.2]

Similarly, the SML Basis Library standard states:

[i div j] returns the greatest integer less than or equal to the
quotient of i by j. [. . .] It raises [. . .] Div when j = 0. [62]

This pattern comes up frequently enough in most languages that it is worthy
of investigation. We investigate ways of formally specifying such behaviors in
Section 5.3.

5.3 Semantics-Based Undefinedness
Checking

As we explained in Section 5.2.7, most languages have some form of undefined,
or at least exceptional, behavior. When formalizing such languages, this
behavior needs to be formalized as well. We were faced with this problem
when developing our formal semantics for C [48]. At first we believed that

6Though the Ruby standard uses the word “unspecified”, they define this to include
behavior “not necessarily defined for any particular implementation” [140, §4.17].

71

PhD Thesis, University of Illinois, July 2012

detecting undefinedness using a semantics would simply be a matter of running
the program using the semantics and letting it get stuck where there was no
semantic rule for a behavior. We have come to realize that in fact, quite a lot
of work needs to go on to enable these behaviors to be caught.
In this section we explain a number of techniques for dealing with unde-

finedness semantically. In doing so, we address most of the issues used as
examples in Section 5.2.

5.3.1 Using Side Conditions and Checks to Limit
Rules

By bolstering particular rules with side conditions, we can catch some unde-
fined behavior. We have employed this technique in our semantics to catch
much of the undefined behavior we are capable of catching.

Division by Zero

The simplest example of using side conditions to catch undefined behavior is
in a division. In C, the following unconditional rule gives the semantics of
integer division for correct programs:

〈 I / J
I /Int J

···〉k

Of course, this rule is not good for programs that do divide by zero. In such a
case, the rule might turn “/Int” into a constructor for integers, where suddenly
terms like 5 /Int 0 are introduced into the semantics. Programs like:

int main(void){
5/0;
return 0;

}
might actually be given complete meanings without getting stuck, because
the semicolon operator throws away the value computed by its expression.
One way to solve this issue is simply by adding a side condition on the

division rule requiring “J 6= 0”. This will cause the rule to only define the
defined cases, and let the semantics get stuck on the undefined case. In
addition, human-readable error messages, like the one shown in Section 5.4.1,

72

PhD Thesis, University of Illinois, July 2012

can be obtained by inverting the side conditions preventing undefined behavior
for occurring:

〈 I / J
reportError(“Division by zero”)

···〉k when J = 0

Array Length

In C, arrays must have length at least 1 [81, §6.7.6.2:1&5]. However, without
taking this fact into consideration, it is easy to give semantics to arrays of any
non-negative length, simply by allowing the size to be any natural number.
If they would be used at runtime, the problem would be detected, but simply
declaring them would slip through. We had precisely this problem in earlier
versions of our semantics. To detect this problem, the semantics needs an
additional constraint on top of allowing any natural—it must also be non-zero.

Dereferencing

This most basic form of the dereferencing rule (Section 4.2.4) rule says that
dereferencing a location L of type pointer-to-T (L : ptrType(T)) yields an
lvalue L of type T ([L] : T). This rule is completely correct according to
the semantics of C [81, §6.5.3.2:4] in that it works for any defined program.
However, it fails to detect undefined programs including dereferencing void [81,
§6.3.2.1:1] or null [81, §6.3.2.3:3] pointers. In a program like:

int main(void){
*NULL;
return 0;

}

this rule would apply to *NULL, then the result ([NULL] : void) would be
immediately thrown away (according to the semantics of “;”). The program
would then return 0 and completely miss the fact that the program was
undefined.
In order to catch these undefined behaviors, it could be rewritten as:

〈 *(L : ptrType(T))
[L] : T

···〉k when T 6= void ∧ L 6= NULL(deref-safer)

73

PhD Thesis, University of Illinois, July 2012

If this is the only rule in the semantics for pointer dereferencing, then the se-
mantics will get stuck when trying to dereference NULL or trying to dereference
a void pointer.

One major downside with this technique is in making rules more complicated
and more difficult to understand. For complex side conditions involving
multiple parts of the state, including cells not otherwise needed by the
positive rule, this is a big problem. To take pointer dereferencing again
as an example, we also want to eliminate the possibility of dereferencing
memory that is no longer “live”—either variables that are no longer in scope,
or allocated memory that has since been freed. Here is the safest (and most
verbose) version of the rule:

(deref-safest) 〈 *(loc(B,O) : ptrType(T))
[loc(B,O)] :T

···〉k 〈B〉basePtr 〈Len〉len

when T 6= void ∧O < Len

The above rule now additionally checks that the location is still alive (by
matching an object in the memory), and checks that the pointer is in bounds
(by comparing against the length of the memory object). Locations are
represented as base/offset pairs loc(B,O), which is explained in detail in
Section 5.3.3. The rule has become much more complicated. The beauty
and simplicity of the original semantic rule has been erased, simply to catch
undesirable cases.

A slight variation involves embedding the safety checks in the main compu-
tation. This is useful when the safety condition is complicated or involves
other parts of the state. The above rule can be rewritten as two rules like so:

〈 *(L : ptrType(T))
checkDeref(L,T) y [L] : T

···〉k(deref-safest-embedded)

(checkDeref) 〈 checkDeref(loc(B,O),T)
·

···〉k 〈B〉basePtr 〈Len〉len

when O < Len ∧ T 6= void

Notice that checkDerefLoc is “blocking” the top of the k cell. As long as it
stays there, no rules that match other constructs on the top of k can apply. If

74

PhD Thesis, University of Illinois, July 2012

checkDerefLoc succeeds, it will simply evaluate to the unit of the y construct
and disappear. This is called “dissolving”.
The deref-safest-embedded rule could be rewritten to use a side

condition, but this would require passing the entire context (in particular,
memory) to the helper-function as an argument. This works, but the rule
becomes artificially complex.

Multiplication

In order to catch signed overflow, we need to add side conditions to the rules
we gave in Section 4.2.4 for arithInterpret. Although most of the rule stays
the same, we need to add a restriction to make sure no semantics is given to
out-of-range signed types.

arithInterpret(T , I)
arithInterpret(T , I −Int (max(T) +Int 1))

when isUnsignedIntType(T)
∧ I > max(T)

arithInterpret(T , I)
arithInterpret(T , I +Int (max(T) +Int 1))

when isUnsignedIntType(T)
∧ I < min(T)

Simply by adding side conditions stating that these rules only apply to
unsigned integer types, we now catch signed overflow here.

Data Races

Data races are defined in the C standard as follows:

The execution of a program contains a data race if it contains
two conflicting actions in different threads, at least one of which
is not atomic, and neither happens before the other. Any such
data race results in undefined behavior. [81, §5.1.2.4:25]

We can express a write-write conflict in our semantics using the following rule
for checking such a condition:

〈— 〈write(L,—,Len) ···〉thread 〈write(L′,—,Len′) ···〉thread
·

〉threads

when overlaps((L,Len), (L′, Len′))

75

PhD Thesis, University of Illinois, July 2012

where write is an operation taking a location, a value to write, and the length
of the value. The rule matches two concurrently executing threads that
are both writing at the same time. The side condition checks to see if the
memory locations written to overlap, using the “overlaps” operation, and if
so, dissolves all the threads in order to halt computation. The similar rule
for write-read conflicts is nearly identical to the above rule.

In the process of executing a concurrent program, it is possible that such a
rule is activated and will trigger an error message about a race being detected.
However, for many programs with races, such a problem only becomes evident
in a relatively small number of allowed executions. For such bugs, search
through the state space is required. We show an example of using this rule
with search to catch data races in Section 5.4.2. K has been previously used
to detect data races in S, erbănut,ă [146] using a similar mechanism.

5.3.2 Storing Additional Information

It is not enough to add new rules or side conditions to existing rules if the
semantics does not keep track of all the pertinent data to be used in the
specifications.

Unsequenced Reads and Writes

As explained in Section 5.2.3, unsequenced writes or an unsequenced write
and read of the same object is undefined. This means that if there are two
writes, or a write and a read to the same object that are unsequenced (i.e.,
either is allowed to happen before the other), then the expression is undefined.
Examples of expressions made undefined by this clause include (x=0)+(x=1)
and (x=0)+x and x=x++ and *p=x++, for int x and int* p=&x. This relation
is related to the concept of “sequence points”, also defined by the standard.
Sequence points cause the expressions they fall between to be sequenced. The
most common example of a sequence point is the semicolon, i.e., the end of
an expression-statement. All previous evaluations and side effects must be
complete before crossing sequence points.

In order to catch this in our semantics, we keep track of all the locations that
have been written to since the last sequence point in a set called locsWrittenTo
(see Figure 3.1). Whenever we write to or read from a location, we first check

76

PhD Thesis, University of Illinois, July 2012

this set to make sure the location had not previously been written to:

〈 writeByte
writeByte′

(Loc, V) ···〉k 〈S ·
Loc
〉locsWrittenTo when Loc 6∈ S

〈 readByte
readByte′

(Loc) ···〉k 〈S〉locsWrittenTo when Loc 6∈ S

After either of the above rules have executed, the primed operations will take
care of any additional checks and eventually the actual writing or reading.
Finally, when we encounter a sequence point, we empty the locsWrittenTo set:

〈 seqPoint
·

···〉k 〈 S
·
〉locsWrittenTo

Sequence points are generated in the appropriate places [81, Appx. J] by other
rules. For example, the rule for an expression statement is:

〈 V ;
seqPoint

···〉k

and the rule for the sequencing expression is:

〈 V ,K
seqPoint y K

···〉k

With the above rules for inserting and removing items from the locsWrittenTo
cell in place, the rules given at the start of this section for reading and writing
bytes are appropriately constrained.

These rules allow reading and writing on a particular path to check for bad
behaviors, but this says nothing about whether the semantics can capture
all possible paths of evaluation. For example, if the above rules were used
to evaluate the expression (x=0) + x right to left, no undefined behavior
would be detected, despite the fact that such behavior would be detected if
evaluated left to right. Therefore, it is essential that we correctly capture all
paths of evaluation. This was addressed to some extent in Section 4.2.8, but
we revisit it briefly here in the context of detecting undefined evaluations.

77

PhD Thesis, University of Illinois, July 2012

When two expressions are unsequenced, it means that evaluation can
happen in any order. Thus, it is natural to map unsequenced behavior into
nondeterministic behavior. This way, we can use state space exploration
as a single mechanism to find unsequenced behavior. To identify this kind
of undefined behavior naively can be incredibly computationally expensive;
some optimizations are necessary to make this feasible. We offer two such
optimizations below.

First, with a little case analysis of the definition of the sequencing relation,
it is clear that there can be no sequenced write before a read of the same
object with no intervening sequence point. This means that if in searching
the semantic state space, we find an execution in which the write of a scalar
object happens before a write or read of the same object with no intervening
sequence point, then we can conclude that this write/write or write/read pair
is unsequenced. Whenever a write is made, its location is recorded in the
locsWrittenTo cell, which is emptied whenever a sequence point is crossed.
This cell is first checked whenever a read or write is made to ensure that
there is no conflict. This strategy has the added benefit that some undefined
behaviors of this kind can be detected even during interpretation (where only
a single path through the state space is explored). It is similar to the strategy
used by Norrish [119].

However, the strategy we outlined above has the added advantage of being
able to detect some of these undefined behaviors even during interpretation.
Second, it turns out that a large subset of allowed orderings do not need to be
considered in order to detect undefined behavior or possible nondeterministic
behaviors. Because we are looking for writes before other events, we can take
the liberty of applying side effects immediately instead of delaying them.
What would it mean for there to exist an expression whose definedness

relied on whether or not a side effect (a write) occurs later instead of earlier?
There must be three parts to the expression: a subexpression E generating a
side effect X, and, for generality’s sake, further subexpressions E ′ and E ′′.
The particular evaluation where we do side effects immediately would look
like E X E ′ E ′′. Because this is always a possible execution, and we assume it
does not show a problem, we can conclude neither E ′ nor E ′′ reads or writes
to X. If there is a problem only when we delay the side effect, it can be seen
in a path like E E ′ X E ′′. For this to be different than applying the changes
to X immediately, it means there must be some use of X in the evaluation of

78

PhD Thesis, University of Illinois, July 2012

E ′. But this contradicts the previous assumption.
This shrinks the state space dramatically, while at the same time not

missing any undefined behavior.

Const-Correctness

Another example of needing to keep additional information is specifying
const-correctness. In C, a type can have the type qualifier const, meaning
it is unchangeable after initialization. Writes can only occur through non-
const types [81, §6.3.2.1:1, §6.5.16:1]. For correct programs, this modifier
can be completely ignored, since it is only there to help the programmer
catch mistakes. To actually catch those mistakes requires the semantics to
keep track of const modifiers and to check them during all modifications and
conversions.
One might think that it is possible to soundly and completely check for

const-correctness statically—after all, it is generally not allowed to drop
qualifiers on pointers [81, §6.3.2.3:2], meaning one cannot simply write code
like this:

const char p[] = "hello";
char *q = (char*)p;

With this in mind, one could check that no consts are dropped in conversion
and no writes occur through const types. However, this is not sufficient—
there are ways around the conversion, such as this:

const char p[] = "hello";
char *q = strchr(p, p[0]); // removes const

The strchr library function
char *strchr(const char *s, int c);

returns a pointer to the first instance of c in s. By calling it with p and p[0],
this function returns a pointer to the same string, but without the const
modifier. This is completely defined by itself, but if a write occurs through
pointer q, the standard says that it is undefined [81, §6.7.3:6]. We handle
this in our semantics by marking memory that was defined with const by
placing these locations into a set named notWritable, then checking this fact

79

PhD Thesis, University of Illinois, July 2012

during subsequent writes:

〈 writeByte′

writeByte′′
(Loc, V) ···〉k 〈S〉notWritable when Loc 6∈ S

5.3.3 Symbolic Behavior

Through the use of symbolic execution, we can further enhance the above idea
by expanding the behaviors that we consider undefined, while maintaining
the good behaviors. Symbolic execution is straightforward to achieve using a
rewriting-based semantics: whether a term is concrete or abstract makes no
difference to the theory. Rules designed to work with concrete terms do not
need to be changed in order to work with symbolic terms.

Memory Locations

As we explained in Section 4.2.3, we treat pointers not as concrete integers,
but as symbolic values. These values then have certain behavior defined on
them, such as comparison, difference, etc. This technique is based on the idea
of strong memory safety, which had previously been explored with a simple
C-like language [138]. In this context, it takes advantage of the fact that
addresses of local variables and memory returned from allocation functions
like malloc() are unspecified [81, §7.20.3]. For example, take the following
program:

int main(void) {
int a, b;
if (&a < &b) { ... }

}
If we gave objects concrete, numerical addresses, then they would always be
comparable. However, this piece of code is actually undefined according to
the standard [81, §6.5.8:5]. Symbolic locations that are actually base/offset
pairs allow us to detect this program as problematic. We only give semantics
to relational pointer comparisons where the two addresses share a common
base. Thus, evaluation gets stuck on the program above:

80

PhD Thesis, University of Illinois, July 2012

$ kcc bad_comparison.c ; ./a.out
ERROR encountered while executing this program.
Description: Cannot apply '<' to different base objects.
Function: main
Line: 3

Of course, sometimes locations are comparable. There are a number of guar-
antees on many addresses, such as the elements of an array being completely
contiguous and the fields in a struct being ordered (though not necessarily
contiguous). If we take the following code instead:

int main(void) {
struct { int a; int b; } s;
if (&s.a < &s.b) { ... }

}

the addresses of a and b are guaranteed to be in order [81, §6.5.8:5], and in
fact our semantics finds the comparison to be true because the pointers share
a common base. The above is accomplished with rules like the following for
each relational operator:

〈 (loc(B,O) :T) < (loc(B,O′) :T)
1 : int

···〉k when O < O′

〈 (loc(B,O) :T) < (loc(B,O′) :T)
0 : int

···〉k when O 6< O′

Note that these rules only apply when the bases are identical, and so compare
offsets within an object.

Storing Pointers

Another example of the use of symbolic terms in our semantics is how we
store pointers in memory. Because all data must be split into bytes to be
stored in memory, the same must happen with pointers stored in memory.
However, because our pointers are not actual numbers, they cannot be split
directly; instead, we split them symbolically. Assuming a particular pointer

81

PhD Thesis, University of Illinois, July 2012

loc(B,O) was four bytes long, it is split into the list of bytes:

subObject(loc(B,O), 0),
subObject(loc(B,O), 1),
subObject(loc(B,O), 2),
subObject(loc(B,O), 3)

where the first argument of subObject is the object in question and the second
argument is which byte this represents. This allows the reconstruction of the
original pointer, but only if given all the bytes. This program demonstrates
its utility:

int main(void) {
int x = 5, y = 6;
int *p = &x, *q = &y;
char *a = (char*)&p, *b = (char*)&q;
a[0] = b[0]; a[1] = b[1]; a[2] = b[2];
// *p is not defined yet

a[3] = b[3]; // needs all bytes

return *p; // returns 6

}
Any particular byte-splitting mechanism would mean over-specification—a
user could take advantage of it to run code that is not necessarily defined.

Indeterminate Memory

Another example can be seen when copying a struct one byte at a time (as
in a C implementation of memcpy()); every byte needs to be copied, even
uninitialized fields (or padding), and no error should occur [81, §6.2.6.1:4].
Because of this, our semantics must give it meaning. Using concrete, perhaps
arbitrary, values to represent unknowns would mean missing some incorrect
programs, so we use symbolic values that allow reading and copying to take
place as long as the program never uses those uninitialized values in undefined
ways. We store these unknown bytes in memory as unknown(N) where N is
the number of unknown bits.
In C99, unknown values are generally not allowed to be used under the

possibility that they may produce a trap (an error) [79, §6.2.6.1:5]. Similarly,

82

PhD Thesis, University of Illinois, July 2012

in our semantics, such unknown bytes may not be used by most operations.
However, exceptions are made when using an unsigned-character type [79,
§6.2.6.1:3–4]—this special case is represented in our semantics by an additional
rule allowing such an unknown value to be read by lvalues of the allowed type.

5.3.4 Suggested Semantic Styles for Undefinedness

In this section, we suggest two new specification techniques for capturing
undefined or exceptional behavior based on our experience in capturing
undefinedness in C. These are untested (we know of no semantic framework
incorporating them), but we think they would make expressing undefined
behavior much more straightforward.

Inclusion/Exclusion Rules

One nice way to specify exceptional behavior would be to define additional
“negative” semantic rules to catch the special cases. For example, in addition
to the deref rule given earlier, add the following two rules:

〈 *(L : ptrType(void))
reportError(“Cannot dereference void pointers”)

···〉k(deref-neg1)

〈 *(NULL : ptrType(T))
reportError(“Cannot dereference null pointers”)

···〉k(deref-neg2)

For this definitional strategy to make sense, later rules must be applied before
earlier rules. Each additional rule acts as a refinement on the previous rule.
Simply having multiple rules is much cleaner than rules with side conditions—
it allows the primary, unexceptional case to be emphasized because it is
presented without side conditions. However, this strategy trades off the
complexity of side conditions for the complexity of rule precedence.

It is possible for rule precedence to be supported by a semantic framework
as syntactic sugar, where it automatically adds side conditions necessary to
prevent earlier rules from executing first. It should be clear that one could
hand-write these side conditions, but the whole point of this strategy is to
avoid explicit side conditions in order to make the rules simpler.

83

PhD Thesis, University of Illinois, July 2012

It is not enough to consider exploring the transition system for these
reportError states, since this mechanism is also useful for defined but excep-
tional behavior. In such cases, if one were to allow the rules to apply in any
order and then analyze the resulting transition system, it would be difficult
to identify which paths should be removed. Consider the following three rules
for division:

〈 I / J
I /Real J

···〉k ← 〈 I / 0
Infinity

···〉k ← 〈 0/ 0
NaN

···〉k

These rules should be tried right to left until one matches. They are similar
to the rules of IEEE-754 floating point, which evaluates division by zero to
Infinity or NaN values.

Declarative Specification

An additional possibility is to again start with only the original positive
semantic rule, but then to add declarative specifications on top of that. For
example, using LTL and configuration patterns, we could specify both

�¬〈*(L : ptrType(void)) ···〉k
and �¬〈*(NULL : ptrType(T)) ···〉k

The first property states that it is never the case that the next action to
perform is dereferencing a void pointer. The second property states that it is
never the case that the next action to perform is dereferencing a null pointer.
Using a temporal logic to add these negative “axioms” to the semantics has
the advantage of being able to capture undefined behavior that might only
occur on one path in the transition system. For example, this property states
that read-write data races are not allowed:

�¬ (〈read(L, T) ···〉k 〈write(L′, T ′, V) ···〉k)
when overlaps((L, T), (L′, T ′))

84

PhD Thesis, University of Illinois, July 2012

5.4 Applications
In this section, we describe the applications made available by our negative
semantics. These include a run-time checker for undefined behavior, as well
as a space-state exploration tool capable of uncovering program errors such
as data races.

5.4.1 A Semantics-Based Undefinedness Checker

By using the three techniques described in Section 5.3, we improved our
formal semantics of C (Chapter 4) into a tool capable of recognizing a wide
range of undefined behaviors. While the original semantics was capable of
catching a handful of undefined behaviors, in general each additional behavior
we caught involved a reworking of at least one semantic rule.

Our tool is capable of detecting undefined behaviors simply by running
them through the semantics. As described in Section 4.2.9, this is done using
a wrapper, mimicking GCC, we built around the semantics. We report on
the capabilities of this tool as compared to other analysis tools in Section 5.5.
While kcc can run defined programs:

$ kcc helloworld.c
$./a.out
Hello world

it can also report on undefined programs. If we take the third example in
Section 5.2.3:

int main(void){
int x = 0;
return (x = 1) + (x = 2);

}
and run it in kcc we get:

85

PhD Thesis, University of Illinois, July 2012

ERROR encountered while executing this program.
===
Error: 00016
Description: Unsequenced side effect on scalar
object with side effect of same object.
===
Function: main
Line: 3

When something lacks semantics (i.e., when its behavior is undefined according
to the standard) then the evaluation of the program will simply stop when it
reaches that point in the program. We use this mechanism to catch errors
like signed overflow or array out-of-bounds.
In this small program, the programmer forgot to leave space for a string

terminator ('\0'). The call to strcpy() will read off the end of the array:

int main(void) {
char dest[5], src[5] = "hello";
strcpy(dest, src);

}
GCC will happily execute this, and depending on the state of memory, even
do what one would expect. It is still undefined, and our semantics will detect
trying to read past the end of the array. Because this program has no meaning,
our semantics “gets stuck” when exploring its behavior. It is through this
simple mechanism that we can identify undefined programs and report them
to the user. By default, when a program gets stuck, we report the state of
the configuration (a concrete instance of that shown in Figure 3.1) and what
exactly the semantics was trying to do at the time of the problem. We have
also begun to add explicit error messages for common problems—here is the
output from our tool for this code:

86

PhD Thesis, University of Illinois, July 2012

$ kcc buggy_strcpy.c ; ./a.out
ERROR encountered while executing this program.
===
Error: 00002
Description: Reading outside the bounds of an object.
===
Function: strcpy
Line: 3

Test Case Reduction

Our semantics-based undefinedness checker has already found one serious
application—automatic test case reduction [130]. Test-case reduction refers
to the process of taking a program that exhibits a bug and trying to find a
smaller program (usually a sub-program) that exhibits the same bug. While
test-case reduction could apply to the reduction of any buggy program, we
have applied it to a particular class of programs that are machine generated
to find bugs in compilers.
Csmith [168] is a C program test generator that generates random con-

forming programs from a large, expressive subset of the C language. These
tests are then used to perform differential testing among C compilers to find
compilation bugs. To date, the Csmith team has found more than 325 bugs in
common compilers like GCC and Clang. The programs Csmith generates are
almost always too large (many between 1,000 and 10,000 SLOC) to submit as
bug reports and need to be reduced. The reduction process is semi-automatic,
but is riddled with the possibility of introducing undefined behavior. Until
now, these tests would have to be carefully examined by hand for undefined
behavior, because any such behavior would render the tests invalid. Consider
this program:

int main (void) {
int x;
x = 2;
return x + 1;

}
Assume that compiler A emits code that properly returns 3 while compiler B is

87

PhD Thesis, University of Illinois, July 2012

buggy and generates code returning a different result. The goal of a test-case
reducer is to create the smallest possible program triggering the bug in B.
During reduction many variants will be produced, perhaps including this one
where the line of code assigning a value to x has been removed:

int main (void) {
int x;
return x + 1;

}
This variant, however, is not a valid test case. Even if this variant exhibits the
desired behavior—compilers A and B return different results—the divergence
is potentially due to its reliance on undefined behavior: reading uninitial-
ized storage. In fact, on a common Linux platform, GCC and Clang emit
code returning different results for this variant, even when optimizations are
disabled. Compiler developers are typically most unhappy to receive a bug
report whose test input relies on undefined or unspecified behavior. This is
not a hypothetical problem—a web page for the Keil C compiler states that
“Fewer than 1% of the bug reports we receive are actually bugs.”7

Our recent work [130] has shown that a tool capable of identifying undefined
behaviors is necessary to solve this problem, and that our tool is capable
of filling the role. Our undefinedness checker is currently being used by the
Csmith team and has allowed them to more completely automate the process
and reduce the tests more aggressively.

No major changes were needed in kcc to make it useful in test-case reduction.
However, we added English-language error messages for most of the common
undefined behaviors, which made it easier to understand exactly how variants
go wrong. Additionally, we added detectors for some previously-uncaught
undefined behaviors to the tool because those behaviors were found in variants.
Any errors reported by kcc are guaranteed to be real errors in the program,
under the assumption that the underlying semantics accurately captures C.
Since kcc focuses entirely on problems detectable at run time, it catches very
few errors detectable statically. In practice, this is not an issue since the
compilers we are testing are able to identify these problems on their own.

7http://www.keil.com/support/bugreport.asp

88

PhD Thesis, University of Illinois, July 2012

http://www.keil.com/support/bugreport.asp

5.4.2 State Space Search Revisited

To start with a simple example from Papaspyrou and Maćoš [126], we take a
look at x+(x=1) in an environment where x is 0. This expression is undefined
because the read of x (the lone x) is unsequenced with respect to the write
of x (the assignment), as described in Section 5.2.3. Using our semantics to
do a search of the behaviors of this expression finds this unsequenced read/
write pair, and reports an error. Norrish [119] offers the deceptively simple
expression (x=0) + (x=0), which in many languages would be valid. However,
in C it is again a technically undefined expression due to the unsequenced
assignments to x. Our semantics reports an error for this expression as well.

Another kind of example where search is usually needed is in detecting data
races. Many thread interleavings hide the problem, and only an exhaustive
search is guaranteed to find it. Take the following simple program to start:
int global;

int f(void* a){
global = 1;
return 0;

}
int g(void* a){

global = 2;
return 0;

}

int main(void) {
thrd_t t1, t2;
thrd_create(&t1, f, NULL);
thrd_create(&t2, g, NULL);

thrd_join(t1, NULL);
thrd_join(t2, NULL);

printf("%d\n", global);
}

This program has a write-write datarace. Running it through the interpreter
results in a single answer, with no errors detected:

$ kcc simpleRace.c
$./a.out
2

However, doing a search with the rules for datarace detection given in Sec-
tion 5.3.1 yields three possible scenarios:8

8 We use THREADSEARCH because we are only interested in nondeterminism stemming
from different threads, not nondeterminism inherent in the language. This cuts down the
state space significantly. If full nondeterministic search is required, SEARCH can be used
instead.

89

PhD Thesis, University of Illinois, July 2012

$ THREADSEARCH=1 GRAPH=1 ./a.out
3 solutions found

Solution 1
Program got stuck
Error: 00049
Description: Have a write-write datarace.

Solution 2
Program completed successfully
Return value: 0
Output:
2

Solution 3
Program completed successfully
Return value: 0
Output:
1

Taking a look at the search graph generated by our tool, as shown in Fig-
ure 5.1, we can see the sequences of rules that led to the different outcomes:
Two paths lead to program termination, but one path results in a data race
being detected. Despite the successful paths, the program itself is undefined
because of the data race.
To look at a more complicated example, we take a concurrent program

from S, erbănut,ă [146], a parallel implementation of quicksort. We give an
updated version using C11 concurrency primitives in Figure 5.2. When called
with the appropriate arguments, this program will sort a list beginning at
((qsort_arg*)arg)->b and ending at ((qsort_arg*)arg)->e. However,
without the commented-out calls to thrd_join at the bottom of the function,
the call might return before the subthreads are finished. This leads to a race
condition if the function that called quickSort tries to use the data before it
is finished sorting. Given the following main function:

90

PhD Thesis, University of Illinois, July 2012

35

37

thrd-join

33

36

write

32

write

26

27

thrd-create

42
2

30

29

31

thrd-create

write

28

thrd-create

39

41

writeToFD-string

write write-write-racewrite

40

terminate

38

thrd-join

43
1

terminate

writeToFD-string

34

thrd-join

thrd-join

thrd-join write

25

call-main

Figure 5.1: Search graph for simpleRace.c

91

PhD Thesis, University of Illinois, July 2012

typedef struct {
int *b;
int *e;

} qsort_arg;

void quickSort(void* arg) {
int* b = ((qsort_arg*)arg)->b;
int* e = ((qsort_arg*)arg)->e;

int t;
if (! (e <= b + 1)) {

int p = *b; int *l = b+1; int *r = e;
while (l + 1 <= r) {

if (*l <= p) {
l = l + 1;

} else {
r = r - 1;
t = *l; *l = *r; *r = t;

}
}
l = l - 1;
t = *l; *l = *b; *b = t;

qsort_arg* arg1 = malloc(sizeof(qsort_arg));
arg1->b = b; arg1->e = l;
qsort_arg* arg2 = malloc(sizeof(qsort_arg));
arg2->b = r; arg2->e = e;

thrd_t t1, t2;
thrd_create(&t1, quickSort, arg1);
thrd_create(&t2, quickSort, arg2);
/* thrd_join(t1, NULL);

thrd_join(t2, NULL); */
}

}

Figure 5.2: Parallel implementation of quicksort

92

PhD Thesis, University of Illinois, July 2012

int main(void){
int myArray[] = {77, 19, 12, 15};
int arrayLen = sizeof(myArray) / sizeof(myArray[0]);
int* array = malloc(sizeof(int) * arrayLen);
for (int i = 0; i < arrayLen; i++){

array[i] = myArray[i];
}

quickSort(&((qsort_arg){&array[0], &array[arrayLen]}));

printf("%d", array[0]);
}

we see that executing the program fails to find a bug (although it does return
an unsorted first element):

$ kcc quicksort.c
$./a.out
15

Running the same program through search, and the tool detects the data race
with similar output as the simpleRace.c example above. Uncommenting out
the thrd_join calls, and the search runs with only a single outcome found.

5.5 Evaluation
In this section we evaluate the semantics-based approach against special-
purpose analysis tools. To do so, we explain our testing methodology, which
includes a third-party suite of undefined tests as well as a suite of tests we
developed.

5.5.1 Third Party Evaluation

In order to evaluate our analysis tool, we first looked for a suite of undefined
programs. Although we were unable to find any test suite focusing on
undefined behaviors, we did find test suites that included a few key behaviors.
Below we briefly mention work we encountered that may evolve into or develop

93

PhD Thesis, University of Illinois, July 2012

a complete suite in the future, as well as one suite that we use as a partial
undefinedness benchmark.

Related Test Suites

There is a proposed ISO technical specification for program analyzers for C [82],
suggesting programmatically enforceable rules for writing secure C code. Many
of these rules involve avoiding undefined behavior; however, the specification
only focuses on statically enforceable rules. The above classification is similar
to MISRA-C [110], whose goal was to create a “restricted subset” of C to
help those using C meet safety requirements. MISRA released a “C Exemplar
Suite”, containing code both conforming and non-conforming code for the
majority of the MISRA C rules. However, these tests contain many undefined
behaviors mixed into a single file, and no way to run the comparable defined
code without running the undefined code. Furthermore, most of the MISRA
tests test only statically detectable undefined behavior. The CERT C Secure
Coding Standard [144] and MITRE’s “common weakness enumeration” (CWE)
classification system [111] are other similar projects, identifying many causes
of program error and cataloguing their severity and other properties. The
projects mentioned above include many undefined behaviors—for example, the
undefinedness of signed overflow [81, §6.5:5] corresponds to CERT’s INT32-C
and to MITRE CWE-190.

Juliet Test Suite

NIST has released a suite of tests for security called the Juliet Test Suite
for C/C++ [116], which is based on MITRE’s CWE classification system. It
contains over 45,000 tests, each of which triggers one of the 116 different
CWEs supported by the suite. Most of the tests (∼70%) are C and not C++.
However, again the Juliet tests focus on statically detectable violations, and
not all of the CWEs are actually undefined—many are simply insecure or
unsafe programming practices.

Because the Juliet tests include a single undefined behavior per file and come
with positive tests corresponding to the negative tests, we decided to extract
an undefinedness benchmark from them. To use the Juliet tests as a test suite
for undefinedness, we had to identify which tests were actually undefined.
This was largely a manual process that involved understanding the meaning

94

PhD Thesis, University of Illinois, July 2012

of each CWE. It was necessary due to the large number of defined-but-bad-
practice tests that the suite contains. Interestingly, the suite contained some
tests whose supposedly defined portions were actually undefined. Using our
analysis tool, we were able to identify six distinct problems with these tests
and have submitted the list to NIST. We have not heard back from them yet.
We also wrote a small script automating the process of extracting and in some
cases fixing the tests, available at http://code.google.com/p/c-semantics/

source/browse/trunk/tests/juliet/clean.sh.
This extraction gave us 4113 tests, with about 96 SLOC per test (179 SLOC

with the helper-library linked in). The tests can be divided into six classes
of undefined behavior: use of an invalid pointer (buffer overflow, returning
stack address, etc.), division by zero, bad argument to free() (stack pointer,
pointer not at start of allocated space, etc.), uninitialized memory, bad
function call (incorrect number or type of arguments), or integer overflow.
We then ran these tests using a number of analysis tools, including our

own semantics-based tool kcc. These tools include Valgrind [115],9 Check-
Pointer [99],10 and the Value Analysis plugin for Frama-C [23].11 Although
the Juliet tests are designed to exercise static analysis tools, all of the tools
we tested can be considered dynamic analysis tools.12 The results of this
benchmark can be seen in Figure 5.3. Valgrind, and Value Analysis each took,
on average, 0.5 s to run the tests, kcc took 23 s, and CheckPointer took 80 s.
CheckPointer has a large, fixed startup time as it is mainly used to check
large software projects, not 100 line programs.

Based on initial results of these tests, we improved our tool to catch precisely
those behaviors we were missing. We also contacted the authors of the Value
Analysis plugin with their initial results, and they were able to patch their
tool within a few days to do the same thing. Because not all tools had this
opportunity, the test results should not be taken as any kind of authoritative
ranking, but instead suggest some ideas. First, no tool was able to catch
behaviors accurately unless they specifically focused on those behaviors. This
reaffirms the idea that undefinedness checking does not simply come for free
(e.g., by simply leaving out cases), but needs to be studied and understood

9v. 3.5.0, http://valgrind.org/
10v. 1.1.5, http://www.semdesigns.com/Products/MemorySafety/
11v. Nitrogen-dev, http://frama-c.com/value.html
12Frama-C’s value analysis can be used in “C interpreter” mode [35, §2.1].

95

PhD Thesis, University of Illinois, July 2012

http://code.google.com/p/c-semantics/source/browse/trunk/tests/juliet/clean.sh
http://code.google.com/p/c-semantics/source/browse/trunk/tests/juliet/clean.sh
http://valgrind.org/
http://www.semdesigns.com/Products/MemorySafety/
http://frama-c.com/value.html

Tools (% passed)
Undefined Behavior No. Tests Valgrind CheckPointer V. Analysis kcc

Use of invalid pointer 3193 70.9 89.1 100.0 100.0
Division by zero 77 0.0 0.0 100.0 100.0
Bad argument to free() 334 100.0 99.7 100.0 100.0
Uninitialized memory 422 100.0 29.3 100.0 100.0
Bad function call 46 100.0 100.0 100.0 100.0
Integer overflow 41 0.0 0.0 100.0 100.0

Figure 5.3: Comparison of analysis tools on Juliet Test Suite

96

PhD Thesis, University of Illinois, July 2012

specifically. For example, Valgrind does not try to detect division by zero or
integer overflow, and CheckPointer was not designed to detect division by
zero, uninitialized memory, or integer overflow. This shows up very clearly
in the test results. Second, tools were able to improve performance simply
by looking at concrete failing tests and adapting their techniques. As an
example, on its initial run on the Juliet tests, kcc only caught about 93%.
These ideas mean it is critical that undefinedness benchmarks continue

to be developed and used to refine analysis tools. Both we and the Value
Analysis team found the Juliet tests useful in improving our tools; in many
cases, they gave concrete examples of missing cases that were otherwise hard
to identify. The identification, together with the techniques described in
Section 5.3, enabled us to adapt our tools to catch every behavior in the suite.

5.5.2 Undefinedness Test Suite

Because we were unable to find an ideal test suite for evaluating detection
of undefined behaviors, we began development of our own. This involved
first trying to understand the behaviors, and then constructing test cases
corresponding to each behavior.

Our Classifications

To help develop our test suite, we first tried to understand the undefined
behaviors listed in the standard. Part of this involves classifying the behaviors
into categories depending on difficulty. For example, the standard says: “The
(nonexistent) value of a void expression (an expression that has type void)
shall not be used in any way, and implicit or explicit conversions (except to
void) shall not be applied to such an expression” [81, §6.3.2.2:1]. Depending
on how one interprets the word “use”, this could be a static or dynamic
restriction. If static, the code:

if (0) { (int)(void)5; }
is undefined according to §6.3.2.2:1; if dynamic, it is defined since the prob-
lematic code can never be reached. The intention behind the standard13

appears to be that, in general, situations are made statically undefined if it is
not easy to generate code for them. Only when code can be generated, then

13Private correspondence with committee member.

97

PhD Thesis, University of Illinois, July 2012

the situation can be undefined dynamically. In the above example, it is hard
to imagine code being generated for (int)(void)5, so we can conclude this
is meant to be statically undefined. When there was any confusion as to the
static/dynamic nature of any of the behaviors, we use the above assumption.
We found that the majority of the categories of undefined behavior in C

are dynamic in nature. Out of 221 undefined behaviors, 92 are statically
detectable and 129 are only dynamically detectable. Because the argument
for the undecidability of detecting undefinedness (Section 5.2.6) does not
depend on the particular dynamic behavior, detecting any dynamic behavior
is equally hard. This does not apply to the static behaviors, as they are
undefined for static reasons and are not subject to particular control flows.

Our Test Suite

An ideal test suite for undefined behaviors involves individual tests for each of
the 221 undefined behaviors. Some behaviors require multiple tests, e.g., “If
the specification of a function type includes any type qualifiers, the behavior is
undefined.” [81, §6.7.3:9] requires at least one test for each qualifier. Ideally the
tests would also include control-flow, data-flow, and execution-flow variations
in order to make static analysis more difficult.

As we discussed in Section 5.2.4, dynamic undefined behavior on a reachable
path (or any statically undefined behavior) causes the entire program to
become undefined. This means that each test in the test suite needs to be a
separate program, otherwise one undefined behavior may interact with another
undefined behavior. In addition, each test should come with a corresponding
defined test. This “control” test makes it possible to identify false-positives
in addition to false-negatives. Without such tests, a tool could simply say all
programs were undefined and receive full marks.

Our suite currently includes 178 tests covering 70 of the undefined behaviors.
We hope it will serve as a starting point for the development of a larger,
more comprehensive test. Our suite focuses almost entirely on the non-library
behaviors, and specifically on the dynamic behaviors therein. It includes at
least one test for each of the 42 dynamically undefined behaviors relating to
the non-library part of the language that are not also implementation-specific.
We have made our test suite and categorization available for download at
http://code.google.com/p/c-semantics/downloads/.

98

PhD Thesis, University of Illinois, July 2012

http://code.google.com/p/c-semantics/downloads/

These tests are much broader than the Juliet tests, covering 70 undefined
behaviors as opposed to the 6 covered by the Juliet tests. However, each
behavior is tested shallowly, with only 2 tests per behavior on average. Some
of the dynamic behaviors it tests that the Juliet suite does not include:

• If the program attempts to modify [a character string literal], the
behavior is undefined. [81, §6.4.5:7]

• An object shall have its stored value accessed only by an lvalue expression
that has [an allowed type]. [81, §6.5:7]

• When two pointers are subtracted, both shall point to elements of the
same array object, or one past the last element of the array object. [81,
§6.5.6:9]

• If a side effect on a scalar object is unsequenced relative to either a
different side effect on the same scalar object or a value computation
using the value of the same scalar object, the behavior is undefined. [81,
§6.5:2]

There are many other such behaviors tested, and all are equally bad from
the C standard’s perspective. They can all cause a compiler to generate
unexpected code or cause a running program to behave in an unexpected way.
We compared the same tools as before using our own custom made tests.

The results can be seen in Figure 5.4. It is clear that the tools focusing on a
few common undefined behaviors (Valgrind and CheckPointer) only detect
a small percentage of behaviors. Both Value Analysis and kcc, which were
designed to catch a large number of undefined behaviors, were able to catch
a much larger number of dynamic behaviors, and in the case of kcc, many of
the static behaviors as well.

5.6 Conclusion
In this chapter we investigated undefined behaviors in C and how one can
capture these behaviors semantically. We discussed three techniques for
formally describing undefined behaviors. We also used these techniques in a
semantics-based analysis tool, which we tested against other popular analysis

99

PhD Thesis, University of Illinois, July 2012

Tools Static (% Passed) Dynamic (% Passed)
Valgrind 0.0 2.3
V. Analysis 1.6 45.3
CheckPtr. 2.4 13.1
kcc 44.8 64.0

Figure 5.4: Comparison of analysis tools against our tests. These averages
are across undefined behaviors, and no behavior is weighted more than
another.

tools. We compared the tools on a test suite of our own devising, which we are
making publicly available, as well as on another publicly available test suite.

We hope that this work will bring more attention to the problem of undefined
behavior in program verification. Undefined programs may behave in any
way and undefinedness is (in general) undecidable to detect; this means
that undefined programs are a serious problem that needs to be addressed
by analysis tools. Whether this is through semantic means or some other
mechanism, tools to verify the absence of undefined behavior are needed on
the road to fully verified software.

100

PhD Thesis, University of Illinois, July 2012

Chapter 6

Conclusion

In the previous chapters, we explained how a complete formal semantics
for C can be defined in the K framework, yielding tools for execution and
analysis. We now explain some of the limitations of our work, as well as
obvious extensions. We finish with some forward-looking words on the state
of the formal semantics discipline.

6.1 Limitations
Here we delineate the limitations of our definition and explain their causes
and effects.
There are two main ways in which semantics can be incomplete—under-

definedness and over-definedness. Typically when one thinks of incompleteness,
one thinks of failure to give meaning to correct programs. However, because
we want to be able to identify incorrect or unportable programs, the semantics
must be balanced appropriately between defining too much or too little. It is
equally important not to give semantics to programs that should be undefined.

In the first case, we are not missing any features—we have given semantics
to every feature required of a freestanding implementation of C. With this
said, our semantics is not perfect. For example, we still are not passing
100% of our test cases (see Section 4.3). Also, our semantics of floating point
numbers is particularly weak. During execution or analysis, we simply rely
on an IEEE-754 implementation of floating point arithmetic provided to us
by our definitional framework (K). This is fine for interpretation and explicit
state model checking, but not for deductive reasoning.

In the second case, although our semantics can catch many bad behaviors
other tools cannot (e.g., we have not found any other tool that catches the
undefined programs in Sections 5.3.3 or 4.4.2), there is still room for improve-
ment. For one, our semantics aligns all types to one-byte boundaries. This

101

PhD Thesis, University of Illinois, July 2012

means we cannot catch undefined behavior related to alignment restrictions.
Note that others have worked on formalizing alignment requirements [117],
but it has never been incorporated into a full semantics for C. We also do
not handle the type qualifiers volatile or restrict; we simply ignore them.
This is safe to do when interpreting correct programs, but it means we are
not detecting problems related to those features in incorrect programs. It
also means that we are missing possible behaviors when searching programs
that use volatile.

We have not yet used our C definition for doing language or program level
proofs, even though the K Framework supports both program level [139]
and semantics level proofs [50]. To do so, we need to extend our semantics
with support for formal annotations (e.g., assume, assert, invariant) and
connect it to a theorem prover. This is already being done for a subset of
the C language [135], and we intend to apply those techniques to actual C
in the future.
We still do not cover all of the standard library headers. So far, we have

added library functions by need in order to run example programs, which is
why we have semantics for library functions like malloc(), longjmp(), parts
of printf(), variadic functions, and over 30 others. We intend on covering
more libraries in the future, but for now, one could supplement what we
provide by using implementations of libraries written in C.
In our current semantics, only some of the implementation-defined be-

haviors are available—the most common ones. By making the semantics
parametric, we hope others can add or change implementation-defined rules
to suit their needs.

Finally, we should mention the speed of our system. While it is not nearly
as fast as C compiled natively, it is usable. Of the GCC torture test programs
described listed in Section 4.3, our semantics ran over 93% of these programs
in under 10 seconds (each). An additional 4% completed in 2 minutes, 2%
in 5 hours, and 1% further in under 3 days. In comparison, it takes GCC
about 0.05 s for each test. The reader should keep in mind that this is an
interpreter obtained for free from a formal semantics. In addition, the search
and model checking tools suffer the same state explosion problems inherent
in all explicit-state model checking.

102

PhD Thesis, University of Illinois, July 2012

6.2 Future Work
In this section, we describe some of the next steps one could take developing
our semantics and the tools derived from the semantics.

6.2.1 Semantics

While the positive semantics for C99 features is complete, there are still C11
features we need to add. These include _Alignas, static-assertions, anony-
mous structs and unions, type-generic expressions, _Atomic, stdatomic.h,
and many functions from threads.h. There are also some remaining bugs
to be fixed in the C99 semantics, as uncovered by the GCC torture tests in
Section 4.3.
There are also many negative-semantics issues that can be addressed, as

uncovered by the evaluation in Section 5.5. In particular, we would like to
handle programs that are invalid due to strict aliasing [81, §6.5:7], which
we do not currently catch in all cases. Strict aliasing is often confusing and
unexpected to those who are not aware of it, causing problems in otherwise
correct code [1].
A complete list of the missing bugs and features is available at http:

//code.google.com/p/c-semantics/issues/list.
There are many extensions to C that could be formalized as well. These

include GCC extensions [59, §6], Cilk concurrency primitives [14], and Apple
blocks (closures for C) [5], among many others. One such extension has already
been specified on top of our semantics by a third party: Chris Hathhorn
added CUDA extensions to our semantics [71] for parallel computing using
graphics processing units (GPUs).

6.2.2 Tools

In terms of work related to tools, there are two major tasks that need to be
addressed. The first is applying matching logic [136, 137, 139] to the full C
semantics. While there is a matching logic tool available [135] for a subset of
C, it has not yet been extended to the complete semantics. Doing this involves
first developing a generic tool, so that given a mechanism for annotations
and a K definition, it supports all the connective tissue needed to connect
the proof exploration mechanisms with the rules of the language. Second,

103

PhD Thesis, University of Illinois, July 2012

http://code.google.com/p/c-semantics/issues/list
http://code.google.com/p/c-semantics/issues/list

specific abstraction techniques need to be developed for features of C that
have not yet been covered by our previous tools, such as arrays.
The other major task involves a way to abstract the state space for state-

space search or model checking. In particular, a way to identify states that
only disagree via renaming of addresses would be extremely helpful in cutting
down the state space of programs. For example, currently, code with local
variables causes a counter for memory locations to be incremented, changing
the location of other variables in the future. While these states might all be
equivalent under a renaming of locations, they are not identical, and so the
current tool treats these as different states, contributing to the state-space
explosion problem.

6.3 Conclusion
It is a shame that, despite the best efforts of over 40 years of research in
formal programming languages, most language designers still consider the
difficulties of defining formal semantics to outweigh the benefits. Formal
semantics and practicality are not typically considered together. When C
was being standardized, the standards committee explored using formal
semantics, but in the end decided to use simple prose because, “Anything
more ambitious was considered to be likely to delay the Standard, and to make
it less accessible to its audience” [80, §6]. This is a common sentiment in the
programming language community. Indeed, startlingly few “real” languages
have ever been completely formalized, and even fewer were designed with
formal specification in mind.
Based on our experience with our semantics, the development of a formal

semantics for C could have taken place alongside the development of the
standard. Within roughly 6 person-months, we had a working version of our
semantics that covered more of the standard than any previous semantics. The
version presented in this dissertation is the result of 18 person-months of work.
To put this in perspective, one member of the standards committee estimated
that it took roughly 62 person-years to produce the C99 standard [83, p. 6].
We are not claiming that we have done the same job in a fraction of the time;
obviously writing a semantics based on the standard is quite different than
writing the standard itself. We are simply saying that the effort it takes to

104

PhD Thesis, University of Illinois, July 2012

develop a rewriting-based semantics is quite small compared to the effort it
took to develop the standard.

The reluctance of the language community towards formal methods has not
been without reason—it is not always clear that having a formal semantics
earns the designer anything tangible for her effort. Commonly mentioned
benefits like improving the understanding of the language or providing a model
in which sound arguments about the language can be made are relatively
intangible; to be accepted by the general language community, semantics
needs to be shown to have concrete value beyond that of prose.

The time has come to start building analysis tools directly on formal models.
Instead of building analysis tools for different languages and different versions
of each language, the analysis infrastructure surrounding the semantics could
be maintained independently so that one could derive tools for multiple
languages simply by swapping out the semantic rules. Formal analysis tools
would be safer than traditional tools based on informal models of the target
languages. In addition, as the language changes and the specifications change,
the semantics can be changed in a single place and the tools regenerated. We
offer our work as one small step in this direction; we are not alone, and there
are other tools including pluggable analysis architectures like Frama-C [34]
and formal tools like CompCert [13] that share part of this vision.

105

PhD Thesis, University of Illinois, July 2012

Appendix A

Entire Annotated Semantics

In this appendix, we present the full dynamic semantics of C as expressed in
the K Framework. We use a slightly different notation here than in the rest of
this dissertation, as it makes the rules easier to read at a glance. This notation
was not used in previous chapters as it often takes up more space. The only
thing different about this notation is the way cells are represented—now, cells
completely graphically surround their contents (instead of using XML-like
brackets), and elision is represented using torn cell edges instead of ···. For
example, this rule:

〈X
V

···〉k 〈··· X 7→ V ···〉store

is equivalent to this rule:

rule

X

V

k

X 7→ V

store

1

In this appendix, comments to the formal semantics are set inside gray
boxes. These boxes often contain excerpts from the most recent draft of
the C11 standard, and begin with the draft number in parentheses, followed
by the relevant section and paragraph (e.g., (n1570) §6.3.2.1¶2). All
such comments are copyright ISO/IEC and are being used here solely for
educational purposes as a matter of comparison.

106

PhD Thesis, University of Illinois, July 2012

A.1 Syntax
This section presents the K syntax of C. While much of the syntax is given
as abstract, prefix productions, the majority of expressions are given as
mixfix productions. This allows expression constructs to look as close as
possible to the original syntax without making the parsing of semantic rules
difficult for K.

It is important to notice the strictness annotations on the rules, as described
in Section 3.2. These annotations describe the allowed order of evaluation for
C constructs. Evaluation contexts are used when strictness is not expressive
enough. Attributes like ndheat (and later ndlocal, synonyms for super-
heating and supercooling, respectively) are used to help carve out a search
space. Please see S, erbănut,ă et al. [150] for more details on superheating
and supercooling.

As a matter of convention, operators starting with an uppercase letter are
syntactic—they represent constructs coming directly from the language. Op-
erators starting with a lowercase letter are semantic—they are constructs used
to represent partially evaluated computations, helper operators, or functions.

107

PhD Thesis, University of Illinois, July 2012

module COMMON-C-SYNTAX

syntax TypeSpecifier ::= AlignasExpression(K)
| AlignasType(K,K)

syntax DeclType ::= ArrayType(K,K,K) [strict(1)]

syntax K ::= AnonymousName

syntax Id ::= #NoName
| #NoName(Nat) [klabel(#NoName)]

syntax Expression ::= - K [type-strict]
| + K [type-strict]
| ! K [type-strict]
| * K [type-strict]
| & K [strict type-strict]
| ++ K [type-strict]
| -- K [type-strict]
| AlignofExpression(K)
| AlignofType(K,K)
| ArrayIndex(K,K)
| Arrow(K, Id)
| Assign(K,K)
| AssignBitwiseAnd(K,K)
| AssignBitwiseOr(K,K)
| AssignBitwiseXor(K,K)
| AssignDivide(K,K)
| AssignLeftShift(K,K)
| AssignMinus(K,K)
| AssignModulo(K,K)
| AssignMultiply(K,K)
| AssignPlus(K,K)
| AssignRightShift(K,K)

syntax C ::= AttributeWrapper(K,K)

syntax TypeSpecifier ::= Atomic

108

PhD Thesis, University of Illinois, July 2012

syntax Storage ::= Auto

syntax FieldName ::= BitFieldName(K,K)

syntax KResult ::= AtIndexInit(K,K)
| AtIndexRangeInit(K,K)

syntax C ::= Attribute(String,K)

syntax Expression ::= BitwiseAnd(K,K)
| BitwiseNot(K)
| BitwiseOr(K,K)
| BitwiseXor(K,K)

syntax CabsLoc ::= CabsLoc(String, Int, Int, Int)

syntax TypeSpecifier ::= Char
| Bool
| Complex

syntax CVSpecifier ::= Const

syntax PureDefinition ::= DeclarationDefinition(K)

syntax Definition ::= DefinitionLoc(K,K)
| DefinitionLocRange(K,K,K)

syntax Block ::= Block(Nat,K,K)

syntax PureStatement ::= K;
| BlockStatement(K)
| Break
| Continue
| Case(Nat,Nat,K,K)
| CaseRange(K,K,K)
| Default(Nat,K)
| CompGoto(K)

syntax Expression ::= Cast(K,K,K) [strict(1)]

109

PhD Thesis, University of Illinois, July 2012

| CompoundLiteral(K,K,K,K) [strict(2)]
| Call(K,K) [type-strict(1)]
| Comma(K)
| Constant(K)

syntax IntConstant ::= DecimalConstant(K)
| DecimalFloatConstant(String, Int,Float)

syntax Constant ::= CharLiteral(Int)

syntax InitExpression ::= CompoundInit(K) [hybrid strict]

syntax K ::= CodeLoc(K,K)

syntax Expression ::= Conditional(K,K,K)
| Dereference(K)
| Divide(K,K)

syntax PureStatement ::= DoWhile(K,K)

syntax Expression ::= Dot(K, Id)

syntax TypeSpecifier ::= Double
| EnumRef(Id)
| EnumDef(Id,K)

syntax PureEnumItem ::= EnumItem(Id)
| EnumItemInit(Id,K)

syntax Expression ::= Equality(K,K)

syntax TypeSpecifier ::= Float

syntax Storage ::= Extern

syntax DeclType ::= FunctionType(K) [strict]

syntax FieldGroup ::= FieldGroup(K,K) [strict(1)]

110

PhD Thesis, University of Illinois, July 2012

syntax FieldName ::= FieldName(K)

syntax PureDefinition ::= FunctionDefinition(K,K) [strict(1)]
| GlobAsm(String)
| ExpressionTransformer(K,K)

syntax PureStatement ::= For(Nat,K,K,K,K)
| Goto(K)

syntax ForClause ::= ForClauseExpression(K)

syntax Expression ::= ExpressionLoc(K,K)
| GnuBody(K)
| ExpressionPattern(String)

syntax Constant ::= F(K)

syntax Expression ::= GreaterThan(K,K)
| GreaterThanOrEqual(K,K)

syntax TypeSpecifier ::= Int
| Imaginary

syntax SpecifierElem ::= Inline

syntax K ::= JustBase

syntax InitNameGroup ::= InitNameGroup(K,K) [strict(1)]

syntax Id ::= Identifier(String)

syntax InitName ::= InitName(K,K)

syntax PureDefinition ::= LTLAnnotation(K)

syntax Expression ::= LTL-Atom(K)
| LTL-Builtin(K)
| LTL-True
| LTL-False

111

PhD Thesis, University of Illinois, July 2012

| LTL-And(K,K)
| LTL-Or(K,K)
| LTL-Not(K)
| LTL-Next(K)
| LTL-Always(K)
| LTL-Eventually(K)
| LTL-Until(K,K)
| LTL-Release(K,K)
| LTL-Implies(K,K)
| LTL-Equiv(K,K)
| LTL-WeakUntil(K,K)

syntax PureStatement ::= IfThenElse(K,K,K)
| Label(Id,K)

syntax IntConstant ::= HexConstant(K)
| HexFloatConstant(String, Int,Float)

syntax Constant ::= L(K)
| LL(K)

syntax InitFragment ::= InitFragment(K,K)

syntax KResult ::= InFieldInit(Id,K)

syntax Expression ::= LeftShift(K,K)
| LessThan(K,K)
| LessThanOrEqual(K,K)

syntax C ::= List(List{K})

syntax PureDefinition ::= Linkage(String,K)

syntax Expression ::= LogicalAnd(K,K)
| LogicalNot(K)
| LogicalOr(K,K)

syntax TypeSpecifier ::= Long

112

PhD Thesis, University of Illinois, July 2012

syntax Expression ::= Minus(K,K)
| Modulo(K,K)
| Multiply(K,K)

syntax TypeSpecifier ::= Named(Id)

syntax Storage ::= NoStorage

syntax SpecifierElem ::= Noreturn

syntax NameGroup ::= NameGroup(K,K) [strict(1)]

syntax Name ::= Name(K,K)

syntax PureStatement ::= Nop

syntax Constant ::= NoSuffix(K)

syntax KResult ::= NoInit
| NextInit

syntax Expression ::= Negative(K)
| NotEquality(K,K)

syntax K ::= NotVariadic

syntax PureDefinition ::= OnlyTypedef(K)

syntax Expression ::= OffsetOf(K,K,K) [strict(1)]
| NothingExpression

syntax IntConstant ::= OctalConstant(K)

syntax Expression ::= Plus(K,K)

syntax Storage ::= Register

syntax CVSpecifier ::= Restrict

113

PhD Thesis, University of Illinois, July 2012

syntax DeclType ::= PointerType(K) [strict]
| Prototype(K,K,Bool) [strict(1)]

syntax PureDefinition ::= Pragma(K)

syntax Program ::= Program(K)

syntax PureStatement ::= Return(K)

syntax Expression ::= Positive(K)
| Reference(K)
| PreIncrement(K)
| PreDecrement(K)
| PostIncrement(K)
| PostDecrement(K)
| RightShift(K,K)

syntax K ::= reval(K) [semantic strict]
| peval(K) [semantic strict]

syntax C ::= Id

syntax K ::= StmtCons(K,K)

this production ensures that a TypeResult sort is created, together with an ’isTypeResult predicate

syntax TypeResult ::= dummyTypeProduction

syntax KResult ::= SpecifierElem

syntax C ::= CabsLoc
| TypeSpecifier
| Storage
| CVSpecifier
| SpecifierElem
| Specifier
| DeclType
| NameGroup

114

PhD Thesis, University of Illinois, July 2012

| FieldGroup
| InitNameGroup
| Name
| InitName
| SingleName
| Definition
| Block
| Statement
| PureStatement
| PureEnumItem
| ForClause
| Expression
| Constant
| InitExpression
| Program
| TranslationUnit
| IntConstant
| InitFragment
| FieldName
| PureDefinition

syntax TypeSpecifier ::= Void
| Short
| Signed
| Unsigned

syntax Float ::= inf

syntax TypeSpecifier ::= StructRef(Id)
| StructDef(Id,K)

context: StructDef(—,List(— ,, � ,, —))

syntax TypeSpecifier ::= UnionRef(Id)
| UnionDef(Id,K)

context: UnionDef(—,List(— ,, � ,, —))

syntax TypeSpecifier ::= TypeofExpression(K)

115

PhD Thesis, University of Illinois, July 2012

| TypeofType(K,K)
| TAtomic(K,K)

syntax Storage ::= Static
| ThreadLocal

syntax CVSpecifier ::= Volatile

syntax SpecifierElem ::= SpecTypedef
| CVSpecifier
| Storage
| TypeSpecifier
| SpecPattern(Id)

syntax Specifier ::= Specifier(K)

context: Specifier(List(— ,, � ,, —))

context: ArrayType(—, �
reval(�)

,—)[ndheat]

context: Prototype(—,List(— ,, � ,, —),—)

syntax K ::= Variadic

context: NameGroup(—,List(— ,, � ,, —))

macro
AnonymousName = #NoName

context: InitName(—, �
reval(�)

)[ndheat]

syntax SingleName ::= SingleName(K,K) [strict(1)]

syntax PureDefinition ::= Typedef(K)
| Transformer(K,K)

syntax TranslationUnit ::= TranslationUnit(String,K,K,String)

116

PhD Thesis, University of Illinois, July 2012

context: �
reval(�)

;

syntax PureStatement ::= Sequence(K,K)

context: IfThenElse(�
reval(�)

,—,—)

syntax PureStatement ::= While(K,K)

context: Return(�
reval(�)

)

syntax PureStatement ::= Switch(K,K,K)

context: Switch(—, �
reval(�)

,—)

syntax Statement ::= StatementLoc(K,K)

context: - �
reval(�)

context: + �
reval(�)

context: ! �
reval(�)

syntax Expression ::= ∼ K [type-strict]

context: ∼ �
reval(�)

context: * �
reval(�)

syntax Expression ::= K ++ [type-strict]

117

PhD Thesis, University of Illinois, July 2012

context: �
peval(�)

++

syntax Expression ::= K -- [type-strict]

context: �
peval(�)

--

syntax Expression ::= K * K [type-strict]
| K / K [type-strict]
| K % K [type-strict]

context: �
reval(�)

* —[ndheat]

context: — * �
reval(�)

[ndheat]

context: �
reval(�)

/ —[ndheat]

context: — / �
reval(�)

[ndheat]

context: �
reval(�)

% —[ndheat]

context: — % �
reval(�)

[ndheat]

syntax Expression ::= K + K [type-strict]
| K - K [type-strict]

context: �
reval(�)

+ —[ndheat]

context: — + �
reval(�)

[ndheat]

118

PhD Thesis, University of Illinois, July 2012

context: �
reval(�)

- —[ndheat]

context: — - �
reval(�)

[ndheat]

syntax Expression ::= K� K [type-strict(1)]

context: �
reval(�)

�—[ndheat]

context: —� �
reval(�)

[ndheat]

syntax Expression ::= K� K [type-strict(1)]

context: �
reval(�)

�—[ndheat]

context: —� �
reval(�)

[ndheat]

syntax Expression ::= K < K [type-strict]
| K <= K [type-strict]

context: �
reval(�)

< —[ndheat]

context: — < �
reval(�)

[ndheat]

context: �
reval(�)

<= —[ndheat]

context: — <= �
reval(�)

[ndheat]

syntax Expression ::= K > K [type-strict]
| K >= K [type-strict]

119

PhD Thesis, University of Illinois, July 2012

context: �
reval(�)

> —[ndheat]

context: — > �
reval(�)

[ndheat]

context: �
reval(�)

>= —[ndheat]

context: — >= �
reval(�)

[ndheat]

syntax Expression ::= K == K [type-strict]
| K != K [type-strict]

context: �
reval(�)

== —[ndheat]

context: — == �
reval(�)

[ndheat]

context: �
reval(�)

!= —[ndheat]

context: — != �
reval(�)

[ndheat]

syntax Expression ::= K & K [type-strict]

context: �
reval(�)

& —[ndheat]

context: — & �
reval(�)

[ndheat]

syntax Expression ::= K ˆ K [type-strict]

context: �
reval(�)

ˆ —[ndheat]

120

PhD Thesis, University of Illinois, July 2012

context: — ˆ �
reval(�)

[ndheat]

syntax Expression ::= K | K [type-strict]

context: �
reval(�)

| —[ndheat]

context: — | �
reval(�)

[ndheat]

syntax Expression ::= K && K [type-strict]

context: �
reval(�)

&& —[ndheat]

syntax Expression ::= K || K [type-strict]

context: �
reval(�)

|| —[ndheat]

syntax Expression ::= K *= K [type-strict(1)]
| K /= K [type-strict(1)]
| K %= K [type-strict(1)]
| K += K [type-strict(1)]
| K -= K [type-strict(1)]
| K�= K [type-strict(1)]
| K &= K [type-strict(1)]
| K ˆ= K [type-strict(1)]
| K |= K [type-strict(1)]
| K�= K [type-strict(1)]
| K := K [type-strict(1)]

context: �
peval(�)

:= —[ndheat]

context: — := �
reval(�)

[ndheat]

121

PhD Thesis, University of Illinois, July 2012

syntax Expression ::= K ? K : K [type-strict(2 3)]

context: �
reval(�)

? — : —

context: Cast(—,—, �
reval(�)

)

context: Call(�
reval(�)

,—)[ndheat]

context: Call(—,List(— ,, �
reval(�)

,, —))[ndheat]

context: Comma(List(�
reval(�)

,, —))[ndheat]

syntax Expression ::= Id
| SizeofExpression(K)
| SizeofType(K,K) [strict(1)]
| K[K] [type-strict]
| K . Id [type-strict(1)]

context: �
peval(�)

. —

syntax Expression ::= K -> Id

context: �
reval(�)

-> —

syntax Constant ::= U(K)
| UL(K)
| ULL(K)
| WCharLiteral(Int)
| StringLiteral(String)
| WStringLiteral(List{K})

syntax InitExpression ::= SingleInit(K) [hybrid strict]

122

PhD Thesis, University of Illinois, July 2012

macro
DefinitionLoc(K ,L) = CodeLoc(K ,L)

macro
StatementLoc(K ,L) = CodeLoc(K ,L)

macro
DefinitionLocRange(K ,—,L) = CodeLoc(K ,L)

This macro defines an important identity from (n1570) §6.5.3.2 ¶3. As a syntactic macro, it should run on programs before they even start to reduce.

macro
& (* K) = K

The below macros simply transform the prefix AST names to the infix/mixfix names we use from now on

macro
Conditional(K1 ,K2 ,K3) = K1 ? K2 : K3

macro
ArrayIndex(K1 ,K2) = K1 [K2]

macro
Negative(K) = - K

macro
Positive(K) = + K

macro
LogicalNot(K) = ! K

macro
BitwiseNot(K) = ∼ K

macro
Dereference(K) = * K

macro
Reference(K) = & K

macro
PreIncrement(K) = ++ K

123

PhD Thesis, University of Illinois, July 2012

macro
PreDecrement(K) = -- K

macro
PostIncrement(K) = K ++

macro
PostDecrement(K) = K --

macro
Multiply(K1 ,K2) = K1 * K2

macro
Divide(K1 ,K2) = K1 / K2

macro
Modulo(K1 ,K2) = K1 % K2

macro
Plus(K1 ,K2) = K1 + K2

macro
Minus(K1 ,K2) = K1 - K2

macro
LeftShift(K1 ,K2) = K1 � K2

macro
RightShift(K1 ,K2) = K1 � K2

macro
LessThan(K1 ,K2) = K1 < K2

macro
LessThanOrEqual(K1 ,K2) = K1 <= K2

macro
GreaterThan(K1 ,K2) = K1 > K2

macro
GreaterThanOrEqual(K1 ,K2) = K1 >= K2

macro
Equality(K1 ,K2) = K1 == K2

124

PhD Thesis, University of Illinois, July 2012

macro
NotEquality(K1 ,K2) = K1 != K2

macro
BitwiseAnd(K1 ,K2) = K1 & K2

macro
BitwiseXor(K1 ,K2) = K1 ˆ K2

macro
BitwiseOr(K1 ,K2) = K1 | K2

macro
LogicalAnd(K1 ,K2) = K1 && K2

macro
LogicalOr(K1 ,K2) = K1 || K2

macro
Assign(K1 ,K2) = K1 := K2

macro
AssignMultiply(K1 ,K2) = K1 *= K2

macro
AssignDivide(K1 ,K2) = K1 /= K2

macro
AssignModulo(K1 ,K2) = K1 %= K2

macro
AssignPlus(K1 ,K2) = K1 += K2

macro
AssignMinus(K1 ,K2) = K1 -= K2

macro
AssignBitwiseAnd(K1 ,K2) = K1 &= K2

macro
AssignBitwiseXor(K1 ,K2) = K1 ˆ= K2

macro
AssignBitwiseOr(K1 ,K2) = K1 |= K2

macro
AssignLeftShift(K1 ,K2) = K1 �= K2

125

PhD Thesis, University of Illinois, July 2012

macro
AssignRightShift(K1 ,K2) = K1 �= K2

macro
Dot(K ,X) = K . X

macro
Arrow(K ,X) = K -> X

end module

126

PhD Thesis, University of Illinois, July 2012

A.2 Configuration
A K configuration describes the state of a running program. The C con-
figuration has over 90 nested cells, each describing an important piece of
information needed for a complete snapshot of execution.
Due to size limitations, the C configuration has been split into two parts.

First, we give the outermost cells, representing global state such as memory
and global types. Then we zoom into the threadLocal cell, which contains
important information about the state of an individual thread, such as a call
stack and the currently executed function.

127

PhD Thesis, University of Illinois, July 2012

configuration:

•

gotoMap

•

genv

•

gtypes

•

gstructs

•

notWritable

•

funTUs

•

functions

•

malloced

0
freshNat

0
randNat

2
nextThreadId

0
nextSharedLoc

•

stringLiterals

•

programText

•

compoundLiteralMap

0
threadId

0
nextLoc

•

buffer

•

k ?

See below. . .
threadLocal

thread *

threads

•

threadStatus

•

mutexes

•

glocks

threadInformation

0
basePtr

0
oLength

•

properties

•

bytes

object *

memory

•

translationUnits

•

declarationOrder

•

externalDefinitions

•

internalDefinitions

•

internalLocations

•

externalLocations

•

preLinkage

•

preTypes

•

declarations

•

leftoverExterns

T

•

fileCommands

•

fid

•

uri

0
pos

“r”
mode

“”
buff

•

sending

“”
done

file *

files

“”
input

“”
output

•

resultValue

•

errorCell ?

128

PhD Thesis, University of Illinois, July 2012

•

callStack

•

locks

•

computation

•

computationTail

•

declarationStack

0
nestingDepthGoto

•

blockHistoryGoto

•

loopStackGoto

gotoCalculation *

calculateGotoMap

•

finalComputation ?

•

blockStack

•

loopStack

true
shouldInit

“”
currTU

•

currentFunction

•

env

•

types

•

structs

0
nestingDepth

•

blockHistory

•

localVariables

•

localAddresses

local

•

format

•

formatArg

•

formatResult

“normal”
formatState

•

formatModifiers

“”
formatLength

formatting ?

•

currentObject

•

currentSubObject

0
incompleteLength

•

savedInitialization

•

type ?

•

declarationTypeHolder

•

locsWrittenTo

•

holds

•

currentProgramLoc

control

threadLocal

129

PhD Thesis, University of Illinois, July 2012

A.3 Expressions
This section represents the semantics of C expressions, and generally corre-
sponds to §6.5 in the C standard.
The smaller modules, like COMMON-SEMANTICS-EXPRESSIONS-INCLUDE are

used for consistency. In the larger groups of modules, only a single module
needs to be included instead of multiple modules that would need to be
consistently updated.

130

PhD Thesis, University of Illinois, July 2012

module COMMON-SEMANTICS-EXPRESSIONS-INCLUDE

imports COMMON-INCLUDE

end module

module COMMON-C-EXPRESSIONS

imports COMMON-SEMANTICS-EXPRESSIONS-INCLUDE

rule
NothingExpression

emptyValue

[anywhere]

end module

module DYNAMIC-SEMANTICS-EXPRESSIONS-INCLUDE

imports DYNAMIC-INCLUDE

syntax K ::= assign(K,K)

syntax Id ::= compoundLiteral(Nat)

syntax K ::= lvGetOffset(K,K,Type)
| tvGetOffset(K,K,Type)
| fromArray(Int,Nat)
| makeTruth(Bool) [function]

define
makeTruth(B)

if B
then 1 :t(•,int)
else

0 :t(•,int)
fi

syntax Nat ::= arrayLength(KResult) [function]

131

PhD Thesis, University of Illinois, July 2012

define
arrayLength(t(—,arrayType(—,N)))

N

these large numbers are used instead of an infinity—the result of these rules shouldn’t be used later anyway

define
arrayLength(t(—,flexibleArrayType(—)))

36893488147419103232
define
arrayLength(t(—,incompleteArrayType(—)))

36893488147419103232
rule reval-skipval
reval(skipval)

skipval
rule reval-emptyval
reval(emptyValue)

emptyValue
rule reval-tv-normal
reval(L :T)

L :T

rule peval-tv-normal
peval(V :T)

V :T

(n1570) §6.3.2.1 ¶2 Except when it is the operand of the sizeof operator, the _Alignof operator, the unary & operator, the ++ operator, the -- operator, or the left operand of the
. operator or an assignment operator, an lvalue that does not have an array type is converted to the value stored in the designated object (and is no longer an lvalue); this is called lvalue
conversion. If the lvalue has qualified type, the value has the unqualified version of the type of the lvalue; additionally, if the lvalue has atomic type, the value has the non-atomic version of
the type of the lvalue; otherwise, the value has the type of the lvalue. . . .

rule
reval(lv(Loc,T))

read(Loc,unqualifyType(T))

when (¬Bool isArrayType(T)) ∧Bool (¬Bool isFunctionType(T))

132

PhD Thesis, University of Illinois, July 2012

rule
peval(lv(Loc,T))

lv(Loc,T)

when (¬Bool isArrayType(T)) ∧Bool (¬Bool isFunctionType(T))

(n1570) §6.3.2.1 ¶3 Except when it is the operand of the sizeof operator, the _Alignof operator, or the unary & operator, or is a string literal used to initialize an array, an expression
that has type “array of type” is converted to an expression with type “pointer to type” that points to the initial element of the array object and is not an lvalue. If the array object has register
storage class, the behavior is undefined.

rule reval-lv-array
reval(lv(Loc,T))

Loc :t(fromArray(0,arrayLength(T)),pointerType(innerType(T)))

when isArrayType(T)

rule peval-lv-array
peval(lv(Loc,T))

Loc :t(fromArray(0,arrayLength(T)),pointerType(innerType(T)))

when isArrayType(T)

(n1570) §6.3.2.1 ¶4 A function designator is an expression that has function type. Except when it is the operand of the sizeof operator, the _Alignof operator, or the unary & operator,
a function designator with type “function returning T” is converted to an expression that has type “pointer to a function returning T”.

rule reval-function
reval(lv(Loc,T))

Loc :t(•,pointerType(T))

when isFunctionType(T)

rule peval-function
peval(lv(Loc,T))

Loc :t(•,pointerType(T))

when isFunctionType(T)

end module

module DYNAMIC-SEMANTICS-LITERALS

133

PhD Thesis, University of Illinois, July 2012

imports DYNAMIC-SEMANTICS-EXPRESSIONS-INCLUDE

syntax Bool ::= withinRange(Int,SimpleType) [function]

define
withinRange(I ,T)

(I ≤Int max(t(•,T))) ∧Bool (I ≥Int min(t(•,T)))

syntax String ::= simplifyForHex(String) [function]

define
simplifyForHex(S)

simplifyForHex(butFirstChar(S))

when (firstChar(S) ==String “0”) ∧Bool (lengthString(S) >Int 1)

define
simplifyForHex(S)

S

when

(
firstChar(S) =/=String “0”

)

∨Bool (lengthString(S) ==Int 1)

syntax K ::= hexOrOctalConstant(K)

rule
HexConstant(S)

hexOrOctalConstant(String2Rat(simplifyForHex(S), 16))
[anywhere]

rule
OctalConstant(N)

hexOrOctalConstant(String2Rat(Rat2String(N , 10), 8))
[anywhere]

134

PhD Thesis, University of Illinois, July 2012

(n1570) §6.4.4.1 ¶4–6

The value of a decimal constant is computed base 10; that of an octal constant, base 8; that of a hexadecimal constant, base 16. The lexically first digit is the most significant.

The type of an integer constant is the first of the corresponding list in which its value can be represented.
Suffix Decimal Constant Octal or Hexadecimal Constant

none int int
long int unsigned int
long long int long int

unsigned long int
long long int
unsigned long long int

u or U unsigned int unsigned int
unsigned long int unsigned long int
unsigned long long int unsigned long long int

l or L long int long int
long long int unsigned long int

long long int
unsigned long long int

Both u or U and l or L unsigned long int unsigned long int
unsigned long long int unsigned long long int

ll or LL long long int long long int
unsigned long long int

Both u or U and ll or LL unsigned long long int unsigned long long int

If an integer constant cannot be represented by any type in its list, it may have an extended integer type, if the extended integer type can represent its value. If all of the types in the list for
the constant are signed, the extended integer type shall be signed. If all of the types in the list for the constant are unsigned, the extended integer type shall be unsigned. If the list contains
both signed and unsigned types, the extended integer type may be signed or unsigned. If an integer constant cannot be represented by any type in its list and has no extended integer type,
then the integer constant has no type.

135

PhD Thesis, University of Illinois, July 2012

rule
NoSuffix(DecimalConstant(I))

if withinRange(I ,int)
then I :t(•,int)
else

if withinRange(I ,long-int)
then I :t(•,long-int)
else

if withinRange(I ,long-long-int)
then I :t(•,long-long-int)
else

I :t(•,no-type)
fi

fi
fi

[anywhere]

136

PhD Thesis, University of Illinois, July 2012

rule
NoSuffix(hexOrOctalConstant(I))

if withinRange(I ,int)
then I :t(•,int)
else

if withinRange(I ,unsigned-int)
then I :t(•,unsigned-int)
else

if withinRange(I ,long-int)
then I :t(•,long-int)
else

if withinRange(I ,unsigned-long-int)
then I :t(•,unsigned-long-int)
else

if withinRange(I ,long-long-int)
then I :t(•,long-long-int)
else

if withinRange(I ,unsigned-long-long-int)
then I :t(•,unsigned-long-long-int)
else

I :t(•,no-type)
fi

fi
fi

fi
fi

fi

[anywhere]

137

PhD Thesis, University of Illinois, July 2012

rule
U(hexOrOctalConstant(I))

if withinRange(I ,unsigned-int)
then I :t(•,unsigned-int)
else

if withinRange(I ,unsigned-long-int)
then I :t(•,unsigned-long-int)
else

if withinRange(I ,unsigned-long-long-int)
then I :t(•,unsigned-long-long-int)
else

I :t(•,no-type)
fi

fi
fi

[anywhere]

rule
L(hexOrOctalConstant(I))

if withinRange(I ,long-int)
then I :t(•,long-int)
else

if withinRange(I ,unsigned-long-int)
then I :t(•,unsigned-long-int)
else

if withinRange(I ,long-long-int)
then I :t(•,long-long-int)
else

if withinRange(I ,unsigned-long-long-int)
then I :t(•,unsigned-long-long-int)
else

I :t(•,no-type)
fi

fi
fi

fi

[anywhere]

138

PhD Thesis, University of Illinois, July 2012

rule
UL(hexOrOctalConstant(I))

if withinRange(I ,unsigned-long-int)
then I :t(•,unsigned-long-int)
else

if withinRange(I ,unsigned-long-long-int)
then I :t(•,unsigned-long-long-int)
else

I :t(•,no-type)
fi

fi

[anywhere]

rule
LL(hexOrOctalConstant(I))

if withinRange(I ,long-long-int)
then I :t(•,long-long-int)
else

if withinRange(I ,unsigned-long-long-int)
then I :t(•,unsigned-long-long-int)
else

I :t(•,no-type)
fi

fi

[anywhere]

rule
ULL(hexOrOctalConstant(I))

if withinRange(I ,unsigned-long-long-int)
then I :t(•,unsigned-long-long-int)
else

I :t(•,no-type)
fi

[anywhere]

139

PhD Thesis, University of Illinois, July 2012

rule
U(DecimalConstant(I))

if withinRange(I ,unsigned-int)
then I :t(•,unsigned-int)
else

if withinRange(I ,unsigned-long-int)
then I :t(•,unsigned-long-int)
else

if withinRange(I ,unsigned-long-long-int)
then I :t(•,unsigned-long-long-int)
else

I :t(•,no-type)
fi

fi
fi

[anywhere]

rule
L(DecimalConstant(I))

if withinRange(I ,long-int)
then I :t(•,long-int)
else

if withinRange(I ,long-long-int)
then I :t(•,long-long-int)
else

I :t(•,no-type)
fi

fi

[anywhere]

140

PhD Thesis, University of Illinois, July 2012

rule
UL(DecimalConstant(I))

if withinRange(I ,unsigned-long-int)
then I :t(•,unsigned-long-int)
else

if withinRange(I ,unsigned-long-long-int)
then I :t(•,unsigned-long-long-int)
else

I :t(•,no-type)
fi

fi

[anywhere]

rule
LL(DecimalConstant(I))

if withinRange(I ,long-long-int)
then I :t(•,long-long-int)
else

I :t(•,no-type)
fi

[anywhere]

rule
ULL(DecimalConstant(I))

if withinRange(I ,unsigned-long-long-int)
then I :t(•,unsigned-long-long-int)
else

I :t(•,no-type)
fi

[anywhere]

(n1570) §6.4.4.2 ¶4 An unsuffixed floating constant has type double. If suffixed by the letter f or F, it has type float. If suffixed by the letter l or L, it has type long double.

syntax K ::= reducedFloat(Float)

141

PhD Thesis, University of Illinois, July 2012

rule
DecimalFloatConstant(—,—,F)

reducedFloat(F)

[anywhere]

rule
HexFloatConstant(—,—,F)

reducedFloat(F)

[anywhere]

rule
NoSuffix(reducedFloat(F))

F :t(•,double)

[anywhere]

rule
L(reducedFloat(F))

F :t(•,long-double)

[anywhere]

rule
F(reducedFloat(F))

F :t(•,float)

[anywhere]

(n1570) §6.4.4.4 ¶10 An integer character constant has type int. The value of an integer character constant containing a single character that maps to a single-byte execution character
is the numerical value of the representation of the mapped character interpreted as an integer. The value of an integer character constant containing more than one character (e.g., 'ab'), or
containing a character or escape sequence that does not map to a single-byte execution character, is implementation-defined. If an integer character constant contains a single character or
escape sequence, its value is the one that results when an object with type char whose value is that of the single character or escape sequence is converted to type int.

rule
CharLiteral(N)

cast(t(•,int),cast(t(•,char),N :t(•,int)))

[anywhere]

142

PhD Thesis, University of Illinois, July 2012

rule
WCharLiteral(N)

N : cfg:wcharut
[anywhere]

rule
Constant(V)

V

[anywhere]

rule create-internal-value

N

N : cfg:largestUnsigned

k

(n1570) §6.4.5 ¶6 For character string literals, the array elements have type char, and are initialized with the individual bytes of the multibyte character sequence. . . . For wide string
literals prefixed by the letter L, the array elements have type wchar_t and are initialized with the sequence of wide characters corresponding to the multibyte character sequence. . .

rule const-string-notfound


•

allocString(Loc,S +String “\000”)
y Constant(StringLiteral(S))

k

Loc

inc(Loc)

nextSharedLoc

M •

S 7→ lv(Loc,t(•,arrayType(t(•,char),lengthString(S) +Int 1)))

stringLiterals




when ¬Bool (S in (keys M))

syntax K ::= wstring(List{K})

143

PhD Thesis, University of Illinois, July 2012

rule const-wstring-notfound


•

allocWString(Loc,S ,, 0)

y Constant(WStringLiteral(S))

k

Loc

inc(Loc)

nextSharedLoc

M •

wstring(S) 7→ lv(Loc,t(•,arrayType(cfg:wcharut, (lengthListK (S)) +Int 1)))

stringLiterals




when ¬Bool (wstring(S) in (keys M))

rule const-string-found

Constant(StringLiteral(S))

V

k

S 7→ V

stringLiterals

rule const-wstring-found

Constant(WStringLiteral(S))

V

k

wstring(S) 7→ V

stringLiterals

end module

module DYNAMIC-SEMANTICS-IDENTIFIERS

imports DYNAMIC-SEMANTICS-EXPRESSIONS-INCLUDE

(n1570) §6.5.1 ¶2 An identifier is a primary expression, provided it has been declared as designating an object (in which case it is an lvalue) or a function (in which case it is a function
designator).

rule lookup

X

lv(Loc,T)

k

X 7→ Loc

env

X 7→ T

types

144

PhD Thesis, University of Illinois, July 2012

rule lookup-builtin-function-notfound


•

addToEnv(X ,Loc) y initFunction(Loc :t(•,pointerType(T)),functionPrototype(X ,T))

y X

k

Env

env

X 7→ T

types

Loc

inc(Loc)

nextLoc




when isFunctionType(T) ∧Bool (¬Bool (X in (keys Env)))

end module

module DYNAMIC-SEMANTICS-ARRAY-SUBSCRIPTING

imports DYNAMIC-SEMANTICS-EXPRESSIONS-INCLUDE

(n1570) §6.5.2.1 ¶2–3 A postfix expression followed by an expression in square brackets [] is a subscripted designation of an element of an array object. The definition of the subscript
operator [] is that E1[E2] is identical to (*((E1)+(E2))). Because of the conversion rules that apply to the binary + operator, if E1 is an array object (equivalently, a pointer to the
initial element of an array object) and E2 is an integer, E1[E2] designates the E2-th element of E1 (counting from zero).

Successive subscript operators designate an element of a multidimensional array object. If E is an n-dimensional array (n ≥ 2) with dimensions i× j × · · · × k, then E (used as other than an
lvalue) is converted to a pointer to an (n−1)-dimensional array with dimensions j×· · ·×k. If the unary * operator is applied to this pointer explicitly, or implicitly as a result of subscripting,
the result is the referenced (n− 1)-dimensional array, which itself is converted into a pointer if used as other than an lvalue. It follows from this that arrays are stored in row-major order (last
subscript varies fastest).

rule array-subscript

E1 [E2]

* (E1 + E2)

k

end module

module DYNAMIC-SEMANTICS-FUNCTION-CALLS

imports DYNAMIC-SEMANTICS-EXPRESSIONS-INCLUDE

145

PhD Thesis, University of Illinois, July 2012

syntax K ::= application(K,List{KResult}) [strict(1)]
| application’(K,List{KResult}) [strict(1)]

(n1570) §6.5.2.2 ¶3 A postfix expression followed by parentheses () containing a possibly empty, comma-separated list of expressions is a function call. The postfix expression denotes the
called function. The list of expressions specifies the arguments to the function.

(n1570) §6.5.2.2 ¶6 If the expression that denotes the called function has a type that does not include a prototype, the integer promotions are performed on each argument, and arguments
that have type float are promoted to double. These are called the default argument promotions. If the number of arguments does not equal the number of parameters, the behavior is
undefined. If the function is defined with a type that includes a prototype, and either the prototype ends with an ellipsis (, ...) or the types of the arguments after promotion are not
compatible with the types of the parameters, the behavior is undefined. If the function is defined with a type that does not include a prototype, and the types of the arguments after promotion
are not compatible with those of the parameters after promotion, the behavior is undefined, except for the following cases:

• one promoted type is a signed integer type, the other promoted type is the corresponding unsigned integer type, and the value is representable in both types;

• both types are pointers to qualified or unqualified versions of a character type or void.

rule function-application-pre

Call(Loc :t(—,pointerType(T)),List(L))

application(readFunction(Loc),L)

k

when isFunctionType(T)

this extra step is useful for putting the function name in the transition graph

rule call

application(Fun,L)

application’(Fun,L)

k

146

PhD Thesis, University of Illinois, July 2012

rule populateFromGlobal

populateFromGlobal

•

k

Tu

currTU

Tu 7→ Map(G)

genv

—
G

env

Tu 7→ Map(GT)

gtypes

—
GT

types

GS

gstructs

—
GS

structs

rule builtin-application

application’(functionPrototype(X ,T),L)

application’(functionObject(X ,T ,handleBuiltin(X ,T)),L)

k

rule function-application


application’(functionObject(X ,t(—,functionType(R,P)),B),L) y K

sequencePoint y populateFromGlobal y bind(L,P) y B

k

•

ListItem(C K

continuation

OldTu

currTU

CurrFun

stackCurrentFunction

CurrLoc

stackCurrentProgramLoc

)

callStack

OldTu

currTU

CurrFun

currentFunction

CurrLoc

currentProgramLoc

C

control

X

currentFunction

Tu

currTU

CurrLoc

currentProgramLoc

control

OldTu 7→ Map(— (X 7→ Tu))

funTUs




end module

module DYNAMIC-SEMANTICS-MEMBERS

147

PhD Thesis, University of Illinois, July 2012

imports DYNAMIC-SEMANTICS-EXPRESSIONS-INCLUDE

(n1570) §6.5.2.3 ¶3 A postfix expression followed by the . operator and an identifier designates a member of a structure or union object. The value is that of the named member, and is
an lvalue if the first expression is an lvalue. If the first expression has qualified type, the result has the so-qualified version of the type of the designated member.

rule

lv(Loc,t(—,structType(S))) . F

lv(Loc +bits Offset ,T)

k

S 7→ aggregateInfo(—,— (F 7→ T),— (F 7→ Offset))

structs

rule

lv(Loc,t(—,unionType(S))) . F

lv(Loc +bits Offset ,t(fromUnion(S) Se,T))

k

S 7→ aggregateInfo(—,— (F 7→ t(Se,T)),— (F 7→ Offset))

structs

rule

L :T . F

extractField(L,T ,F)

k

(n1570) §6.5.2.3 ¶4 A postfix expression followed by the -> operator and an identifier designates a member of a structure or union object. The value is that of the named member of the
object to which the first expression points, and is an lvalue. If the first expression is a pointer to a qualified type, the result has the so-qualified version of the type of the designated member.

macro
K -> F = (* K) . F

end module

module DYNAMIC-SEMANTICS-POSTFIX-INCREMENT-AND-DECREMENT

imports DYNAMIC-SEMANTICS-EXPRESSIONS-INCLUDE

syntax K ::= postOpRef(K,KLabel)
| postInc(K,K,Type) [strict(2)]
| postDec(K,K,Type) [strict(2)]

148

PhD Thesis, University of Illinois, July 2012

(n1570) §6.5.2.4 ¶2 The result of the postfix ++ operator is the value of the operand. As a side effect, the value of the operand object is incremented (that is, the value 1 of the appropriate
type is added to it). See the discussions of additive operators and compound assignment for information on constraints, types, and conversions and the effects of operations on pointers. The
value computation of the result is sequenced before the side effect of updating the stored value of the operand. With respect to an indeterminately-sequenced function call, the operation of
postfix ++ is a single evaluation. Postfix ++ on an object with atomic type is a read-modify-write operation with memory_order_seq_cst memory order semantics.

rule post-increment-start

lv(Loc,T) ++

postInc(Loc,read(Loc,T),T)

k

rule post-increment

postInc(Loc,V :T ,T)

(lv(Loc,T) := (V :T + 1 :t(•,int))) y discard y V :T

k

(n1570) §6.5.2.4 ¶3 The postfix -- operator is analogous to the postfix ++ operator, except that the value of the operand is decremented (that is, the value 1 of the appropriate type is
subtracted from it).

rule post-decrement-start

lv(Loc,T) --

postDec(Loc,read(Loc,T),T)

k

rule post-decrement

postDec(Loc,V :T ,T)

(lv(Loc,T) := (V :T - 1 :t(•,int))) y discard y V :T

k

end module

module DYNAMIC-SEMANTICS-COMPOUND-LITERAL

imports DYNAMIC-SEMANTICS-EXPRESSIONS-INCLUDE

149

PhD Thesis, University of Illinois, July 2012

syntax K ::= handleCompoundLiteral(K) [strict]

(n1570) §6.5.2.5 ¶3–7 A postfix expression that consists of a parenthesized type name followed by a brace-enclosed list of initializers is a compound literal. It provides an unnamed object
whose value is given by the initializer list.

If the type name specifies an array of unknown size, the size is determined by the initializer list as specified in 6.7.9, and the type of the compound literal is that of the completed array type.
Otherwise (when the type name specifies an object type), the type of the compound literal is that specified by the type name. In either case, the result is an lvalue.

The value of the compound literal is that of an unnamed object initialized by the initializer list. If the compound literal occurs outside the body of a function, the object has static storage
duration; otherwise, it has automatic storage duration associated with the enclosing block.

All the semantic rules for initializer lists in 6.7.9 also apply to compound literals.

String literals, and compound literals with const-qualified types, need not designate distinct objects.

We use compoundLiteral(N:Nat) here as the identifier of the compound literal.

rule

CompoundLiteral(N ,T ,K , Init)

handleCompoundLiteral(figureInit(compoundLiteral(N),DeclType(T ,K), Init))

k

rule

handleCompoundLiteral(initValue(X ,T , Init))

allocateType(Loc,T) y addToEnv(X ,Loc) y giveType(X ,T) y initialize(X ,T , Init) y X

k

M

M [Loc / X]

compoundLiteralMap

Loc

inc(Loc)

nextLoc

when ¬Bool (X in (keys M))

rule

handleCompoundLiteral(initValue(X ,T , Init))

addToEnv(X ,Loc) y giveType(X ,T) y initialize(X ,T , Init) y X

k

X 7→ Loc

compoundLiteralMap

end module

module DYNAMIC-SEMANTICS-PREFIX-INCREMENT-AND-DECREMENT

150

PhD Thesis, University of Illinois, July 2012

imports DYNAMIC-SEMANTICS-EXPRESSIONS-INCLUDE

(n1570) §6.5.3.1 ¶2 The value of the operand of the prefix ++ operator is incremented. The result is the new value of the operand after incrementation. The expression ++E is equivalent to
(E+=1). See the discussions of additive operators and compound assignment for information on constraints, types, side effects, and conversions and the effects of operations on pointers.

rule
++ E

E += 1 :t(•,int)

(n1570) §6.5.3.1 ¶3 The prefix -- operator is analogous to the prefix ++ operator, except that the value of the operand is decremented.

rule
-- E

E -= 1 :t(•,int)

end module

module DYNAMIC-SEMANTICS-REFERENCE

imports DYNAMIC-SEMANTICS-EXPRESSIONS-INCLUDE

(n1570) §6.5.3.2 ¶3 The unary & operator yields the address of its operand. If the operand has type “type”, the result has type “pointer to type”. If the operand is the result of a unary *
operator, neither that operator nor the & operator is evaluated and the result is as if both were omitted, except that the constraints on the operators still apply and the result is not an lvalue.
Similarly, if the operand is the result of a [] operator, neither the & operator nor the unary * that is implied by the [] is evaluated and the result is as if the & operator were removed and
the [] operator were changed to a + operator. Otherwise, the result is a pointer to the object or function designated by its operand.

rule ref

& lv(Loc,T)

Loc :t(•,pointerType(T))

k

end module

module DYNAMIC-SEMANTICS-DEREFERENCE

151

PhD Thesis, University of Illinois, July 2012

imports DYNAMIC-SEMANTICS-EXPRESSIONS-INCLUDE

(n1570) §6.5.3.2 ¶4 The unary * operator denotes indirection. If the operand points to a function, the result is a function designator; if it points to an object, the result is an lvalue
designating the object. If the operand has type “pointer to type”, the result has type “type”. If an invalid value has been assigned to the pointer, the behavior of the unary * operator is
undefined.

rule deref

* Loc :t(—,pointerType(t(S ,T)))

checkDerefLoc(Loc) y lv(Loc,t(S ,T))

k

when ¬Bool (T ==K void)

end module

module DYNAMIC-SEMANTICS-UNARY-ARITHMETIC

imports DYNAMIC-SEMANTICS-EXPRESSIONS-INCLUDE

(n1570) §6.5.3.3 ¶2 The result of the unary + operator is the value of its (promoted) operand. The integer promotions are performed on the operand, and the result has the promoted
type.

rule unaryPlus-int
+ I :T

arithInterpret(T , I)

when isPromoted(T)

rule unaryPlus-float
+ F :T

F :T

(n1570) §6.5.3.3 ¶3 The result of the unary - operator is the negative of its (promoted) operand. The integer promotions are performed on the operand, and the result has the promoted
type.

152

PhD Thesis, University of Illinois, July 2012

rule unaryMinus-int
- I :T

arithInterpret(T , 0−Int I)

when isPromoted(T)

rule unaryMinus-float
- F :T

arithInterpret(T , 0.0 −Float F)

(n1570) §6.5.3.3 ¶4 The result of the ~ operator is the bitwise complement of its (promoted) operand (that is, each bit in the result is set if and only if the corresponding bit in the converted
operand is not set). The integer promotions are performed on the operand, and the result has the promoted type. If the promoted type is an unsigned type, the expression ~E is equivalent to
the maximum value representable in that type minus E.

rule
∼ I :T

arithInterpret(T ,∼Int I)

when isPromoted(T)

(n1570) §6.5.3.3 ¶5 The result of the logical negation operator ! is 0 if the value of its operand compares unequal to 0, 1 if the value of its operand compares equal to 0. The result has
type int. The expression !E is equivalent to (0==E).

rule
! E

0 :t(•,int) == E

end module

module DYNAMIC-SEMANTICS-SIZEOF

imports DYNAMIC-SEMANTICS-EXPRESSIONS-INCLUDE

(n1570) §6.5.3.4 ¶2 The sizeof operator yields the size (in bytes) of its operand, which may be an expression or the parenthesized name of a type. The size is determined from the type of
the operand. The result is an integer. If the type of the operand is a variable length array type, the operand is evaluated; otherwise, the operand is not evaluated and the result is an integer
constant.

153

PhD Thesis, University of Illinois, July 2012

(n1570) §6.5.3.4 ¶5 The value of the result of both operators is implementation-defined, and its type (an unsigned integer type) is size_t, defined in <stddef.h> (and other headers).

rule
sizeofType(T)

cast(cfg:sizeut,byteSizeofType(T))

syntax K ::= byteSizeofType-aux(K) [strict]

rule
byteSizeofType(T)

byteSizeofType-aux(bitSizeofType(T))

rule
byteSizeofType-aux(N :T)

bitsToBytes(N) :T

rule

SizeofExpression(E)

sizeofType(typeof(E))

k

rule

SizeofType(T ,K)

sizeofType(DeclType(T ,K))

k

end module

module DYNAMIC-SEMANTICS-CAST

imports DYNAMIC-SEMANTICS-EXPRESSIONS-INCLUDE

(n1570) §6.5.4 ¶5–6 Preceding an expression by a parenthesized type name converts the value of the expression to the named type. This construction is called a cast. A cast that specifies
no conversion has no effect on the type or value of an expression.

If the value of the expression is represented with greater range or precision than required by the type named by the cast (6.3.1.8), then the cast specifies a conversion even if the type of the
expression is the same as the named type and removes any extra range and precision.

154

PhD Thesis, University of Illinois, July 2012

rule

Cast(T ,K ,V)

cast(DeclType(T ,K),V)

k

end module

module DYNAMIC-SEMANTICS-MULTIPLICATIVE-OPERATORS

imports DYNAMIC-SEMANTICS-EXPRESSIONS-INCLUDE

(n1570) §6.5.5 ¶3–6 The usual arithmetic conversions are performed on the operands.

The result of the binary * operator is the product of the operands.

The result of the / operator is the quotient from the division of the first operand by the second; the result of the % operator is the remainder. In both operations, if the value of the second
operand is zero, the behavior is undefined.

When integers are divided, the result of the / operator is the algebraic quotient with any fractional part discarded. If the quotient a/b is representable, the expression (a/b)*b + a%b shall
equal a; otherwise, the behavior of both a/b and a%b is undefined.

rule
I1 :T * I2 :T

arithInterpret(T , I1 ∗Int I2)

when isPromoted(T)

rule
F1 :T * F2 :T

arithInterpret(T ,F1 ∗Float F2)

rule
I1 :T / I2 :T

arithInterpret(T , I1 ÷Int I2)

when isPromoted(T) ∧Bool (I2 =/=Int 0)

rule
F1 :T / F2 :T

arithInterpret(T ,F1 ÷Float F2)

155

PhD Thesis, University of Illinois, July 2012

rule
piece(unknown(N),N)÷Int M

piece(unknown(N),N)

when (M =/=Int 0) ∧Bool isConcreteNumber(M)
[anywhere]

rule
I1 :T % I2 :T

arithInterpret(T , I1 %Int I2)

when ((isPromoted(T) ∧Bool (min(T) ≤Int (I1 ÷Int I2))) ∧Bool (max(T) ≥Int (I1 ÷Int I2))) ∧Bool (I2 =/=Int 0)

end module

module DYNAMIC-SEMANTICS-ADDITIVE-OPERATORS

imports DYNAMIC-SEMANTICS-EXPRESSIONS-INCLUDE

156

PhD Thesis, University of Illinois, July 2012

(n1570) §6.5.6 ¶2 For addition, either both operands shall have arithmetic type, or one operand shall be a pointer to a complete object type and the other shall have integer type.

(n1570) §6.5.6 ¶3 For subtraction, one of the following shall hold:

• both operands have arithmetic type;

• both operands are pointers to qualified or unqualified versions of compatible complete object types; or

• the left operand is a pointer to a complete object type and the right operand has integer type.

(Decrementing is equivalent to subtracting 1.)

(n1570) §6.5.6 ¶4 If both operands have arithmetic type, the usual arithmetic conversions are performed on them.

(n1570) §6.5.6 ¶5 The result of the binary + operator is the sum of the operands.

(n1570) §6.5.6 ¶6 The result of the binary - operator is the difference resulting from the subtraction of the second operand from the first.

(n1570) §6.5.6 ¶7 For the purposes of these operators, a pointer to an object that is not an element of an array behaves the same as a pointer to the first element of an array of length one
with the type of the object as its element type.

(n1570) §6.5.6 ¶8 When an expression that has integer type is added to or subtracted from a pointer, the result has the type of the pointer operand. If the pointer operand points to an
element of an array object, and the array is large enough, the result points to an element offset from the original element such that the difference of the subscripts of the resulting and original
array elements equals the integer expression. In other words, if the expression P points to the i-th element of an array object, the expressions (P)+N (equivalently, N+(P)) and (P)-N (where
N has the value n) point to, respectively, the i+n-th and i−n-th elements of the array object, provided they exist. Moreover, if the expression P points to the last element of an array object,
the expression (P)+1 points one past the last element of the array object, and if the expression Q points one past the last element of an array object, the expression (Q)-1 points to the last
element of the array object. If both the pointer operand and the result point to elements of the same array object, or one past the last element of the array object, the evaluation shall not
produce an overflow; otherwise, the behavior is undefined. If the result points one past the last element of the array object, it shall not be used as the operand of a unary * operator that is
evaluated.

syntax K ::= addToPointer(K,Type,K,K) [strict(4)]

rule

Loc :t(S ,pointerType(T ′)) + I :T

addToPointer(Loc,t(S ,pointerType(T ′)), I ,sizeofType(T ′))

k

when hasIntegerType(T) ∧Bool (T
′ =/=K void)

157

PhD Thesis, University of Illinois, July 2012

rule

I :T + Loc :t(S ,pointerType(T ′))

addToPointer(Loc,t(S ,pointerType(T ′)), I ,sizeofType(T ′))

k

when hasIntegerType(T) ∧Bool (T
′ =/=K void)

rule

Loc :t(S ,pointerType(T ′)) - I :T

addToPointer(Loc,t(S ,pointerType(T ′)), 0−Int I ,sizeofType(T ′))

k

when hasIntegerType(T) ∧Bool (T
′ =/=K void)

rule

addToPointer(Loc,T , I ,Size :—)

Loc +Int (I ∗Int Size) :newFromArray(T , I)

k

when ifFromArrayInBounds(T , I)

syntax KResult ::= newFromArray(KResult, Int) [function]

define
newFromArray(t(fromArray(Offset ,Len),pointerType(T)), I)

t(fromArray(Offset +Int I ,Len),pointerType(T))

define
newFromArray(t(•,pointerType(T)), I)

t(•,pointerType(T))

syntax Bool ::= ifFromArrayInBounds(KResult, Int) [function]

define
ifFromArrayInBounds(t(fromArray(Offset ,Len),pointerType(T)), I)

true
when (Offset +Int I) ≤Int Len

158

PhD Thesis, University of Illinois, July 2012

define
ifFromArrayInBounds(t(fromArray(Offset ,Len),pointerType(T)), I)

false
when (Offset +Int I) >Int Len

define
ifFromArrayInBounds(t(•,pointerType(T)),—)

true

(n1570) §6.5.6 ¶9 When two pointers are subtracted, both shall point to elements of the same array object, or one past the last element of the array object; the result is the difference
of the subscripts of the two array elements. The size of the result is implementation-defined, and its type (a signed integer type) is ptrdiff_t defined in the <stddef.h> header. If the
result is not representable in an object of that type, the behavior is undefined. In other words, if the expressions P and Q point to, respectively, the i-th and j-th elements of an array object,
the expression (P)-(Q) has the value i − j provided the value fits in an object of type ptrdiff_t. Moreover, if the expression P points either to an element of an array object or one
past the last element of an array object, and the expression Q points to the last element of the same array object, the expression ((Q)+1)-(P) has the same value as ((Q)-(P))+1 and
as -((P)-((Q)+1)), and has the value zero if the expression P points one past the last element of the array object, even though the expression (Q)+1 does not point to an element of the
array object.

syntax K ::= computePointerDifference(Int, Int,K) [strict(3)]

rule start-pointer-difference
I1 :t(—,pointerType(T)) - I2 :t(—,pointerType(T))

computePointerDifference(I1 , I2 ,sizeofType(T))

rule pointer-difference
computePointerDifference(loc(Base,Offset1 , 0),loc(Base,Offset2 , 0),Size :—)

(Offset1 −Int Offset2)÷Int Size : cfg:ptrdiffut
when ((Offset1 −Int Offset2) %Int Size) ==Int 0

rule
I1 :T + I2 :T

arithInterpret(T , I1 +Int I2)

when isPromoted(T)

rule
I1 :T - I2 :T

arithInterpret(T , I1 −Int I2)

when isPromoted(T)

159

PhD Thesis, University of Illinois, July 2012

rule
F1 :T + F2 :T

arithInterpret(T ,F1 +Float F2)

rule
F1 :T - F2 :T

arithInterpret(T ,F1 −Float F2)

end module

module DYNAMIC-SEMANTICS-BITWISE-SHIFT

imports DYNAMIC-SEMANTICS-EXPRESSIONS-INCLUDE

syntax K ::= leftShiftInterpret(Type,BaseValue,K) [function]
| rightShiftInterpret(Type,BaseValue) [function]

(n1570) §6.5.7 ¶3 The integer promotions are performed on each of the operands. The type of the result is that of the promoted left operand. If the value of the right operand is negative
or is greater than or equal to the width of the promoted left operand, the behavior is undefined

(n1570) §6.5.7 ¶4 The result of E1 << E2 is E1 left-shifted E2 bit positions; vacated bits are filled with zeros. If E1 has an unsigned type, the value of the result is E1 × 2E2, reduced
modulo one more than the maximum value representable in the result type. If E1 has a signed type and nonnegative value, and E1× 2E2 is representable in the result type, then that is the
resulting value; otherwise, the behavior is undefined.

rule
I :T � N :T ′

leftShiftInterpret(T , I �Int N , I :T)

when (isPromoted(T) ∧Bool isPromoted(T ′)) ∧Bool (N <Int numBits(T))

define
leftShiftInterpret(T , I ,E1 :T)

I %Int (max(T) +Int 1) :T
when hasUnsignedIntegerType(T)

160

PhD Thesis, University of Illinois, July 2012

define
leftShiftInterpret(T , I ,E1 :T)

I :T

when (hasSignedIntegerType(T) ∧Bool (I ≤Int max(T))) ∧Bool (I ≥Int min(T))

(n1570) §6.5.7 ¶5 The result of E1 >> E2 is E1 right-shifted E2 bit positions. If E1 has an unsigned type or if E1 has a signed type and a nonnegative value, the value of the result is the
integral part of the quotient of E1/2E2. If E1 has a signed type and a negative value, the resulting value is implementation-defined.

rule
I :T � N :T ′

rightShiftInterpret(T , I �Int N)

when (isPromoted(T) ∧Bool isPromoted(T ′)) ∧Bool (N <Int numBits(T))

define
rightShiftInterpret(T , I)

I :T

when hasIntegerType(T)

end module

module DYNAMIC-SEMANTICS-RELATIONAL

imports DYNAMIC-SEMANTICS-EXPRESSIONS-INCLUDE

(n1570) §6.5.8 ¶3 If both of the operands have arithmetic type, the usual arithmetic conversions are performed.

(n1570) §6.5.8 ¶4 For the purposes of these operators, a pointer to an object that is not an element of an array behaves the same as a pointer to the first element of an array of length one
with the type of the object as its element type.

(n1570) §6.5.8 ¶5 When two pointers are compared, the result depends on the relative locations in the address space of the objects pointed to. If two pointers to object types both point
to the same object, or both point one past the last element of the same array object, they compare equal. If the objects pointed to are members of the same aggregate object, pointers to
structure members declared later compare greater than pointers to members declared earlier in the structure, and pointers to array elements with larger subscript values compare greater than
pointers to elements of the same array with lower subscript values. All pointers to members of the same union object compare equal. If the expression P points to an element of an array
object and the expression Q points to the last element of the same array object, the pointer expression Q+1 compares greater than P. In all other cases, the behavior is undefined.

(n1570) §6.5.8 ¶6 Each of the operators < (less than), > (greater than), <= (less than or equal to), and >= (greater than or equal to) shall yield 1 if the specified relation is true and 0 if it
is false. The result has type int.

161

PhD Thesis, University of Illinois, July 2012

rule
I1 :T < I2 :T

makeTruth(I1 <Int I2)

when isPromoted(T)
∨Bool ((isPointerType(T) ∧Bool isConcreteNumber(I1)) ∧Bool isConcreteNumber(I2))

rule
I1 :T <= I2 :T

makeTruth(I1 ≤Int I2)

when isPromoted(T)
∨Bool ((isPointerType(T) ∧Bool isConcreteNumber(I1)) ∧Bool isConcreteNumber(I2))

rule
I1 :T > I2 :T

makeTruth(I1 >Int I2)

when isPromoted(T)
∨Bool ((isPointerType(T) ∧Bool isConcreteNumber(I1)) ∧Bool isConcreteNumber(I2))

rule
I1 :T >= I2 :T

makeTruth(I1 ≥Int I2)

when isPromoted(T)
∨Bool ((isPointerType(T) ∧Bool isConcreteNumber(I1)) ∧Bool isConcreteNumber(I2))

rule
F1 :T < F2 :T

makeTruth(F1 <Float F2)

rule
F1 :T <= F2 :T

makeTruth(F1 ≤Float F2)

rule
F1 :T > F2 :T

makeTruth(F1 >Float F2)

rule
F1 :T >= F2 :T

makeTruth(F1 ≥Float F2)

162

PhD Thesis, University of Illinois, July 2012

rule ptr-compare-lt
loc(Base,Offset , 0) :T < loc(Base,Offset ′, 0) :T ′

makeTruth(Offset <Int Offset ′)

when isPointerType(T) ∧Bool isPointerType(T ′)

rule ptr-compare-lte
loc(Base,Offset , 0) :T <= loc(Base,Offset ′, 0) :T ′

makeTruth(Offset ≤Int Offset ′)

when isPointerType(T) ∧Bool isPointerType(T ′)

rule ptr-compare-gt
loc(Base,Offset , 0) :T > loc(Base,Offset ′, 0) :T ′

makeTruth(Offset >Int Offset ′)

when isPointerType(T) ∧Bool isPointerType(T ′)

rule ptr-compare-gte
loc(Base,Offset , 0) :T >= loc(Base,Offset ′, 0) :T ′

makeTruth(Offset ≥Int Offset ′)

when isPointerType(T) ∧Bool isPointerType(T ′)

end module

module DYNAMIC-SEMANTICS-EQUALITY

imports DYNAMIC-SEMANTICS-EXPRESSIONS-INCLUDE

(n1570) §6.5.9 ¶3–4 The == (equal to) and != (not equal to) operators are analogous to the relational operators except for their lower precedence. Each of the operators yields 1 if the
specified relation is true and 0 if it is false. The result has type int. For any pair of operands, exactly one of the relations is true.

If both of the operands have arithmetic type, the usual arithmetic conversions are performed. Values of complex types are equal if and only if both their real parts are equal and also their
imaginary parts are equal. Any two values of arithmetic types from different type domains are equal if and only if the results of their conversions to the (complex) result type determined by
the usual arithmetic conversions are equal.

rule
I1 :T == I2 :T

makeTruth(I1 ==K I2)

when
(

isPromoted(T)
∨Bool ((isPointerType(T) ∧Bool isConcreteNumber(I1)) ∧Bool isConcreteNumber(I2))

)
∧Bool

(
¬Bool

(
isUnknown(I1)

∨Bool isUnknown(I2)

))

163

PhD Thesis, University of Illinois, July 2012

rule
I1 :T != I2 :T

makeTruth(I1 =/=K I2)

when
(

isPromoted(T)
∨Bool ((isPointerType(T) ∧Bool isConcreteNumber(I1)) ∧Bool isConcreteNumber(I2))

)
∧Bool

(
¬Bool

(
isUnknown(I1)

∨Bool isUnknown(I2)

))

rule
F1 :T == F2 :T

makeTruth(F1 ==Float F2)

rule
F1 :T != F2 :T

makeTruth(F1 =/=Float F2)

(n1570) §6.5.9 ¶5–7 Otherwise, at least one operand is a pointer. If one operand is a pointer and the other is a null pointer constant, the null pointer constant is converted to the type of
the pointer. If one operand is a pointer to an object type and the other is a pointer to a qualified or unqualified version of void, the former is converted to the type of the latter.

Two pointers compare equal if and only if both are null pointers, both are pointers to the same object (including a pointer to an object and a subobject at its beginning) or function, both are
pointers to one past the last element of the same array object, or one is a pointer to one past the end of one array object and the other is a pointer to the start of a different array object that
happens to immediately follow the first array object in the address space.

For the purposes of these operators, a pointer to an object that is not an element of an array behaves the same as a pointer to the first element of an array of length one with the type of the
object as its element type.

rule
N :T == N :T ′

1 :t(•,int)
when isPointerType(T) ∧Bool isPointerType(T ′)

rule
N :T != N :T ′

0 :t(•,int)
when isPointerType(T) ∧Bool isPointerType(T ′)

rule
NullPointer :T == N :T ′

makeTruth(NullPointer ==K N)

when isPointerType(T) ∧Bool isPointerType(T ′)

164

PhD Thesis, University of Illinois, July 2012

rule
NullPointer :T != N :T ′

makeTruth(NullPointer =/=K N)

when isPointerType(T) ∧Bool isPointerType(T ′)

rule
N :T == NullPointer :T ′

makeTruth(NullPointer ==K N)

when isPointerType(T) ∧Bool isPointerType(T ′)

rule
N :T != NullPointer :T ′

makeTruth(NullPointer =/=K N)

when isPointerType(T) ∧Bool isPointerType(T ′)

rule

loc(Base,Offset , 0) :T == loc(Base,Offset ′, 0) :T ′

makeTruth(Offset ==Int Offset ′)

k

when isPointerType(T) ∧Bool isPointerType(T ′)

rule

loc(Base,Offset , 0) :T != loc(Base,Offset ′, 0) :T ′

makeTruth(Offset =/=Int Offset ′)

k

when isPointerType(T) ∧Bool isPointerType(T ′)

rule compare-eq-different-objects

loc(Base,Offset , 0) :T == loc(Base ′,Offset ′, 0) :T ′

0 :t(•,int)

k

Base

basePtr

Len

oLength

object

Base ′
basePtr

Len ′
oLength

object

when (((isPointerType(T) ∧Bool isPointerType(T ′)) ∧Bool (Base =/=K Base ′)) ∧Bool (Offset <Int Len)) ∧Bool (Offset ′ <Int Len ′)

165

PhD Thesis, University of Illinois, July 2012

rule compare-neq-different-objects

loc(Base,Offset , 0) :T != loc(Base ′,Offset ′, 0) :T ′

1 :t(•,int)

k

Base

basePtr

Len

oLength

object

Base ′
basePtr

Len ′
oLength

object

when (((isPointerType(T) ∧Bool isPointerType(T ′)) ∧Bool (Base =/=K Base ′)) ∧Bool (Offset <Int Len)) ∧Bool (Offset ′ <Int Len ′)

rule equal-null-left
N :T

NullPointer :T ′
== — :T ′

when (isPromoted(T) ∧Bool isPointerType(T ′)) ∧Bool (N ==K NullPointerConstant)

rule equal-null-right
— :T == N :T ′

NullPointer :T

when (isPointerType(T) ∧Bool isPromoted(T ′)) ∧Bool (N ==K NullPointerConstant)

rule nequal-null-left
N :T

NullPointer :T ′
!= — :T ′

when (isPromoted(T) ∧Bool isPointerType(T ′)) ∧Bool (N ==K NullPointerConstant)

rule nequal-null-right
— :T != N :T ′

NullPointer :T

when (isPointerType(T) ∧Bool isPromoted(T ′)) ∧Bool (N ==K NullPointerConstant)

end module

module DYNAMIC-SEMANTICS-BITWISE

imports DYNAMIC-SEMANTICS-EXPRESSIONS-INCLUDE

(n1570) §6.5.10 ¶3–4 The usual arithmetic conversions are performed on the operands.

The result of the binary & operator is the bitwise AND of the operands (that is, each bit in the result is set if and only if each of the corresponding bits in the converted operands is set).

166

PhD Thesis, University of Illinois, July 2012

rule
I1 :T & I2 :T

arithInterpret(T , I1 &Int I2)

when isPromoted(T)

(n1570) §6.5.11 ¶3–4 The usual arithmetic conversions are performed on the operands.

The result of the ^ operator is the bitwise exclusive OR of the operands (that is, each bit in the result is set if and only if exactly one of the corresponding bits in the converted operands is
set).

rule
I1 :T ˆ I2 :T

arithInterpret(T , I1 ⊕Int I2)

when isPromoted(T)

(n1570) §6.5.12 ¶3–4 The usual arithmetic conversions are performed on the operands.

The result of the | operator is the bitwise inclusive OR of the operands (that is, each bit in the result is set if and only if at least one of the corresponding bits in the converted operands is
set).

rule
I1 :T | I2 :T

arithInterpret(T , I1 |Int I2)

when isPromoted(T)

end module

module DYNAMIC-SEMANTICS-LOGICAL

imports DYNAMIC-SEMANTICS-EXPRESSIONS-INCLUDE

Here, we wrapped the controlling expressions with simplifyTruth when heating them, so that we are guaranteed the values in those locations are either tv(0, int) or tv(1, int).

167

PhD Thesis, University of Illinois, July 2012

(n1570) §6.5.13 ¶3–4 The && operator shall yield 1 if both of its operands compare unequal to 0; otherwise, it yields 0. The result has type int.

Unlike the bitwise binary & operator, the && operator guarantees left-to-right evaluation; if the second operand is evaluated, there is a sequence point between the evaluations of the first and
second operands. If the first operand compares equal to 0, the second operand is not evaluated.

rule

0 :t(—,int) && E

0 :t(•,int)

k

rule

1 :t(—,int) && E

sequencePoint y simplifyTruth(E)

k

rule

V

simplifyTruth(V)

&& —

k

when isNotTruthValue(V)

(n1570) §6.5.14 ¶3–4 The || operator shall yield 1 if either of its operands compare unequal to 0; otherwise, it yields 0. The result has type int.

Unlike the bitwise | operator, the || operator guarantees left-to-right evaluation; if the second operand is evaluated, there is a sequence point between the evaluations of the first and second
operands. If the first operand compares unequal to 0, the second operand is not evaluated.

rule

0 :t(—,int) || E

sequencePoint y simplifyTruth(E)

k

168

PhD Thesis, University of Illinois, July 2012

rule

1 :t(—,int) || E

1 :t(•,int)

k

rule

V

V != 0 :t(•,int)

|| —

k

when isNotTruthValue(V)

end module

module DYNAMIC-SEMANTICS-CONDITIONAL-EXPRESSION

imports DYNAMIC-SEMANTICS-EXPRESSIONS-INCLUDE

syntax K ::= getTypes(List{K})
| types(List{K})

context: types(— ,, � ,, —)

syntax K ::= convertedType(K) [strict]

rule

getTypes(L)

types(wrapWithTypeOf(L))

k

syntax List{K} ::= wrapWithTypeOf(List{K}) [function]

define
wrapWithTypeOf(K ,, L)

retype(typeof(K)) ,, wrapWithTypeOf(L)

169

PhD Thesis, University of Illinois, July 2012

define
wrapWithTypeOf(•)

•

syntax K ::= retype(K) [function strict]

define
retype(T)

t(•,pointerType(innerType(T)))

when isArrayType(T)

define
retype(T)

t(•,pointerType(T))

when isFunctionType(T)

define
retype(T)

T

when ¬Bool

(
isArrayType(T)

∨Bool isFunctionType(T)

)

(n1570) §6.5.15 ¶4 The first operand is evaluated; there is a sequence point between its evaluation and the evaluation of the second or third operand (whichever is evaluated). The second
operand is evaluated only if the first compares unequal to 0; the third operand is evaluated only if the first compares equal to 0; the result is the value of the second or third operand (whichever
is evaluated), converted to the type described below.

rule

•

getTypes(E1 ,, E2)

y (E ? E1 : E2)

k

(n1570) §6.5.15 ¶5 If both the second and third operands have arithmetic type, the result type that would be determined by the usual arithmetic conversions, were they applied to those
two operands, is the type of the result. If both the operands have structure or union type, the result has that type. If both operands have void type, the result has void type.

170

PhD Thesis, University of Illinois, July 2012

rule

types(T1 ,, T2)

convertedType(usualArithmeticConversion(T1 ,T2))

y (E ? E1 : E2)

k

when ((T1 =/=K T2) ∧Bool isArithmeticType(T1)) ∧Bool isArithmeticType(T2)

(n1570) §6.5.15 ¶6 If both the second and third operands are pointers or one is a null pointer constant and the other is a pointer, the result type is a pointer to a type qualified with all
the type qualifiers of the types referenced by both operands. Furthermore, if both operands are pointers to compatible types or to differently qualified versions of compatible types, the result
type is a pointer to an appropriately qualified version of the composite type; if one operand is a null pointer constant, the result has the type of the other operand; otherwise, one operand is
a pointer to void or a qualified version of void, in which case the result type is a pointer to an appropriately qualified version of void.

rule conditional-left-is-null

types(T1 ,, T2)

convertedType(T2)

y (E ? 0 :T1 : E2)

k

when hasIntegerType(T1) ∧Bool isPointerType(T2)

rule conditional-right-is-null

types(T1 ,, T2)

convertedType(T1)

y (E ? E1 : 0 :T2)

k

when hasIntegerType(T2) ∧Bool isPointerType(T1)

rule

types(T1 ,, T2)

convertedType(T1)

y (E ? E1 : E2)

k

when isPointerType(T1) ∧Bool isPointerType(T2)

171

PhD Thesis, University of Illinois, July 2012

rule

types(T ,, T)

convertedType(T)

y (E ? E1 : E2)

k

when ¬Bool isPointerType(T)

rule

convertedType(T) y (E ? E1 : E2)

IfThenElse(E ,cast(T ,E1),cast(T ,E2))

k

end module

module DYNAMIC-SEMANTICS-ASSIGNMENT

imports DYNAMIC-SEMANTICS-EXPRESSIONS-INCLUDE

(n1570) §6.5.16 ¶3 An assignment operator stores a value in the object designated by the left operand. An assignment expression has the value of the left operand after the assignment,
but is not an lvalue. The type of an assignment expression is the type the left operand would have after lvalue conversion. The side effect of updating the stored value of the left operand is
sequenced after the value computations of the left and right operands. The evaluations of the operands are unsequenced.

(n1570) §6.5.16.1 ¶2 Insimple assignment (=), the value of the right operand is converted to the type of the assignment expression and replaces the value stored in the object designated
by the left operand.

rule assign

lv(Loc,T) := V :T

write(lv(Loc,T),V :T) y V :T

k

172

PhD Thesis, University of Illinois, July 2012

rule convert-for-assignment

lv(—,T) := V :T ′

cast(T ,V :T ′)

k

when T =/=K T ′

(n1570) §6.5.16.1 ¶3 If the value being stored in an object is read from another object that overlaps in any way the storage of the first object, then the overlap shall be exact and the two
objects shall have qualified or unqualified versions of a compatible type; otherwise, the behavior is undefined.

(n1570) §6.5.16.2 ¶3 Acompound assignment of the form E1 op= E2 is equivalent to the simple assignment expression E1 = E1 op (E2), except that the lvalue E1 is evaluated only
once, and with respect to an indeterminately-sequenced function call, the operation of a compound assignment is a single evaluation. If E1 has an atomic type, compound assignment is a
read-modify-write operation with memory_order_seq_cst memory order semantics.

syntax K ::= compoundAssignment(KLabel,K,K)

context: compoundAssignment(—, �
peval(�)

,—)

context: compoundAssignment(—,—, �
reval(�)

)

rule compoundAssignment-mult

E1 *= E2

compoundAssignment(_*_,E1 ,E2)

k

rule compoundAssignment-div

E1 /= E2

compoundAssignment(_/_,E1 ,E2)

k

173

PhD Thesis, University of Illinois, July 2012

rule compoundAssignment-modulo

E1 %= E2

compoundAssignment(_%_,E1 ,E2)

k

rule compoundAssignment-plus

E1 += E2

compoundAssignment(_+_,E1 ,E2)

k

rule compoundAssignment-minus

E1 -= E2

compoundAssignment(_-_,E1 ,E2)

k

rule compoundAssignment-left-shift

E1 �= E2

compoundAssignment(_� _,E1 ,E2)

k

rule compoundAssignment-right-shift

E1 �= E2

compoundAssignment(_� _,E1 ,E2)

k

rule compoundAssignment-bitwise-and

E1 &= E2

compoundAssignment(_&_,E1 ,E2)

k

rule compoundAssignment-bitwise-xor

E1 ˆ= E2

compoundAssignment(_ˆ_,E1 ,E2)

k

174

PhD Thesis, University of Illinois, July 2012

rule compoundAssignment-bitwise-or

E1 |= E2

compoundAssignment(_|_,E1 ,E2)

k

rule

compoundAssignment(L,V ,V ′)

V := (L(reval(V) ,, V ′))

k

end module

module DYNAMIC-SEMANTICS-SEQUENCING

imports DYNAMIC-SEMANTICS-EXPRESSIONS-INCLUDE

(n1570) §6.5.17 ¶2 The left operand of a comma operator is evaluated as a void expression; there is a sequence point between its evaluation and that of the right operand. Then the right
operand is evaluated; the result has its type and value.

rule

Comma(List(V ,, K ′ ,, L))

sequencePoint y Comma(List(K ′ ,, L))

k

rule

Comma(List(K))

K

k

end module

module DYNAMIC-C-EXPRESSIONS

imports DYNAMIC-SEMANTICS-EXPRESSIONS-INCLUDE

175

PhD Thesis, University of Illinois, July 2012

imports DYNAMIC-SEMANTICS-COMPOUND-LITERAL

imports DYNAMIC-SEMANTICS-LOGICAL

imports DYNAMIC-SEMANTICS-CONDITIONAL-EXPRESSION

imports DYNAMIC-SEMANTICS-SIZEOF

imports DYNAMIC-SEMANTICS-IDENTIFIERS

imports DYNAMIC-SEMANTICS-FUNCTION-CALLS

imports DYNAMIC-SEMANTICS-ARRAY-SUBSCRIPTING

imports DYNAMIC-SEMANTICS-CAST

imports DYNAMIC-SEMANTICS-ASSIGNMENT

imports DYNAMIC-SEMANTICS-LITERALS

imports DYNAMIC-SEMANTICS-BITWISE

imports DYNAMIC-SEMANTICS-BITWISE-SHIFT

imports DYNAMIC-SEMANTICS-MULTIPLICATIVE-OPERATORS

imports DYNAMIC-SEMANTICS-ADDITIVE-OPERATORS

imports DYNAMIC-SEMANTICS-RELATIONAL

imports DYNAMIC-SEMANTICS-EQUALITY

imports DYNAMIC-SEMANTICS-UNARY-ARITHMETIC

imports DYNAMIC-SEMANTICS-MEMBERS

imports DYNAMIC-SEMANTICS-DEREFERENCE

imports DYNAMIC-SEMANTICS-REFERENCE

176

PhD Thesis, University of Illinois, July 2012

imports DYNAMIC-SEMANTICS-POSTFIX-INCREMENT-AND-DECREMENT

imports DYNAMIC-SEMANTICS-PREFIX-INCREMENT-AND-DECREMENT

imports DYNAMIC-SEMANTICS-SEQUENCING

end module

177

PhD Thesis, University of Illinois, July 2012

A.4 Statements
This section represents the semantics of C statements, and generally cor-
responds to §6.8 in the C standard. The first part of this section gives a
mechanism for calculating goto-maps. This is a static pass that saves all
relevant information necessary to execute gotos to particular labels. The
second part of this section focuses on the dynamic semantics of statements.

The static parts of this and of Section A.6 are implementation-like, and have
a very strong algorithmic quality. Although we describe them semantically
here, they could also have been implemented in a parser or front-end like
CIL [114].

178

PhD Thesis, University of Illinois, July 2012

module COMMON-SEMANTICS-STATEMENTS-INCLUDE

imports COMMON-INCLUDE

syntax Statement ::= loopMarked

syntax K ::= genLabel(Nat,K)
| popLoop
| popBlock
| frozenDeclaration(Nat,Nat,K)
| gotoObj(Nat,List,K,List,List)
| case(Nat)

end module

module COMMON-SEMANTICS-PROCESS-LABELS

imports COMMON-SEMANTICS-STATEMENTS-INCLUDE

syntax K ::= waitingOnGotoMap

rule

calculateGotoMap(F ,K)

waitingOnGotoMap

k

M

M [Map(•) / kpair(Tu,F)]

gotoMap

—
F

currentFunction

Tu

currTU

•

K y Return(NothingExpression)

computation

gotoCalculation

calculateGotoMap

rule

•

computation

gotoCalculation

•

179

PhD Thesis, University of Illinois, July 2012

rule

waitingOnGotoMap

•

k

•

calculateGotoMap

—
File-Scope

currentFunction

syntax K ::= endBlockForGoto(Nat)

rule

BlockStatement(Block)

Block y popBlock

computation

N

N +Int 1

nestingDepthGoto

OldNum

blockHistoryGoto

rule

Block(Num,—,List(L))

klistToK(L)

computation

•

Num

blockHistoryGoto

rule

popBlock

•

computation

I

I −Int 1

nestingDepthGoto

—
•

Num

blockHistoryGoto

when I >Int 0

rule DefinitionLoc-computation

CodeLoc(K ,L)

K

computation

—
L

currentProgramLoc

rule

DeclarationDefinition(InitNameGroup(T ,List(K ,, K ′ ,, L)))

DeclarationDefinition(InitNameGroup(T ,List(K))) y DeclarationDefinition(InitNameGroup(T ,List(K ′ ,, L)))

computation

180

PhD Thesis, University of Illinois, July 2012

rule


DeclarationDefinition(InitNameGroup(T ,List(K)))

•

computation

•

frozenDeclaration(Depth,BlockNum,DeclarationDefinition(InitNameGroup(T ,List(K))))

declarationStack

Depth

nestingDepthGoto

BlockNum

blockHistoryGoto




rule

OnlyTypedef(K)

•

computation

•

frozenDeclaration(Depth,BlockNum,OnlyTypedef(K))

declarationStack

Depth

nestingDepthGoto

BlockNum

blockHistoryGoto

rule compute-label-typedef

Typedef(K)

•

computation

•

frozenDeclaration(Depth,BlockNum,Typedef(K))

declarationStack

Depth

nestingDepthGoto

BlockNum

blockHistoryGoto

rule compute-label-ignore-non-statement

L(Args)

•

computation

when
















(
false

∨Bool (L ==KLabel Nop)

)

∨Bool (L ==KLabel Computation)




∨Bool (L ==KLabel Break)




∨Bool (L ==KLabel Continue)




∨Bool (L ==KLabel Return)




∨Bool (L ==KLabel Goto)




∨Bool (L ==KLabel CompGoto)

181

PhD Thesis, University of Illinois, July 2012

rule compute-label-for


For(ForNum,Pre,Control ,Post ,S)

•

y K

computation

Tail

computationTail

B N

nestingDepthGoto

Num OldBlockHistory

blockHistoryGoto

OldLoopStack

loopStackGoto

gotoCalculation

•

S

computation

Post ; y loopMarked y For(ForNum,Pre,

if Control =/=K emptyValue
then Control
else

1 :t(•,int)
fi

,Post ,S) y popLoop y K y Tail

computationTail

B N +Int 1
nestingDepthGoto

ForNum Num OldBlockHistory

blockHistoryGoto

kpair(Num,K y Tail) OldLoopStack

loopStackGoto

gotoCalculation




182

PhD Thesis, University of Illinois, July 2012

rule compute-label-do-while


DoWhile(E ,S)

•

y K

computation

Tail

computationTail

B Num OldBlockHistory

blockHistoryGoto

OldLoopStack

loopStackGoto

gotoCalculation

•

S

computation

IfThenElse(E ,loopMarked y DoWhile(E ,S),Nop) y popLoop y K y Tail

computationTail

B Num OldBlockHistory

blockHistoryGoto

kpair(Num,K y Tail) OldLoopStack

loopStackGoto

gotoCalculation




rule compute-label-while-mark

•

S y loopMarked

y While(E ,S) y •

popLoop

y K

computation

Tail

computationTail

Num

blockHistoryGoto

•

kpair(Num,K y Tail)

loopStackGoto

rule compute-label-while-done

loopMarked y While(E ,S)

•

y popLoop y K

computation

183

PhD Thesis, University of Illinois, July 2012

rule compute-label-if-then-else


IfThenElse(—,S1 ,S2)

•

y K

computation

Tail

computationTail

B

gotoCalculation

•

S1

computation

K y Tail

computationTail

B

gotoCalculation

•

S2

computation

K y Tail

computationTail

B

gotoCalculation




rule compute-label-switch

Switch(—,E ,S)

S y popLoop

y K

computation

Tail

computationTail

Num

blockHistoryGoto

•

kpair(Num,K y Tail)

loopStackGoto

rule compute-label-poploop

popLoop

•

computation

—
•

loopStackGoto

184

PhD Thesis, University of Illinois, July 2012

rule


Label(Target ,S)

S

y K

computation

Tail

computationTail

LoopStack

loopStackGoto

DeclStack

declarationStack

kpair(Tu,F) 7→ Map(M

M [gotoObj(Depth,BlockHistory ,S y K y Tail ,LoopStack ,DeclStack) / Target]

)

gotoMap

F

currentFunction

Tu

currTU

Depth

nestingDepthGoto

BlockHistory

blockHistoryGoto




when ¬Bool $hasMapping(M ,Target)

rule


Case(SwitchNum,CaseNum,Val ,S)

S

y K

computation

Tail

computationTail

LoopStack

loopStackGoto

DeclStack

declarationStack

kpair(Tu,F) 7→ Map(M

(M [case(CaseNum) / genLabel(SwitchNum,Val)]) [gotoObj(Depth,BlockHistory ,S y K y Tail ,LoopStack ,DeclStack) / case(CaseNum)]

)

gotoMap

F

currentFunction

Tu

currTU

Depth

nestingDepthGoto

BlockHistory

blockHistoryGoto




when ¬Bool $hasMapping(M ,genLabel(SwitchNum,Val))

185

PhD Thesis, University of Illinois, July 2012

rule


Default(SwitchNum,S)

S

y K

computation

Tail

computationTail

LoopStack

loopStackGoto

DeclStack

declarationStack

kpair(Tu,F) 7→ Map(M

M [gotoObj(Depth,BlockHistory ,S y K y Tail ,LoopStack ,DeclStack) / genLabel(SwitchNum,l(Default))]

)

gotoMap

F

currentFunction

Tu

currTU

Depth

nestingDepthGoto

BlockHistory

blockHistoryGoto




when ¬Bool $hasMapping(M ,genLabel(SwitchNum,l(Default)))

end module

module COMMON-C-STATEMENTS

imports COMMON-SEMANTICS-STATEMENTS-INCLUDE

imports COMMON-SEMANTICS-PROCESS-LABELS

end module

module DYNAMIC-SEMANTICS-STATEMENTS-INCLUDE

imports COMMON-SEMANTICS-STATEMENTS-INCLUDE

imports DYNAMIC-INCLUDE

syntax K ::= pushBlock
| addToHist(Nat)

end module

module DYNAMIC-SEMANTICS-LABELED-STATEMENTS

imports DYNAMIC-SEMANTICS-STATEMENTS-INCLUDE

186

PhD Thesis, University of Illinois, July 2012

(n1570) §6.8.1 ¶4 Any statement may be preceded by a prefix that declares an identifier as a label name. Labels in themselves do not alter the flow of control, which continues unimpeded
across them.

rule skip-label

Label(L,K)

K

k

rule case-fall-through

Case(—,—,—,K)

K

k

rule default-fall-through

Default(—,K)

K

k

end module

module DYNAMIC-SEMANTICS-BLOCKS

imports DYNAMIC-SEMANTICS-STATEMENTS-INCLUDE

(n1570) §6.8.2 ¶2 A compound statement is a block.

rule

BlockStatement(Block)

pushBlock y Block y popBlock

k

187

PhD Thesis, University of Illinois, July 2012

rule push-block


pushBlock

•

k

C Vars

•

localVariables

Addresses

•

localAddresses

N

N +Int 1

nestingDepth

local

•

ListItem(C N

nestingDepth

Vars

localVariables

Addresses

localAddresses

)

blockStack




rule pop-block-free-memory

•

deleteBlock(Loc)

y popBlock

k

Loc

•

localAddresses

rule pop-block

popBlock

•

k

—
C

•

localAddresses

•

local

ListItem(C)

•

blockStack

(n1570) §6.8.3 ¶2 The expression in an expression statement is evaluated as a void expression for its side effects.

rule expression-statement

—;

sequencePoint

k

(n1570) §6.8.3 ¶3 A null statement (consisting of just a semicolon) performs no operations.

188

PhD Thesis, University of Illinois, July 2012

rule
Nop

•

(n1570) §6.8 ¶3 A block allows a set of declarations and statements to be grouped into one syntactic unit. The initializers of objects that have automatic storage duration, and the variable
length array declarators of ordinary identifiers with block scope, are evaluated and the values are stored in the objects (including storing an indeterminate value in objects without an initializer)
each time the declaration is reached in the order of execution, as if it were a statement, and within each declaration in the order that declarators appear.

rule dissolve-block

Block(BlockNum,—,List(Statements))

klistToK(Statements)

k

•

BlockNum

blockHistory

end module

module DYNAMIC-SEMANTICS-IF-THEN

imports DYNAMIC-SEMANTICS-STATEMENTS-INCLUDE

(n1570) §6.8 ¶4 . . . There is a sequence point between the evaluation of a full expression and the evaluation of the next full expression to be evaluated.

(n1570) §6.8.4.1 ¶10 In both forms, the first substatement is executed if the expression compares unequal to 0. In the else form, the second substatement is executed if the expression
compares equal to 0. If the first substatement is reached via a label, the second substatement is not executed.

rule if-then-else-true

IfThenElse(1 :t(—,int),S ,—)

sequencePoint y S

k

rule if-then-else-false

IfThenElse(0 :t(—,int),—,S)

sequencePoint y S

k

189

PhD Thesis, University of Illinois, July 2012

rule

IfThenElse(V

simplifyTruth(V)

,—,—)

k

when isNotTruthValue(V)

end module

module DYNAMIC-SEMANTICS-SWITCH

imports DYNAMIC-SEMANTICS-STATEMENTS-INCLUDE

syntax K ::= handleSwitch(Nat,K) [strict(2)]
| handleSwitch-aux(K,Value,K)

(n1570) §6.8.4.2 ¶4 A switch statement causes control to jump to, into, or past the statement that is the switch body, depending on the value of a controlling expression, and on the
presence of a default label and the values of any case labels on or in the switch body. A case or default label is accessible only within the closest enclosing switch statement.

(n1570) §6.8.4.2 ¶5 The integer promotions are performed on the controlling expression. The constant expression in each case label is converted to the promoted type of the controlling
expression. If a converted value matches that of the promoted controlling expression, control jumps to the statement following the matched case label. Otherwise, if there is a default label,
control jumps to the labeled statement. If no converted case constant expression matches and there is no default label, no part of the switch body is executed.

rule

Switch(SN ,V :T ,—)

sequencePoint y handleSwitch(SN ,cast(promote(T),V :T))

k

when hasIntegerType(T)

rule

handleSwitch(SN ,V)

handleSwitch-aux(SN ,V ,Map(M))

k

F

currentFunction

Tu

currTU

kpair(Tu,F) 7→ Map(M)

gotoMap

syntax K ::= tryCase(K,Value,K)

190

PhD Thesis, University of Illinois, July 2012

context: tryCase(�
reval(�)

,—,—)

rule

•

tryCase(Exp,V ,CaseHelper)

y handleSwitch-aux(SN ,V ,Map(— genLabel(SN ,Exp) 7→ CaseHelper

•

))

k

when Exp =/=K l(Default)

rule

handleSwitch-aux(SN ,—,Map(genLabel(SN ,l(Default)) 7→—))

Goto(genLabel(SN ,l(Default)))

k

rule

handleSwitch-aux(—,—,Map(•))

•

k

rule

handleSwitch-aux(SN ,—,Map(— genLabel(SN ′,—) 7→—
•

))

k

when SN =/=Int SN ′

rule

handleSwitch-aux(SN ,—,Map(— (L(—)) 7→—
•

))

k

when L =/=KLabel genLabel

191

PhD Thesis, University of Illinois, July 2012

rule

tryCase(V :T ′

cast(T ,V :T ′)

,— :T ,—)

k

when T =/=K T ′

rule

tryCase(V ′ :T ,V :T ,CaseHelper)

•

k

when V =/=K V ′

rule

tryCase(V ,V ,CaseHelper)

Goto(CaseHelper)

k

end module

module DYNAMIC-SEMANTICS-WHILE

imports DYNAMIC-SEMANTICS-STATEMENTS-INCLUDE

(n1570) §6.8.5.1 ¶1 The evaluation of the controlling expression takes place before each execution of the loop body.

rule while-mark

While(B ,S) y K

loopMarked y While(B ,S) y popLoop

k

Num

blockHistory

•

kpair(Num,K)

loopStack

192

PhD Thesis, University of Illinois, July 2012

rule while

loopMarked y While(B ,S)

IfThenElse(B ,S y loopMarked y While(B ,S),Nop)

k

end module

module DYNAMIC-SEMANTICS-DO-WHILE

imports DYNAMIC-SEMANTICS-STATEMENTS-INCLUDE

(n1570) §6.8.5.2 ¶1 The evaluation of the controlling expression takes place after each execution of the loop body.

rule do-while-mark

DoWhile(B ,S) y K

loopMarked y DoWhile(B ,S) y popLoop

k

Num

blockHistory

•

kpair(Num,K)

loopStack

rule do-while

loopMarked y DoWhile(B ,S)

S y IfThenElse(B ,loopMarked y DoWhile(B ,S),Nop)

k

end module

module DYNAMIC-SEMANTICS-FOR

imports DYNAMIC-SEMANTICS-STATEMENTS-INCLUDE

(n1570) §6.8.5.2 ¶1 The statement for (clause-1;expression-2;expression-3)statement behaves as follows: The expression expression-2 is the controlling expression that is
evaluated before each execution of the loop body. The expression expression-3 is evaluated as a void expression after each execution of the loop body. If clause-1 is a declaration, the scope of
any identifiers it declares is the remainder of the declaration and the entire loop, including the other two expressions; it is reached in the order of execution before the first evaluation of the
controlling expression. If clause-1 is an expression, it is evaluated as a void expression before the first evaluation of the controlling expression.

(n1570) §6.8.5.2 ¶1 Both clause-1 and expression-3 can be omitted. An omitted expression-2 is replaced by a nonzero constant.

193

PhD Thesis, University of Illinois, July 2012

rule
ForClauseExpression(K)

K ;

rule

addToHist(Num)

•

k

•

Num

blockHistory

rule for-mark


For(ForNum,Pre,Control ,Post ,S) y K

pushBlock y addToHist(ForNum) y Pre y loopMarked y For(ForNum,Pre,

if Control =/=K emptyValue
then Control
else

1 :t(•,int)
fi

,Post ,S) y popLoop

k

Num

blockHistory

•

kpair(Num,K)

loopStack




rule for

loopMarked y For(ForNum,Pre,Control ,Post ,S)

IfThenElse(Control ,S y Post ; y loopMarked y For(ForNum,Pre,Control ,Post ,S),Nop)

k

Num

blockHistory

end module

module DYNAMIC-SEMANTICS-GOTO

imports DYNAMIC-SEMANTICS-STATEMENTS-INCLUDE

(n1570) §6.8.6.1 ¶2 A goto statement causes an unconditional jump to the statement prefixed by the named label in the enclosing function.

194

PhD Thesis, University of Illinois, July 2012

(n1570) §6.2.4 ¶6 For such an object that does not have a variable length array type, its lifetime extends from entry into the block with which it is associated until execution of that block
ends in any way. (Entering an enclosed block or calling a function suspends, but does not end, execution of the current block.) If the block is entered recursively, a new instance of the object
is created each time. The initial value of the object is indeterminate. If an initialization is specified for the object, it is performed each time the declaration or compound literal is reached in
the execution of the block; otherwise, the value becomes indeterminate each time the declaration is reached.

syntax K ::= processGoto(K)
| processGotoDown(K)
| processGotoSameBlock(List,List)

rule

Goto(Label) y —
processGoto(GotoInfo)

k

F

currentFunction

Tu

currTU

kpair(Tu,F) 7→ Map(— (Label 7→ GotoInfo))

gotoMap

rule

(L(gotoObj(Depth,CurrentBlock BlockHistory ,K ,LoopStack ,DeclStack))) y —
addVarsForBlock(CurrentBlock ,DeclStack) y K

k

Depth

nestingDepth

CurrentBlock BlockHistory

blockHistory

—
LoopStack

loopStack

Vars

localVariables

when (L ==KLabel processGoto)
∨Bool (L ==KLabel processGotoDown)

rule processGoto-pop-differing-1

•

popBlock

y processGoto(gotoObj(TargetDepth,TargetBlockHistory ,—,—,—))

k

BlockNum ActualHistory

blockHistory

when ¬Bool (BlockNum in TargetBlockHistory)

rule processGoto-pop-differing-2

•

popBlock

y processGoto(gotoObj(TargetDepth,Prefix BlockNum TargetBlockHistory ,—,—,—))

k

BlockNum ActualHistory

blockHistory

when TargetBlockHistory =/=List ActualHistory

195

PhD Thesis, University of Illinois, July 2012

rule


processGoto(gotoObj(TargetDepth,Prefix TargetBlock ActualHistory ,K ,LoopStack ,DeclStack))

addVarsForBlock(CurrentBlock ,DeclStack) y processGotoDown(gotoObj(TargetDepth,Prefix CurrentBlock ActualHistory ,K ,LoopStack ,DeclStack))

k

ActualDepth

nestingDepth

CurrentBlock ActualHistory

blockHistory




when (ActualDepth +Int 1) =/=Int TargetDepth

rule


•

pushBlock y addToHist(TargetBlk) y addVarsForBlock(TargetBlk ,DeclStk)

y processGotoDown(gotoObj(TargetDepth,— TargetBlk ActualHist ,—,—,DeclStk))

k

ActualDepth

nestingDepth

ActualHist

blockHistory




when (ActualDepth +Int 1) =/=Int TargetDepth

rule

(L(gotoObj(sNatDepth,TargetBlock BlockHistory ,K ,LoopStack ,DeclStack))) y —
pushBlock y addToHist(TargetBlock) y addVarsForBlock(TargetBlock ,DeclStack) y K

k

Depth

nestingDepth

BlockHistory

blockHistory

—
LoopStack

loopStack

when
(

(L ==KLabel processGoto)
∨Bool (L ==KLabel processGotoDown)

)
∧Bool (sNatDepth ==Int (Depth +Int 1))

syntax K ::= addVarsForBlock(Nat,List)

rule

addVarsForBlock(TargetBlock , frozenDeclaration(—,BlockNum,—)

•

DeclStack)

k

TargetBlock

blockHistory

when BlockNum =/=Int TargetBlock

196

PhD Thesis, University of Illinois, July 2012

rule

addVarsForBlock(TargetBlock , frozenDeclaration(—,TargetBlock ,Decl)

•

DeclStack)

k

Vars

localVariables

TargetBlock

blockHistory

when getIdOfDeclaration(Decl) in Vars

syntax K ::= enableInits

rule

enableInits

•

k

—
true

shouldInit

rule

•

Decl y enableInits

y addVarsForBlock(TargetBlock , frozenDeclaration(—,TargetBlock ,Decl)

•

—)

k

Vars

localVariables

TargetBlock

blockHistory

—
false

shouldInit

when ¬Bool (getIdOfDeclaration(Decl) in Vars)

rule

addVarsForBlock(—, •)

•

k

end module

module DYNAMIC-SEMANTICS-CONTINUE

imports DYNAMIC-SEMANTICS-STATEMENTS-INCLUDE

197

PhD Thesis, University of Illinois, July 2012

(n1570) §6.8.6.2 ¶2 A continue statement causes a jump to the loop-continuation portion of the smallest enclosing iteration statement; that is, to the end of the loop body. More precisely,
in each of the statements
while (...) {
...
continue;
...
contin: ;
}

do {
...
continue;
...
contin: ;
} while (...);

for (...) {
...
continue;
...
contin: ;
}

unless the continue statement shown is in an enclosed iteration statement (in which case it is interpreted within that statement), it is equivalent to goto contin;.

rule continue

Continue y L(—)

•

k

when (((L =/=KLabel loopMarked) ∧Bool (L =/=KLabel popBlock)) ∧Bool (L =/=KLabel pushBlock)) ∧Bool (L =/=KLabel popLoop)

rule continue-through-pop

Continue y popBlock

popBlock y Continue

k

rule continue-done-for

Continue

Post ;

y loopMarked y For(—,—,—,Post ,—)

k

rule continue-done

Continue

•

y loopMarked y (L(—))

k

when L =/=KLabel For

198

PhD Thesis, University of Illinois, July 2012

end module

module DYNAMIC-SEMANTICS-BREAK

imports DYNAMIC-SEMANTICS-STATEMENTS-INCLUDE

(n1570) §6.8.6.3 ¶2 A break statement terminates execution of the smallest enclosing switch or iteration statement.

rule break

Break

popLoop

k

end module

module DYNAMIC-SEMANTICS-RETURN

imports DYNAMIC-SEMANTICS-STATEMENTS-INCLUDE

(n1570) §6.8.6.4 ¶2 A return statement terminates execution of the current function and returns control to its caller. A function may have any number of return statements.

(n1570) §6.8.6.4 ¶3 If a return statement with an expression is executed, the value of the expression is returned to the caller as the value of the function call expression. If the expression
has a type different from the return type of the function in which it appears, the value is converted as if by assignment to an object having the return type of the function.

rule return-clean-local

•

deleteBlock(Loc)

y Return(V)

k

Loc

•

localAddresses

rule fetch-all-locals

Return(V)

k

•

Addresses

localAddresses

ListItem(— Addresses

localAddresses

)

•

blockStack

199

PhD Thesis, University of Illinois, July 2012

rule return


Return(V) y —
sequencePoint y cast(T ,V) y K

k

Tu 7→ Map(— (F 7→ t(—,functionType(T ,—))))

gtypes

•

localAddresses

local

•

F

CurrFun

currentFunction

—
CurrLoc

currentProgramLoc

Tu

currTU

•

•

blockStack

•

—
C

control

ListItem(K

continuation

C CurrFun

stackCurrentFunction

CurrLoc

stackCurrentProgramLoc

)

•

callStack




end module

module DYNAMIC-SEMANTICS-STATEMENTS-MISC

imports DYNAMIC-SEMANTICS-STATEMENTS-INCLUDE

rule popLoop

popLoop y —
K

k

Num

blockHistory

kpair(Num,K)

•

loopStack

200

PhD Thesis, University of Illinois, July 2012

rule popLoop-popBlock

•

popBlock

y popLoop

k

Num

blockHistory

kpair(Num ′,—)

loopStack

when Num ′ =/=Int Num

end module

module DYNAMIC-C-STATEMENTS

imports DYNAMIC-SEMANTICS-STATEMENTS-INCLUDE

imports DYNAMIC-SEMANTICS-LABELED-STATEMENTS

imports DYNAMIC-SEMANTICS-IF-THEN

imports DYNAMIC-SEMANTICS-FOR

imports DYNAMIC-SEMANTICS-WHILE

imports DYNAMIC-SEMANTICS-SWITCH

imports DYNAMIC-SEMANTICS-GOTO

imports DYNAMIC-SEMANTICS-RETURN

imports DYNAMIC-SEMANTICS-BLOCKS

imports DYNAMIC-SEMANTICS-DO-WHILE

imports DYNAMIC-SEMANTICS-CONTINUE

imports DYNAMIC-SEMANTICS-BREAK

imports DYNAMIC-SEMANTICS-STATEMENTS-MISC

end module

201

PhD Thesis, University of Illinois, July 2012

A.5 Typing
This section represents the evaluation of types and the typing of expressions.
In our semantics, types are canonicalized (e.g., long const is turned into
long-int with a const modifier), which is described in the first part of this
section. The typing of expressions (as described in Section 4.2.5) is described
in the second part.

202

PhD Thesis, University of Illinois, July 2012

module COMMON-SEMANTICS-TYPE-INCLUDE

imports COMMON-INCLUDE

syntax K ::= MYHOLE
| addStruct(Id,List{KResult})
| addUnion(Id,List{KResult})
| canonicalizeType(Bag)

syntax Type ::= extractActualType(Type) [function]

syntax K ::= evalToType

syntax Set ::= typeStrictLeftBinaryOperators [function]

define
typeStrictLeftBinaryOperators

Set(l(_� _) ,, l(_� _) ,, l(_*=_) ,, l(_/=_) ,, l(_%=_) ,, l(_+=_) ,, l(_-=_) ,, l(_�=_) ,, l(_�=_) ,, l(_&=_) ,, l(_ˆ=_) ,, l(_|=_) ,, l(_++) ,, l(_--) ,, l(--_) ,, l(++_))

end module

module COMMON-SEMANTICS-TYPE-DECLARATIONS

imports COMMON-SEMANTICS-TYPE-INCLUDE

syntax K ::= giveGlobalType(K,Type)
| giveLocalType(K,Type)

rule ignore-volatile
t(S ,qualifiedType(t(S ′,T),Volatile))

t(S S ′,T)

[anywhere]

rule ignore-atomic
t(S ,qualifiedType(t(S ′,T),Atomic))

t(S S ′,T)

[anywhere]

203

PhD Thesis, University of Illinois, July 2012

rule ignore-restrict
t(S ,qualifiedType(t(S ′,T),Restrict))

t(S S ′,T)

[anywhere]

rule ignore-auto
t(S ,qualifiedType(t(S ′,T),Auto))

t(S S ′,T)

[anywhere]

rule ignore-register
t(S ,qualifiedType(t(S ′,T),Register))

t(S S ′,T)

[anywhere]

rule

giveType(X ,T)

if Fun ==K File-Scope
then giveGlobalType(X ,unqualifyType(T))
else

giveLocalType(X ,unqualifyType(T))
fi

k

Fun

currentFunction

rule

giveGlobalType(X ,T)

•

k

M

M [T / X]

types

Tu 7→ Map(M ′

M ′ [T / X]

)

gtypes

Tu

currTU

rule

giveLocalType(X ,T)

•

k

M

M [T / X]

types

end module

module COMMON-SEMANTICS-TYPE-CANONICALIZATION

204

PhD Thesis, University of Illinois, July 2012

imports COMMON-SEMANTICS-TYPE-INCLUDE

syntax K ::= canonicalizeType-aux(Bag,K,Bag,Bag,Bag)

context: canonicalizeType-aux(—,�,—,—,—)
when � =/=K

•

rule

canonicalizeType(B)

canonicalizeType-aux(B , •, •, •, •)

k

rule

•

DeclType(K1 ,K2)

y canonicalizeType-aux(— TAtomic(K1 ,K2),—,—,—,—)

k

rule

•

DeclType(K1 ,K2)

y canonicalizeType-aux(— AlignasType(K1 ,K2),—,—,—,—)

k

rule

•

typeof(K1)

y canonicalizeType-aux(— AlignasExpression(K1),—,—,—,—)

k

syntax K ::= atomic(Type)
| alignas(Type)

rule

T

•

y canonicalizeType-aux(— TAtomic(K1 ,K2)

•

,—,— •

atomic(T)

,—,—)

k

when isTypeResult(T)

205

PhD Thesis, University of Illinois, July 2012

rule

T

•

y canonicalizeType-aux(— AlignasType(K1 ,K2)

•

,—,— •

alignas(T)

,—,—)

k

when isTypeResult(T)

rule

T

•

y canonicalizeType-aux(— AlignasExpression(K1)

•

,—,— •

alignas(T)

,—,—)

k

when isTypeResult(T)

206

PhD Thesis, University of Illinois, July 2012

rule

canonicalizeType-aux(— T

•

,—,— •

T

,—,—)

k

when






















































(

false
∨Bool (T ==K Void)

)

∨Bool (T ==K Bool)




∨Bool (T ==K Char)




∨Bool (T ==K Short)




∨Bool (T ==K Int)




∨Bool (T ==K Long)




∨Bool (T ==K Float)




∨Bool (T ==K Double)




∨Bool (T ==K Signed)




∨Bool (T ==K Unsigned)




∨Bool (T ==K Complex)




∨Bool (T ==K Imaginary)




∨Bool ((getKLabel(T)) ==KLabel StructDef)




∨Bool ((getKLabel(T)) ==KLabel UnionDef)




∨Bool ((getKLabel(T)) ==KLabel EnumDef)




∨Bool ((getKLabel(T)) ==KLabel StructRef)




∨Bool ((getKLabel(T)) ==KLabel UnionRef)




∨Bool ((getKLabel(T)) ==KLabel EnumRef)




∨Bool ((getKLabel(T)) ==KLabel Named)




∨Bool ((getKLabel(T)) ==KLabel Attribute)

207

PhD Thesis, University of Illinois, July 2012

rule

canonicalizeType-aux(B T

•

,—,—,—, —
T

)

k

when


















(

(T ==K Extern)
∨Bool (T ==K Static)

)

∨Bool (T ==K Const)




∨Bool (T ==K Volatile)




∨Bool (T ==K Atomic)




∨Bool (T ==K Restrict)




∨Bool (T ==K Auto)




∨Bool (T ==K Register)




∨Bool (T ==K ThreadLocal)
rule

canonicalizeType-aux(•, T

t(•,qualifiedType(T ,Q))

, •, •,— Q

•

)

k

when















(

(Q ==K Extern)
∨Bool (Q ==K Static)

)

∨Bool (Q ==K Volatile)




∨Bool (Q ==K Atomic)




∨Bool (Q ==K Restrict)




∨Bool (Q ==K Auto)




∨Bool (Q ==K Register)




∨Bool (Q ==K ThreadLocal)
rule

canonicalizeType-aux(•,t(•

Const

—,—), •, •,— Q

•

)

k

when Q ==K Const

(n1570) §6.7.3 ¶9 If the specification of an array type includes any type qualifiers, the element type is so-qualified, not the array type. . . .

208

PhD Thesis, University of Illinois, July 2012

rule
t(Const S ,arrayType(t(S ′,T),N))

t(S ,arrayType(t(Const S ′,T),N))

[anywhere]

rule

canonicalizeSpecifier(Named(X))

t(•,typedefType(X ,T))

k

typedef(X) 7→ T

types

when X =/=K Identifier(“”)

rule

canonicalizeSpecifier(StructRef(X))

t(•,structType(X))

k

when X =/=K Identifier(“”)

rule

canonicalizeSpecifier(EnumRef(X))

t(•,enumType(X))

k

when X =/=K Identifier(“”)

rule

canonicalizeSpecifier(UnionRef(X))

t(•,unionType(X))

k

when X =/=K Identifier(“”)

209

PhD Thesis, University of Illinois, July 2012

rule

canonicalizeSpecifier(EnumDef(X ,L))

EnumDef(X ,L) y t(•,enumType(X))

k

when X =/=K Identifier(“”)

rule

canonicalizeSpecifier(


L(Identifier(“”)

unnamed(N)

,, —)


)

k

N

N +Int 1

freshNat

when

(
(L ==KLabel StructDef)

∨Bool (L ==KLabel EnumDef)

)

∨Bool (L ==KLabel UnionDef)
rule

canonicalizeSpecifier(StructDef(X ,L))

StructDef(X ,L) y t(•,structType(X))

k

when X =/=K Identifier(“”)

rule

canonicalizeSpecifier(UnionDef(X ,L))

UnionDef(X ,L) y t(•,unionType(X))

k

when X =/=K Identifier(“”)

rule
SpecTypedef

•

[anywhere]

210

PhD Thesis, University of Illinois, July 2012

rule ignore-inline
Inline

•

[anywhere]

rule ignore-noreturn
Noreturn

•

[anywhere]

rule
Attribute(—,—)

•

[anywhere]

rule

canonicalizeType-aux(•, •

canonicalizeSpecifier(B)

, B

•

,—,—)

k

when B =/=Bag
•

rule

canonicalizeType-aux(•,T , •, •, •)

T

k

syntax K ::= canonicalizeSpecifier(Bag) [function]

define
canonicalizeSpecifier(Void)

t(•,void)
define
canonicalizeSpecifier(Bool)

t(•,bool)

211

PhD Thesis, University of Illinois, July 2012

define
canonicalizeSpecifier(Char)

t(•,char)
define
canonicalizeSpecifier(Signed Char)

t(•,signed-char)
define
canonicalizeSpecifier(Unsigned Char)

t(•,unsigned-char)
rule
atomic(—)

•

[anywhere]

rule
alignas(—)

•

[anywhere]

define
canonicalizeSpecifier(Double)

t(•,double)
define
canonicalizeSpecifier(Float)

t(•,float)
define
canonicalizeSpecifier(Long Double)

t(•,long-double)
define
canonicalizeSpecifier(Complex Double)

t(Complex,double)
define
canonicalizeSpecifier(Complex Float)

t(Complex,float)

212

PhD Thesis, University of Illinois, July 2012

define
canonicalizeSpecifier(Complex Long Double)

t(Complex,long-double)
define
canonicalizeSpecifier(Imaginary Double)

t(Imaginary,double)
define
canonicalizeSpecifier(Imaginary Float)

t(Imaginary,float)
define
canonicalizeSpecifier(Imaginary Long Double)

t(Imaginary,long-double)
define
canonicalizeSpecifier(B)

t(•,short-int)

when



(

(B ==Bag Short)
∨Bool (B ==Bag Signed Short)

)

∨Bool (B ==Bag Short Int)




∨Bool (B ==Bag Signed Short Int)
define
canonicalizeSpecifier(B)

t(•,unsigned-short-int)

when (B ==Bag Unsigned Short)
∨Bool (B ==Bag Unsigned Short Int)

define
canonicalizeSpecifier(B)

t(•,int)

when

(
(B ==Bag Int)

∨Bool (B ==Bag Signed)

)

∨Bool (B ==Bag Signed Int)
define
canonicalizeSpecifier(B)

t(•,unsigned-int)

when (B ==Bag Unsigned)
∨Bool (B ==Bag Unsigned Int)

213

PhD Thesis, University of Illinois, July 2012

define
canonicalizeSpecifier(B)

t(•,long-int)

when



(

(B ==Bag Long)
∨Bool (B ==Bag Signed Long)

)

∨Bool (B ==Bag Long Int)




∨Bool (B ==Bag Signed Long Int)
define
canonicalizeSpecifier(B)

t(•,unsigned-long-int)

when (B ==Bag Unsigned Long)
∨Bool (B ==Bag Unsigned Long Int)

define
canonicalizeSpecifier(B)

t(•,long-long-int)

when



(

(B ==Bag Long Long)
∨Bool (B ==Bag Signed Long Long)

)

∨Bool (B ==Bag Long Long Int)




∨Bool (B ==Bag Signed Long Long Int)
define
canonicalizeSpecifier(B)

t(•,unsigned-long-long-int)

when (B ==Bag Unsigned Long Long)
∨Bool (B ==Bag Unsigned Long Long Int)

end module

module COMMON-SEMANTICS-TYPE-INTERPRETATION

imports COMMON-SEMANTICS-TYPE-INCLUDE

syntax K ::= BitFieldType(K,K) [strict]

rule

Specifier(List(L))

canonicalizeType(Bag L)

k

214

PhD Thesis, University of Illinois, July 2012

rule
BitFieldType(T ,N :—)

t(•,bitfieldType(T ,N))

[anywhere]

syntax KLabel ::= makeArrayType(Nat) [function]
| makeFunctionType(List{KResult}) [function]

syntax Type ::= pushTypeDown(Type,KLabel) [function]

syntax KLabel ::= makePointerType [function]
| makeIncompleteArrayType [function]

rule
ArrayType(T ,N :—,—)

pushTypeDown(T ,makeArrayType(N))

when N >Int 0
[anywhere]

rule
ArrayType(T ,emptyValue,—)

pushTypeDown(T ,makeIncompleteArrayType)
[anywhere]

rule
PointerType(T)

pushTypeDown(T ,makePointerType)
[anywhere]

rule
FunctionType(T)

T

[anywhere]

rule
Prototype(T ,List(L), false)

pushTypeDown(T ,makeFunctionType(L))

[anywhere]

215

PhD Thesis, University of Illinois, July 2012

rule
Prototype(T ,List(L), true)

pushTypeDown(T ,makeFunctionType(L ,, t(•,variadic)))

[anywhere]

define pushdown-array
pushTypeDown(t(S ,arrayType(T ,N)),K)

t(S ,arrayType(pushTypeDown(T ,K),N))

define pushdown-incomplete
pushTypeDown(t(S ,incompleteArrayType(T)),K)

t(S ,incompleteArrayType(pushTypeDown(T ,K)))

define pushdown-pointer
pushTypeDown(t(S ,pointerType(T)),K)

t(S ,pointerType(pushTypeDown(T ,K)))

define pushdown-qualified
pushTypeDown(t(S ,qualifiedType(T ,K)),K)

t(S ,qualifiedType(pushTypeDown(T ,K),K))

define pushdown-function
pushTypeDown(t(S ,functionType(T ,L)),K)

t(S ,functionType(pushTypeDown(T ,K),L))

define pushdown-struct
pushTypeDown(t(S ,structType(X)),K)

K (t(S ,structType(X)))

define pushdown-union
pushTypeDown(t(S ,unionType(X)),K)

K (t(S ,unionType(X)))

define pushdown-enum
pushTypeDown(t(S ,enumType(X)),K)

K (t(S ,enumType(X)))

define pushdown-typedef
pushTypeDown(t(S ,typedefType(X ,t(S ′,T))),K)

K (t(S S ′,T))

216

PhD Thesis, University of Illinois, July 2012

define pushdown-basic
pushTypeDown(T ,K)

K (T)

when isBasicType(T)

define
makeArrayType(N)(T)

t(•,arrayType(T ,N))

define
makeFunctionType(L)(T)

t(•,functionType(T ,giveNamesToArgs(L)))
define

makePointerType(T)

t(•,pointerType(T))

define
makeIncompleteArrayType(T)

t(•,incompleteArrayType(T))

syntax List{KResult} ::= giveNamesToArgs(List{KResult}) [function]
| giveNamesToArgs-aux(Nat,List{KResult}) [function]

define
giveNamesToArgs(L)

giveNamesToArgs-aux(0,L)
define
giveNamesToArgs-aux(N ,typedDecl(T ,X) ,, L)

typedDecl(T ,X) ,, giveNamesToArgs-aux(N ,L)

when X =/=K #NoName

define
giveNamesToArgs-aux(N ,typedDecl(T ,X) ,, L)

typedDecl(T ,#NoName(N)) ,, giveNamesToArgs-aux(N +Int 1,L)
when X ==K #NoName

define
giveNamesToArgs-aux(—,t(•,variadic))

t(•,variadic)

217

PhD Thesis, University of Illinois, July 2012

define
giveNamesToArgs-aux(—, •)

•

rule

JustBase

T

k

T

•

declarationTypeHolder

syntax K ::= extractActualTypeFreezer

rule

DeclType(T ,K)

K y extractActualTypeFreezer

k

•

T

declarationTypeHolder

rule

T y extractActualTypeFreezer

extractActualType(T)

k

syntax List{KResult} ::= fillUnionBitHoles(List{KResult}) [function]
| fillUnionBitHoles-aux(Nat,List{KResult}) [function]

define
fillUnionBitHoles(•)

•

define
fillUnionBitHoles(K ,, L)

fillUnionBitHoles-aux(0,K ,, L)

define
fillUnionBitHoles-aux(N ,typedDecl(T ,X) ,, L)

typedDecl(T ,X) ,, fillUnionBitHoles-aux(N ,L)

when ¬Bool isBitfieldType(T)

218

PhD Thesis, University of Illinois, July 2012

define
fillUnionBitHoles-aux(N ,typedDecl(t(S ,bitfieldType(T ,N ′)),X) ,, L)

typedDecl(t(S ,bitfieldType(T ,N ′)),X) ,, fillUnionBitHoles-aux(maxInt(N ,N ′),L)
define

fillUnionBitHoles-aux(N , •)

typedDecl(t(•,bitfieldType(t(•,unsigned-int),N +Int ((absInt (numBitsPerByte−Int (N %Int numBitsPerByte))) %Int numBitsPerByte))),#NoName)

syntax List{KResult} ::= fillBitHoles(List{KResult}) [function]
| fillBitHoles-aux(Nat,List{KResult}) [function]

define fillBitHoles-none
fillBitHoles(•)

•

define fillBitHoles-not-bitfield
fillBitHoles(typedDecl(T ,X) ,, L)

typedDecl(T ,X) ,, fillBitHoles(L)

when ¬Bool isBitfieldType(T)

define fillBitHoles-bitfield
fillBitHoles(typedDecl(T ,X) ,, L)

fillBitHoles-aux(0,typedDecl(T ,X) ,, L)

when isBitfieldType(T)

define fillBitHoles-aux-not-bitfield
fillBitHoles-aux(N ,typedDecl(T ,X) ,, L)

typedDecl(t(•,bitfieldType(t(•,unsigned-int), (absInt (numBitsPerByte−Int (N %Int numBitsPerByte))) %Int numBitsPerByte)),#NoName) ,, fillBitHoles(typedDecl(T ,X) ,, L)

when ¬Bool isBitfieldType(T)

define fillBitHoles-aux-bitfield-normal
fillBitHoles-aux(N ,typedDecl(t(S ,bitfieldType(T ,N ′)),X) ,, L)

typedDecl(t(S ,bitfieldType(T ,N ′)),X) ,, fillBitHoles-aux(N +Int N ′,L)

when N ′ =/=Int 0

define fillBitHoles-bitfield-zero
fillBitHoles-aux(N ,typedDecl(t(—,bitfieldType(T ,N ′)),—) ,, L)

typedDecl(t(•,bitfieldType(t(•,unsigned-int), (absInt (numBitsPerByte−Int (N %Int numBitsPerByte))) %Int numBitsPerByte)),#NoName) ,, fillBitHoles(L)
when N ′ ==Int 0

219

PhD Thesis, University of Illinois, July 2012

define fillBitHoles-done
fillBitHoles-aux(N , •)

typedDecl(t(•,bitfieldType(t(•,unsigned-int), (absInt (numBitsPerByte−Int (N %Int numBitsPerByte))) %Int numBitsPerByte)),#NoName)
rule
typedDecl(t(—,bitfieldType(—,N)),#NoName) ,, typedDecl(t(—,bitfieldType(—,N ′)),#NoName)

typedDecl(t(•,bitfieldType(t(•,unsigned-int),N +Int N ′)),#NoName)

[anywhere]

syntax List{KResult} ::= incompleteToFlexibleArrayMember(List{KResult}) [function]

define
incompleteToFlexibleArrayMember(typedDecl(T ,X) ,, L)

typedDecl(T ,X) ,, incompleteToFlexibleArrayMember(L)

when ¬Bool isIncompleteType(T)

define
incompleteToFlexibleArrayMember(typedDecl(t(S ,incompleteArrayType(T)),X))

typedDecl(t(S ,flexibleArrayType(T)),X)

define
incompleteToFlexibleArrayMember(•)

•

rule

StructDef(X ,List(L))

addStruct(X ,fillBitHoles(incompleteToFlexibleArrayMember(L))) y giveType(X ,t(•,structType(X)))

k

rule

UnionDef(X ,List(L))

addUnion(X ,fillUnionBitHoles(L)) y giveType(X ,t(•,unionType(X)))

k

220

PhD Thesis, University of Illinois, July 2012

rule

OnlyTypedef(K)

K y discard

k

rule
NameAndType(X ,T)

typedDecl(T ,X)

[anywhere]

define extract-basic
extractActualType(T)

T

when isBasicType(T)

define extract-enum
extractActualType(t(S ,enumType(X)))

t(S ,enumType(X))

define extract-struct
extractActualType(t(S ,structType(X)))

t(S ,structType(X))

define extract-union
extractActualType(t(S ,unionType(X)))

t(S ,unionType(X))

define extract-array
extractActualType(t(S ,arrayType(T ,N)))

t(S ,arrayType(extractActualType(T),N))

define extract-incompleteArray
extractActualType(t(S ,incompleteArrayType(T)))

t(S ,incompleteArrayType(extractActualType(T)))

define extract-bitfield
extractActualType(t(S ,bitfieldType(T ,N)))

t(S ,bitfieldType(extractActualType(T),N))

define extract-function
extractActualType(t(S ,functionType(T ,List)))

t(S ,functionType(extractActualType(T),List))

221

PhD Thesis, University of Illinois, July 2012

define extract-pointer
extractActualType(t(S ,pointerType(T)))

t(S ,pointerType(extractActualType(T)))

define extract-qualified
extractActualType(t(S ,qualifiedType(T ,K)))

t(S ,qualifiedType(extractActualType(T),K))

define extract-typedef
extractActualType(t(S ,typedefType(—,t(S ′,T))))

extractActualType(t(S S ′,T))

syntax K ::= NameAndType(K,K) [strict(2)]

rule
SingleName(T ,Name(X ,K))

NameAndType(X ,DeclType(T ,K))

[anywhere]

rule Separate-FieldGroups
FieldGroup(K ,List(C ,, C ′ ,, L))

FieldGroup(K ,List(C)) ,, FieldGroup(K ,List(C ′ ,, L))

[anywhere]

rule
FieldGroup(T ,List(Name(X ,K)))

NameAndType(X ,DeclType(T ,K))

[anywhere]

rule
FieldGroup(T ,List(BitFieldName(Name(X ,K),Size)))

NameAndType(X ,DeclType(T ,BitFieldType(K ,Size)))

[anywhere]

rule
FieldName(K)

K

[anywhere]

222

PhD Thesis, University of Illinois, July 2012

end module

module COMMON-SEMANTICS-TYPE-MISC

imports COMMON-SEMANTICS-TYPE-INCLUDE

(n1570) §6.2.7 ¶1 Two types have compatible type if their types are the same. Additional rules for determining whether two types are compatible are described in 6.7.2 for type specifiers,
in 6.7.3 for type qualifiers, and in 6.7.6 for declarators. Moreover, two structure, union, or enumerated types declared in separate translation units are compatible if their tags and members
satisfy the following requirements: If one is declared with a tag, the other shall be declared with the same tag. If both are completed anywhere within their respective translation units, then
the following additional requirements apply: there shall be a one-to-one correspondence between their members such that each pair of corresponding members are declared with compatible
types; if one member of the pair is declared with an alignment specifier, the other is declared with an equivalent alignment specifier; and if one member of the pair is declared with a name,
the other is declared with the same name. For two structures, corresponding members shall be declared in the same order. For two structures or unions, corresponding bit-fields shall have the
same widths. For two enumerations, corresponding members shall have the same values.

(n1570) §6.7.3 ¶10 For two qualified types to be compatible, both shall have the identically qualified version of a compatible type; the order of type qualifiers within a list of specifiers or
qualifiers does not affect the specified type.

define typeCompatible-identical
isTypeCompatible(T ,T)

true
define typeCompatible-two-ints
isTypeCompatible(T ,T ′)

true
when hasIntegerType(T) ∧Bool hasIntegerType(T ′)

define typeCompatible-two-ptr
isTypeCompatible(t(—,pointerType(—)),t(—,pointerType(—)))

true
define typeCompatible-ptr-int
isTypeCompatible(t(—,pointerType(—)),T)

true
when hasIntegerType(T)

223

PhD Thesis, University of Illinois, July 2012

define typeCompatible-int-ptr
isTypeCompatible(T ,t(—,pointerType(—)))

true
when hasIntegerType(T)

define typeCompatible-declarations
isTypeCompatible(typedDecl(T ,—),typedDecl(T ′,—))

isTypeCompatible(T ,T ′)

define typeCompatible-prototypes
isTypeCompatible(t(—,prototype(T)),t(—,prototype(T ′)))

isTypeCompatible(T ,T ′)

define typeCompatible-array-right
isTypeCompatible(T ,t(S ,arrayType(T ′,—)))

isTypeCompatible(T ,t(S ,pointerType(T ′)))

define typeCompatible-array-left
isTypeCompatible(t(S ,arrayType(T ,—)),T ′)

isTypeCompatible(t(S ,pointerType(T)),T ′)

define typeCompatible-incompleteArray-right
isTypeCompatible(T ,t(S ,incompleteArrayType(T ′)))

isTypeCompatible(T ,t(S ,pointerType(T ′)))

define typeCompatible-incompleteArray-left
isTypeCompatible(t(S ,incompleteArrayType(T)),T ′)

isTypeCompatible(t(S ,pointerType(T)),T ′)

define typeCompatible-function-void-left
isTypeCompatible(t(—,functionType(T1 ,typedDecl(t(—,void),—))),t(—,functionType(T2 , •)))

isTypeCompatible(T1 ,T2)

define typeCompatible-function-void-right
isTypeCompatible(t(—,functionType(T1 , •)),t(—,functionType(T2 ,typedDecl(t(—,void),—))))

isTypeCompatible(T1 ,T2)

define typeCompatible-function
isTypeCompatible(t(S ,functionType(T1 ,T

′ ,, L)),t(S ′,functionType(T2 ,T
′′ ,, L′)))

isTypeCompatible(t(S ,functionType(T1 ,L)),t(S ′,functionType(T2 ,L
′))) ∧Bool isTypeCompatible(T ′,T ′′)

224

PhD Thesis, University of Illinois, July 2012

define typeCompatible-incompleteArray-nil
isTypeCompatible(t(—,functionType(T1 , •)),t(—,functionType(T2 , •)))

isTypeCompatible(T1 ,T2)

define
isTypeCompatible(T ,T ′)

true

when
(
hasIntegerType(T)
∨Bool isFloatType(T)

)
∧Bool

(
hasIntegerType(T ′)
∨Bool isFloatType(T ′)

)

syntax K ::= addGlobalAggregate(Id,K)
| addLocalAggregate(Id,K)
| addStruct-aux(Id,List{KResult},K,Map,Map,List{KResult}) [strict(3)]
| addUnion-aux(Id,List{KResult},Map,Map,List{KResult})

rule

addStruct(S ,L)

addStruct-aux(S ,L, 0 : cfg:largestUnsigned, •, •,L)

k

when L =/=List{K} •

rule

addStruct-aux(S ,typedDecl(T ,Field) ,, L,V ,Types,Offsets,L′)

addStruct-aux(S ,L,V + bitSizeofType(T),Types [T / Field],Offsets [value(V) / Field],L′)

k

rule

addStruct-aux(S , •,—,Types,Offsets,L)

if F ==K File-Scope
then addGlobalAggregate(S ,aggregateInfo(L,Types,Offsets))
else

addLocalAggregate(S ,aggregateInfo(L,Types,Offsets))
fi

k

F

currentFunction

225

PhD Thesis, University of Illinois, July 2012

rule

addUnion(S ,L)

addUnion-aux(S ,L, •, •,L)

k

when L =/=List{K} •

rule

addUnion-aux(S ,typedDecl(T ,Field) ,, L,Types,Offsets,L′)

addUnion-aux(S ,L,Types [T / Field],Offsets [0 / Field],L′)

k

rule

addUnion-aux(S , •,Types,Offsets,L)

if F ==K File-Scope
then addGlobalAggregate(S ,aggregateInfo(L,Types,Offsets))
else

addLocalAggregate(S ,aggregateInfo(L,Types,Offsets))
fi

k

F

currentFunction

rule

addGlobalAggregate(X ,K)

•

k

M ′

M ′ [K / X]

structs

M

M [K / X]

gstructs

rule

addLocalAggregate(X ,K)

•

k

M

M [K / X]

structs

define
isTypeResult(t(—,T))

true
when setOfTypes contains l(getKLabel(T))

226

PhD Thesis, University of Illinois, July 2012

define
isTypeResult(T)

true
when isBasicType(T)

define
isTypeResult(K)

false
when (getKLabel(K)) =/=KLabel t

define
isTypeResult(t(S ,T))

false
when (¬Bool (setOfTypes contains l(getKLabel(T)))) ∧Bool (¬Bool isBasicType(t(S ,T)))

define
isFloatType(t(—,float))

true
define
isFloatType(t(—,double))

true
define
isFloatType(t(—,long-double))

true
define
isFloatType(t(—,T))

false
when (((T =/=K float) ∧Bool (T =/=K double)) ∧Bool (T =/=K long-double)) ∧Bool ((getKLabel(T)) =/=KLabel qualifiedType)

define isCharType-char
isCharType(t(—,char))

true
define isCharType-qualified
isCharType(t(—,qualifiedType(T ,—)))

isCharType(T)

227

PhD Thesis, University of Illinois, July 2012

define isCharType-unsigned-char
isCharType(t(—,unsigned-char))

true
define isCharType-signed-char
isCharType(t(—,signed-char))

true
define isCharType-other
isCharType(t(—,T))

false
when (((T =/=K char) ∧Bool (T =/=K unsigned-char)) ∧Bool (T =/=K signed-char)) ∧Bool ((getKLabel(T)) =/=KLabel qualifiedType)

define isWCharType-wchar
isWCharType(t(—,T))

true
when T ==K simpleType(cfg:wcharut)

define isWCharType-other
isWCharType(t(—,T))

false
when (T =/=K simpleType(cfg:wcharut)) ∧Bool ((getKLabel(T)) =/=KLabel qualifiedType)

define isWCharType-qualified
isWCharType(t(—,qualifiedType(T ,—)))

isWCharType(T)

define isPointerType-pointer
isPointerType(t(—,pointerType(—)))

true
define isPointerType-qualified
isPointerType(t(—,qualifiedType(T ,—)))

isPointerType(T)

define isPointerType-other
isPointerType(t(—,T))

false
when ((getKLabel(T)) =/=KLabel pointerType) ∧Bool ((getKLabel(T)) =/=KLabel qualifiedType)

228

PhD Thesis, University of Illinois, July 2012

define isBoolType-bool
isBoolType(t(—,bool))

true
define isBoolType-qualifiedType
isBoolType(t(—,qualifiedType(T ,—)))

isBoolType(T)

define isBoolType-other
isBoolType(t(—,T))

false
when (T =/=K bool) ∧Bool ((getKLabel(T)) =/=KLabel qualifiedType)

define isArrayType-array
isArrayType(t(—,arrayType(—,—)))

true
define isArrayType-incompleteArray
isArrayType(t(—,incompleteArrayType(—)))

true
define isArrayType-flexibleArray
isArrayType(t(—,flexibleArrayType(—)))

true
define isArrayType-qualified
isArrayType(t(—,qualifiedType(T ,—)))

isArrayType(T)

define isArrayType-other
isArrayType(t(—,T))

false
when ((((getKLabel(T)) =/=KLabel arrayType) ∧Bool ((getKLabel(T)) =/=KLabel incompleteArrayType)) ∧Bool ((getKLabel(T)) =/=KLabel flexibleArrayType)) ∧Bool

((getKLabel(T)) =/=KLabel qualifiedType)

define
isAggregateType(T)

isArrayType(T)
∨Bool isStructType(T)

229

PhD Thesis, University of Illinois, July 2012

define isStructType-struct
isStructType(t(—,structType(—)))

true
define isStructType-qualified
isStructType(t(—,qualifiedType(T ,—)))

isStructType(T)

define isStructType-other
isStructType(t(—,T))

false
when ((getKLabel(T)) =/=KLabel structType) ∧Bool ((getKLabel(T)) =/=KLabel qualifiedType)

define isUnionType-union
isUnionType(t(—,unionType(—)))

true
define isUnionType-qualified
isUnionType(t(—,qualifiedType(T ,—)))

isUnionType(T)

define isUnionType-other
isUnionType(t(—,T))

false
when ((getKLabel(T)) =/=KLabel unionType) ∧Bool ((getKLabel(T)) =/=KLabel qualifiedType)

define isIncompleteType-true
isIncompleteType(t(—,incompleteArrayType(—)))

true
define isIncompleteType-qualified
isIncompleteType(t(—,qualifiedType(T ,—)))

isIncompleteType(T)

define isIncompleteType-false
isIncompleteType(t(—,T))

false
when ((getKLabel(T)) =/=KLabel incompleteArrayType) ∧Bool ((getKLabel(T)) =/=KLabel qualifiedType)

230

PhD Thesis, University of Illinois, July 2012

define isExternType-qualified
isExternType(t(—,qualifiedType(T ,K)))

if K ==K Extern
then true
else

isExternType(T)
fi

define isExternType-false
isExternType(t(—,T))

false
when (getKLabel(T)) =/=KLabel qualifiedType

define isStaticType-qualified
isStaticType(t(—,qualifiedType(T ,K)))

if K ==K Static
then true
else

isStaticType(T)
fi

define isStaticType-false
isStaticType(t(—,T))

false
when (getKLabel(T)) =/=KLabel qualifiedType

define isConstType-qualified
isConstType(t(—,qualifiedType(T ,K)))

isConstType(T)

define isConstType-false
isConstType(t(S ,T))

false
when ((getKLabel(T)) =/=KLabel qualifiedType) ∧Bool (¬Bool (Const in S))

define isConstType-true
isConstType(t(Const —,T))

true

231

PhD Thesis, University of Illinois, July 2012

define isBitfieldType-true
isBitfieldType(t(—,bitfieldType(—,—)))

true
define isBitfieldType-false
isBitfieldType(t(—,T))

false
when (getKLabel(T)) =/=KLabel bitfieldType

define isFunctionType-true
isFunctionType(t(—,functionType(—,—)))

true
define isFunctionType-prototype
isFunctionType(t(—,prototype(T)))

isFunctionType(T)

define isFunctionType-qualified
isFunctionType(t(—,qualifiedType(T ,—)))

isFunctionType(T)

define isFunctionType-false
isFunctionType(t(—,T))

false
when (((getKLabel(T)) =/=KLabel functionType) ∧Bool ((getKLabel(T)) =/=KLabel qualifiedType)) ∧Bool ((getKLabel(T)) =/=KLabel prototype)

define isFunctionPointerType-fp
isFunctionPointerType(t(—,pointerType(t(—,functionType(—,—)))))

true
define isFunctionPointerType-qualified
isFunctionPointerType(t(—,qualifiedType(T ,—)))

isFunctionPointerType(T)

define isFunctionPointerType-qualified-pointer
isFunctionPointerType(t(—,pointerType(t(—,qualifiedType(T ,—)))))

isFunctionPointerType(t(•,pointerType(T)))

232

PhD Thesis, University of Illinois, July 2012

define isFunctionPointerType-notPointer
isFunctionPointerType(t(—,T))

false
when ((getKLabel(T)) =/=KLabel pointerType) ∧Bool ((getKLabel(T)) =/=KLabel qualifiedType)

define isFunctionPointerType-notFunction
isFunctionPointerType(t(—,pointerType(t(—,T))))

false
when ((getKLabel(T)) =/=KLabel functionType) ∧Bool ((getKLabel(T)) =/=KLabel qualifiedType)

define
isArithmeticType(T)

hasIntegerType(T)
∨Bool isFloatType(T)

define
unqualifyType(t(—,qualifiedType(T ,—)))

T

define
unqualifyType(t(—,T))

t(•,T)

when (getKLabel(T)) =/=KLabel qualifiedType

define
removeStorageSpecifiers(t(—,qualifiedType(T ,—)))

T

define
removeStorageSpecifiers(t(S ,T))

t(S ,T)

when (getKLabel(T)) =/=KLabel qualifiedType

define
getModifiers(t(S ,—))

S

end module

module COMMON-C-TYPING

233

PhD Thesis, University of Illinois, July 2012

imports COMMON-SEMANTICS-TYPE-INCLUDE

imports COMMON-SEMANTICS-TYPE-DECLARATIONS

imports COMMON-SEMANTICS-TYPE-CANONICALIZATION

imports COMMON-SEMANTICS-TYPE-INTERPRETATION

imports COMMON-SEMANTICS-TYPE-MISC

end module

module DYNAMIC-SEMANTICS-TYPE-INCLUDE

imports DYNAMIC-INCLUDE

imports COMMON-SEMANTICS-TYPE-INCLUDE

end module

module DYNAMIC-SEMANTICS-TYPE-STRICTNESS

imports DYNAMIC-SEMANTICS-TYPE-INCLUDE

syntax K ::= waitingOnDeclType

rule type-Cast-heat

•

DeclType(Specifier ,DeclType)

y evalToType

k

Cast(Specifier ,DeclType,—)

waitingOnDeclType

type

rule type-Cast-cool

T

•

y evalToType

k

waitingOnDeclType

T

type

end module

234

PhD Thesis, University of Illinois, July 2012

module DYNAMIC-SEMANTICS-TYPE-EXPRESSIONS

imports DYNAMIC-SEMANTICS-TYPE-INCLUDE

rule

typeof(K)

evalToType y typeof(MYHOLE)

k

•

K

type

rule

evalToType y typeof(MYHOLE)

T

k

T

type

•

rule

emptyValue

t(•,void)

type

rule

— :T

T

type

rule

E1 [E2]

* (E1 + E2)

type

(n1570) §6.5.7 ¶3 The integer promotions are performed on each of the operands. The type of the result is that of the promoted left operand. . . .

235

PhD Thesis, University of Illinois, July 2012

rule

T �—
promote(T)

type

rule

T �—
promote(T)

type

(n1570) §6.5.3.4 ¶5 The value of the result of both operators is implementation-defined, and its type (an unsigned integer type) is size_t, defined in <stddef.h> (and other headers).

rule

SizeofExpression(—)

cfg:sizeut

type

rule

t(S ,pointerType(T)) + T ′

t(S ,pointerType(T))

type

when hasIntegerType(T ′)

rule

T ′ + t(S ,pointerType(T))

t(S ,pointerType(T))

type

when hasIntegerType(T ′)

236

PhD Thesis, University of Illinois, July 2012

rule

t(S ,pointerType(T)) - T ′

t(S ,pointerType(T))

type

when hasIntegerType(T ′)

rule

t(—,pointerType(T)) - t(—,pointerType(T ′))

cfg:ptrdiffut

type

rule

t(S ,arrayType(T ,—)) + T ′

t(S ,pointerType(T))

type

when hasIntegerType(T ′)

rule

T ′ + t(S ,arrayType(T ,—))

t(S ,pointerType(T))

type

when hasIntegerType(T ′)

rule

t(S ,arrayType(T ,—)) - T ′

t(S ,pointerType(T))

type

when hasIntegerType(T ′)

rule

Constant(StringLiteral(S))

t(•,arrayType(t(•,char),lengthString(S) +Int 1))

type

237

PhD Thesis, University of Illinois, July 2012

rule

Constant(WStringLiteral(L))

t(•,arrayType(cfg:wcharut, (lengthListK (L)) +Int 1))

type

rule

K

T

type

K 7→ T

types

(n1570) §6.5.17 ¶2 The left operand of a comma operator is evaluated as a void expression; there is a sequence point between its evaluation and that of the right operand. Then the right
operand is evaluated; the result has its type and value.

rule

Comma(List(— ,, K))

K

type

(n1570) §6.5.2.2 ¶5 If the expression that denotes the called function has type pointer to function returning an object type, the function call expression has the same type as that object
type, and has the value determined as specified in 6.8.6.4. Otherwise, the function call has type void.

rule type-call-func

Call(T ,—)

innerType(T)

type

(n1570) §6.5.2.3 ¶3 A postfix expression followed by the . operator and an identifier designates a member of a structure or union object. The value is that of the named member, and is
an lvalue if the first expression is an lvalue. If the first expression has qualified type, the result has the so-qualified version of the type of the designated member.

238

PhD Thesis, University of Illinois, July 2012

rule type-struct-dot

t(—,structType(S)) . F

T

type

S 7→ aggregateInfo(—,— (F 7→ T),—)

structs

rule type-union-dot

t(—,unionType(S)) . F

T

type

S 7→ aggregateInfo(—,— (F 7→ T),—)

structs

(n1570) §6.5.3.2 ¶4 The unary * operator denotes indirection. If the operand points to a function, the result is a function designator; if it points to an object, the result is an lvalue
designating the object. If the operand has type “pointer to type”, the result has type “type”. . . .

rule type-deref-type

* T

innerType(T)

type

rule type-compound-literal

CompoundLiteral(—,Specifier ,DeclType,—)

Cast(Specifier ,DeclType,emptyValue)

type

rule type-assignment

L(K ,, —)

K

type

when assignmentLabels contains l(L)

239

PhD Thesis, University of Illinois, July 2012

rule

L(T ,, T ′)

usualArithmeticConversion(T ,T ′)

type

when
(
isArithBinConversionOp(L) ∧Bool

(
hasIntegerType(T)
∨Bool isFloatType(T)

))
∧Bool

(
hasIntegerType(T ′)
∨Bool isFloatType(T ′)

)

rule type-ternary-arithmetic

— ? T : T ′

usualArithmeticConversion(T ,T ′)

type

when
(
hasIntegerType(T)
∨Bool isFloatType(T)

)
∧Bool

(
hasIntegerType(T ′)
∨Bool isFloatType(T ′)

)

rule type-ternary-identical

— ? T : T

T

type

when ¬Bool isArrayType(T)

rule type-ternary-array-left

— ? t(S ,arrayType(T ,—))

t(S ,pointerType(T))

: —

type

rule type-ternary-array-right

— ? — : t(S ,arrayType(T ,—))

t(S ,pointerType(T))

type

rule type-ternary-pointer

— ? t(S ,pointerType(T)) : t(S ′,pointerType(T ′))

t(S ,pointerType(T))

type

240

PhD Thesis, University of Illinois, July 2012

rule

L(T)

T

type

when isArithUnaryOp(L) ∧Bool isFloatType(T)

rule

L(T)

promote(T)

type

when isArithUnaryOp(L) ∧Bool hasIntegerType(T)

rule

L(T ,, —)

T

type

when isFloatType(T) ∧Bool (typeStrictLeftBinaryOperators contains l(L))

rule

L(T ,, —)

promote(T)

type

when hasIntegerType(T) ∧Bool (typeStrictLeftBinaryOperators contains l(L))

rule type-inc-dec

L(T)

T

type

when isPointerType(T) ∧Bool






(

(L ==KLabel _++)
∨Bool (L ==KLabel _--)

)

∨Bool (L ==KLabel --_)




∨Bool (L ==KLabel ++_)




241

PhD Thesis, University of Illinois, July 2012

rule

! —
t(•,int)

type

rule

L(— ,, —)

t(•,int)

type

when



(

(L ==KLabel _==_)
∨Bool (L ==KLabel _!=_)

)

∨Bool (L ==KLabel _&&_)




∨Bool (L ==KLabel _||_)
rule type-address

& T

t(•,pointerType(T))

type

end module

module DYNAMIC-SEMANTICS-TYPE-MISC

imports DYNAMIC-SEMANTICS-TYPE-INCLUDE

rule ExpressionLoc-type

ExpressionLoc(K ,L)

K

type

—
L

currentProgramLoc

end module

module DYNAMIC-C-TYPING

imports DYNAMIC-SEMANTICS-TYPE-INCLUDE

imports DYNAMIC-SEMANTICS-TYPE-STRICTNESS

242

PhD Thesis, University of Illinois, July 2012

imports DYNAMIC-SEMANTICS-TYPE-EXPRESSIONS

imports DYNAMIC-SEMANTICS-TYPE-MISC

end module

243

PhD Thesis, University of Illinois, July 2012

A.6 Declarations
This section represents the static semantics of declarations. It handles both
the processing of declarations, as well as the resolution or linking phase that
occurs when combining multiple translation units (e.g., linking .o files).

244

PhD Thesis, University of Illinois, July 2012

module COMMON-SEMANTICS-DECLARATIONS-INCLUDE

imports COMMON-INCLUDE

syntax K ::= figureInit-aux(Id,Type,K) [strict(3)]
| declObj(Type,K,K)
| external
| internal
| noLinkage

syntax KResult ::= initializer(K)

syntax K ::= startInit(Type, Id,K)
| doDeclare(K,K) [strict(1)]
| processFunctionBody(K)

end module

module COMMON-SEMANTICS-DECLARATIONS-GENERAL

imports COMMON-SEMANTICS-DECLARATIONS-INCLUDE

syntax K ::= defineType(K) [strict]

context: DeclarationDefinition(InitNameGroup(�,—))

context: Typedef(NameGroup(�,—))

rule

figureInit(X ,T ,CodeLoc(K ,L))

CodeLoc(•,L) y figureInit(X ,T ,K)

k

245

PhD Thesis, University of Illinois, July 2012

rule

figureInit(X ,T ,CompoundInit(L))

giveType(X ,T) y figureInit-aux(X ,T ,startInit(T ,X ,CompoundInit(L)))

k

when isAggregateType(T)
∨Bool isUnionType(T)

rule

figureInit(X ,t(Se,arrayType(T ,Len)), SingleInit(Constant(StringLiteral(S)))

CompoundInit(List(InitFragment(NextInit,SingleInit(Constant(StringLiteral(S))))))

)

k

when isCharType(T) ∧Bool (lengthString(S) ≤Int Len)

rule

figureInit(X ,t(Se,arrayType(T ,Len)), SingleInit(Constant(WStringLiteral(S)))

CompoundInit(List(InitFragment(NextInit,SingleInit(Constant(WStringLiteral(S))))))

)

k

when isWCharType(T) ∧Bool ((lengthListK (S)) ≤Int Len)

rule

figureInit(X ,t(—, incompleteArrayType(T)

arrayType(T ,lengthString(S) +Int 1)

),SingleInit(Constant(StringLiteral(S))))

k

when isCharType(T)

rule

figureInit(X ,t(—, incompleteArrayType(T)

arrayType(T , (lengthListK (S)) +Int 1)

),SingleInit(Constant(WStringLiteral(S))))

k

when isWCharType(T)

246

PhD Thesis, University of Illinois, July 2012

rule

figureInit(X ,t(Se,incompleteArrayType(T)),CompoundInit(List(InitFragment(NextInit,SingleInit(Constant(StringLiteral(S)))))))

figureInit(X ,t(Se,incompleteArrayType(T)),SingleInit(Constant(StringLiteral(S))))

k

rule

figureInit(X ,T ,initializer(K))

figureInit-aux(X ,T ,initializer(K))

k

rule

figureInit-aux(X ,T ,initializer(K))

initValue(X ,T ,K)

k

when (¬Bool isIncompleteType(T)) ∧Bool (¬Bool isConstType(T))

rule

figureInit-aux(X ,T ,initializer(K))

initValue(X ,T ,K y makeUnwritableVar(X))

k

when (¬Bool isIncompleteType(T)) ∧Bool isConstType(T)

rule

figureInit(X ,T ,SingleInit(K))

figureInit-aux(X ,T ,initializer(AllowWrite(X) := K ;))

k

when ¬Bool isArrayType(T)

247

PhD Thesis, University of Illinois, July 2012

rule

figureInit(X ,T ,CompoundInit(List(InitFragment(NextInit,SingleInit(K)))))

figureInit-aux(X ,T ,initializer(AllowWrite(X) := K ;))

k

when ¬Bool

(
isAggregateType(T)
∨Bool isUnionType(T)

)

rule
DeclarationDefinition(InitNameGroup(T ,List(K ,, K ′ ,, L)))

DeclarationDefinition(InitNameGroup(T ,List(K))) y DeclarationDefinition(InitNameGroup(T ,List(K ′ ,, L)))
rule
DeclarationDefinition(InitNameGroup(T ,List(InitName(Name,Exp))))

doDeclare(SingleName(T ,Name),Exp)

rule
Typedef(NameGroup(T ,List(K ,, L)))

defineType(SingleName(T ,K)) y Typedef(NameGroup(T ,List(L)))
rule
Typedef(NameGroup(T ,List(•)))

•

rule

defineType(typedDecl(T ,X))

giveType(typedef(X),T)

k

syntax K ::= declareFunction(Id,Type,K)
| declareExternalVariable(Id,Type,K)
| declareInternalVariable(Id,Type,K)

rule

doDeclare(typedDecl(T ,X),K)

declareFunction(X ,T ,K)

k

File-Scope

currentFunction

when (¬Bool isIncompleteType(T)) ∧Bool isFunctionType(T)

248

PhD Thesis, University of Illinois, July 2012

rule

doDeclare(typedDecl(T ,X),NoInit)

addToEnv(X ,Loc) y giveType(X ,unqualifyType(T))

k

X 7→ Loc

externalLocations

F

currentFunction

when ((¬Bool isIncompleteType(T)) ∧Bool isFunctionType(T)) ∧Bool (F =/=K File-Scope)

rule

doDeclare(typedDecl(T ,X),NoInit)

giveType(X ,unqualifyType(T))

k

Locs

externalLocations

F

currentFunction

when (((¬Bool isIncompleteType(T)) ∧Bool isFunctionType(T)) ∧Bool (F =/=K File-Scope)) ∧Bool (¬Bool $hasMapping(Locs,X))

rule

doDeclare(typedDecl(T ,X),K)

declareExternalVariable(X ,T ,

if K ==K NoInit
then NoInit
else

CodeLoc(K ,L)
fi

)

k

File-Scope

currentFunction

L

currentProgramLoc

when ¬Bool isFunctionType(T)

rule

doDeclare(typedDecl(T ,X),K)

declareInternalVariable(X ,T ,K)

k

F

currentFunction

when (¬Bool isFunctionType(T)) ∧Bool (F =/=K File-Scope)

rule

declareFunction(X ,T ,K)

declareWithLinkage(X ,T ,K ,external)

k

when (¬Bool isStaticType(T)) ∧Bool (K =/=K NoInit)

249

PhD Thesis, University of Illinois, July 2012

rule

declareFunction(X ,T ,NoInit)

declareWithLinkage(X ,t(•,prototype(T)),NoInit,external)

k

when ¬Bool isStaticType(T)

rule

declareFunction(X ,T ,K)

declareWithLinkage(X ,T ,K ,internal)

k

File-Scope

currentFunction

when isStaticType(T)

syntax K ::= declareWithLinkage(Id,Type,K,K)

rule

declareInternalVariable(X ,T ,K)

declareWithLinkage(X ,T ,K ,noLinkage)

k

when (¬Bool isStaticType(T)) ∧Bool (¬Bool isExternType(T))

rule


declareInternalVariable(X ,T ,NoInit)

addToEnv(X ,Loc) y giveType(X ,unqualifyType(T))

k

Tu 7→ Map(— (kpair(X ,BlockNum) 7→ Loc))

internalLocations

BlockNum

blockHistory

Tu

currTU




when isStaticType(T) ∧Bool (¬Bool isExternType(T))

250

PhD Thesis, University of Illinois, July 2012

rule


declareInternalVariable(X ,T ,NoInit)

allocateType(Loc,T) y addToEnv(X ,Loc) y giveType(X ,unqualifyType(T)) y zero(X)

k

Tu 7→ Map(Locs

Locs [Loc / kpair(X ,BlockNum)]

)

internalLocations

BlockNum

blockHistory

Loc

inc(Loc)

nextSharedLoc

Tu

currTU




when (isStaticType(T) ∧Bool (¬Bool isExternType(T))) ∧Bool (¬Bool $hasMapping(Locs,kpair(X ,BlockNum)))

rule


declareInternalVariable(X ,T ,K)

defineAndInit(X ,unqualifyType(T),figureInit(X ,removeStorageSpecifiers(T),K),Loc)

k

Tu 7→ Map(Locs

Locs [Loc / kpair(X ,BlockNum)]

)

internalLocations

BlockNum

blockHistory

Loc

inc(Loc)

nextSharedLoc

Tu

currTU




when ((isStaticType(T) ∧Bool (¬Bool isExternType(T))) ∧Bool (K =/=K NoInit)) ∧Bool (¬Bool $hasMapping(Locs,kpair(X ,BlockNum)))

syntax K ::= reseenStatic(Id,Type,K,Nat) [strict(3)]

rule


declareInternalVariable(X ,T ,K)

reseenStatic(X ,unqualifyType(T),figureInit(X ,removeStorageSpecifiers(T),K),Loc)

k

Tu 7→ Map(— (kpair(X ,BlockNum) 7→ Loc))

internalLocations

BlockNum

blockHistory

Tu

currTU




when (isStaticType(T) ∧Bool (¬Bool isExternType(T))) ∧Bool (K =/=K NoInit)

251

PhD Thesis, University of Illinois, July 2012

rule

reseenStatic(X ,—,initValue(X ,T ,—),Loc)

addToEnv(X ,Loc) y giveType(X ,T)

k

rule declareExternInternal

declareInternalVariable(X ,T ,NoInit)

addToEnv(X ,Loc) y giveType(X ,unqualifyType(T))

k

X 7→ Loc

externalLocations

when ((¬Bool isIncompleteType(T)) ∧Bool (¬Bool isStaticType(T))) ∧Bool isExternType(T)

rule

declareExternalVariable(X ,T ,K)

declareWithLinkage(X ,T ,K ,external)

k

when (¬Bool isStaticType(T)) ∧Bool (¬Bool isExternType(T))

rule

declareExternalVariable(X ,T ,K)

declareWithLinkage(X ,T ,K ,external)

k

Tu 7→ Map(Linkage)

preLinkage

Tu

currTU

when ((¬Bool isStaticType(T)) ∧Bool isExternType(T)) ∧Bool (¬Bool $hasMapping(Linkage,X))

rule declareExtern-again

declareExternalVariable(X ,T ,K)

declareWithLinkage(X ,T ,K ,Linkage(X))

k

Tu 7→ Map(Linkage)

preLinkage

Tu

currTU

when ((¬Bool isStaticType(T)) ∧Bool isExternType(T)) ∧Bool $hasMapping(Linkage,X)

252

PhD Thesis, University of Illinois, July 2012

rule

declareExternalVariable(X ,T ,K)

declareWithLinkage(X ,T ,K ,internal)

k

when isStaticType(T) ∧Bool (¬Bool isExternType(T))

syntax K ::= declareOnly(Id,Type,K)
| declareAndDefine(Id,Type,K,K)

rule

declareWithLinkage(X ,T ,NoInit,L)

declareOnly(X ,T ,L)

k

Tu 7→ ListToK(— •

X

)

declarationOrder

Tu

currTU

when L =/=K noLinkage

rule

declareWithLinkage(X ,T ,K ,L)

declareAndDefine(X ,T ,K ,L)

k

Tu 7→ ListToK(— •

X

)

declarationOrder

Tu

currTU

when (K =/=K NoInit) ∧Bool (L =/=K noLinkage)

rule

declareWithLinkage(X ,T ,NoInit,L)

declareOnly(X ,T ,L)

k

Tu

currTU

when L ==K noLinkage

rule

declareWithLinkage(X ,T ,K ,L)

declareAndDefine(X ,T ,K ,L)

k

Tu

currTU

when (K =/=K NoInit) ∧Bool (L ==K noLinkage)

253

PhD Thesis, University of Illinois, July 2012

rule
t(—,qualifiedType(T ,Extern))

T

when isFunctionType(T)

rule

declareOnly(X ,T ,external)

•

k

•

X

declarations

Tu 7→ Map(Linkage

Linkage [external / X]

)

preLinkage

Tu 7→ Map(Types

Types [T / X]

)

preTypes

Tu

currTU

when
(

(¬Bool $hasMapping(Linkage,X))
∨Bool ((Linkage(X)) ==K external)

)
∧Bool

(
(¬Bool $hasMapping(Types,X))

∨Bool isTypeCompatible(unqualifyType(Types(X)),unqualifyType(T))

)

rule

declareOnly(X ,t(—,prototype(T)),external)

•

k

Tu 7→ Map(Linkage

Linkage [external / X]

)

preLinkage

Tu 7→ Map(Types)

preTypes

Tu

currTU

when
(

(¬Bool $hasMapping(Linkage,X))
∨Bool ((Linkage(X)) ==K external)

)
∧Bool isTypeCompatible(unqualifyType(Types(X)),unqualifyType(T))

rule

declareOnly(X ,T ,internal)

•

k

•

X

declarations

Tu 7→ Map(Linkage

Linkage [internal / X]

)

preLinkage

Tu 7→ Map(Types

Types [T / X]

)

preTypes

Tu

currTU

when (¬Bool $hasMapping(Linkage,X))
∨Bool ((Linkage(X)) ==K internal)

rule

declareOnly(X ,T ,noLinkage)

allocateType(Loc,T) y addToEnv(X ,Loc) y giveType(X ,T)

k

Loc

inc(Loc)

nextLoc

Vars •

X

localVariables

•

Loc

localAddresses

when (((¬Bool isIncompleteType(T)) ∧Bool (¬Bool isStaticType(T))) ∧Bool (¬Bool isExternType(T))) ∧Bool (¬Bool (X in Vars))

254

PhD Thesis, University of Illinois, July 2012

rule

declareOnly(X ,T ,noLinkage)

•

k

X

localVariables

when ((¬Bool isIncompleteType(T)) ∧Bool (¬Bool isStaticType(T))) ∧Bool (¬Bool isExternType(T))

(n1570) §6.2.2 ¶4 For an identifier declared with the storage-class specifier extern in a scope in which a prior declaration of that identifier is visible, if the prior declaration specifies
internal or external linkage, the linkage of the identifier at the later declaration is the same as the linkage specified at the prior declaration. If no prior declaration is visible, or if the prior
declaration specifies no linkage, then the identifier has external linkage.

rule


declareAndDefine(X ,T ,K ,external)

•

k

•

X

declarations

Def

Def (X 7→ declObj(unqualifyType(T),Tu,K))

externalDefinitions

Tu 7→ Map(Linkage

Linkage [external / X]

)

preLinkage

Tu 7→ Map(Types

Types [T / X]

)

preTypes

Tu

currTU




when
(
(¬Bool $hasMapping(Def ,X))
∨Bool isFunctionType(T)

)
∧Bool

(
(¬Bool $hasMapping(Linkage,X))
∨Bool ((Linkage(X)) ==K external)

)

rule


declareAndDefine(X ,T ,K ,external)

•

k

•

X

declarations

Tu 7→ Map(Def

Def [declObj(unqualifyType(T),Tu,K) / X]

)

internalDefinitions

Tu 7→ Map(Linkage)

preLinkage

Tu 7→ Map(Types

Types [T / X]

)

preTypes

Tu

currTU




when
(
(¬Bool $hasMapping(Def ,X))
∨Bool isFunctionType(T)

)
∧Bool ((Linkage(X)) ==K internal)

255

PhD Thesis, University of Illinois, July 2012

rule


declareAndDefine(X ,T ,K ,internal)

•

k

•

X

declarations

Tu 7→ Map(Def

Def [declObj(unqualifyType(T),Tu,K) / X]

)

internalDefinitions

Tu 7→ Map(Linkage

Linkage [internal / X]

)

preLinkage

Tu 7→ Map(Types

Types [T / X]

)

preTypes

Tu

currTU




when
(
(¬Bool $hasMapping(Def ,X))
∨Bool isFunctionType(T)

)
∧Bool

(
(¬Bool $hasMapping(Linkage,X))
∨Bool ((Linkage(X)) ==K internal)

)

syntax K ::= defineAndInit(Id,Type,K,Nat) [strict(3)]

rule

declareAndDefine(X ,T ,K ,noLinkage)

defineAndInit(X ,T ,figureInit(X ,T ,K),Loc)

k

Loc

inc(Loc)

nextLoc

Vars •

X

localVariables

•

Loc

localAddresses

when ¬Bool (X in Vars)

rule

declareAndDefine(X ,T ,K ,noLinkage)

justInit(figureInit(X ,T ,K))

k

X

localVariables

syntax K ::= justInit(K) [strict(1)]

rule

justInit(initValue(X ,T ,K))

initialize(X ,T ,K)

k

256

PhD Thesis, University of Illinois, July 2012

rule

defineAndInit(X ,—,initValue(X ,T ,K),Loc)

allocateTypeIfAbsent(Loc,T) y addToEnv(X ,Loc) y giveType(X ,T) y initialize(X ,T ,K)

k

true
shouldInit

rule

defineAndInit(X ,—,initValue(X ,T ,—),Loc)

allocateTypeIfAbsent(Loc,T) y addToEnv(X ,Loc) y giveType(X ,T)

k

false
shouldInit

rule

figureInit-aux(—,t(—, incompleteArrayType(T)

arrayType(T ,N)

),initializer(K))

k

N

incompleteLength

syntax K ::= allocateAndZeroIfAbsent(Type, Id)
| addToLinkage(Id,Type)
| addToGlobalEnv(K,Nat)
| addToLocalEnv(K,Nat)

rule

addToEnv(X ,Loc)

addToGlobalEnv(X ,Loc)

k

File-Scope

currentFunction

rule

addToEnv(X ,Loc)

addToLocalEnv(X ,Loc)

k

F

currentFunction

when F =/=K File-Scope

rule

addToGlobalEnv(X ,Loc)

•

k

Tu 7→ Map(M ′

M ′ [Loc / X]

)

genv

Tu

currTU

E

E [Loc / X]

env

257

PhD Thesis, University of Illinois, July 2012

rule

addToLocalEnv(X ,Loc)

•

k

E

E [Loc / X]

env

syntax K ::= defineUsingOldDeclaration(Type, Id,K)

rule function-definition

FunctionDefinition(typedDecl(T ,X),Block)

createNewFun(X ,T ,safeBody(X ,Block)) y calculateGotoMap(X ,safeBody(X ,Block))

k

when isFunctionType(T)

syntax K ::= createNewFun(K,K,K)

define
createNewFun(X ,T ,Block)

declareFunction(X ,T ,initializer(initFunction(& X ,functionObject(X ,unqualifyType(T),Block))))

syntax K ::= safeBody(K,K)

define
safeBody(X ,Block)

Block y Return(NothingExpression)

when X =/=K Identifier(“main”)

define
safeBody(Identifier(“main”),Block)

Block y Return(0 :t(•,int))

end module

module COMMON-SEMANTICS-DECLARATIONS-FUNTION-BODY

imports COMMON-SEMANTICS-DECLARATIONS-INCLUDE

syntax K ::= typingBody(Id,Type,K)

258

PhD Thesis, University of Illinois, July 2012

end module

module COMMON-SEMANTICS-DECLARATIONS-INITIALIZATIONS

imports COMMON-SEMANTICS-DECLARATIONS-INCLUDE

syntax K ::= te(K,Type)
| getInit
| fillInit(K)
| fillInit-aux(K)
| fillInit(List{K})

syntax C ::= completeInitFragment(K,K)

syntax KResult ::= initializerFragment(K)

rule

getInit

initializer(K)

k

K

•

savedInitialization

—
•

currentObject

—
•

currentSubObject

rule

startInit(T ,X ,CompoundInit(List(L)))

fillInit(L) y getInit

k

—
0

incompleteLength

•

te(X ,T)

currentSubObject

•

te(X ,T)

currentObject

•

zero(X)

savedInitialization

when isUnionType(T)
∨Bool isAggregateType(T)

rule

fillInit(InitFragment(K ,Exp) ,, L)

fillInit(InitFragment(K ,Exp)) y fillInit(L)

k

259

PhD Thesis, University of Illinois, July 2012

rule

fillInit(•)

•

k

syntax ListItem ::= next
| block

rule

te(K ,t(S ,arrayType(T ,Len)))

te(K [0],T) te(K ,t(S ,arrayType(T ,Len)))

currentSubObject

rule

te(K ,t(Se,incompleteArrayType(T)))

te(K [0],T) te(K ,t(Se,incompleteArrayType(T)))

currentSubObject

rule

te(K ,t(Se,structType(S)))

te(K . F ,T) te(K ,t(Se,structType(S)))

currentSubObject

S 7→ aggregateInfo(typedDecl(T ,F) ,, —,—,—)

structs

rule

te(K ,t(Se,unionType(S)))

te(K . F ,T) te(K ,t(Se,unionType(S)))

currentSubObject

S 7→ aggregateInfo(typedDecl(T ,F) ,, —,—,—)

structs

rule init-next-array-element

next te(K [N],T)

te(K [N +Int 1],T)

te(K ,t(—,arrayType(—,Len)))

currentSubObject

when Len >Int (N +Int 1)

260

PhD Thesis, University of Illinois, July 2012

rule init-next-array-element-done

next te(K [N],T)

•

te(K ,t(—,arrayType(—,Len)))

currentSubObject

when ¬Bool (Len >Int (N +Int 1))

rule init-next-incomplete-array-element

next te(K [N],T)

te(K [N +Int 1],T)

te(K ,t(—,incompleteArrayType(—)))

currentSubObject

rule init-next-struct-element


next te(K . F ,T) te(K ,t(Se,structType(S)))

te(K . F ′,T ′) te(K ,t(Se,structType(S)))

currentSubObject

S 7→ aggregateInfo(— ,, typedDecl(T ,F) ,, typedDecl(T ′,F ′) ,, —,—,—)

structs




when F ′ =/=K #NoName

rule init-next-struct-element-noname


next te(K . F ,T) te(K ,t(Se,structType(S)))

te(K . F ′,T ′) te(K ,t(Se,structType(S)))

currentSubObject

S 7→ aggregateInfo(— ,, typedDecl(T ,F) ,, typedDecl(—,#NoName) ,, typedDecl(T ′,F ′) ,, —,—,—)

structs




261

PhD Thesis, University of Illinois, July 2012

rule init-next-struct-element-done


next te(K . F ,T)

•

te(K ,t(—,structType(S)))

currentSubObject

S 7→ aggregateInfo(— ,, typedDecl(T ,F),—,—)

structs




rule init-next-struct-element-done-noname


next te(K . F ,T)

•

te(K ,t(—,structType(S)))

currentSubObject

S 7→ aggregateInfo(— ,, typedDecl(T ,F) ,, typedDecl(—,#NoName),—,—)

structs




rule init-next-union-element-done

next te(K . —,T)

•

te(K ,t(—,unionType(S)))

currentSubObject

rule

fillInit(InitFragment(NextInit,Exp))

fillInit(Exp)

k

syntax K ::= finishCompoundInit(List)

rule

fillInit(CompoundInit(List(L)))

fillInit(L) y finishCompoundInit(next te(K ,T) Remainder)

k

—
•

te(K ,T) Remainder

•

currentSubObject

•

te(K ,T)

currentObject

when isAggregateType(T)
∨Bool isUnionType(T)

262

PhD Thesis, University of Illinois, July 2012

rule

finishCompoundInit(L)

•

k

te(K ,T)

•

currentObject

—
L

currentSubObject

context: fillInit(InitFragment(�,—))

syntax K ::= buildDesignator(K)

rule

fillInit(InitFragment(InFieldInit(F ,K ′),Exp))

fillInit(InitFragment(buildDesignator(InFieldInit(F ,K ′)),Exp))

k

te(K ,T)

currentObject

—
block te(K ,T)

currentSubObject

when isStructType(T)
∨Bool isUnionType(T)

rule

fillInit(InitFragment(AtIndexInit(Index ,K ′),Exp))

fillInit(InitFragment(buildDesignator(AtIndexInit(Index ,K ′)),Exp))

k

te(K ,T)

currentObject

—
block te(K ,T)

currentSubObject

when isArrayType(T)

rule

buildDesignator(InFieldInit(F ,More))

buildDesignator(More)

k

block •

te(K . F ,T)

te(K ,t(—,KL(S)))

currentSubObject

S 7→ aggregateInfo(—,— (F 7→ T),—)

structs

when (KL ==KLabel structType)
∨Bool (KL ==KLabel unionType)

rule

buildDesignator(NextInit)

NextInit

k

block

•

currentSubObject

263

PhD Thesis, University of Illinois, July 2012

define innerType-arrayType
innerType(t(—,arrayType(T ,—)))

T

define innerType-incompleteArrayType
innerType(t(—,incompleteArrayType(T)))

T

define innerType-flexibleArrayType
innerType(t(—,flexibleArrayType(T)))

T

define innerType-qualifiedType
innerType(t(—,qualifiedType(T ,—)))

innerType(T)

define innerType-pointerType
innerType(t(—,pointerType(T)))

T

define innerType-bitfieldType
innerType(t(—,bitfieldType(T ,—)))

T

define innerType-functionType
innerType(t(—,functionType(T ,—)))

T

context: buildDesignator(AtIndexInit(�
reval(�)

,—))

rule

buildDesignator(AtIndexInit(N :—,More))

buildDesignator(More)

k

block •

te(K [N],innerType(T))

te(K ,T)

currentSubObject

when isArrayType(T)

syntax K ::= popInit

syntax Nat ::= getTopArrayUse(K) [function]

264

PhD Thesis, University of Illinois, July 2012

define
getTopArrayUse(X)

0
define
getTopArrayUse(X [N])

N +Int 1
define
getTopArrayUse(K . F)

getTopArrayUse(K)

define
getTopArrayUse((K [N])[—])

getTopArrayUse(K [N])

define
getTopArrayUse((K . F)[—])

getTopArrayUse(K)

syntax K ::= initializeSingleInit(K)

rule

•

typeof(K)

y initializeSingleInit(K)

k

rule

T ′ y initializeSingleInit(K ′)

•

k

•

next

te(K ,T)

currentSubObject

N

maxInt(N ,getTopArrayUse(K))

incompleteLength

•

AllowWrite(K) := K ′; y possiblyMakeConst(T ,K)

savedInitialization

when





(

isBasicType(T)
∨Bool isPointerType(T)

)

∨Bool isBitfieldType(T)


 ∧Bool (¬Bool isStructType(T ′))


 ∧Bool (¬Bool isUnionType(T ′))

syntax K ::= possiblyMakeConst(Type,K)

265

PhD Thesis, University of Illinois, July 2012

rule

possiblyMakeConst(T ,K)

makeUnwritableSubObject(K)

k

when isConstType(T)

rule

possiblyMakeConst(T ,K)

•

k

when ¬Bool isConstType(T)

syntax K ::= initFromAggregateRHS(K,Type)

rule

T y initializeSingleInit(K)

initFromAggregateRHS(K ,T)

k

when isStructType(T)
∨Bool isUnionType(T)

syntax K ::= initFromStructRHS(K,Type)

rule

initFromAggregateRHS(K ,t(S ,structType(S)))

initFromStructRHS(K ,t(S ,structType(S)))

k

•

findStruct(t(S ,structType(S)))

currentSubObject

syntax ListItem ::= findStruct(Type)

266

PhD Thesis, University of Illinois, July 2012

rule

findStruct(T) te(—,T ′)

•

currentSubObject

when T =/=K T ′

rule


initFromStructRHS(K ′,t(—,structType(S)))

•

k

findStruct(t(—,structType(S))) te(K ,t(—,structType(S)))

next

currentSubObject

N

maxInt(N ,getTopArrayUse(K))

incompleteLength

•

AllowWrite(K) := K ′;

savedInitialization




rule

fillInit(SingleInit(K))

initializeSingleInit(K)

k

when (getKLabel(K)) =/=KLabel Constant

rule fillInit-string-array-eq

fillInit(SingleInit(Constant(StringLiteral(S))))

fillInit-aux(SingleInit(Constant(StringLiteral(S))))

k

te(K ,T) te(—,t(—,arrayType(T ,Len)))

currentSubObject

when isCharType(T) ∧Bool (lengthString(S) ==Int Len)

rule fillInit-wstring-array-eq

fillInit(SingleInit(Constant(WStringLiteral(S))))

fillInit-aux(SingleInit(Constant(WStringLiteral(S))))

k

te(K ,T) te(—,t(—,arrayType(T ,Len)))

currentSubObject

when isWCharType(T) ∧Bool ((lengthListK (S)) ==Int Len)

267

PhD Thesis, University of Illinois, July 2012

rule fillInit-string-array-lt

fillInit(SingleInit(Constant(StringLiteral(S))))

fillInit(SingleInit(Constant(StringLiteral(S +String “\000”))))

k

te(K ,T) te(—,t(—,arrayType(T ,Len)))

currentSubObject

when isCharType(T) ∧Bool (lengthString(S) <Int Len)

rule fillInit-wstring-array-lt

fillInit(SingleInit(Constant(WStringLiteral(S))))

fillInit(SingleInit(Constant(WStringLiteral(S ,, 0))))

k

te(K ,T) te(—,t(—,arrayType(T ,Len)))

currentSubObject

when isWCharType(T) ∧Bool ((lengthListK (S)) <Int Len)

rule fillInit-string-char

fillInit(SingleInit(Constant(StringLiteral(S))))

fillInit-aux(SingleInit(Constant(StringLiteral(S +String “\000”))))

k

te(K ,T) te(—,t(—,incompleteArrayType(T)))

currentSubObject

when isCharType(T)

rule fillInit-wstring-wchar

fillInit(SingleInit(Constant(WStringLiteral(S))))

fillInit-aux(SingleInit(Constant(WStringLiteral(S ,, 0))))

k

te(K ,T) te(—,t(—,incompleteArrayType(T)))

currentSubObject

when isWCharType(T)

rule fillInitAux-string-some

fillInit-aux(SingleInit(Constant(StringLiteral(S))))

fillInit(initHead(S ,T)) y fillInit-aux(initTail(S))

k

te(K ,T)

currentSubObject

when
(
S =/=String “”

)
∧Bool isCharType(T)

syntax K ::= initHead(K,K)
| initTail(K)

268

PhD Thesis, University of Illinois, July 2012

define
initHead(S ,T)

SingleInit(charToAscii(firstChar(S)) :t(getModifiers(T),char))
define

initTail(S)

SingleInit(Constant(StringLiteral(butFirstChar(S))))

rule fillInitAux-wstring-some

fillInit-aux(SingleInit(Constant(WStringLiteral(N ,, S))))

fillInit(SingleInit(N : cfg:wcharut)) y fillInit-aux(SingleInit(Constant(WStringLiteral(S))))

k

te(K ,T)

currentSubObject

when isWCharType(T)

rule fillInitAux-string-done

fillInit-aux(SingleInit(Constant(StringLiteral(“”))))
•

k

rule fillInitAux-wstring-done

fillInit-aux(SingleInit(Constant(WStringLiteral(•))))

•

k

rule fillInit-string-notchar

fillInit(SingleInit(Constant(StringLiteral(S))))

initializeSingleInit(Constant(StringLiteral(S)))

k

te(K ,T)

currentSubObject

when (¬Bool isCharType(T)) ∧Bool



(

isBasicType(T)
∨Bool isPointerType(T)

)

∨Bool isBitfieldType(T)




269

PhD Thesis, University of Illinois, July 2012

rule fillinit-wstring-notwchar

fillInit(SingleInit(Constant(WStringLiteral(S))))

initializeSingleInit(Constant(WStringLiteral(S)))

k

te(K ,T)

currentSubObject

when (¬Bool isWCharType(T)) ∧Bool



(

isBasicType(T)
∨Bool isPointerType(T)

)

∨Bool isBitfieldType(T)




end module

module COMMON-SEMANTICS-DECLARATIONS-RESOLUTION

imports COMMON-SEMANTICS-DECLARATIONS-INCLUDE

syntax K ::= canonicalizeTranslationUnitVariables

rule unpack-TranslationUnit


TranslationUnit(Name,Strings,K ,P)

preDeclareStrings(Strings) y klistToK(eraseKLabel(StmtCons,K))

k

—
Name

currTU

DeclOrder

DeclOrder [ListToK(•) / Name]

declarationOrder

ExtLoc

ExtLoc [Map(•) / Name]

internalLocations

Funs

Funs [Map(•) / Name]

funTUs

•

Name

translationUnits

Linkage

Linkage [Map(•) / Name]

preLinkage

Types

Types [Map(•) / Name]

preTypes

Def

Def [Map(•) / Name]

internalDefinitions

Env

Env [Map(•) / Name]

genv

Gtypes

Gtypes [Map(•) / Name]

gtypes

M

M [P / Name]

programText




when ¬Bool $hasMapping(Env ,Name)

syntax K ::= preDeclareStrings(K)

270

PhD Thesis, University of Illinois, July 2012

rule

preDeclareStrings(List(K ,, L))

K y discard y preDeclareStrings(List(L))

k

rule

preDeclareStrings(List(•))

•

k

syntax K ::= resolve(K)

rule

•

resolve(Tu)

y resolveReferences

k

Tu

•

translationUnits

syntax K ::= resolveLeftovers

rule

resolveReferences

resolveLeftovers

k

•

translationUnits

rule

•

addToEnv(X ,Loc) y giveType(X ,unqualifyType(T))

y resolveLeftovers

k

—
Tu

currTU

X 7→ Loc

externalLocations

leftover(Tu,X ,T)

•

leftoverExterns

rule

resolveLeftovers

k

Locs

externalLocations

leftover(—,X ,—)

•

leftoverExterns

when ¬Bool $hasMapping(Locs,X)

271

PhD Thesis, University of Illinois, July 2012

rule

resolveLeftovers

•

k

•

leftoverExterns

syntax K ::= resolveInternal(Id,K,K)
| resolveExternal(Id,K,Bag,K)
| resolveExternal’(Id,K,Bag,K,Nat,K) [strict(6)]
| recordFunTUInfo(K,Type,K,K)

rule

recordFunTUInfo(X ,T ,Tu,DefTu)

•

k

Tu 7→ Map(Funs

Funs [DefTu / X]

)

funTUs

when isFunctionType(T)

rule

recordFunTUInfo(—,T ,—,—)

•

k

when ¬Bool isFunctionType(T)

syntax K ::= allocateWithInit(K,Nat) [strict]
| noAllocateWithInit(K,Nat) [strict]
| resolveInternal’(Id,K,K,K) [strict(4)]

rule

resolveInternal(X ,Tu,declObj(T ,Tu,K))

resolveInternal’(X ,Tu,declObj(T ,Tu,K),figureInit(X ,T ,K))

k

—
Tu

currTU

rule

resolveInternal’(X ,Tu,declObj(—,Tu,—),initValue(X ,T ,K))

allocateType(Loc,T) y addToEnv(X ,Loc) y giveType(X ,T) y initialize(X ,T ,K) y recordFunTUInfo(X ,T ,Tu,Tu)

k

Loc

inc(Loc)

nextSharedLoc

—
Tu

currTU

272

PhD Thesis, University of Illinois, July 2012

rule

resolveExternal(X ,Tu,Units,declObj(T ,DefTu,K))

resolveExternal’(X ,Tu,Units,declObj(T ,DefTu,K),Loc,figureInit(X ,T ,K))

k

Loc

inc(Loc)

nextSharedLoc

rule


•

addToEnv(X ,Loc) y giveType(X ,T) y recordFunTUInfo(X ,T ,Tu ′,DefTu)

y resolveExternal’(X ,Tu, Tu ′

•

Units,declObj(—,DefTu,—),Loc,initValue(X ,T ,K))

k

—
Tu ′

currTU

Tu ′ 7→ Map(— X 7→ external

•

)

preLinkage




rule

resolveExternal’(X ,Tu, •,declObj(—,DefTu,—),Loc,initValue(X ,T ,K))

allocateType(Loc,T) y addToEnv(X ,Loc) y giveType(X ,T) y initialize(X ,T ,K) y recordFunTUInfo(X ,T ,Tu,DefTu)

k

—
Tu

currTU

Locs

Locs [Loc / X]

externalLocations

when ¬Bool $hasMapping(Locs,X)

rule

resolveExternal’(X ,—, Tu

•

Units,—,—,—)

k

Tu 7→ Map(M)

preLinkage

when ¬Bool $hasMapping(M ,X)

rule resolveExternal-internal

resolveExternal’(X ,—, Tu

•

Units,—,—,—)

k

Tu 7→ Map(— (X 7→ internal))

preLinkage

273

PhD Thesis, University of Illinois, July 2012

rule

•

resolveInternal(X ,Tu,K)

y resolve(Tu)

k

Tu 7→ Map(— X 7→ internal

•

)

preLinkage

Tu 7→ Map(— X 7→ K

•

)

internalDefinitions

Tu 7→ ListToK(X

•

—)

declarationOrder

rule


•

resolveInternal(X ,Tu,declObj(unqualifyType(T),Tu,initializer(zero(X))))

y resolve(Tu)

k

Tu 7→ Map(— X 7→ internal

•

)

preLinkage

Tu 7→ Map(Defs)

internalDefinitions

Tu 7→ ListToK(X

•

—)

declarationOrder

Tu 7→ Map(— X 7→ T

•

)

preTypes




when ¬Bool $hasMapping(Defs,X)

rule


•

resolveExternal(X ,Tu,Units,K)

y resolve(Tu)

k

Tu 7→ Map(— X 7→ external

•

)

preLinkage

ExtDefs X 7→ K

•

externalDefinitions

Tu 7→ ListToK(X

•

—)

declarationOrder

Units

translationUnits




when ¬Bool $hasMapping(ExtDefs,X)

rule

resolve(Tu)

k

Tu 7→ Map(Linkage)

preLinkage

Tu 7→ ListToK(X

•

—)

declarationOrder

ExtDefs

externalDefinitions

IntDefs

internalDefinitions

when ((¬Bool $hasMapping(Linkage,X)) ∧Bool (¬Bool $hasMapping(ExtDefs,X))) ∧Bool (¬Bool $hasMapping(IntDefs,X))

274

PhD Thesis, University of Illinois, July 2012

rule


•

giveType(X ,T) y recordFunTUInfo(X ,T ,Tu,Tu)

y resolve(Tu)

k

Tu 7→ Map(— X 7→ external

•

)

preLinkage

Tu 7→ Map(— (X 7→ t(S ,prototype(T))))

preTypes

Tu 7→ ListToK(X

•

—)

declarationOrder

Defs

externalDefinitions

—
Tu

currTU




when isFunctionType(T) ∧Bool (¬Bool $hasMapping(Defs,X))

rule


•

allocateType(Loc,unqualifyType(T)) y addToEnv(X ,Loc) y giveType(X ,unqualifyType(T)) y zero(X)

y resolve(Tu)

k

Tu 7→ Map(— X 7→ external

•

)

preLinkage

Tu 7→ Map(— (X 7→ T))

preTypes

Tu 7→ ListToK(X

•

—)

declarationOrder

Defs

externalDefinitions

—
Tu

currTU

Loc

inc(Loc)

nextSharedLoc

Locs

Locs [Loc / X]

externalLocations




when ((((¬Bool $hasMapping(Locs,X)) ∧Bool (¬Bool isFunctionType(T))) ∧Bool (¬Bool isIncompleteType(T))) ∧Bool (¬Bool isExternType(T))) ∧Bool

(¬Bool $hasMapping(Defs,X))

syntax K ::= leftover(K,K,K)

275

PhD Thesis, University of Illinois, July 2012

rule resolve-extern-object-nomapping

resolve(Tu)

k

Tu 7→ Map(— X 7→ external

•

)

preLinkage

Tu 7→ Map(— (X 7→ T))

preTypes

Tu 7→ ListToK(X

•

—)

declarationOrder

Defs

externalDefinitions

•

leftover(Tu,X ,T)

leftoverExterns

when ((¬Bool isFunctionType(T)) ∧Bool isExternType(T)) ∧Bool (¬Bool $hasMapping(Defs,X))

rule

resolve(Tu)

•

k

Tu 7→ Map(•)

preLinkage

Tu 7→ Map(•)

internalDefinitions

Tu 7→ ListToK(•)

declarationOrder

rule initialize-function

initFunction(Loc :t(—,pointerType(T)),Fun)

•

k

M

M [Fun / Loc]

functions

when isFunctionType(T) ∧Bool (¬Bool $hasMapping(M ,Loc))

rule

readFunction(Loc)

Fun

k

Loc 7→ Fun

functions

end module

module COMMON-SEMANTICS-DECLARATIONS-ENUMS

imports COMMON-SEMANTICS-DECLARATIONS-INCLUDE

syntax K ::= fillEnums(K)
| fillEnums-aux(K,K)

rule

EnumDef(X ,L)

fillEnums(EnumDef(X ,L))

k

276

PhD Thesis, University of Illinois, July 2012

rule

fillEnums(K)

fillEnums-aux(K , 0 :t(•,int))

k

rule

fillEnums-aux(EnumDef(X ,List(EnumItem(E) ,, L)),K)

doDeclare(typedDecl(t(•,int),E),SingleInit(K)) y fillEnums-aux(EnumDef(X ,List(L)),K + 1 :t(•,int))

k

rule

fillEnums-aux(EnumDef(X ,List(EnumItemInit(E ,Exp) ,, L)),—)

doDeclare(typedDecl(t(•,int),E),SingleInit(Exp)) y fillEnums-aux(EnumDef(X ,List(L)),Exp + 1 :t(•,int))

k

when Exp =/=K NothingExpression

rule

fillEnums-aux(EnumDef(X ,List(•)),—)

•

k

end module

module COMMON-C-DECLARATIONS

imports COMMON-SEMANTICS-DECLARATIONS-INCLUDE

imports COMMON-SEMANTICS-DECLARATIONS-GENERAL

imports COMMON-SEMANTICS-DECLARATIONS-FUNTION-BODY

imports COMMON-SEMANTICS-DECLARATIONS-INITIALIZATIONS

imports COMMON-SEMANTICS-DECLARATIONS-ENUMS

277

PhD Thesis, University of Illinois, July 2012

imports COMMON-SEMANTICS-DECLARATIONS-RESOLUTION

end module

module DYNAMIC-SEMANTICS-DECLARATIONS-INCLUDE

imports DYNAMIC-INCLUDE

imports COMMON-SEMANTICS-DECLARATIONS-INCLUDE

end module

module DYNAMIC-SEMANTICS-DECLARATIONS-BINDING

imports DYNAMIC-SEMANTICS-DECLARATIONS-INCLUDE

syntax K ::= bind-aux(Nat,List{KResult},List{KResult})

rule

bind(L,L′)

bind-aux(NullPointer,L,L′)

k

rule bind-empty-void

bind-aux(—, •,typedDecl(t(•,void),—))

sequencePoint

k

rule bind-empty

bind-aux(—, •, •)

sequencePoint

k

rule bind-coerce-array
bind-aux(—,L,— ,, typedDecl(t(—, arrayType(T ,—)

pointerType(T)

),X) ,, —)

[anywhere]

278

PhD Thesis, University of Illinois, July 2012

rule bind-coerce-incompleteArray
bind-aux(—,L,— ,, typedDecl(t(—, incompleteArrayType(T)

pointerType(T)

),X) ,, —)

[anywhere]

rule bind-one

true y bind-aux(—,V :T ′ ,, L,typedDecl(T ,X) ,, P)

allocateType(Loc,T) y addToEnv(X ,Loc) y giveType(X ,T) y initialize(X ,T ,AllowWrite(X) := V :T ′;) y bind-aux(Loc,L,P)

k

Loc

inc(Loc)

nextLoc

•

Loc

localAddresses

when ¬Bool isArrayType(T)

rule bind-one-check-type

•

isTypeCompatible(T ,T ′)

y bind-aux(—,V :T ′ ,, L,typedDecl(T ,X) ,, P)

k

syntax List{K} ::= promoteList(List{KResult}) [function]

define promoteList-needs-promoting
promoteList(V :t(S ,T) ,, L)

cast(argPromote(t(S ,T)),V :t(S ,T)) ,, promoteList(L)

when

((
(rank(t(S ,T)) <Int rank(t(•,int)))
∨Bool isBitfieldType(t(S ,T))

)
∧Bool hasIntegerType(t(S ,T))

)

∨Bool (T ==K float)
define promoteList-promoted
promoteList(V :t(S ,T) ,, L)

V :t(S ,T) ,, promoteList(L)

when



(
(((¬Bool hasIntegerType(t(S ,T))) ∧Bool (¬Bool (T ==K float))) ∧Bool (¬Bool isArrayType(t(S ,T))))

∨Bool (rank(t(S ,T)) ≥Int rank(t(•,int)))

)

∨Bool (T ==K double)




∨Bool (T ==K long-double)
define
promoteList(•)

•

279

PhD Thesis, University of Illinois, July 2012

syntax K ::= bindVariadic(K,List{KResult})
| bindVariadic-pre(K,List{K})

rule bind-variadic-pre

bind-aux(Loc,L,t(—,variadic))

bindVariadic-pre(Loc,promoteList(L))

k

rule bind-variadic-start

bindVariadic-pre(Loc,L)

bindVariadic(Loc,L)

k

rule bind-variadic

•

allocateType(Loc,type(V)) y (* Loc :t(•,pointerType(type(V)))) := V ;

y bindVariadic(—, V

•

,, —)

k

Loc

inc(Loc)

nextLoc

•

Loc

localAddresses

rule bind-variadic-done

bindVariadic(—, •)

sequencePoint

k

end module

module DYNAMIC-SEMANTICS-DECLARATIONS-GENERAL

imports DYNAMIC-SEMANTICS-DECLARATIONS-INCLUDE

280

PhD Thesis, University of Illinois, July 2012

rule

initialize(X ,T ,K)

if F ==K File-Scope
then zero(X)
else

•

fi

y K y sequencePoint

k

F

currentFunction

rule

zero(Name)

zeroType(Name,unqualifyType(T))

k

Name 7→ T

types

syntax K ::= zeroType(K,Type)

rule

zeroType(Name,T)

AllowWrite(Name) := 0 :t(•,int);

k

when hasIntegerType(T)

rule

zeroType(Name,T)

AllowWrite(Name) := 0.0 :t(•,float);

k

when isFloatType(T)

syntax K ::= zeroStruct(K,List{KResult})

rule

zeroType(Name,t(—,structType(S)))

zeroStruct(Name,Fields)

k

S 7→ aggregateInfo(Fields,—,—)

structs

281

PhD Thesis, University of Illinois, July 2012

rule

zeroType(Name,t(—,unionType(S)))

zeroType(Name . F ,T)

k

S 7→ aggregateInfo(typedDecl(T ,F) ,, —,—,—)

structs

rule

zeroStruct(Name,typedDecl(T ,F) ,, L)

zeroType(Name . F ,T) y zeroStruct(Name,L)

k

rule

zeroStruct(Name, •)

•

k

rule

zeroType(Name,T)

AllowWrite(Name) := NullPointer :T ;

k

when isPointerType(T)

rule

zeroType(Name,T)

•

k

when isFunctionType(T)

rule

zeroType(Name,t(S ,arrayType(T ,Len)))

zeroType(Name[Len −Int 1],T) y zeroType(Name,t(S ,arrayType(T ,Len −Int 1)))

k

when Len >Int 0

282

PhD Thesis, University of Illinois, July 2012

rule

zeroType(Name,t(—,arrayType(T , 0)))
•

k

rule

zeroType(Name,t(—,flexibleArrayType(T)))

•

k

end module

module DYNAMIC-SEMANTICS-DECLARATIONS-INITIALIZATIONS

imports DYNAMIC-SEMANTICS-DECLARATIONS-INCLUDE

end module

module DYNAMIC-SEMANTICS-DECLARATIONS-RESOLUTION

imports DYNAMIC-SEMANTICS-DECLARATIONS-INCLUDE

end module

module DYNAMIC-SEMANTICS-DECLARATIONS-ENUMS

imports DYNAMIC-SEMANTICS-DECLARATIONS-INCLUDE

end module

module DYNAMIC-C-DECLARATIONS

imports DYNAMIC-SEMANTICS-DECLARATIONS-INCLUDE

imports DYNAMIC-SEMANTICS-DECLARATIONS-BINDING

imports DYNAMIC-SEMANTICS-DECLARATIONS-GENERAL

283

PhD Thesis, University of Illinois, July 2012

imports DYNAMIC-SEMANTICS-DECLARATIONS-INITIALIZATIONS

imports DYNAMIC-SEMANTICS-DECLARATIONS-ENUMS

imports DYNAMIC-SEMANTICS-DECLARATIONS-RESOLUTION

end module

284

PhD Thesis, University of Illinois, July 2012

A.7 Memory
This section represents the low-level operations used to manipulate memory.
This includes its creation, destruction, reading, and writing. It also includes
the necessary bit-packing and bit-twiddling mechanisms needed to deal with
bitfields.

285

PhD Thesis, University of Illinois, July 2012

module DYNAMIC-MEMORY-INCLUDE

imports DYNAMIC-INCLUDE

syntax K ::= extractBytesFromMem(Nat,Nat)

syntax Nat ::= encodedPointer(Int)
| encodedFloat(Float)

syntax List{K} ::= explodeToBits(List{K}) [function]
| reverseList(List{K}) [function]

syntax ListItem ::= bwrite(Nat,K)

syntax Set ::= locations(List) [function]

syntax K ::= read-aux(K,K,K)

syntax Nat ::= subObject(K,K,K)

define
isInt(subObject(—,—,—))

true
define
isInt(encodedPointer(—))

true
define
isInt(encodedFloat(—))

true

syntax Nat ::= getBitOffset(Nat) [function]

define
getBitOffset(loc(—,—,M))

M %Int numBitsPerByte

syntax Nat ::= getByteOffset(Nat) [function]

286

PhD Thesis, University of Illinois, July 2012

define
getByteOffset(loc(—,M ,N))

M +Int (N ÷Int numBitsPerByte)
define locations-none
locations(•)

•

define locations-some
locations(bwrite(Loc,—) L)

Loc locations(L)

end module

module DYNAMIC-SEMANTICS-READING

imports DYNAMIC-MEMORY-INCLUDE

syntax K ::= extractBitsFromMem(Nat,Nat)
| extractByteFromMem(Nat)
| extractBitsFromList-aux(K, Int, Int,List{K})

rule
extractBitsFromList(dataList(L),N ,M)

extractBitsFromList-aux(dataList(explodeToBits(L)),N ,M , •)

rule

extractBitsFromList-aux(dataList(piece(—, 1) ,, L),Offset ,NumBits, •)

extractBitsFromList-aux(dataList(L),Offset −Int 1,NumBits, •)

k

when Offset >Int 0

rule

extractBitsFromList-aux(dataList(piece(N , 1) ,, L), 0,NumBits,Done)

extractBitsFromList-aux(dataList(L), 0,NumBits −Int 1,Done ,, piece(N , 1))

k

when NumBits >Int 0

287

PhD Thesis, University of Illinois, July 2012

rule

extractBitsFromList-aux(—, 0, 0,Done)

dataList(Done)

k

context: readActual(—,—,value(�))

rule
read(Loc,T)

read-aux(Loc,T ,value(bitSizeofType(T)))

when ¬Bool isFunctionType(T)

syntax K ::= readActual(K,K,K)

These rules figure out whether the read should be structural or computational, depending on what is being read

rule read-thread-local

read-aux

readActual

(loc(threadId(Id) +Int —,—,—) ,, — ,, —)

k

Id

threadId

[ndlocal]

rule read-shared

read-aux

readActual

(loc(threadId(0) +Int —,—,—) ,, — ,, —)

k

[computational ndlocal]

rule read-allocated

read-aux

readActual

(loc(threadId(allocatedDuration) +Int —,—,—) ,, — ,, —)

k

[computational ndlocal]

288

PhD Thesis, University of Illinois, July 2012

rule read

readActual(Loc,T , bitSize)

concretize(T ,extractBytesFromMem(Loc,bitsToBytes(bitSize)))

k

when ¬Bool isBitfieldType(T)

rule read-bitfield

readActual(Loc,T , bitSize)

concretize(T ,fillToBytes(extractBitsFromMem(Loc, bitSize)))

k

when isBitfieldType(T)

syntax K ::= joinIntegerBytes(Type,List{K})

rule

concretize(T ,dataList(L))

joinIntegerBytes(T ,L)

k

when hasIntegerType(T) ∧Bool (¬Bool isBitfieldType(T))

rule

concretize(t(S ,bitfieldType(T ,Len)),dataList(L))

joinIntegerBytes(t(S ,bitfieldType(T ,Len)),reverseList(L))

k

rule

concretize(T ,dataList(piece(encodedFloat(F),Len) ,, —))

F :T

k

when isFloatType(T) ∧Bool (Len ==Int numBitsPerByte)

syntax K ::= joinPointerBytes(Type,List{K})
| joinPointerBytes-aux(Type,List{K},K)

289

PhD Thesis, University of Illinois, July 2012

rule

concretize(T ,dataList(L))

joinPointerBytes(T ,L)

k

when isPointerType(T)

rule

joinPointerBytes(T ,piece(N ,Len) ,, L)

joinPointerBytes-aux(T ,L,N)

k

when Len ==Int numBitsPerByte

rule

joinPointerBytes-aux(T ,piece(subObject(N , sNatEnd , sNatEnd),Len) ,, L,subObject(N , 0,End))

joinPointerBytes-aux(T ,L,subObject(N , 0,End +Int 1))

k

when (Len ==Int numBitsPerByte) ∧Bool (sNatEnd ==Int (End +Int 1))

rule

joinPointerBytes-aux(T , •,subObject(N , 0,End))

checkValidLoc(N) y N :T

k

rule

concretize(t(S ,structType(S)),dataList(L))

L :t(S ,structType(S))

k

rule

concretize(t(S ,unionType(S)),dataList(L))

L :t(S ,unionType(S))

k

syntax K ::= joinIntegerBytes-aux(Type,List{K},K)

290

PhD Thesis, University of Illinois, July 2012

rule joinIntegerBytes-start
joinIntegerBytes(T ,L)

joinIntegerBytes-aux(T ,L,piece(0, 0))
rule joinIntegerBytes-unknown-char
joinIntegerBytes-aux(T ,piece(unknown(Len),Len),piece(0, 0))

piece(unknown(Len),Len) :T

when isCharType(T)

rule joinIntegerBytes-step
joinIntegerBytes-aux(T ,L ,, piece(N ,Len),piece(N ′,Len ′))

joinIntegerBytes-aux(T ,L,piece(piece(N ′,Len ′) bit:: piece(N ,Len),Len +Int Len ′))

when N ′ ≥Int 0

rule joinIntegerBytes-done
joinIntegerBytes-aux(T , •,piece(N ,Len))

interpret(T ,piece(N ,Len))

when N ≥Int 0

define
floorLoc(loc(Base,Offset ,BitOffset))

loc(Base,Offset , 0)
when BitOffset <Int numBitsPerByte

define ceilingLoc-null
ceilingLoc(NullPointer)

NullPointer

define ceilingLoc
ceilingLoc(loc(N ,R,M))

loc(N , (M ÷Int numBitsPerByte) +Int R, 0)
rule

extractBitsFromMem(Loc,Size)

extractBitsFromList(extractBytesFromMem(floorLoc(Loc),bitsToBytes(Size +Int getBitOffset(Loc))),getBitOffset(Loc),Size)

k

syntax K ::= extractBytesFromMem-aux(K,K,List{K})

291

PhD Thesis, University of Illinois, July 2012

rule

extractBytesFromMem(Loc,Size)

extractBytesFromMem-aux(Loc,Size, •)

k

rule

extractBytesFromMem-aux(Loc,Size,Aux)

extractByteFromMem(Loc) y extractBytesFromMem-aux(Loc +Int 1,Size −Int 1,Aux)

k

when Size >Int 0

rule

V :T

•

y extractBytesFromMem-aux(—,—, Aux

Aux ,, V :T

)

k

syntax List{K} ::= values(List{K}) [function]

define
values(K :— ,, L)

K ,, values(L)
define
values(•)

•

rule

extractBytesFromMem-aux(—, 0,Aux)

dataList(values(Aux))

k

292

PhD Thesis, University of Illinois, July 2012

rule read-byte-fast


extractByteFromMem(loc(Base,Offset , 0))

assert(¬Bool (loc(Base,Offset , 0) in Locs), 3) y assert(Offset <Int Len, 2) y V :t(•,no-type)

k

Base

basePtr

Len

oLength

Offset 7→ V

bytes

object

Locs

locsWrittenTo

•

buffer




rule read-byte


extractByteFromMem(loc(Base,Offset , 0))

assert(¬Bool (loc(Base,Offset , 0) in Locs), 3) y assert(Offset <Int Len, 2) y V :t(•,no-type)

k

Base

basePtr

Len

oLength

Offset 7→ V

bytes

object

Locs

locsWrittenTo

Mem

buffer




when ¬Bool (loc(Base,Offset , 0) in locations(Mem))

rule read-byte-lazy


extractByteFromMem(loc(Base,Offset , 0))

assert(Offset <Int Len, 2) y piece(unknown(numBitsPerByte), numBitsPerByte) :t(•,no-type)

k

Base

basePtr

Len

oLength

M

M [piece(unknown(numBitsPerByte), numBitsPerByte) / Offset]

bytes

object

Mem

buffer




when (¬Bool (loc(Base,Offset , 0) in locations(Mem))) ∧Bool (¬Bool (Offset in (keys M)))

293

PhD Thesis, University of Illinois, July 2012

rule read-byte-buffer

extractByteFromMem(Loc)

assert(¬Bool (Loc in Locs), 3) y V :t(•,no-type)

k

Locs

locsWrittenTo

bwrite(Loc,V) Mem

buffer

when ¬Bool (Loc in locations(Mem))

end module

module DYNAMIC-SEMANTICS-WRITING

imports DYNAMIC-MEMORY-INCLUDE

context: alloc(—,value(�))

rule
allocateType(Loc,T)

alloc(Loc,value(byteSizeofType(T)))

rule allocateTypeIfAbsent-absent

allocateTypeIfAbsent(Loc,T)

alloc(Loc,value(byteSizeofType(T)))

k

Mem

memory

when ¬Bool (base(Loc) in gatherInnerCells(Mem, basePtr))

rule allocateTypeIfAbsent-present

allocateTypeIfAbsent(loc(Base, 0, 0),T)

•

k

Base

basePtr

object

294

PhD Thesis, University of Illinois, July 2012

rule alloc-lazy

alloc(loc(Base, 0, 0),Len)

•

k

•

Base

basePtr

Len

oLength

•

properties

object

memory

syntax K ::= realloc-aux(K,K,K,K,K)

rule realloc-start

realloc(Old ,New ,OldLen,NewLen)

alloc(New ,NewLen) y realloc-aux(minInt(OldLen,NewLen),Old ,New ,OldLen,NewLen)

k

rule realloc-found

realloc-aux(sNatN

sNatN −Int 1

,loc(OldBase, 0, 0),loc(NewBase, 0, 0),—,—)

k

OldBase

basePtr

N 7→ K

bytes

object

NewBase

basePtr

•

(sNatN −Int 1) 7→ K

bytes

object

when (N ==Int (sNatN −Int 1)) ∧Bool (sNatN >Int 0)

rule realloc-unfound

realloc-aux(sNatN

sNatN −Int 1

,loc(OldBase, 0, 0),loc(NewBase, 0, 0),—,—)

k

OldBase

basePtr

M

bytes

object

when (¬Bool ((sNatN −Int 1) in (keys M))) ∧Bool (sNatN >Int 0)

295

PhD Thesis, University of Illinois, July 2012

rule realloc-0

realloc-aux(0,loc(OldBase, 0, 0),—,OldLen,—)

deleteSizedBlock(loc(OldBase, 0, 0),OldLen)

k

syntax K ::= writeBytes(Nat,K) [strict(2)]
| writeBitfield(Nat,Type,K) [strict(3)]

syntax Bool ::= isByteLoc(Nat) [function]

syntax K ::= splitBytes(Value) [function]
| calcNewBytes(Nat,K,K) [function strict(3)]
| write-aux(K,Value,K) [strict(2)]

rule
write(lv(Dest ,T ′),V :T)

write-aux(Dest ,V :T ,value(bitSizeofType(T)))

when ¬Bool isConstType(T ′)

context: write-aux(—,—,value(�))

syntax K ::= write-specific(Nat,Value,Nat)

rule write-thread-local

write-aux(loc(threadId(Id) +Int N ,Offset ,BitOffset),L :T , bitSize)

write-specific(loc(threadId(Id) +Int N ,Offset ,BitOffset),L :T , bitSize)

k

Id

threadId

[ndlocal]

rule write

write-aux(loc(threadId(0) +Int N ,Offset ,BitOffset),L :T , bitSize)

write-specific(loc(threadId(0) +Int N ,Offset ,BitOffset),L :T , bitSize)

k

[computational ndlocal]

296

PhD Thesis, University of Illinois, July 2012

rule write-allocated

write-aux(loc(threadId(allocatedDuration) +Int N ,Offset ,BitOffset),L :T , bitSize)

write-specific(loc(threadId(allocatedDuration) +Int N ,Offset ,BitOffset),L :T , bitSize)

k

[computational ndlocal]

rule write-normal

write-specific(Loc,V :T , bitSize)

writeBytes(Loc,splitBytes(V :T))

k

when ((((bitSize %Int numBitsPerByte) ==Int 0) ∧Bool isByteLoc(Loc)) ∧Bool (¬Bool isBitfieldType(T))) ∧Bool (¬Bool hasUnionMarker(T))

rule write-normal-union-field

•

makeUnknown(Loc,t(•,unionType(S)))

y write-specific(Loc,— :t(fromUnion(S)

•

—,—),—)

k

when isByteLoc(Loc)

syntax K ::= makeUnknown(Nat,Type)
| makeUnknown-aux(Nat,Type,K)

context: makeUnknown-aux(—,—,value(�))

rule
makeUnknown(Loc,T)

makeUnknown-aux(Loc,T ,value(byteSizeofType(T)))

297

PhD Thesis, University of Illinois, July 2012

rule


makeUnknown-aux(loc(Base,Offset , 0),—,Len ′)

•

k

Base

basePtr

Len

oLength

M

M [piece(unknown(numBitsPerByte), numBitsPerByte) / Offset to (Offset +Int Len ′)]

bytes

object




when Len ≥Int (Offset +Int Len ′)

syntax Bool ::= hasUnionMarker(Type) [function]

define
hasUnionMarker(t(fromUnion(—) —,—))

true
define
hasUnionMarker(t(•,—))

false
define
hasUnionMarker(t(S (L(—)),K))

hasUnionMarker(t(S ,K))

when L =/=KLabel fromUnion

rule write-struct

write-specific(Loc,V ,, V ′ ,, L :T , bitSize)

writeBytes(Loc,dataList(V ,, V ′ ,, L))

k

when (((bitSize %Int numBitsPerByte) ==Int 0) ∧Bool isByteLoc(Loc)) ∧Bool (¬Bool isBitfieldType(T))

syntax Value ::= justBits(Int,Type) [function]
| justBits-aux(Int,Type) [function]

298

PhD Thesis, University of Illinois, July 2012

define
justBits(I ,—)

I

when I ≥Int 0

define
justBits(I ,T)

justBits-aux(I ,T)

when I <Int 0

define
justBits-aux(I ,T)

justBits-aux((I +Int max(T)) +Int 1,T)

when I <Int 0

define
justBits-aux(N ,t(—,bitfieldType(T ,Len)))

N +Int (1�Int (Len −Int 1))
when Len >Int 0

rule massage-bitfield

write-specific(Loc, I :T , bitSize)

write-specific(Loc,justBits(I ,T) :T , bitSize)

k

when



(
((bitSize %Int numBitsPerByte) =/=Int 0)

∨Bool (¬Bool isByteLoc(Loc))

)

∨Bool isBitfieldType(T)


 ∧Bool (I <Int 0)

rule write-bitfield

write-specific(Loc,N :T , bitSize)

writeBitfield(Loc,T ,calcNewBytes(getBitOffset(Loc),piece(N , bitSize),extractBytesFromMem(floorLoc(Loc),bitsToBytes(bitSize +Int getBitOffset(Loc)))))

k

when

(
((bitSize %Int numBitsPerByte) =/=Int 0)

∨Bool (¬Bool isByteLoc(Loc))

)

∨Bool (isBitfieldType(T) ∧Bool (¬Bool hasUnionMarker(T)))

299

PhD Thesis, University of Illinois, July 2012

rule

writeBitfield(Loc,—,dataList(L))

writeBytes(floorLoc(Loc),dataList(L))

k

syntax K ::= calculateNewBytes-aux(Int,K,K,List{K}) [function]

define
calcNewBytes(Len,N ,dataList(L))

calculateNewBytes-aux(Len,dataList(explodeToBits(N)),dataList(explodeToBits(L)), •)

define
reverseList(•)

•

define
reverseList(K ,, L)

reverseList(L) ,, K

syntax K ::= joinBitsToBytes(List{K}) [function]
| joinBitsToBytes-aux(K,K) [function]

define
calculateNewBytes-aux(N ,K ,dataList(piece(Bit , 1) ,, L),Result)

calculateNewBytes-aux(N −Int 1,K ,dataList(L),Result ,, piece(Bit , 1))
when N >Int 0

define
calculateNewBytes-aux(0,dataList(piece(N , 1) ,, L),dataList(piece(—, 1) ,, L′),Result)

calculateNewBytes-aux(0,dataList(L),dataList(L′),Result ,, piece(N , 1))
define
calculateNewBytes-aux(0,dataList(•),dataList(L),Result)

joinBitsToBytes(Result ,, L)

define
joinBitsToBytes(L)

joinBitsToBytes-aux(dataList(L),dataList(•))

300

PhD Thesis, University of Illinois, July 2012

define
joinBitsToBytes-aux(dataList(piece(N ,Len) ,, piece(M , 1) ,, L),dataList(R))

joinBitsToBytes-aux(dataList(piece(piece(N ,Len) bit:: piece(M , 1),Len +Int 1) ,, L),dataList(R))

when Len <Int numBitsPerByte

define
joinBitsToBytes-aux(dataList(piece(N ,Len) ,, L),dataList(R))

joinBitsToBytes-aux(dataList(L),dataList(R ,, piece(N ,Len)))

when Len ==Int numBitsPerByte

define
joinBitsToBytes-aux(dataList(•),dataList(R))

dataList(R)

define
explodeToBits(K ,, L)

explodeToBits(K) ,, explodeToBits(L)
define
explodeToBits(piece(N ,Len))

splinter(N ,Len)

when Len >Int 0

define
explodeToBits(piece(N , 0))

•

define
explodeToBits(•)

•

syntax List{K} ::= splinter(Nat,Nat) [function]
| splinter-aux(Nat,Nat,Nat) [function]

define
splinter(N ,Len)

splinter-aux(N ,Len, 0)
define
splinter-aux(—,Len,Len)

•

301

PhD Thesis, University of Illinois, July 2012

define
splinter-aux(N ,Len,Pos)

splinter-aux(N ,Len,Pos +Int 1) ,, piece(bitRange(N ,Pos,Pos), 1)
when Pos <Int Len

rule

writeBytes(Loc,dataList(V ,, L))

writeByte(Loc,V) y writeBytes(Loc +Int 1,dataList(L))

k

rule write-byte-buffer


writeByte(loc(Base,Offset , 0),V)

•

k

•

bwrite(loc(Base,Offset , 0),V)

buffer

Base

basePtr

Len

oLength

Attr

properties

object

Locs •

loc(Base,Offset , 0)

locsWrittenTo

NotWritable

notWritable




when (((¬Bool (loc(Base,Offset , 0) in Locs)) ∧Bool (Offset <Int Len)) ∧Bool (¬Bool (mconst in Attr))) ∧Bool (¬Bool (loc(Base,Offset , 0) in (keys NotWritable)))

rule commit-byte

bwrite(loc(Base,Offset , 0),V)

•

buffer

Base

basePtr

Len

oLength

M

M [V / Offset]

bytes

object

when Offset <Int Len

rule

writeBytes(—,dataList(•))

•

k

302

PhD Thesis, University of Illinois, July 2012

define splitBytes-char
splitBytes(N :T)

dataList(piece(N , numBitsPerByte))
when isCharType(T)

define splitBytes-int
splitBytes(I :T)

splitIntegerBytes(I ,T ,bitsToBytes(value(bitSizeofType(T))))

when hasIntegerType(T) ∧Bool

(
(I ≥Int 0)

∨Bool (I ≤Int 0)

)

define splitBytes-float
splitBytes(F :T)

splitFloatBytes(F ,T ,value(byteSizeofType(T)))

when isFloatType(T)

define splitBytes-pointer
splitBytes(I :t(S ,pointerType(T)))

splitPointerBytes(I ,t(S ,pointerType(T)),value(byteSizeofType(t(•,pointerType(T)))))

define splitBytes-struct
splitBytes(L :t(S ,structType(S)))

splitStructBytes(dataList(L),t(S ,structType(S)),value(byteSizeofType(t(S ,structType(S)))))

define splitBytes-union
splitBytes(L :t(S ,unionType(S)))

splitStructBytes(dataList(L),t(S ,unionType(S)),value(byteSizeofType(t(S ,unionType(S)))))

syntax K ::= splitIntegerBytes(K,K,K) [function]
| splitIntegerBytes-aux(K,K,K,List{K}) [function]

define
splitIntegerBytes(I ,T ,Len)

splitIntegerBytes-aux(I ,T ,Len, •)

define
splitIntegerBytes-aux(I ,T ,Len,L)

splitIntegerBytes-aux(I �Int numBitsPerByte,T ,Len −Int 1,L ,, lowestByte(I ,T))

when Len >Int 0

303

PhD Thesis, University of Illinois, July 2012

define
splitIntegerBytes-aux(—,—, 0,L)

dataList(L)

syntax K ::= splitStructBytes(K,K,K) [function]
| splitStructBytes(K,K,K,List{K}) [function]

context: splitStructBytes(—,—,value(�))

define
splitStructBytes(dataList(L),T ,Len)

splitStructBytes(dataList(L),T ,Len, •)

define
splitStructBytes(dataList(piece(N ,PieceLen) ,, Rest),T ,Len,L)

splitStructBytes(dataList(Rest),T ,Len −Int 1,L ,, piece(N ,PieceLen))

when (PieceLen ==Int numBitsPerByte) ∧Bool (Len >Int 0)

define
splitStructBytes(—,—, 0,L)

dataList(L)

syntax K ::= splitPointerBytes(K,K,K) [function]
| splitPointerBytes-aux(K,K,K,K,List{K}) [function]

context: splitPointerBytes(—,—,value(�))

define
splitPointerBytes(I ,T ,Len)

splitPointerBytes-aux(I ,T ,Len, 0, •)

define
splitPointerBytes-aux(I ,T ,Len,N ,L)

splitPointerBytes-aux(I ,T ,Len −Int 1,N +Int 1,L ,, piece(subObject(I ,N ,N), numBitsPerByte))
when Len >Int 0

define
splitPointerBytes-aux(—,—, 0,—,L)

dataList(L)

syntax K ::= splitFloatBytes(K,K,K) [function]
| splitFloatBytes(K,K,K,List{K}) [function]

304

PhD Thesis, University of Illinois, July 2012

context: splitFloatBytes(—,—,value(�))

define
splitFloatBytes(F ,T ,Len)

splitFloatBytes(F ,T ,Len −Int 1,piece(encodedFloat(F), numBitsPerByte))
when Len >Int 0

define
splitFloatBytes(F ,T ,Len,L)

splitFloatBytes(F ,T ,Len −Int 1,L ,, piece(unknown(numBitsPerByte), numBitsPerByte))
when Len >Int 0

define
splitFloatBytes(—,T , 0,L)

dataList(L)

syntax K ::= lowestByte(Int,Type) [function]

define
lowestByte(I ,T)

piece(I &Int byteMaskSet, numBitsPerByte)
when hasIntegerType(T)

syntax Nat ::= byteMaskSet [function]

define
byteMaskSet

(2 Înt numBitsPerByte)−Int 1
define

isByteLoc(Loc)

getBitOffset(Loc) ==Int 0

end module

module DYNAMIC-C-MEMORY-MISC

imports DYNAMIC-MEMORY-INCLUDE

305

PhD Thesis, University of Illinois, July 2012

rule

zeroBlock(loc(Base, 0, 0))
•

k

Base

basePtr

Len

oLength

—
• [piece(0, numBitsPerByte) / 0 to Len]

bytes

object

rule

sizeofLocation(loc(Base,—,—))

Len : cfg:sizeut

k

Base

basePtr

Len

oLength

object

rule delete-sized-block

deleteSizedBlock(loc(Base,—,—),Len)

•

k

Base

basePtr

Len

oLength

object

•

•

buffer

rule delete-block

deleteBlock(loc(Base,—,—))

•

k

Base

basePtr

object

•

•

buffer

rule alloc-string

allocString(Loc,S)

allocateType(Loc,t(•,arrayType(t(•,char),lengthString(S)))) y writeString(Loc,S) y makeUnwritable(Loc)

k

306

PhD Thesis, University of Illinois, July 2012

rule alloc-wstring

allocWString(Loc,S)

allocateType(Loc,t(•,arrayType(cfg:wcharut, 4 ∗Int (lengthListK (S))))) y writeWString(Loc,S) y makeUnwritable(Loc)

k

rule makeUnwritable-var

makeUnwritableVar(X)

makeUnwritable(Loc)

k

X 7→ Loc

env

rule makeUnwritable-subobject

makeUnwritableSubObject(lv(loc(Base,Offset ,—),—))

•

k

M

M [1 / loc(Base,Offset , 0)]

notWritable

rule makeUnwritable

makeUnwritable(loc(Base, 0, 0))
•

k

Base

basePtr

•

mconst

properties

object

syntax K ::= checkValidLoc-aux(K)

rule

checkValidLoc(Loc)

checkValidLoc-aux(ceilingLoc(Loc))

k

rule

checkDerefLoc(Loc)

checkValidLoc(Loc)

k

when Loc =/=K NullPointer

307

PhD Thesis, University of Illinois, July 2012

rule check-valid-loc-null

checkValidLoc-aux(NullPointer)

•

k

rule check-valid-loc

checkValidLoc-aux(loc(threadId(PtrThreadId) +Int N ,Offset , 0))
•

k

threadId(PtrThreadId) +Int N

basePtr

Len

oLength

object

MyThreadId

threadId

when




(
(PtrThreadId ==Int MyThreadId)
∨Bool (PtrThreadId ==Int 0)

)

∨Bool (PtrThreadId ==K allocatedDuration)


 ∧Bool (Offset ≤Int Len)

end module

module DYNAMIC-C-MEMORY

imports DYNAMIC-MEMORY-INCLUDE

imports DYNAMIC-C-MEMORY-MISC

imports DYNAMIC-SEMANTICS-WRITING

imports DYNAMIC-SEMANTICS-READING

end module

308

PhD Thesis, University of Illinois, July 2012

A.8 Standard Library
This section represents the semantics of the C standard library. It starts with
some basic operators to handle reading the arguments coming in from the
outside and proceeds with definitions of the actual functions.

309

PhD Thesis, University of Illinois, July 2012

module DYNAMIC-C-STANDARD-LIBRARY-INCLUDE

imports DYNAMIC-INCLUDE

syntax C ::= vararg(K) [hybrid strict]
| nextvarg(Nat,K) [strict(2)]
| vpair(K,K) [hybrid strict]

syntax K ::= prepareBuiltin(Id,List{K})
| incSymbolic(K) [function]
| printString(K)

end module

module DYNAMIC-C-STANDARD-LIBRARY-HELPERS

imports DYNAMIC-C-STANDARD-LIBRARY-INCLUDE

rule
reval(vararg(K))

vararg(K)

syntax C ::= nextvarg-aux(K,Type,K,K)

context: nextvarg-aux(—,—,value(�),—)

context: nextvarg-aux(—,—,—,value(�))

rule nextvarg-start

nextvarg(Loc,T)

nextvarg-aux(Loc,T ,value(byteSizeofType(T)),value(sizeofLocation(Loc)))

k

rule nextvarg

nextvarg-aux(Loc,T ,Len,Len)

vpair(read(Loc,T),vararg(inc(Loc) :t(•,pointerType(t(•,void)))))

k

310

PhD Thesis, University of Illinois, July 2012

context: prepareBuiltin(—,— ,, �
reval(�)

,, —)

syntax List{K} ::= idsFromDeclList(List{K}) [function]

define idsFromDeclList-one
idsFromDeclList(L ,, typedDecl(t(—,T),X))

idsFromDeclList(L) ,, X

when T =/=K void

define idsFromDeclList-void
idsFromDeclList(L ,, typedDecl(t(—,void),X))

idsFromDeclList(L)

define idsFromDeclList-vararg
idsFromDeclList(L ,, typedDecl(T ,X) ,, t(—,variadic))

idsFromDeclList(L ,, typedDecl(T ,X)) ,, vararg(incSymbolic(cast(t(•,pointerType(t(•,unsigned-char))),& X)))

define idsFromDeclList-done
idsFromDeclList(•)

•

context: incSymbolic(�
reval(�)

)

define incSymbolic
incSymbolic(Loc :T)

inc(Loc) :T

rule prepareBuiltin

handleBuiltin(F ,t(—,functionType(Return,L)))

Return(prepareBuiltin(F ,idsFromDeclList(L)))

k

rule

printString(S)

writeToFD(1,asciiCharString(firstChar(S))) y printString(butFirstChar(S))

k

when lengthString(S) >Int 0

311

PhD Thesis, University of Illinois, July 2012

rule

printString(“”)
writeToFD(1, 10)

k

end module

module DYNAMIC-C-STANDARD-LIBRARY-MATH

imports DYNAMIC-C-STANDARD-LIBRARY-INCLUDE

rule sqrt

prepareBuiltin(Identifier(“sqrt”),F :t(—,double))

sqrtFloat(F) :t(•,double)

k

rule log

prepareBuiltin(Identifier(“log”),F :t(—,double))

logFloat(F) :t(•,double)

k

rule exp

prepareBuiltin(Identifier(“exp”),F :t(—,double))

expFloat(F) :t(•,double)

k

rule atan

prepareBuiltin(Identifier(“atan”),F :t(—,double))

atanFloat(F) :t(•,double)

k

312

PhD Thesis, University of Illinois, July 2012

rule asin

prepareBuiltin(Identifier(“asin”),F :t(—,double))

asinFloat(F) :t(•,double)

k

rule atan2

prepareBuiltin(Identifier(“atan2”),F :t(—,double) ,, F ′ :t(—,double))

atan2Float(F ,F ′) :t(•,double)

k

rule tan

prepareBuiltin(Identifier(“tan”),F :t(—,double))

tanFloat(F) :t(•,double)

k

rule floor

prepareBuiltin(Identifier(“floor”),F :t(—,double))

floorFloat(F) :t(•,double)

k

rule cos

prepareBuiltin(Identifier(“cos”),F :t(—,double))

cosFloat(F) :t(•,double)

k

rule fmod

prepareBuiltin(Identifier(“fmod”),F :t(—,double) ,, F ′ :t(—,double))

F %Float F ′ :t(•,double)

k

rule sin

prepareBuiltin(Identifier(“sin”),F :t(—,double))

sinFloat(F) :t(•,double)

k

313

PhD Thesis, University of Illinois, July 2012

end module

module DYNAMIC-C-STANDARD-LIBRARY-SETJMP

imports DYNAMIC-C-STANDARD-LIBRARY-INCLUDE

(n1570) §7.13 ¶1–3 The header <setjmp.h> defines the macro setjmp, and declares one function and one type, for bypassing the normal function call and return discipline.

The type declared is jmp_buf which is an array type suitable for holding the information needed to restore a calling environment. The environment of a call to the setjmp macro consists
of information sufficient for a call to the longjmp function to return execution to the correct block and invocation of that block, were it called recursively. It does not include the state of the
floating-point status flags, of open files, or of any other component of the abstract machine.

It is unspecified whether setjmp is a macro or an identifier declared with external linkage. If a macro definition is suppressed in order to access an actual function, or a program defines an
external identifier with the name setjmp, the behavior is undefined.

syntax K ::= Bag(Bag)
| ignoreLocals

rule ignoreLocals

ignoreLocals

•

k

Locals

•

localAddresses

314

PhD Thesis, University of Illinois, July 2012

(n1570) §7.13.1.1 ¶1–5 Synopsis #include <setjmp.h>
int setjmp(jmp_buf env);

DescriptionThe setjmp macro saves its calling environment in its jmp_buf argument for later use by the longjmp function.

ReturnsIf the return is from a direct invocation, the setjmp macro returns the value zero. If the return is from a call to the longjmp function, the setjmp macro returns a nonzero value.

Environmental LimitsAn invocation of the setjmp macro shall appear only in one of the following contexts:

• the entire controlling expression of a selection or iteration statement;

• one operand of a relational or equality operator with the other operand an integer constant expression, with the resulting expression being the entire controlling expression of a selection
or iteration statement;

• the operand of a unary ! operator with the resulting expression being the entire controlling expression of a selection or iteration statement; or

• the entire expression of an expression statement (possibly cast to void).

If the invocation appears in any other context, the behavior is undefined.

rule setjmp

prepareBuiltin(Identifier(“setjmp”),Loc :t(—,pointerType(t(—,structType(Identifier(“__jmp_buf_tag”))))))

ignoreLocals y writeByte(Loc,Bag(C K

continuation

)) y 0 :t(•,int)

y K

k

C

threadLocal

syntax K ::= longjmp-aux(K,K) [strict]

rule longjmp-prepare

prepareBuiltin(Identifier(“longjmp”),V ,, V ′)

longjmp-aux(reval(* V),V ′)

k

315

PhD Thesis, University of Illinois, July 2012

rule longjmp

longjmp-aux(Bag(K

continuation

C) :t(—,structType(Identifier(“__jmp_buf_tag”))), I :t(—,int)) y —

ignoreLocals y

if I ==Int 0
then 1 :t(•,int)
else

I :t(•,int)
fi

y K

k

—
C

threadLocal

end module

module DYNAMIC-C-STANDARD-LIBRARY-STDARG

imports DYNAMIC-C-STANDARD-LIBRARY-INCLUDE

(n1570) §7.16 ¶1–3 The header <stdarg.h> declares a type and defines four macros, for advancing through a list of arguments whose number and types are not known to the called
function when it is translated.

A function may be called with a variable number of arguments of varying types. As described in 6.9.1, its parameter list contains one or more parameters. The rightmost parameter plays a
special role in the access mechanism, and will be designated parmN in this description.

The type declared is va_list which is a complete object type suitable for holding information needed by the macros va_start, va_arg, va_end, and va_copy. If access to the varying
arguments is desired, the called function shall declare an object (generally referred to as ap in this subclause) having type va_list. The object ap may be passed as an argument to another
function; if that function invokes the va_arg macro with parameter ap, the value of ap in the calling function is indeterminate and shall be passed to the va_end macro prior to any further
reference to ap.

(n1570) §7.16.1 ¶1 The va_start and va_arg macros described in this subclause shall be implemented as macros, not functions. It is unspecified whether va_copy and va_end are
macros or identifiers declared with external linkage. If a macro definition is suppressed in order to access an actual function, or a program defines an external identifier with the same name,
the behavior is undefined. Each invocation of the va_start and va_copy macros shall be matched by a corresponding invocation of the va_end macro in the same function.

rule va-start

prepareBuiltin(Identifier(“__va_start”),ApLoc ,, ArgLoc)

(* ApLoc) := incSymbolic(ArgLoc); y skipval

k

316

PhD Thesis, University of Illinois, July 2012

syntax K ::= va-inc-aux(K,K,K)

context: va-inc-aux(—,—, �
reval(�)

)

rule

prepareBuiltin(Identifier(“__va_inc”),ApLoc ,, Size)

(* ApLoc) := incSymbolic(ApLoc); y ApLoc

k

rule va-inc-start

prepareBuiltin(Identifier(“__va_inc”),ApLoc ,, Size)

va-inc-aux(ApLoc,Size,* ApLoc)

k

rule va-inc

va-inc-aux(ApLoc,Size,Ap)

(* ApLoc) := incSymbolic(Ap); y Ap

k

rule va-copy

prepareBuiltin(Identifier(“__va_copy”),ApLoc ,, Other)

(* ApLoc) := Other ; y skipval

k

rule va-end

prepareBuiltin(Identifier(“__va_end”),ApLoc)

skipval

k

end module

module DYNAMIC-C-STANDARD-LIBRARY-STDDEF

imports DYNAMIC-C-STANDARD-LIBRARY-INCLUDE

317

PhD Thesis, University of Illinois, July 2012

syntax K ::= offsetOf(K,K) [strict(1)]

rule

OffsetOf(T ,K ,F)

offsetOf(DeclType(T ,K),F)

k

rule

offsetOf(t(—,structType(S)),F)

bitsToBytes(Offset) : cfg:sizeut

k

S 7→ aggregateInfo(—,—,— (F 7→ Offset))

structs

rule

offsetOf(t(—,unionType(—)),—)

0 : cfg:sizeut

k

end module

module DYNAMIC-C-STANDARD-LIBRARY-STDIO

imports DYNAMIC-C-STANDARD-LIBRARY-INCLUDE

rule putchar

prepareBuiltin(Identifier(“putchar”),N :—)

writeToFD(1,N) y N :t(•,int)

k

rule fslPutc

prepareBuiltin(Identifier(“__fslPutc”),N :— ,, H :—)

writeToFD(H ,N) y N :t(•,int)

k

318

PhD Thesis, University of Illinois, July 2012

rule getchar

prepareBuiltin(Identifier(“getchar”), •)

flush(1) y readFromFD(0)

k

rule fslFGetC

prepareBuiltin(Identifier(“__fslFGetC”),FD :— ,, Offset :—)

readFromFD(FD)

k

rule fslCloseFile

prepareBuiltin(Identifier(“__fslCloseFile”),FD :t(—,int))

0 :t(•,int)

k

FD

fid

file

•

rule fslOpenFile-pre

prepareBuiltin(Identifier(“__fslOpenFile”),Filename ,, Mode)

fsl-open-file(getString(Filename),getString(Mode))

k

syntax K ::= fsl-open-file-aux(String,String,K) [strict(3)]

rule fslOpenFile-aux

fsl-open-file(str(Filename),str(Mode))

fsl-open-file-aux(“file:” +String Filename,Mode,#open(((“file:” +String Filename) +String “#”) +String Mode))

k

319

PhD Thesis, University of Illinois, July 2012

rule fslOpenFile

fsl-open-file-aux(Name,Mode,FD :—)

FD :t(•,int)

k

•

FD

fid

Name

uri

Mode

mode

file

files

syntax K ::= fsl-open-file(K,K) [strict]

rule printf

prepareBuiltin(Identifier(“printf”),Format ,, VarArgs)

new-printf-aux(formatter(getString(Format),VarArgs))

k

rule printf-done

new-printf-aux(formattedResult(S))

writeToFD(1,S) y flush(1) y lengthString(S) :t(•,int)

k

syntax K ::= sprintf(K,K) [strict(1)]

rule sprintf

prepareBuiltin(Identifier(“sprintf”),Dest ,, Format ,, VarArgs)

sprintf(formatter(getString(Format),VarArgs),Dest)

k

rule sprintf-done

sprintf(formattedResult(S),Dest)

writeString(Dest ,S +String “\000”) y lengthString(S) :t(•,int)

k

syntax K ::= snprintf(K,K,Nat) [strict(1)]

320

PhD Thesis, University of Illinois, July 2012

rule snprintf

prepareBuiltin(Identifier(“snprintf”),Dest ,, Len :— ,, Format ,, VarArgs)

snprintf(formatter(getString(Format),VarArgs),Dest ,Len)

k

rule snprintf-done-nz

snprintf(formattedResult(S),Dest ,Len)

writeString(Dest ,substrString(S , 0,Len −Int 1) +String “\000”) y lengthString(S) :t(•,int)

k

when Len >Int 0

rule snprintf-done-0

snprintf(formattedResult(S),—, 0)

lengthString(S) :t(•,int)

k

syntax K ::= new-printf-aux(K) [strict]
| formatter(K,K) [strict(1)]
| formatter-aux(K) [strict]
| formatter-next(K)
| formatter-arg(K) [strict(1)]

rule

formatter-next(vararg(Loc :—))

formatter-arg(nextvarg(Loc,getFormatType))

k

rule

formatter-arg(vpair(K :—,V ′))

formatter-aux(V ′)

k

—
K

formatArg

321

PhD Thesis, University of Illinois, July 2012

rule format-start

formatter(str(S),VarArgs)

formatter-aux(VarArgs)

k

•

stringToList(S)

format

formatting

syntax Value ::= formattedResult(K)

rule format-done

formatter-aux(—)

formattedResult(listToString(Result))

k

•

format

Result

formatResult

“normal”
formatState

•

formatModifiers

formatting

•

rule format-normal

formatter-aux(—)

k

S

•

format

•

S

formatResult

“normal”
formatState

when S =/=String “%”

rule format-reset

formatter-aux(—)

k

—
•

formatModifiers

—
“”

formatLength

“reset”
“normal”

formatState

rule format-%

formatter-aux(—)

k

“%”
•

format

“normal”
“%”

formatState

322

PhD Thesis, University of Illinois, July 2012

(n1570) §7.21.6.1 ¶4 Each conversion specification is introduced by the character %. After the %, the following appear in sequence:

• Zero or more flags (in any order) that modify the meaning of the conversion specification.

• An optional minimum field width. If the converted value has fewer characters than the field width, it is padded with spaces (by default) on the left (or right, if the left adjustment flag,
described later, has been given) to the field width. The field width takes the form of an asterisk * (described later) or a nonnegative decimal integer.)

• An optional precision that gives the minimum number of digits to appear for the d, i, o, u, x, and X conversions, the number of digits to appear after the decimal-point character for
a, A, e, E, f, and F conversions, the maximum number of significant digits for the g and G conversions, or the maximum number of bytes to be written for s conversions. The precision
takes the form of a period (.) followed either by an asterisk * (described later) or by an optional decimal integer; if only the period is specified, the precision is taken as zero. If a
precision appears with any other conversion specifier, the behavior is undefined.

• An optional length modifier that specifies the size of the argument.

• A conversion specifier character that specifies the type of conversion to be applied.

(n1570) §7.21.6.1 ¶5 As noted above, a field width, or precision, or both, may be indicated by an asterisk. In this case, an int argument supplies the field width or precision. The
arguments specifying field width, or precision, or both, shall appear (in that order) before the argument (if any) to be converted. A negative field width argument is taken as a - flag followed
by a positive field width. A negative precision argument is taken as if the precision were omitted.

323

PhD Thesis, University of Illinois, July 2012

(n1570) §7.21.6.1 ¶6 The flag characters and their meanings are:

- The result of the conversion is left-justified within the field. (It is right-justified if this flag is not specified.)

+ The result of a signed conversion always begins with a plus or minus sign. (It begins with a sign only when a negative value is converted if this flag is not specified.)

space If the first character of a signed conversion is not a sign, or if a signed conversion results in no characters, a space is prefixed to the result. If the space and + flags both appear, the
space flag is ignored.

The result is converted to an “alternative form”. For o conversion, it increases the precision, if and only if necessary, to force the first digit of the result to be a zero (if the value and
precision are both 0, a single 0 is printed). For x (or X) conversion, a nonzero result has 0x (or 0X) prefixed to it. For a, A, e, E, f, F, g, and G conversions, the result of converting a
floating-point number always contains a decimal-point character, even if no digits follow it. (Normally, a decimal-point character appears in the result of these conversions only if a digit
follows it.) For g and G conversions, trailing zeros are not removed from the result. For other conversions, the behavior is undefined.

0 For d, i, o, u, x, X, a, A, e, E, f, F, g, and G conversions, leading zeros (following any indication of sign or base) are used to pad to the field width rather than performing space padding,
except when converting an infinity or NaN. If the 0 and - flags both appear, the 0 flag is ignored. For d, i, o, u, x, and X conversions, if a precision is specified, the 0 flag is ignored.

For other conversions, the behavior is undefined.

rule format-%0

formatter-aux(—)

k

“0”
•

format

“%”
formatState

rule format-width

formatter-aux(—)

k

C

•

format

“%”
formatState

when (charToAscii(C) >Int asciiCharString(“0”)) ∧Bool (charToAscii(C) ≤Int asciiCharString(“9”))

324

PhD Thesis, University of Illinois, July 2012

(n1570) §7.21.6.1 ¶7 The length modifiers and their meanings are:

hh Specifies that a following d, i, o, u, x, or X conversion specifier applies to a signed char or unsigned char argument (the argument will have been promoted according to the integer
promotions, but its value shall be converted to signed char or unsigned char before printing); or that a following n conversion specifier applies to a pointer to a signed char
argument.

h Specifies that a following d, i, o, u, x, or X conversion specifier applies to a short int or unsigned short int argument (the argument will have been promoted according to the
integer promotions, but its value shall be converted to short int or unsigned short int before printing); or that a following n conversion specifier applies to a pointer to a
short int argument.

l (ell) Specifies that a following d, i, o, u, x, or X conversion specifier applies to a long int or unsigned long int argument; that a following n conversion specifier applies to a pointer
to a long int argument; that a following c conversion specifier applies to a wint_t argument; that a following s conversion specifier applies to a pointer to a wchar_t argument; or
has no effect on a following a, A, e, E, f, F, g, or G conversion specifier.

ll (ell-ell) Specifies that a following d, i, o, u, x, or X conversion specifier applies to a long long int or unsigned long long int argument; or that a following n conversion
specifier applies to a pointer to a long long int argument.

j Specifies that a following d, i, o, u, x, or X conversion specifier applies to an intmax_t or uintmax_t argument; or that a following n conversion specifier applies to a pointer to an
intmax_t argument.

z Specifies that a following d, i, o, u, x, or X conversion specifier applies to a size_t or the corresponding signed integer type argument; or that a following n conversion specifier applies
to a pointer to a signed integer type corresponding to size_t argument.

t Specifies that a following d, i, o, u, x, or X conversion specifier applies to a ptrdiff_t or the corresponding unsigned integer type argument; or that a following n conversion specifier
applies to a pointer to a ptrdiff_t argument.

L Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to a long double argument.

If a length modifier appears with any conversion specifier other than as specified above, the behavior is undefined.

syntax K ::= getFormatType
| getFormatType-aux(K,K)

rule

getFormatType

getFormatType-aux(State,Length)

k

Length

formatLength

State

formatState

325

PhD Thesis, University of Illinois, July 2012

rule
getFormatType-aux(“%a”,—)

t(•,double)
rule
getFormatType-aux(“%A”,—)

t(•,double)
rule
getFormatType-aux(“%e”,—)

t(•,double)
rule
getFormatType-aux(“%E”,—)

t(•,double)
rule
getFormatType-aux(“%f”,—)

t(•,double)
rule
getFormatType-aux(“%F”,—)

t(•,double)
rule
getFormatType-aux(“%g”,—)

t(•,double)
rule
getFormatType-aux(“%G”,—)

t(•,double)
rule
getFormatType-aux(“%c”, “”)

t(•,int)
rule

getFormatType-aux(“%s”, “”)

t(•,pointerType(t(•,unsigned-char)))
rule
getFormatType-aux(“%p”, “”)

t(•,pointerType(t(•,void)))

326

PhD Thesis, University of Illinois, July 2012

rule
getFormatType-aux(“%d”, “”)

t(•,int)
rule
getFormatType-aux(“%o”, “”)

t(•,int)
rule
getFormatType-aux(“%u”, “”)

t(•,unsigned-int)
rule
getFormatType-aux(“%x”, “”)

t(•,unsigned-int)
rule
getFormatType-aux(“%X”, “”)

t(•,unsigned-int)
rule
getFormatType-aux(“%n”, “”)

t(•,pointerType(t(•,int)))
rule
getFormatType-aux(“%d”, “l”)

t(•,long-int)
rule
getFormatType-aux(“%o”, “l”)

t(•,long-int)
rule
getFormatType-aux(“%u”, “l”)

t(•,unsigned-long-int)
rule
getFormatType-aux(“%x”, “l”)

t(•,unsigned-long-int)
rule
getFormatType-aux(“%X”, “l”)

t(•,unsigned-long-int)

327

PhD Thesis, University of Illinois, July 2012

rule
getFormatType-aux(“%n” , “l”)

t(•,pointerType(t(•,long-int)))
rule
getFormatType-aux(“%d”, “ll”)

t(•,long-long-int)
rule
getFormatType-aux(“%o”, “ll”)

t(•,long-long-int)
rule
getFormatType-aux(“%u”, “ll”)

t(•,unsigned-long-long-int)
rule
getFormatType-aux(“%x”, “ll”)

t(•,unsigned-long-long-int)
rule
getFormatType-aux(“%X”, “ll”)

t(•,unsigned-long-long-int)
rule

getFormatType-aux(“%n”, “ll”)

t(•,pointerType(t(•,long-long-int)))

(n1570) §7.21.6.1 ¶8

d,i The int argument is converted to signed decimal in the style [-]dddd. The precision specifies the minimum number of digits to appear; if the value being converted can be represented in
fewer digits, it is expanded with leading zeros. The default precision is 1. The result of converting a zero value with a precision of zero is no characters.

328

PhD Thesis, University of Illinois, July 2012

rule format-%d-start

formatter-aux(V)

formatter-next(V)

k

S

•

format

“%”
“%d”

formatState

when (S ==String “d”)
∨Bool (S ==String “i”)

rule format-%d

formatter-aux(—)

k

D

•

formatArg

•

Rat2String(D , 10)

formatResult

“%d”
“reset”

formatState

(n1570) §7.21.6.1 ¶8

o,u,x,X The unsigned int argument is converted to unsigned octal (o), unsigned decimal (u), or unsigned hexadecimal notation (x or X) in the style dddd ; the letters abcdef are used for
x conversion and the letters ABCDEF for X conversion. The precision specifies the minimum number of digits to appear; if the value being converted can be represented in fewer digits,
it is expanded with leading zeros. The default precision is 1. The result of converting a zero value with a precision of zero is no characters.

rule format-%o-start

formatter-aux(V)

formatter-next(V)

k

“o”
•

format

“%”
“%o”

formatState

rule format-%o

formatter-aux(—)

k

D

•

formatArg

•

Rat2String(D , 8)

formatResult

“%o”
“reset”

formatState

329

PhD Thesis, University of Illinois, July 2012

rule format-%u-start

formatter-aux(V)

formatter-next(V)

k

“u”
•

format

“%”
“%u”

formatState

rule format-%u

formatter-aux(—)

k

D

•

formatArg

•

Rat2String(D , 10)

formatResult

“%u”
“reset”

formatState

rule format-%x-start

formatter-aux(V)

formatter-next(V)

k

“x”
•

format

“%”
“%x”

formatState

rule format-%x

formatter-aux(—)

k

D

•

formatArg

•

Rat2String(D , 16)

formatResult

“%x”
“reset”

formatState

rule format-%X-start

formatter-aux(V)

formatter-next(V)

k

“X”
•

format

“%”
“%X”

formatState

rule format-%X

formatter-aux(—)

k

D

•

formatArg

•

toUpperCase(Rat2String(D , 16))

formatResult

“%X”
“reset”

formatState

330

PhD Thesis, University of Illinois, July 2012

(n1570) §7.21.6.1 ¶8

f,F A double argument representing a floating-point number is converted to decimal notation in the style [-]ddd.ddd, where the number of digits after the decimal-point character is equal
to the precision specification. If the precision is missing, it is taken as 6; if the precision is zero and the # flag is not specified, no decimal-point character appears. If a decimal-point
character appears, at least one digit appears before it. The value is rounded to the appropriate number of digits.

A double argument representing an infinity is converted in one of the styles [-]inf or [-]infinity—which style is implementation-defined. A double argument representing a NaN is
converted in one of the styles [-]nan or [-]nan(n-char-sequence)—which style, and the meaning of any n-char-sequence, is implementation-defined. The F conversion specifier produces
INF, INFINITY, or NAN instead of inf, infinity, or nan, respectively.

rule format-%f-start

formatter-aux(V)

formatter-next(V)

k

“f”
•

format

“%”
“%f”

formatState

rule format-%f

formatter-aux(—)

k

D

•

formatArg

•

Float2String(D)

formatResult

“%f”
“reset”

formatState

rule format-%F-start

formatter-aux(V)

formatter-next(V)

k

“F”
•

format

“%”
“%F”

formatState

rule format-%F

formatter-aux(—)

k

D

•

formatArg

•

toUpperCase(Float2String(D))

formatResult

“%F”
“reset”

formatState

331

PhD Thesis, University of Illinois, July 2012

(n1570) §7.21.6.1 ¶8

e,E A double argument representing a floating-point number is converted in the style [-]d.ddde±dd, where there is one digit (which is nonzero if the argument is nonzero) before the
decimal-point character and the number of digits after it is equal to the precision; if the precision is missing, it is taken as 6; if the precision is zero and the # flag is not specified, no
decimal-point character appears. The value is rounded to the appropriate number of digits. The E conversion specifier produces a number with E instead of e introducing the exponent.
The exponent always contains at least two digits, and only as many more digits as necessary to represent the exponent. If the value is zero, the exponent is zero.

A double argument representing an infinity or NaN is converted in the style of an f or F conversion specifier.

(n1570) §7.21.6.1 ¶8

g,G A double argument representing a floating-point number is converted in style f or e (or in style F or E in the case of a G conversion specifier), depending on the value converted and the
precision. Let P equal the precision if nonzero, 6 if the precision is omitted, or 1 if the precision is zero. Then, if a conversion with style E would have an exponent of X:

• if P > X = −4, the conversion is with style f (or F) and precision P − (X + 1).

• otherwise, the conversion is with style e (or E) and precision P − 1.

Finally, unless the # flag is used, any trailing zeros are removed from the fractional portion of the result and the decimal-point character is removed if there is no fractional portion
remaining.

A double argument representing an infinity or NaN is converted in the style of an f or F conversion specifier.

rule format-%g-start

formatter-aux(V)

formatter-next(V)

k

“g”
•

format

“%”
“%g”

formatState

rule format-%g

formatter-aux(—)

k

D

•

formatArg

•

Float2String(D)

formatResult

“%g”
“reset”

formatState

332

PhD Thesis, University of Illinois, July 2012

rule format-%G-start

formatter-aux(V)

formatter-next(V)

k

“G”
•

format

“%”
“%G”

formatState

rule format-%G

formatter-aux(—)

k

D

•

formatArg

•

toUpperCase(Float2String(D))

formatResult

“%G”
“reset”

formatState

(n1570) §7.21.6.1 ¶8

c If no l length modifier is present, the int argument is converted to an unsigned char, and the resulting character is written.

If an l length modifier is present, the wint_t argument is converted as if by an ls conversion specification with no precision and an argument that points to the initial element of a
two-element array of wchar_t, the first element containing the wint_t argument to the lc conversion specification and the second a null wide character.

rule format-%c-start

formatter-aux(V)

formatter-next(V)

k

“c”
•

format

“%”
“%c”

formatState

rule format-%c

formatter-aux(—)

k

C

•

formatArg

•

charString(((C %Int 256) +Int 256) %Int 256)

formatResult

“%c”
“reset”

formatState

333

PhD Thesis, University of Illinois, July 2012

(n1570) §7.21.6.1 ¶8

s If no l length modifier is present, the argument shall be a pointer to the initial element of an array of character type. Characters from the array are written up to (but not including) the
terminating null character. If the precision is specified, no more than that many bytes are written. If the precision is not specified or is greater than the size of the array, the array shall
contain a null character.

If an l length modifier is present, the argument shall be a pointer to the initial element of an array of wchar_t type. Wide characters from the array are converted to multibyte
characters (each as if by a call to the wcrtomb function, with the conversion state described by an mbstate_t object initialized to zero before the first wide character is converted)
up to and including a terminating null wide character. The resulting multibyte characters are written up to (but not including) the terminating null character (byte). If no precision is
specified, the array shall contain a null wide character. If a precision is specified, no more than that many bytes are written (including shift sequences, if any), and the array shall contain
a null wide character if, to equal the multibyte character sequence length given by the precision, the function would need to access a wide character one past the end of the array. In no
case is a partial multibyte character written.

rule format-%s-start

formatter-aux(V)

formatter-next(V)

k

“s”
•

format

“%”
“%s”

formatState

rule format-%s

•

getString(Loc)

y formatter-aux(—)

k

Loc

•

formatArg

“%s”
“%s-read”

formatState

rule format-%s-done

str(S)

•

y formatter-aux(—)

k

•

S

formatResult

“%s-read”
“reset”

formatState

(n1570) §7.21.6.1 ¶8

p The argument shall be a pointer to void. The value of the pointer is converted to a sequence of printing characters, in an implementation-defined manner.

334

PhD Thesis, University of Illinois, July 2012

rule format-%p-start

formatter-aux(V)

formatter-next(V)

k

“p”
•

format

“%”
“%p”

formatState

rule format-%p

formatter-aux(—)

k

Loc

•

formatArg

•

pointerToString(Loc)

formatResult

“%p”
“reset”

formatState

(n1570) §7.21.6.1 ¶8

n The argument shall be a pointer to signed integer into which is written the number of characters written to the output stream so far by this call to fprintf. No argument is converted,
but one is consumed. If the conversion specification includes any flags, a field width, or a precision, the behavior is undefined.

(n1570) §7.21.6.1 ¶8

% A % character is written. No argument is converted. The complete conversion specification shall be %%.

rule format-%%

formatter-aux(—)

k

“%”
•

format

•

“%”

formatResult

“%”
“reset”

formatState

rule format-%l

formatter-aux(—)

k

“l”
•

format

“%”
formatState

Length

Length +String “l”

formatLength

335

PhD Thesis, University of Illinois, July 2012

end module

module DYNAMIC-C-STANDARD-LIBRARY-STDLIB

imports DYNAMIC-C-STANDARD-LIBRARY-INCLUDE

rule debug

prepareBuiltin(Identifier(“__debug”),—)

skipval

k

[interpRule]

rule debug-k

debug

•

k

[interpRule]

rule debug-m

debug-m(—)

•

k

[interpRule]

rule exit

prepareBuiltin(Identifier(“exit”), I :t(—,int)) y —
I :t(•,int)

k

rule abort

prepareBuiltin(Identifier(“abort”), •) y —
printString(“Aborted”) y 134 :t(•,int)

k

336

PhD Thesis, University of Illinois, July 2012

(n1570) §7.22.3.4 ¶2–3 The malloc function allocates space for an object whose size is specified by size and whose value is indeterminate.

The malloc function returns either a null pointer or a pointer to the allocated space.

syntax K ::= newAlloc(Nat)

define
newAlloc(Fresh)

loc(threadId(allocatedDuration) +Int Fresh, 0, 0)
rule malloc

prepareBuiltin(Identifier(“malloc”),Len :T)

alloc(newAlloc(Fresh),Len) y newAlloc(Fresh) :t(•,pointerType(t(•,void)))

k

•

newAlloc(Fresh) 7→ Len

malloced

Fresh

Fresh +Int 1

freshNat

(n1570) §7.22.3.5 ¶2–4 The realloc function deallocates the old object pointed to by ptr and returns a pointer to a new object that has the size specified by size. The contents of
the new object shall be the same as that of the old object prior to deallocation, up to the lesser of the new and old sizes. Any bytes in the new object beyond the size of the old object have
indeterminate values.

If ptr is a null pointer, the realloc function behaves like the malloc function for the specified size. Otherwise, if ptr does not match a pointer earlier returned by a memory management
function, or if the space has been deallocated by a call to the free or realloc function, the behavior is undefined. If memory for the new object cannot be allocated, the old object is not
deallocated and its value is unchanged.

The realloc function returns a pointer to the new object (which may have the same value as a pointer to the old object), or a null pointer if the new object could not be allocated.

rule realloc

prepareBuiltin(Identifier(“realloc”),OldLoc :— ,, NewLen :T)

realloc(OldLoc,newAlloc(Fresh),OldLen,NewLen) y newAlloc(Fresh) :t(•,pointerType(t(•,void)))

k

OldLoc

newAlloc(Fresh)

7→ OldLen

NewLen

malloced

Fresh

Fresh +Int 1

freshNat

when OldLoc =/=K NullPointer

rule realloc-null

prepareBuiltin(Identifier(“realloc”),NullPointer :— ,, Len)

prepareBuiltin(Identifier(“malloc”),Len)

k

337

PhD Thesis, University of Illinois, July 2012

syntax K ::= calloc-aux

rule calloc

prepareBuiltin(Identifier(“calloc”),N :— ,, Size :—)

prepareBuiltin(Identifier(“malloc”),N ∗Int Size : cfg:sizeut) y calloc-aux

k

rule calloc-aux

•

zeroBlock(Loc)

y Loc :t(—,pointerType(t(—,void))) y calloc-aux

•

k

rule free

prepareBuiltin(Identifier(“free”),Loc :t(—,pointerType(—)))

deleteSizedBlock(Loc,Len) y skipval

k

Loc 7→ Len

•

malloced

rule rand

prepareBuiltin(Identifier(“rand”), •)

(absInt randomRandom(Fresh)) %Int max(t(•,int)) :t(•,int)

k

Fresh

Fresh +Int 1

randNat

rule srand

prepareBuiltin(Identifier(“srand”),N :t(•,unsigned-int))

skipval

k

—
N

randNat

end module

module DYNAMIC-C-STANDARD-LIBRARY-STRING

imports DYNAMIC-C-STANDARD-LIBRARY-INCLUDE

syntax K ::= strcpy(K,K,K)

338

PhD Thesis, University of Illinois, July 2012

rule strcpy-start

prepareBuiltin(Identifier(“strcpy”),Dest :t(—,pointerType(—)) ,, Src :t(—,pointerType(—)))

strcpy(Dest ,Src,Dest)

k

rule strcpy-pre

•

read(Src,t(•,char))

y strcpy(—, Src

Src +Int 1

,—)

k

rule strcpy-some

I :T

write(lv(Dest ,t(•,char)), I :T)

y strcpy(Dest

Dest +Int 1

,—,—)

k

when I =/=Int 0

rule strcpy-done

0 :T y strcpy(Dest ,—,Orig)

write(lv(Dest ,t(•,char)), 0 :T) y Orig :t(•,pointerType(t(•,char)))

k

end module

module DYNAMIC-C-STANDARD-LIBRARY-THREADS

imports DYNAMIC-C-STANDARD-LIBRARY-INCLUDE

syntax K ::= spawn-aux(Nat,Value,Value)
| join-aux(Nat,Value)

syntax Nat ::= thrd-busy
| thrd-error
| thrd-nomem
| thrd-success
| thrd-timeout

339

PhD Thesis, University of Illinois, July 2012

syntax K ::= threadClosed

syntax Nat ::= threadId(Nat,Nat)

syntax K ::= threadJoining(Nat)
| threadRunning

macro
thrd-success = 0 :t(•,int)

macro
thrd-error = 1 :t(•,int)

macro
thrd-timeout = 2 :t(•,int)

macro
thrd-busy = 3 :t(•,int)

macro
thrd-nomem = 4 :t(•,int)

rule thrd-create-start

prepareBuiltin(Identifier(“thrd_create”),ThreadIdPointer ,, ThreadFuncPointer ,, ThreadArg)

(* ThreadIdPointer) := Fresh :t(•,int); y spawn-aux(Fresh,ThreadFuncPointer ,ThreadArg)

k

Fresh

Fresh +Int 1

nextThreadId

340

PhD Thesis, University of Illinois, July 2012

rule thrd-create


spawn-aux(ThreadId ,ThreadFuncPointer ,ThreadArg)

thrd-success

k

Tu

currTU

•

buffer

thread

Env

genv

Status

Status [threadRunning / ThreadId]

threadStatus

•

firstLoc(ThreadId)

nextLoc

ThreadId

threadId

Call(ThreadFuncPointer ,List(ThreadArg))

k

Env

env

Tu

currTU

thread




[computational]

rule thrd-current

prepareBuiltin(Identifier(“thrd_current”), •)

ThreadId :t(•,int)

k

ThreadId

threadId

rule thrd-join-start

prepareBuiltin(Identifier(“thrd_join”),ThreadId :t(—,int) ,, ResultPointer)

join-aux(ThreadId ,ResultPointer)

k

341

PhD Thesis, University of Illinois, July 2012

rule thrd-join

join-aux(ThreadId ,Loc :—)

if Loc =/=K NullPointer
then (* Loc) := V ;
else

•

fi

y thrd-success

k

•

buffer

thread

V

k

ThreadId

threadId

thread

[computational]

rule mtx-init

prepareBuiltin(Identifier(“mtx_init”),Loc :— ,, Type :—)

thrd-success

k

M •

Loc 7→ Type

mutexes

when (¬Bool (Loc in (keys M))) ∧Bool (Type ==Int cfg:mtxPlain)

rule mtx-lock

prepareBuiltin(Identifier(“mtx_lock”),Loc :—)

thrd-success

k

•

buffer

Loc 7→ Type

mutexes

B •

Loc

glocks

•

Loc

locks

when (¬Bool (Loc in B)) ∧Bool (Type ==Int cfg:mtxPlain)
[computational]

rule mtx-unlock

prepareBuiltin(Identifier(“mtx_unlock”),Loc :—)

thrd-success

k

•

buffer

Loc 7→ Type

mutexes

Loc

•

glocks

Loc

•

locks

when Type ==Int cfg:mtxPlain
[computational]

end module

342

PhD Thesis, University of Illinois, July 2012

module DYNAMIC-C-STANDARD-LIBRARY-TIME

imports DYNAMIC-C-STANDARD-LIBRARY-INCLUDE

rule time

prepareBuiltin(Identifier(“time”),—)

0 :t(•,long-long-int)

k

end module

module DYNAMIC-C-STANDARD-LIBRARY-MISC

imports DYNAMIC-C-STANDARD-LIBRARY-INCLUDE

end module

module DYNAMIC-C-STANDARD-LIBRARY

imports DYNAMIC-INCLUDE

imports DYNAMIC-C-STANDARD-LIBRARY-HELPERS

imports DYNAMIC-C-STANDARD-LIBRARY-MATH

imports DYNAMIC-C-STANDARD-LIBRARY-SETJMP

imports DYNAMIC-C-STANDARD-LIBRARY-STDARG

imports DYNAMIC-C-STANDARD-LIBRARY-STDDEF

imports DYNAMIC-C-STANDARD-LIBRARY-STDIO

imports DYNAMIC-C-STANDARD-LIBRARY-STDLIB

imports DYNAMIC-C-STANDARD-LIBRARY-STRING

imports DYNAMIC-C-STANDARD-LIBRARY-THREADS

343

PhD Thesis, University of Illinois, July 2012

imports DYNAMIC-C-STANDARD-LIBRARY-TIME

imports DYNAMIC-C-STANDARD-LIBRARY-MISC

end module

344

PhD Thesis, University of Illinois, July 2012

A.9 Error Handling
This section is a collection of rules that discern precise error conditions and
generates English error messages in those cases. While these rules do not
affect the correctness of the semantics, they make working with the semantics
much easier for the end user.

345

PhD Thesis, University of Illinois, July 2012

module DYNAMIC-SEMANTICS-ERRORS-INCLUDE

imports COMMON-C-SEMANTICS

imports DYNAMIC-C-SEMANTICS-MISC

imports DYNAMIC-C-EXPRESSIONS

imports DYNAMIC-C-TYPING

imports DYNAMIC-C-DECLARATIONS

imports DYNAMIC-C-MEMORY

imports DYNAMIC-C-STATEMENTS

imports DYNAMIC-C-CONVERSIONS

imports DYNAMIC-C-STANDARD-LIBRARY

end module

module DYNAMIC-C-ERRORS

imports DYNAMIC-SEMANTICS-ERRORS-INCLUDE

syntax K ::= Error(String,String) [function]

define
Error(Name,Msg)

(((“Error:” +String Name) +String “\n”) +String “Description:”) +String Msg

syntax K ::= ICE(String,String) [function]

define
ICE(Name,Msg)

Error(Name,Msg) +String “\nNOTE: Please send a test case exhibiting this bug to celliso2@illnois.edu; it could indicate an internal error in KCC.”

syntax Bag ::= halt Bag [function]

346

PhD Thesis, University of Illinois, July 2012

define
halt < k

halted-k

> — </ k

halted-k

>

define
halt < L > K </ L >

< L > K </ L >

when L =/=CellLabel k

define
halt < L > B </ L >

< L > halt B </ L >
define
halt < L > K </ L >

< L > K </ L >
define
halt < L > K </ L >

< L > K </ L >
define
halt < L > K </ L >

< L > K </ L >
define
halt •

•

rule halt-start

< T

halted-T

>... B

halt B

—
finalComputation

thread

threads

...</ T

halted-T

>

347

PhD Thesis, University of Illinois, July 2012

rule err00001


< k

finalComputation

> cast(t(—,T),emptyValue) ...</ k

finalComputation

>

•

Error(“00001”, “Casting empty value to type other than void.”)
errorCell




when T =/=K void

rule err00002


< k

finalComputation

> assert(false, 2) ...</ k

finalComputation

>

•

Error(“00002”, “Reading outside the bounds of an object.”)
errorCell




rule err00003


< k

finalComputation

> assert(false, 3) ...</ k

finalComputation

>

•

Error(“00003”, “Unsequenced side effect on scalar object with value computation of same object.”)
errorCell




rule err00005


< k

finalComputation

> extractByteFromMem(loc(Block ,—,—)) ...</ k

finalComputation

> M

memory

•

ICE(“00005”, “Referring to an object outside of its lifetime.”)
errorCell




when ¬Bool (Block in gatherInnerCells(M , basePtr))

348

PhD Thesis, University of Illinois, July 2012

rule err00006


< k

finalComputation

> joinIntegerBytes-aux(T ,— ,, piece(unknown(Len),Len),—) ...</ k

finalComputation

>

•

Error(“00006”, “Reading unspecified(possibly uninitialized)memory,or trying to read a pointer or float through an integer type.”)
errorCell




when ¬Bool isCharType(T)

rule err00007


< k

finalComputation

> checkValidLoc-aux(loc(Block ,—,—)) ...</ k

finalComputation

> M

memory

•

Error(“00007”, “Referring to an object outside of its lifetime.”)
errorCell




when ¬Bool (Block in gatherInnerCells(M , basePtr))

rule err00008


< k

finalComputation

> concretize(t(—,pointerType(—)),dataList(piece(unknown(Len),Len) ,, —)) ...</ k

finalComputation

>

•

Error(“00008”, “Reading uninitialized memory.”)
errorCell




rule err00009


< k

finalComputation

> concretize(T ,dataList(piece(unknown(Len),Len) ,, —)) ...</ k

finalComputation

>

•

Error(“00009”, “Reading uninitialized memory.”)
errorCell




when isFloatType(T)

349

PhD Thesis, University of Illinois, July 2012

rule err00010


< k

finalComputation

> checkValidLoc-aux(loc(Base,Offset ,—)) ...</ k

finalComputation

> Base

basePtr

Len

oLength

object

•

Error(“00010”, “Found pointer that refers outside the bounds of an object + 1.”)
errorCell




when Offset >Int Len

rule err00011


< k

finalComputation

> — :T < — :T ′ ...</ k

finalComputation

>

•

Error(“00011”, “Directly comparing an integer type with a pointer type.”)
errorCell




when (hasIntegerType(T) ∧Bool isPointerType(T ′))
∨Bool (isPointerType(T) ∧Bool hasIntegerType(T ′))

rule err00012


< k

finalComputation

> — :T <= — :T ′ ...</ k

finalComputation

>

•

Error(“00012”, “Directly comparing an integer type with a pointer type.”)
errorCell




when (hasIntegerType(T) ∧Bool isPointerType(T ′))
∨Bool (isPointerType(T) ∧Bool hasIntegerType(T ′))

350

PhD Thesis, University of Illinois, July 2012

rule err00013


< k

finalComputation

> — :T > — :T ′ ...</ k

finalComputation

>

•

Error(“00013”, “Directly comparing an integer type with a pointer type.”)
errorCell




when (hasIntegerType(T) ∧Bool isPointerType(T ′))
∨Bool (isPointerType(T) ∧Bool hasIntegerType(T ′))

rule err00014


< k

finalComputation

> — :T >= — :T ′ ...</ k

finalComputation

>

•

Error(“00014”, “Directly comparing an integer type with a pointer type.”)
errorCell




when (hasIntegerType(T) ∧Bool isPointerType(T ′))
∨Bool (isPointerType(T) ∧Bool hasIntegerType(T ′))

rule err00015


< k

finalComputation

> arithInterpret(T , I) ...</ k

finalComputation

>

•

Error(“00015”, “Signed overflow.”)
errorCell




when hasSignedIntegerType(T) ∧Bool (¬Bool ((min(T) ≤Int I) ∧Bool (max(T) ≥Int I)))

351

PhD Thesis, University of Illinois, July 2012

rule err00016


< k

finalComputation

> writeByte(Loc,—) ...</ k

finalComputation

> Locs

locsWrittenTo

•

Error(“00016” , “Unsequenced side effect on scalar object with side effect of same object.”)
errorCell




when Loc in Locs

rule err00017


< k

finalComputation

> I1 :T / 0 :T ...</ k

finalComputation

>

•

Error(“00017”, “Division by 0.”)
errorCell




when hasIntegerType(T) ∧Bool isPromoted(T)

rule err00018


< k

finalComputation

> I1 :T % 0 :T ...</ k

finalComputation

>

•

Error(“00018”, “Modulus by 0.”)
errorCell




when hasIntegerType(T) ∧Bool isPromoted(T)

352

PhD Thesis, University of Illinois, July 2012

rule err00019


< k

finalComputation

> I1 :T % I2 :T ...</ k

finalComputation

>

•

Error(“00019”, “Signed overflow.”)
errorCell




when ((hasIntegerType(T) ∧Bool (¬Bool ((min(T) ≤Int (I1 ÷Int I2)) ∧Bool (max(T) ≥Int (I1 ÷Int I2))))) ∧Bool isPromoted(T)) ∧Bool (I2 =/=Int 0)

rule err00020


< k

finalComputation

> writeByte(loc(Base,Offset ,—),—) ...</ k

finalComputation

> Base

basePtr

Len

oLength

object

•

Error(“00020”, “Tried to write outside the bounds of an object.”)
errorCell




when ¬Bool (Offset <Int Len)

rule err00021


< k

finalComputation

> Identifier(S) ...</ k

finalComputation

> M

env

•

Error(“00021”, (“Trying to look up identifier” +String S) +String “,but no such identifier is in scope.”)
errorCell




when ¬Bool $hasMapping(M ,Identifier(S))

353

PhD Thesis, University of Illinois, July 2012

rule err00022


< k

finalComputation

> leftShiftInterpret(T , I ,E1 :T) ...</ k

finalComputation

>

•

Error(“00022”, “Trying to left-shift a negative signed value.”)
errorCell




when hasSignedIntegerType(T) ∧Bool (E1 <Int 0)

rule err00023


< k

finalComputation

> leftShiftInterpret(T , I ,E1 :T) ...</ k

finalComputation

>

•

Error(“00023”, “Trying to left-shift a signed value,but the result is not representable in the result type.”)
errorCell




when hasSignedIntegerType(T) ∧Bool (¬Bool (I ≤Int (2 Înt (absInt numBits(T)))))

rule err00024


< k

finalComputation

> arithInterpret(—, I &Int I ′) ...</ k

finalComputation

>

•

Error(“00024”, “Bitwise & used on a symbolic number(address)or float.”)
errorCell




when (¬Bool isConcreteNumber(I))
∨Bool (¬Bool isConcreteNumber(I ′))

rule err00025


< k

finalComputation

> callMain-aux(t(—,functionType(t(—,T),—)),—,—,—) ...</ k

finalComputation

>

•

Error(“00025”, “Main must return an int.”)
errorCell




when T =/=K int

354

PhD Thesis, University of Illinois, July 2012

rule err00026


< k

finalComputation

> callMain-aux(t(—,functionType(t(—,int),typedDecl(t(—,T),—) ,, —)),—,—,—) ...</ k

finalComputation

>

•

Error(“00026”, “If main has arguments,the type of the first argument must be equivalent to \"int\".”)
errorCell




when (T =/=K int) ∧Bool (T =/=K void)

syntax Bool ::= isArgvType(Type) [function]

define
isArgvType(t(—,T))

false

when ¬Bool

(
((getKLabel(T)) ==KLabel incompleteArrayType)

∨Bool ((getKLabel(T)) ==KLabel incompleteArrayType)

)

define
isArgvType(t(—,incompleteArrayType(t(—,T))))

false
when ¬Bool ((getKLabel(T)) ==KLabel pointerType)

define
isArgvType(t(—,incompleteArrayType(t(—,pointerType(t(—,T))))))

false
when T =/=K char

define
isArgvType(t(—,pointerType(t(—,T))))

false
when ¬Bool ((getKLabel(T)) ==KLabel pointerType)

define
isArgvType(t(—,pointerType(t(—,pointerType(t(—,T))))))

false
when T =/=K char

355

PhD Thesis, University of Illinois, July 2012

rule err00027


< k

finalComputation

> callMain-aux(t(—,functionType(t(—,int),typedDecl(t(—,int),—) ,, typedDecl(T ,—))),—,—,—) ...</ k

finalComputation

>

•

Error(“00027”, “If main has arguments,the type of the second argument must be equivalent to char** .”)
errorCell




when ¬Bool isArgvType(T)

rule err00028


< k

finalComputation

> callMain-aux(t(—,functionType(t(—,int),— ,, — ,, — ,, —)),—,—,—) ...</ k

finalComputation

>

•

Error(“00028”, “Main can only have zero or two arguments.”)
errorCell




rule err00029


< k

finalComputation

> callMain-aux(t(—,functionType(t(—,int),typedDecl(t(—,T),—))),—,—,—) ...</ k

finalComputation

>

•

Error(“00029” , “Main can only have zero or two arguments.”)
errorCell




when T =/=K void

rule err00030


< k

finalComputation

> loc(Base,—,—) :T < loc(Base ′,—,—) :T ...</ k

finalComputation

>

•

Error(“00030”, “Cannot compare pointers with different base objects using <.”)
errorCell




when Base =/=K Base ′

356

PhD Thesis, University of Illinois, July 2012

rule err00031


< k

finalComputation

> loc(Base,—,—) :T > loc(Base ′,—,—) :T ...</ k

finalComputation

>

•

Error(“00031”, “Cannot compare pointers with different base objects using >.”)
errorCell




when Base =/=K Base ′

rule err00032


< k

finalComputation

> loc(Base,—,—) :T <= loc(Base ′,—,—) :T ...</ k

finalComputation

>

•

Error(“00032”, “Cannot compare pointers with different base objects using <=.”)
errorCell




when Base =/=K Base ′

rule err00033


< k

finalComputation

> loc(Base,—,—) :T >= loc(Base ′,—,—) :T ...</ k

finalComputation

>

•

Error(“00033”, “Cannot compare pointers with different base objects using >=.”)
errorCell




when Base =/=K Base ′

rule err00034


< k

finalComputation

> cast(t(—,T),skipval) ...</ k

finalComputation

>

•

Error(“00034”, “Casting void type to non-void type.”)
errorCell




when T =/=K void

357

PhD Thesis, University of Illinois, July 2012

rule err00035


< k

finalComputation

> write(lv(Dest ,t(Const —,—)),—) ...</ k

finalComputation

>

•

Error(“00035”, “Trying to write through a const lvalue.”)
errorCell




rule err00036


< k

finalComputation

> checkDerefLoc(NullPointer) ...</ k

finalComputation

>

•

Error(“00036” , “Trying to dereference a null pointer.”)
errorCell




rule err00037


< k

finalComputation

> read-aux(NullPointer,—,—) ...</ k

finalComputation

>

•

Error(“00037”, “Trying to read through a null pointer.”)
errorCell




rule err00038


< k

finalComputation

> ArrayType(T , 0 :—,—) ...</ k

finalComputation

>

•

Error(“00038”, “Arrays cannot be of 0 length.”)
errorCell




358

PhD Thesis, University of Illinois, July 2012

rule err00039


< k

finalComputation

> addUnion(S , •) ...</ k

finalComputation

>

•

Error(“00039”, “Unions cannot be empty.”)
errorCell




rule err00040


< k

finalComputation

> addStruct(S , •) ...</ k

finalComputation

>

•

Error(“00040”, “Structs cannot be empty.”)
errorCell




rule err00041


< k

finalComputation

> types(t(—,void) ,, t(—,T)) ...</ k

finalComputation

>

•

Error(“00041”, “If one of a conditional expressions branches has void type,the other must also have void type.”)
errorCell




when T =/=K void

rule err00042


< k

finalComputation

> types(t(—,T) ,, t(—,void)) ...</ k

finalComputation

>

•

Error(“00042”, “If one of a conditional expressions branches has void type,the other must also have void type.”)
errorCell




when T =/=K void

359

PhD Thesis, University of Illinois, July 2012

rule err00043


< k

finalComputation

> types(T1 ,, T2) ...</ k

finalComputation

>

•

Error(“00043”, “If one of a conditional expressions branches has struct or union type,the other must have the same type.”)
errorCell




when
(
(T1 =/=K T2) ∧Bool

(
isStructType(T1)

∨Bool isUnionType(T1)

))
∧Bool

(
isStructType(T2)

∨Bool isUnionType(T2)

)

rule err00044


< k

finalComputation

> addToPointer(Loc,T , I ,Size :—) ...</ k

finalComputation

>

•

Error(“00044”, “An array subscript is out of range.”)
errorCell




when ¬Bool ifFromArrayInBounds(T , I)

rule err00045


< k

finalComputation

> writeByte(loc(Base,—,—),V) ...</ k

finalComputation

> Base

basePtr

mconst

properties

object

•

Error(“00045”, “Trying to modify a string literal or an object declared with const type.”)
errorCell




360

PhD Thesis, University of Illinois, July 2012

rule err00046


< k

finalComputation

> concretize(T ,dataList(piece(N ,Len) ,, —)) ...</ k

finalComputation

>

•

Error(“00046”, “Trying to reinterpret integer bytes as floating bytes.”)
errorCell




when isFloatType(T) ∧Bool (N ≥Int 0)

rule err00047


< k

finalComputation

> writeByte(Loc,V) ...</ k

finalComputation

> Loc 7→—
notWritable

•

Error(“00047”, “Trying to modify an object declared with const type.”)
errorCell




syntax K ::= datarace(Nat,Nat,Nat,Nat)

361

PhD Thesis, University of Illinois, July 2012

rule read-write-race


— — — read-aux(Loc,—,BitSize)

k

thread

— write-aux(Loc′,—,BitSize ′)

k

thread

•

threads

T

•

Error(“00048”, “Have a read-write datarace.”)
errorCell




when ((Loc ≤Int Loc′) ∧Bool (Loc′ <Int (Loc +Int bitsToBytes(BitSize))))
∨Bool ((Loc >Int Loc′) ∧Bool ((Loc′ +Int bitsToBytes(BitSize ′)) >Int Loc))

[computational]

362

PhD Thesis, University of Illinois, July 2012

rule write-write-race


— — — write-aux(Loc,—,BitSize)

k

thread

— write-aux(Loc′,—,BitSize ′)

k

thread

•

threads

T

•

Error(“00049”, “Have a write-write datarace.”)
errorCell




when ((Loc ≤Int Loc′) ∧Bool (Loc′ <Int (Loc +Int bitsToBytes(BitSize))))
∨Bool ((Loc >Int Loc′) ∧Bool ((Loc′ +Int bitsToBytes(BitSize ′)) >Int Loc))

[computational]

end module

363

PhD Thesis, University of Illinois, July 2012

A.10 Miscellaneous
This section is a collection of miscellaneous rules and syntax for all of the
helper operators used elsewhere in the semantics. Some of these operators
may be useful for other semantics defined in K, but have not yet made it in
the K library. This section also contains descriptions of values.

364

PhD Thesis, University of Illinois, July 2012

module COMMON-INCOMING-MODULES

imports C-SYNTAX

imports COMMON-C-CONFIGURATION

imports K-CONTEXTS

end module

module COMMON-SEMANTIC-SYNTAX

imports COMMON-INCOMING-MODULES

syntax BaseValue ::= Nat
| Int
| Float

syntax C ::= BaseValue
| Type
| Value

syntax KResult ::= Value
| Type

define
true
∨Bool —

true
define

—
∨Bool true

true
define
false ∧Bool —

false

365

PhD Thesis, University of Illinois, July 2012

define
— ∧Bool false

false

syntax K ::= fromUnion(Id)

syntax Type ::= typedDecl(Type, Id)

syntax K ::= DeclType(K,K) [strict(1)]

syntax Set ::= setOfTypes

syntax K ::= usualArithmeticConversion(Type,Type)
| callMain-aux(K,Nat, Id,K) [strict(1)]
| initFunction(K,K) [strict]
| populateFromGlobal
| checkValidLoc(K)
| checkDerefLoc(K)

syntax ListItem ::= ListItem(Bag)

syntax K ::= ListToK(List) [function]
| Map(Map)

syntax Nat ::= piece(Nat,Nat)

define
isInt(piece(—,—))

true

syntax Nat ::= unknown(Nat)

define
isInt(unknown(—))

true

syntax KResult ::= skipval

syntax K ::= debug
| debug-m(K)
| discard

366

PhD Thesis, University of Illinois, July 2012

syntax Id ::= File-Scope
| unnamedBitField

syntax Nat ::= loc(K,K,K)

define
isInt(loc(—,—,—))

true

syntax K ::= K +bits K [function]

define
loc(Base,Offset ,BitOffset) +bits N

loc(Base,Offset ,BitOffset +Int N)

syntax Value ::= enumItem(Id,Value)

syntax K ::= resolveReferences

syntax String ::= toString(K)

syntax Type ::= maxType(Type,Type)

syntax Nat ::= bitRange(Nat,Nat,Nat)

syntax K ::= fillToBytes(K) [strict]

syntax Nat ::= floorLoc(Nat)
| ceilingLoc(Nat)

syntax K ::= readFunction(Nat)

syntax Type ::= innerType(Type) [function]

syntax K ::= extractBitsFromList(K,Nat,Nat) [strict(1)]

syntax Id ::= typedef(Id)
| unnamed(Nat)

367

PhD Thesis, University of Illinois, July 2012

syntax Nat ::= NullPointerConstant

define
isInt(NullPointerConstant)

true

syntax Nat ::= NullPointer

define
isInt(NullPointer)

true

syntax Value ::= emptyValue

syntax K ::= allocate(Type,K)
| zero(K)
| zeroBlock(Nat)
| value(K)
| sizeofLocation(K)

syntax Type ::= type(K)

syntax K ::= flush(Nat)
| allocateType(Nat,Type)
| allocateTypeIfAbsent(Nat,Type)
| giveType(Id,Type)
| addToEnv(Id,Nat)
| read(K,K) [strict(2)]
| write(K,K) [strict(2)]
| writeByte(Nat,K)

syntax Bool ::= isTypeCompatible(K,K) [function]
| isPromoted(Type) [function]

syntax Nat ::= inc(Nat)

define
isNat(threadId(N) +Int M)

true

368

PhD Thesis, University of Illinois, July 2012

define
isNat(allocatedDuration+Int M)

true

syntax Nat ::= threadId(Nat)
| allocatedDuration

syntax K ::= initialize(Id,Type,K)

syntax BagItem ::= mlength(Nat)
| mconst

syntax K ::= makeUnwritable(Nat)
| makeUnwritableSubObject(K)
| makeUnwritableVar(K)

context: makeUnwritableSubObject(�
peval(�)

)

syntax K ::= listToK(K)
| klistToK(List{K})
| UnknownCabsLoc
| assert(Bool,Nat)

syntax SimpleType ::= bool
| void
| bool
| char
| short-int
| int
| long-int
| long-long-int
| float
| double
| long-double
| signed-char
| unsigned-char
| unsigned-short-int
| unsigned-int

369

PhD Thesis, University of Illinois, July 2012

| unsigned-long-int
| unsigned-long-long-int
| no-type

syntax Type ::= t(Set,SimpleType)

syntax Bool ::= isBasicType(K)

syntax SimpleType ::= enumType(Id)
| arrayType(Type, Int)
| incompleteArrayType(Type)
| flexibleArrayType(Type)
| bitfieldType(Type,Nat)
| functionType(Type,List{KResult})
| pointerType(Type)
| structType(Id)
| unionType(Id)
| qualifiedType(Type,K)

syntax Type ::= unqualifyType(K) [function]
| removeStorageSpecifiers(K) [function]

syntax SimpleType ::= prototype(Type)
| typedefType(Id,Type)
| variadic

syntax KResult ::= dataList(List{K})

syntax K ::= sizeofType(K) [strict]
| bitSizeofType(K) [strict]
| byteSizeofType(K) [strict]

syntax Nat ::= bitsToBytes(K)

syntax K ::= l(KLabel)

syntax Bool ::= Set contains K [function]

syntax Set ::= assignmentLabels

370

PhD Thesis, University of Illinois, July 2012

macro
assignmentLabels = Set(l(_:=_) ,, l(_*=_) ,, l(_/=_) ,, l(_%=_) ,, l(_+=_) ,, l(_-=_) ,, l(_�=_) ,, l(_�=_) ,, l(_&=_) ,, l(_ˆ=_) ,, l(_|=_))

syntax Set ::= getModifiers(K)

syntax K ::= AllowWrite(K) [strict]

rule
AllowWrite(lv(N ,T))

lv(N ,stripConst(T))

[anywhere]

syntax Type ::= stripConst(Type) [function]

define
stripConst(t(Const

•

—,—))

define
stripConst(t(S ,T))

t(S ,T)

when ¬Bool (Const in S)

syntax K ::= bind(List{KResult},List{KResult})

syntax Value ::= List{K} :Type
| lv(List{K},Type)

syntax K ::= concretize(Type,K) [strict(2)]

syntax Value ::= functionObject(Id,Type,K)
| functionPrototype(Id,Type)

syntax Char ::= firstChar(String)
| nthChar(String,Nat)

syntax String ::= butFirstChar(String)

syntax Nat ::= charToAscii(String)

371

PhD Thesis, University of Illinois, July 2012

syntax Char ::= stringToChar(String)

syntax Nat ::= asciiCharString(String)

syntax List{K} ::= Nat to Nat [function]

syntax K ::= cast(K,K) [function strict]

context: cast(—, �
reval(�)

)

syntax K ::= arithInterpret(Type,BaseValue) [function]
| interpret(Type,K) [function]

syntax Set ::= unsignedIntegerTypes
| signedIntegerTypes

syntax Bool ::= hasIntegerType(Type) [function]
| isFloatType(Type) [function]
| hasUnsignedIntegerType(Type) [function]
| hasSignedIntegerType(Type) [function]

syntax K ::= typeof(K)
| writeToFD(Nat,Nat)
| writeToFD(Nat,String)
| readFromFD(Nat)
| readFromFD(Nat,Nat)
| calculateGotoMap(Id,K)

syntax Bool ::= isCharType(Type) [function]
| isWCharType(Type) [function]
| isPointerType(Type) [function]
| isArrayType(Type) [function]
| isBoolType(Type) [function]
| isStructType(Type) [function]
| isUnionType(Type) [function]
| isAggregateType(Type) [function]
| isFunctionType(Type) [function]

372

PhD Thesis, University of Illinois, July 2012

| isFunctionPointerType(Type) [function]
| isBitfieldType(Type) [function]
| isExternType(Type) [function]
| isStaticType(Type) [function]
| isConstType(Type) [function]
| isIncompleteType(Type) [function]
| isArithmeticType(Type) [function]

syntax K ::= aggregateInfo(List{K},Map,Map)

syntax Nat ::= getFieldOffset(Id,K) [function]

syntax Type ::= getFieldType(Id,K) [function]

syntax Bool ::= isArithBinConversionOp(KLabel) [function]
| isArithUnaryOp(KLabel) [function]

syntax K ::= kpair(K,K)

syntax Type ::= promote(K) [function]

syntax K ::= argPromote(K) [function]
| extractField(List{K},K, Id)
| allocString(Nat,String)
| allocWString(Nat,List{K})
| sequencePoint
| handleBuiltin(Id,Type)

syntax Int ::= min(Type) [function]
| max(Type) [function]

syntax K ::= alloc(K,K)
| realloc(K,K,K,K)

syntax KResult ::= initValue(Id,Type,K)

syntax K ::= figureInit(Id,K,K) [strict(2)]
| append(Nat,Nat,Value)
| deleteBlock(Nat)

373

PhD Thesis, University of Illinois, July 2012

| deleteSizedBlock(Nat,Nat)

syntax Bool ::= isConcreteNumber(Int) [function]

end module

module COMMON-C-SETTINGS

imports COMMON-SEMANTIC-SYNTAX

rule
char

signed-char

[anywhere]

syntax #NzNat ::= numBitsPerByte [function]

syntax Nat ::= numBytes(Type) [function]
| numBits(Type) [function]

define numBitsPerByte
numBitsPerByte

8
define numBytes-bool
numBytes(t(—,bool))

1
define numBytes-signed-char
numBytes(t(—,signed-char))

1
define numBytes-short-int
numBytes(t(—,short-int))

2
define numBytes-int
numBytes(t(—,int))

4

374

PhD Thesis, University of Illinois, July 2012

define numBytes-long-int
numBytes(t(—,long-int))

4
define numBytes-long-long-int
numBytes(t(—,long-long-int))

8
define numBytes-float
numBytes(t(—,float))

4
define numBytes-double
numBytes(t(—,double))

8
define numBytes-long-double
numBytes(t(—,long-double))

16
define numBytes-enum
numBytes(t(S ,enumType(X)))

numBytes(t(S ,int))

syntax Int ::= cfg:mtxPlain [function]

define cfg-mtxPlain
cfg:mtxPlain

0

syntax Type ::= cfg:sizeut [function]

define cfg-size-t
cfg:sizeut

t(•,unsigned-int)

syntax Type ::= cfg:wcharut [function]

define cfg-wchar-t
cfg:wcharut

t(•,int)

syntax SimpleType ::= simpleType(Type) [function]

375

PhD Thesis, University of Illinois, July 2012

define
simpleType(t(—,T))

T

syntax Type ::= cfg:largestUnsigned [function]

define cfg-largestUnsigned
cfg:largestUnsigned

t(•,unsigned-long-long-int)

syntax Nat ::= cfg:ptrsize [function]

define cfg-ptrsize
cfg:ptrsize

4

syntax Type ::= cfg:ptrdiffut [function]

define cfg-ptrdiff-t
cfg:ptrdiffut

t(•,int)
define min
min(t(S ,enumType(—)))

min(t(S ,int))
define max
max(t(S ,enumType(—)))

max(t(S ,int))

syntax Int ::= rank(Type) [function]

end module

module COMMON-NOHELPER-INCLUDE

imports COMMON-SEMANTIC-SYNTAX

imports COMMON-C-SETTINGS

end module

376

PhD Thesis, University of Illinois, July 2012

module COMMON-INCLUDE

imports COMMON-NOHELPER-INCLUDE

imports COMMON-C-HELPERS

end module

module COMMON-C-SEMANTICS-MISC

imports COMMON-INCLUDE

define
loc(Base,ByOff ,BiOff) +Int Offset

loc(Base,ByOff +Int Offset ,BiOff)

define
(threadId(N) +Int M) +Int N ′

threadId(N) +Int (M +Int N ′)
define
(allocatedDuration+Int M) +Int N ′

allocatedDuration+Int (M +Int N ′)
define
inc(loc(N ,M ,M ′))

loc(N +Int 1,M ,M ′)
rule unknown-loc
CabsLoc(“cabs loc unknown”,−Int 10,−Int 10, 0)

UnknownCabsLoc

[anywhere]

rule expression-loc
ExpressionLoc(K ,—)

K

[anywhere]

377

PhD Thesis, University of Illinois, July 2012

rule CodeLoc-k

CodeLoc(K ,L)

K

k

—
L

currentProgramLoc

(n1570) §6.10.6 ¶1 A preprocessing directive of the form #pragma pp-tokensoptnew-line where the preprocessing token STDC does not immediately follow pragma in the directive
(prior to any macro replacement) causes the implementation to behave in an implementation-defined manner. The behavior might cause translation to fail or cause the translator or the
resulting program to behave in a non-conforming manner. Any such pragma that is not recognized by the implementation is ignored.

rule Pragma

Pragma(—)

•

k

rule
AttributeWrapper(K ,—)

K

[anywhere]

define
loc(Base,Offset ,BitOffset)

loc(Base,Offset +Int (BitOffset ÷Int numBitsPerByte),BitOffset %Int numBitsPerByte)
when BitOffset ≥Int numBitsPerByte

rule
Identifier(“___missing_field_name”)

#NoName

[anywhere]

end module

module COMMON-C-SEMANTICS

imports COMMON-INCLUDE

imports COMMON-C-SEMANTICS-MISC

378

PhD Thesis, University of Illinois, July 2012

imports COMMON-C-EXPRESSIONS

imports COMMON-C-STATEMENTS

imports COMMON-C-DECLARATIONS

imports COMMON-C-TYPING

syntax Bag ::= eval(K)
| eval(K,List{K},String, Int)

syntax K ::= callMain(Nat,K)
| incomingArguments(List{K})

syntax KLabel ::= TranslationUnitName(String)

end module

module COMMON-SEMANTICS-HELPERS-INCLUDE

imports COMMON-NOHELPER-INCLUDE

syntax Nat ::= Nat bit:: Nat

end module

module COMMON-SEMANTICS-HELPERS-MISC

imports COMMON-SEMANTICS-HELPERS-INCLUDE

syntax K ::= firstLoc(K) [function]

define
firstLoc(ThreadId)

loc(threadId(ThreadId) +Int 0, 0, 0)

syntax Nat ::= base(Nat) [function]

379

PhD Thesis, University of Illinois, July 2012

define
base(loc(Base,—,—))

Base

syntax Set ::= gatherInnerCells(Bag,CellLabel) [function]

define
gatherInnerCells(< L′ > < L > K </ L > — </ L′ >

•

—,L) •

K

define
gatherInnerCells(•,—)

•

syntax List ::= stringToList(String) [function]

syntax String ::= listToString(List) [function]

define
stringToList(“”)

•

define
stringToList(S)

firstChar(S) stringToList(butFirstChar(S))

when S =/=String “”

define
listToString(•)

“”
define

listToString(S L)

S +String listToString(L)

syntax Bool ::= isUnknown(K) [function]

define isUnknown-piece
isUnknown(piece(—,—))

true

380

PhD Thesis, University of Illinois, July 2012

define isUnknown-ptr
isUnknown(loc(—,—,—))

false
define isUnknown-int
isUnknown(I)

false

when (I ≤Int 0)
∨Bool (I >Int 0)

define
loc(N ,M , 0) <Int loc(N ,M ′, 0)

true
when M <Int M ′

define
loc(N ,M , 0) ≤Int loc(N ,M ′, 0)

true
when M ≤Int M ′

define
loc(N ,M , 0) >Int loc(N ,M ′, 0)

true
when M >Int M ′

define
loc(N ,M , 0) ≥Int loc(N ,M ′, 0)

true
when M ≥Int M ′

syntax K ::= simplifyTruth(K) [function]

define
simplifyTruth(K)

K != 0 :t(•,int)

syntax Bool ::= isNotTruthValue(Value) [function]

381

PhD Thesis, University of Illinois, July 2012

define
isNotTruthValue(V :t(—,T))

(T =/=K int)
∨Bool ((V =/=K 0) ∧Bool (V =/=K 1))

syntax K ::= getIdOfDeclaration(K) [function]
| getIdOfName(K) [function]

define
getIdOfDeclaration(DeclarationDefinition(InitNameGroup(—,List(K))))

getIdOfName(K)

define
getIdOfName(InitName(K ,—))

getIdOfName(K)

define
getIdOfName(SingleName(—,K))

getIdOfName(K)

define
getIdOfName(Name(X ,—))

X

syntax K ::= fillToBytes-aux(K,List{K}) [function]

define fillToBytes-start
fillToBytes(dataList(L))

fillToBytes-aux(dataList(L), •)

define fillToBytes-foundByte
fillToBytes-aux(dataList(L ,, piece(N ,Len)),L′)

fillToBytes-aux(dataList(L),piece(N ,Len) ,, L′)

when Len ==Int numBitsPerByte

define fillToBytes-addBit
fillToBytes-aux(dataList(piece(N ,Len)),L′)

fillToBytes-aux(dataList(piece(0, 1) ,, piece(N ,Len)),L′)

when Len <Int numBitsPerByte

382

PhD Thesis, University of Illinois, July 2012

define fillToBytes-combineBits
fillToBytes-aux(dataList(L ,, piece(N ,Len) ,, piece(N ′,Len ′)),L′)

fillToBytes-aux(dataList(L ,, piece(piece(N ,Len) bit:: piece(N ′,Len ′),Len +Int Len ′)),L′)

when (Len +Int Len ′) ≤Int numBitsPerByte

define fillToBytes-done
fillToBytes-aux(dataList(•),L)

dataList(L)
define
piece(bitRange(N , sNatTo,To′),Len) bit:: piece(bitRange(N ,From,To),Len ′)

piece(bitRange(N ,From,To′),Len +Int Len ′)

when ((Len +Int Len ′) ≤Int numBitsPerByte) ∧Bool (sNatTo ==Int (To +Int 1))

define
piece(N bit:: N ′,Len) bit:: piece(N ′′,Len ′)

piece((N bit:: N ′) bit:: piece(N ′′,Len ′),Len +Int Len ′)
define

piece(N ′′,Len ′) bit:: piece(N bit:: N ′,Len)

piece((piece(N ′′,Len ′) bit:: N) bit:: N ′,Len +Int Len ′)
define

bitRange(N bit:: piece(—,Len),Pos,Pos)

bitRange(N ,absInt (Pos −Int Len),absInt (Pos −Int Len))

when (Pos >Int 0) ∧Bool ((Pos −Int Len) ≥Int 0)

define
bitRange(— bit:: piece(N , 1), 0, 0)

piece(N , 1)
define
bitRange(piece(N , 1), 0, 0)

piece(N , 1)
define
bitRange(piece(bitRange(N ,Start ,End),Len), 0, 0)

bitRange(piece(bitRange(N ,Start ,Start), 1), 0, 0)
when (Start +Int Len) ==Int (End +Int 1)

383

PhD Thesis, University of Illinois, July 2012

define
bitRange(N ,Pos,Pos)

1&Int (N �Int Pos)

when N ≥Int 0

define
bitRange(piece(N , 1),Pos,Pos)

1&Int (N �Int Pos)

when N ≥Int 0

define
bitRange(N , 0,To)

N

when (To +Int 1) ==Int numBitsPerByte

define
bitRange(— bit:: piece(N ,Len),Start ,End)

bitRange(piece(N ,Len),Start ,End)

when (End +Int 1) ≤Int Len

define
bitRange(piece(N , sNatEnd), 0,End)

piece(N ,End +Int 1)
when sNatEnd ==Int (End +Int 1)

define
bitRange(— bit:: piece(N , sNatEnd), 0,End)

piece(N ,End +Int 1)
when sNatEnd ==Int (End +Int 1)

define
bitRange(piece(N ,Len),Pos,Pos)

(N �Int Pos) &Int 1
when N ≥Int 0

syntax K ::= extractField-pre(List{K},Type,Nat,K) [strict(4)]
| extractField-aux(List{K},Type,Nat,Nat,List{K})

384

PhD Thesis, University of Illinois, July 2012

rule extractField-start

extractField(L,t(—,L(S)),F)

extractField-pre(L,T ,Offset ,bitSizeofType(T))

k

S 7→ aggregateInfo(—,— (F 7→ T),— (F 7→ Offset))

structs

when (L ==KLabel unionType)
∨Bool (L ==KLabel structType)

rule

extractField-pre(L,T ,Offset ,Len :—)

concretize(T ,fillToBytes(extractBitsFromList(dataList(L),Offset ,Len)))

k

define
isConcreteNumber(loc(—,—,—))

false
define
isConcreteNumber(I)

true

when (I ≤Int 0)
∨Bool (I >Int 0)

rule discard

V y discard

•

k

define
bitsToBytes(N)

absInt (N ÷Int numBitsPerByte)
when numBitsPerByte dividesInt N

define
bitsToBytes(N)

absInt ((N ÷Int numBitsPerByte) +Int 1)
when ¬Bool (numBitsPerByte dividesInt N)

385

PhD Thesis, University of Illinois, July 2012

define
numBytes(t(—,unsigned-char))

numBytes(t(•,signed-char))
define
numBytes(t(—,unsigned-short-int))

numBytes(t(•,short-int))
define
numBytes(t(—,unsigned-int))

numBytes(t(•,int))
define
numBytes(t(—,unsigned-long-int))

numBytes(t(•,long-int))
define
numBytes(t(—,unsigned-long-long-int))

numBytes(t(•,long-long-int))
define

numBits(t(S ,T))

numBytes(t(S ,T)) ∗Int numBitsPerByte
when (getKLabel(T)) =/=KLabel bitfieldType

define
numBits(t(—,bitfieldType(—,N)))

N

define
min(t(—,bool))

0
define
max(t(—,bool))

1
define

min(t(—,signed-char))

0−Int (2 Înt (absInt (numBits(t(•,signed-char))−Int 1)))
define

max(t(—,signed-char))

(2 Înt (absInt (numBits(t(•,signed-char))−Int 1)))−Int 1

386

PhD Thesis, University of Illinois, July 2012

define
min(t(—,short-int))

0−Int (2 Înt (absInt (numBits(t(•,short-int))−Int 1)))
define

max(t(—,short-int))

(2 Înt (absInt (numBits(t(•,short-int))−Int 1)))−Int 1
define

min(t(—,int))

0−Int (2 Înt (absInt (numBits(t(•,int))−Int 1)))
define

max(t(—,int))

(2 Înt (absInt (numBits(t(•,int))−Int 1)))−Int 1
define

min(t(—,long-int))

0−Int (2 Înt (absInt (numBits(t(•,long-int))−Int 1)))
define

max(t(—,long-int))

(2 Înt (absInt (numBits(t(•,long-int))−Int 1)))−Int 1
define

min(t(—,long-long-int))

0−Int (2 Înt (absInt (numBits(t(•,long-long-int))−Int 1)))
define

max(t(—,long-long-int))

(2 Înt (absInt (numBits(t(•,long-long-int))−Int 1)))−Int 1
define
min(t(—,unsigned-char))

0
define

max(t(—,unsigned-char))

(2 Înt (absInt numBits(t(•,unsigned-char))))−Int 1
define
min(t(—,unsigned-short-int))

0

387

PhD Thesis, University of Illinois, July 2012

define
max(t(—,unsigned-short-int))

(2 Înt (absInt numBits(t(•,unsigned-short-int))))−Int 1
define
min(t(—,unsigned-int))

0
define

max(t(—,unsigned-int))

(2 Înt (absInt numBits(t(•,unsigned-int))))−Int 1
define
min(t(—,unsigned-long-int))

0
define

max(t(—,unsigned-long-int))

(2 Înt (absInt numBits(t(•,unsigned-long-int))))−Int 1
define
min(t(—,unsigned-long-long-int))

0
define

max(t(—,unsigned-long-long-int))

(2 Înt (absInt numBits(t(•,unsigned-long-long-int))))−Int 1
define
stringToChar(C)

C

define
asciiCharString(S)

asciiString(stringToChar(S))

define firstChar
firstChar(S)

substrString(S , 0, 1)
define nthChar

nthChar(S ,N)

substrString(S ,N , 1)

388

PhD Thesis, University of Illinois, July 2012

define charToAscii
charToAscii(C)

asciiString(C)

define butFirstChar
butFirstChar(S)

substrString(S , 1,lengthString(S))

syntax String ::= toUpperCase(String) [function]

syntax Char ::= toUpperCase(Char) [function]

define
toUpperCase(S)

toUpperCase(firstChar(S)) +String toUpperCase(butFirstChar(S))

when S =/=String “”

define
toUpperCase(“”)

“”
define
toUpperCase(C)

C

when (asciiString(C) <Int asciiString(“a”))
∨Bool (asciiString(C) >Int asciiString(“z”))

define
toUpperCase(C)

charString(absInt (asciiString(C)−Int (asciiString(“a”)−Int asciiString(“A”))))
when (asciiString(C) ≥Int asciiString(“a”)) ∧Bool (asciiString(C) ≤Int asciiString(“z”))

syntax K ::= getString(K)
| getString-aux(K,String) [strict(1)]

rule getString-start
getString(K)

getString-aux(K , “”)
[anywhere]

389

PhD Thesis, University of Illinois, July 2012

syntax Value ::= str(String)

rule getString-pre

•

read(Loc,t(•,char))

y getString-aux(Loc

Loc +Int 1

:—,S)

k

rule getString

N :— y getString-aux(Loc :—,S)

getString-aux(Loc :t(•,pointerType(t(•,unsigned-char))),S +String charString(N))

k

when N =/=Int 0

rule getString-done

0 :— y getString-aux(Loc :—,S)

str(S)

k

syntax K ::= writeString(K,String) [strict(1)]
| writeWString(K,List{K}) [strict(1)]

rule write-string

writeString(Loc :T ,S)

(* Loc :t(•,pointerType(t(•,char)))) := charToAscii(firstChar(S)) :t(•,char); y writeString(Loc +Int 1 :T ,butFirstChar(S))

k

when S =/=String “”

rule write-wstring

writeWString(Loc :T ,N ,, S)

(* Loc :t(•,pointerType(cfg:wcharut))) := N : cfg:wcharut; y writeWString(Loc +Int 4 :T ,S)

k

390

PhD Thesis, University of Illinois, July 2012

rule write-empty-string

writeString(—, “”)
•

k

rule write-empty-wstring

writeWString(—, •)

•

k

syntax String ::= pointerToString(Nat) [function]

define pointerToString
pointerToString(loc(N ,M , 0))

(((“[sym(” +String subPointerToString(N)) +String “)+”) +String Int2String(M)) +String “]”

syntax String ::= subPointerToString(Nat) [function]

define subPointerToString-auto
subPointerToString(threadId(N) +Int N ′)

((“threadId(” +String Int2String(N)) +String “)+Int”) +String Int2String(N ′)

when N =/=K allocatedDuration

define sub-pointerToString-allocated
subPointerToString(threadId(allocatedDuration) +Int N ′)

“threadId(allocatedDuration)+Int” +String Int2String(N ′)

define pointerToString-done
pointerToString(NullPointer)

“NullPointer”
define

N to N

•

define
N to N ′

N ,, ((N +Int 1) to N ′)

when N <Int N ′

391

PhD Thesis, University of Illinois, July 2012

define
S K contains K

true
define

S K1 contains K2

S contains K2

when K1 =/=K K2

define
• contains K

false
define

hasIntegerType(T)

hasUnsignedIntegerType(T)
∨Bool hasSignedIntegerType(T)

define
hasUnsignedIntegerType(t(—,T))

true
when unsignedIntegerTypes contains T

define
hasUnsignedIntegerType(t(S ,T))

false

when ((getKLabel(T)) =/=KLabel bitfieldType) ∧Bool

(
(setOfTypes contains l(getKLabel(T)))

∨Bool isFloatType(t(S ,T))

)

define
hasUnsignedIntegerType(t(—,bitfieldType(T ,—)))

true
when hasUnsignedIntegerType(T) ==Bool true

define
hasUnsignedIntegerType(t(—,bitfieldType(T ,—)))

false
when hasUnsignedIntegerType(T) ==Bool false

392

PhD Thesis, University of Illinois, July 2012

define
hasSignedIntegerType(t(—,T))

true
when signedIntegerTypes contains T

define
hasSignedIntegerType(t(—,enumType(—)))

true
define
hasSignedIntegerType(t(S ,T))

false

when ((getKLabel(T)) =/=KLabel bitfieldType) ∧Bool

(
(setOfTypes contains l(getKLabel(T)))

∨Bool isFloatType(t(S ,T))

)

define
hasSignedIntegerType(t(—,bitfieldType(T ,—)))

true
when hasSignedIntegerType(T) ==Bool true

define
hasSignedIntegerType(t(—,bitfieldType(T ,—)))

false
when hasSignedIntegerType(T) ==Bool false

define
min(t(—,bitfieldType(T ,N)))

0
when hasUnsignedIntegerType(T)

define
max(t(—,bitfieldType(T ,N)))

(2 Înt (absInt N))−Int 1
when hasUnsignedIntegerType(T)

define
min(t(—,bitfieldType(T ,N)))

0−Int (2 Înt (absInt (N −Int 1)))
when hasSignedIntegerType(T)

393

PhD Thesis, University of Illinois, July 2012

define
max(t(—,bitfieldType(T ,N)))

(2 Înt (absInt (N −Int 1)))−Int 1
when hasSignedIntegerType(T)

define
NullPointerConstant

0
define

piece(N ,Len) bit:: piece(N ′,Len ′)

piece((N �Int Len ′) |Int N ′,Len +Int Len ′)

when (N ≥Int 0) ∧Bool (N
′ ≥Int 0)

define
piece(0, 0) bit:: N

N

define
piece(piece(N ,Len),Len)

piece(N ,Len)

define
value(V :—)

V

define
type(— :T)

T

394

PhD Thesis, University of Illinois, July 2012

define
isBasicType(t(—,K))

if













































(

(K ==K bool)
∨Bool (K ==K void)

)

∨Bool (K ==K char)




∨Bool (K ==K short-int)




∨Bool (K ==K int)




∨Bool (K ==K long-int)




∨Bool (K ==K long-long-int)




∨Bool (K ==K float)




∨Bool (K ==K double)




∨Bool (K ==K long-double)




∨Bool (K ==K signed-char)




∨Bool (K ==K unsigned-char)




∨Bool (K ==K unsigned-short-int)




∨Bool (K ==K unsigned-int)




∨Bool (K ==K unsigned-long-int)




∨Bool (K ==K unsigned-long-long-int)




∨Bool (K ==K no-type)




∨Bool ((getKLabel(K)) ==KLabel enumType)
then true
else

false
fi

define
setOfTypes

Set(l(arrayType) ,, l(bitfieldType) ,, l(functionType) ,, l(pointerType) ,, l(structType) ,, l(unionType) ,, l(qualifiedType))
rule
assert(true,—)

•

[anywhere]

end module

module COMMON-C-BITSIZE

imports COMMON-SEMANTICS-HELPERS-INCLUDE

395

PhD Thesis, University of Illinois, July 2012

syntax K ::= bitSizeofList(List{KResult}) [function]
| bitSizeofList-aux(K,Nat,List{KResult}) [function strict(1)]

define
bitSizeofList(L)

bitSizeofList-aux(•, 0,L)
define
bitSizeofList-aux(•

bitSizeofType(T)

,—, T

•

,, —)

define
bitSizeofList-aux(Len ′ :—

•

, Len

Len +Int Len ′
,—)

define
bitSizeofList-aux(•,Len, •)

Len : cfg:largestUnsigned

syntax K ::= maxBitSizeofList(List{KResult})
| maxBitSizeofList-aux(List{KResult},Nat)

rule
maxBitSizeofList(L)

maxBitSizeofList-aux(L, 0)
[anywhere]

rule

maxBitSizeofList-aux(T ,, L,N)

bitSizeofType(T) y maxBitSizeofList-aux(L,N)

k

rule

N ′ :—
•

y maxBitSizeofList-aux(L, N

maxInt(N ,N ′)

)

k

396

PhD Thesis, University of Illinois, July 2012

rule

maxBitSizeofList-aux(•,N)

N : cfg:largestUnsigned

k

rule
bitSizeofType(t(—,arrayType(T ,N)))

bitSizeofType(T) * N : cfg:largestUnsigned
[anywhere]

rule
bitSizeofType(t(—,flexibleArrayType(T)))

0 : cfg:largestUnsigned
[anywhere]

rule
bitSizeofType(t(—,functionType(—,—)))

numBitsPerByte : cfg:largestUnsigned
[anywhere]

rule
bitSizeofType(t(—,pointerType(—)))

cfg:ptrsize ∗Int numBitsPerByte : cfg:largestUnsigned
[anywhere]

rule
bitSizeofType(t(—,bitfieldType(—,N)))

N : cfg:largestUnsigned
[anywhere]

rule
bitSizeofType(t(—,qualifiedType(T ,—)))

bitSizeofType(T)

[anywhere]

397

PhD Thesis, University of Illinois, July 2012

rule
bitSizeofType(T)

numBits(T) : cfg:largestUnsigned
when isBasicType(T)
[anywhere]

rule
bitSizeofType(typedDecl(T ,—))

bitSizeofType(T)

[anywhere]

rule

bitSizeofType(t(—,structType(S)))

bitSizeofList(L)

k

S 7→ aggregateInfo(L,—,—)

structs

rule

bitSizeofType(t(—,unionType(S)))

maxBitSizeofList(L)

k

S 7→ aggregateInfo(L,—,—)

structs

define
getFieldOffset(F ,aggregateInfo(—,—,— (F 7→ N)))

N

define
getFieldType(F ,aggregateInfo(—,—,— (F 7→ T)))

T

define
toString(Identifier(S))

S

define
toString(S)

S

define
toString(Num)

Int2String(Num)

398

PhD Thesis, University of Illinois, July 2012

define
listToK(K)

klistToK(K)

define
klistToK(K ,, L)

K y klistToK(L)
define
klistToK(•)

•

end module

module COMMON-C-HELPERS

imports COMMON-SEMANTICS-HELPERS-INCLUDE

imports COMMON-C-BITSIZE

imports COMMON-SEMANTICS-HELPERS-MISC

end module

module DYNAMIC-SEMANTIC-SYNTAX

imports COMMON-INCLUDE

end module

module DYNAMIC-INCLUDE

imports DYNAMIC-SEMANTIC-SYNTAX

imports DYNAMIC-C-CONFIGURATION

end module

module DYNAMIC-C-SEMANTICS-MISC

imports DYNAMIC-INCLUDE

399

PhD Thesis, University of Illinois, July 2012

rule sequencePoint

sequencePoint

•

k

—
•

locsWrittenTo

[ndlocal]

rule writeToFD-char

writeToFD(FD ,N)

•

k

FD

fid

S

S +String charString(N %Int 256)

buff

[observable]

rule writeToFD-string

writeToFD(FD ,S ′)

•

k

FD

fid

S

S +String S ′

buff

[observable]

rule readFromFD-char

readFromFD(FD)

charToAscii(firstChar(S)) :t(•,int)

k

FD

fid

S

butFirstChar(S)

buff

when lengthString(S) >Int 0
[observable]

rule readFromFD-empty-buff

readFromFD(FD)

k

FD

fid

“”
“” +String charString(#fReadByte(FD))

buff

400

PhD Thesis, University of Illinois, July 2012

rule readFromFD-eof

readFromFD(FD)

−Int 1 :t(•,int)

k

FD

fid

#EOF

buff

[observable]

rule make-eof
“” +String charString(#EOF)

#EOF

[anywhere]

syntax K ::= f-sent(Nat,String)
| f-flush(Nat)
| f-sendString(Nat,String)

rule flush

flush(N)

•

k

•

f-sendString(N ,S) y f-sent(N ,S) y f-flush(N)

fileCommands

N

fid

S

“”

buff

•

S

sending

rule sendString-one

f-sendString(N ,S)

#fPutByte(N ,charToAscii(firstChar(S))) y f-sendString(N ,butFirstChar(S))

fileCommands

when S =/=String “”

rule sendString-done

f-sendString(N , “”)
•

fileCommands

401

PhD Thesis, University of Illinois, July 2012

rule f-sent

f-sent(N ,S)

•

fileCommands

N

fid

S

•

sending

•

S

done

files

rule f-flush

f-flush(N)

#flush(N)

fileCommands

rule combine-done

S S ′

(S +String S ′)

done

syntax List{K} ::= string2List(String) [function]
| string2List-aux(String,List{K}) [function]

define
string2List(S)

string2List-aux(S , •)

define
string2List-aux(“” ,L)

L

define
string2List-aux(S ,L)

string2List-aux(butFirstChar(S),L ,, firstChar(S))

when S =/=String “”

end module

module DYNAMIC-C-SEMANTICS

imports COMMON-C-SEMANTICS

402

PhD Thesis, University of Illinois, July 2012

imports DYNAMIC-INCLUDE

imports DYNAMIC-C-SEMANTICS-MISC

imports DYNAMIC-C-EXPRESSIONS

imports DYNAMIC-C-ERRORS

imports DYNAMIC-C-TYPING

imports DYNAMIC-C-DECLARATIONS

imports DYNAMIC-C-MEMORY

imports DYNAMIC-C-STATEMENTS

imports DYNAMIC-C-CONVERSIONS

imports DYNAMIC-C-STANDARD-LIBRARY

(n1570) §5.1.2.2.1 ¶2 If they are declared, the parameters to the main function shall obey the following constraints:

• The value of argc shall be nonnegative.

• argv[argc] shall be a null pointer.

• If the value of argc is greater than zero, the array members argv[0] through argv[argc-1] inclusive shall contain pointers to strings, which are given implementation-defined values
by the host environment prior to program startup. The intent is to supply to the program information determined prior to program startup from elsewhere in the hosted environment.
If the host environment is not capable of supplying strings with letters in both uppercase and lowercase, the implementation shall ensure that the strings are received in lowercase.

• If the value of argc is greater than zero, the string pointed to by argv[0] represents the program name; argv[0][0] shall be the null character if the program name is not available
from the host environment. If the value of argc is greater than one, the strings pointed to by argv[1] through argv[argc-1] represent the program parameters.

• The parameters argc and argv and the strings pointed to by the argv array shall be modifiable by the program, and retain their last-stored values between program startup and
program termination.

403

PhD Thesis, University of Illinois, July 2012

syntax K ::= incomingArguments-aux(List{K},Nat)

rule
incomingArguments(L)

incomingArguments-aux(L, 0)
rule

incomingArguments-aux(S ,, L,N)

(Identifier(“#incomingArgumentsArray”)[N]) := Constant(StringLiteral(S)); y incomingArguments-aux(L,N +Int 1)
rule

incomingArguments-aux(•,N)

(Identifier(“#incomingArgumentsArray”)[N]) := NullPointer;

syntax K ::= syntaxNat(Nat)

rule syntaxNat
syntaxNat(N)

NoSuffix(DecimalConstant(N))

syntax K ::= pgmArgs(List{K})
| argName(List{K})

define
argName(L)

Name(Identifier(“#incomingArgumentsArray”),PointerType(ArrayType(JustBase,syntaxNat((lengthListK (L)) +Int 1),Specifier(List(•)))))
define

pgmArgs(L)

DeclarationDefinition(InitNameGroup(Specifier(List(Char)),List(InitName(argName(L),NoInit))))

rule eval-noInput
eval(K)

eval(K , •, “” , 0)

These helpers are used to get around a bug in K related to successive “/”s in strings.

syntax K ::= stdinStr
| stdoutStr

404

PhD Thesis, University of Illinois, July 2012

define
stdinStr

(“stdin:/” +String “/”) +String “/”
define

stdoutStr

(“stdout:/” +String “/”) +String “/”

405

PhD Thesis, University of Illinois, July 2012

rule eval-input


eval(Program(List(P)),L, Input , IsInterp)

klistToK(P) y pgmArgs(L) y resolveReferences y callMain(lengthListK (L),incomingArguments(L))

k

1
threadId

firstLoc(1)
nextLoc

File-Scope

currentFunction

UnknownCabsLoc

currentProgramLoc

control

threadLocal

thread

threads

firstLoc(0)
nextSharedLoc

T

if IsInterp ==Int 0
then debug
else

•

fi

fileCommands

0
fid

stdinStr

uri

“r”
mode

Input

buff

file

1
fid

stdoutStr

uri

“w”
mode

file

2
fid

stdoutStr

uri

“w”
mode

file

files




406

PhD Thesis, University of Illinois, July 2012

(n1570) §5.1.2.2.1 ¶1 The function called at program startup is named main. The implementation declares no prototype for this function. It shall be defined with a return type of int
and with no parameters:

int main(void) { ... }

or with two parameters (referred to here as argc and argv, though any names may be used, as they are local to the function in which they are declared):

int main(int argc, char *argv[]) { ... }

or equivalent; or in some other implementation-defined manner.

this bit of indirection is used to check that the main prototype is correct, and to call it with the appropriate arguments

rule call-main

callMain(N ,Args)

callMain-aux(typeof(Identifier(“main”)),N ,Identifier(“#incomingArgumentsArray”),Args)

k

Tu 7→ Map(— (Identifier(“main”) 7→ Tu))

funTUs

—
Tu

currTU

[computational]

rule
callMain-aux(t(•,functionType(t(•,int),typedDecl(t(•,void),—))),N ,X ,—)

Call(Identifier(“main”),List(•))
rule
callMain-aux(t(•,functionType(t(•,int), •)),N ,X ,—)

Call(Identifier(“main”),List(•))
rule
callMain-aux(t(•,functionType(t(•,int),typedDecl(t(•,int),—) ,, typedDecl(t(•,incompleteArrayType(t(•,pointerType(T)))),—))),N ,X ,Args)

Args y Call(Identifier(“main”),List(N ,, X))

when T ==K t(•,char)

rule
callMain-aux(t(•,functionType(t(•,int),typedDecl(t(•,int),—) ,, typedDecl(t(•,pointerType(t(•,pointerType(T)))),—))),N ,X ,Args)

Args y Call(Identifier(“main”),List(N ,, X))

when T ==K t(•,char)

407

PhD Thesis, University of Illinois, July 2012

rule terminate

1
threadId

V

k

thread

threads

T

V

resultValue

—
•

fileCommands

1
fid

S ′′
2

buff

L

sending

S2

done

file

files

•

(S2 +String listToString(L)) +String S ′′
2

output

[computational]

end module

408

PhD Thesis, University of Illinois, July 2012

References

[1] M. Acton. Understanding strict aliasing, June 2006. URL
http://cellperformance.beyond3d.com/articles/2006/06/
understanding-strict-aliasing.html. Accessed June 8, 2012. 103

[2] J. Alves-Foss and F. S. Lam. Dynamic denotational semantics of Java.
In J. Alves-Foss, editor, Formal Syntax and Semantics of Java, volume
1523 of Lecture Notes in Computer Science, pages 201–240. Springer,
1999. 14

[3] D. J. Andrews, A. Garg, S. P. Lau, and J. R. Pitchers. The formal
definition of Modula-2 and its associated interpreter. In 2nd VDM-
Europe Symposium (VDM’88), pages 167–177. Springer, 1988. 19

[4] M. Anlauff. Xasm—an extensible, component-based abstract state ma-
chines language. In International Workshop on Abstract State Machines,
Lecture Notes in Computer Science, pages 69–90. Springer-Verlag, 2000.
21

[5] Apple Inc. Blocks programming topics, March 2011. URL
http://developer.apple.com/library/ios/documentation/
cocoa/Conceptual/Blocks/Blocks.pdf. 103

[6] P. Arcaini, A. Gargantini, and E. Riccobene. CoMA: Conformance
monitoring of Java programs by abstract state machines. In S. Khurshid
and K. Sen, editors, 2nd International Conference on Runtime Veri-
fication (RV’11), volume 7186 of Lecture Notes in Computer Science,
pages 223–238. Springer, 2011. 21

[7] I. M. Asavoae and M. Asavoae. Collecting semantics under predicate
abstraction in the K framework. In P. C. Ölveczky, editor, Rewriting
Logic and Its Applications, volume 6381 of Lecture Notes in Computer
Science, pages 123–139. Springer, 2010. Revised selected papers from
the 8th International Workshop (WRLA’10). 3

[8] I. Attali, D. Caromel, and M. Russo. A formal executable semantics for
Java. In Princeton University, 1990. 14

409

PhD Thesis, University of Illinois, July 2012

http://cellperformance.beyond3d.com/articles/2006/06/understanding-strict-aliasing.html
http://cellperformance.beyond3d.com/articles/2006/06/understanding-strict-aliasing.html
http://developer.apple.com/library/ios/documentation/cocoa/Conceptual/Blocks/Blocks.pdf
http://developer.apple.com/library/ios/documentation/cocoa/Conceptual/Blocks/Blocks.pdf

[9] M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber. Mathema-
tizing C++ concurrency. In T. Ball and M. Sagiv, editors, 38th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL’11), pages 55–66. ACM, 2011. 45, 46

[10] M. Batty, K. Memarian, S. Owens, S. Sarkar, and P. Sewell. Clarifying
and compiling C/C++ concurrency: from C++11 to POWER. In J. Field
and M. Hicks, editors, 39th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL’12), pages 509–520. ACM,
2012. 45

[11] J. A. Bergstra, J. Heering, and P. Klint, editors. Algebraic Specification.
ACM Press, 1989. 20

[12] P. E. Black. Axiomatic Semantics Verification of a Secure Web Server.
PhD thesis, Brigham Young University, February 1998. 12

[13] S. Blazy and X. Leroy. Mechanized semantics for the Clight subset of
the C language. Journal of Automated Reasoning, 43(3):263–288, 2009.
10, 11, 12, 30, 32, 47, 53, 105

[14] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou. Cilk: An efficient multithreaded runtime system.
Journal of Parallel and Distributed Computing, 37(1):55–69, 1996. 103

[15] M. Bofinger. Reasoning about C programs. PhD thesis, University of
Queensland, February 1998. 12

[16] E. Börger and D. Rosenzweig. A mathematical definition of full Prolog.
Science of Computer Programming, 24(3):249–286, 1995. 16

[17] E. Börger and W. Schulte. A programmer friendly modular definition
of the semantics of Java. In J. Alves-Foss, editor, Formal Syntax and
Semantics of Java, volume 1523 of Lecture Notes in Computer Science,
pages 353–404. Springer, 1999. 14

[18] E. Börger, G. Fruja, V. Gervasi, and R. F. Stärk. A high-level modular
definition of the semantics of C#. Theoretical Computer Science, 336:
2–3, 2003. 15, 21

[19] P. Borras, D. Clément, T. Despeyroux, J. Incerpi, G. Kahn, B. Lang,
and V. Pascual. CENTAUR: The system. In PSDE’88, pages 14–24.
ACM Press, 1988. 2, 20

[20] M. Bortin, C. Lüth, and D. Walter. A certifiable formal semantics of C.
In T. Uustalu, J. Vain, and J. Ernits, editors, 20th Nordic Workshop
on Programming Theory NWPT 2008, Technical Report, pages 19–21.
Institute of Cybernetics, Tallinn University of Technology, November
2008. 12

410

PhD Thesis, University of Illinois, July 2012

[21] R. S. Boyer and J. S. Moore. A Computational Logic Handbook. Aca-
demic Press, 2nd edition, 1998. 9

[22] D. Brown and D. Watt. JAS: A Java action semantics. In P. D.
Mosses and D. A. Watt, editors, 2nd International Workshop on Action
Semantics (AS’99), pages 43–56. Dept of Computer Science, University
of Aarhus, 1999. Unrefereed paper. 14

[23] G. Canet, P. Cuoq, and B. Monate. A value analysis for C programs.
In 9th International Working Conference on Source Code Analysis and
Manipulation, SCAM’09, pages 123–124. IEEE, 2009. 95

[24] S. C. Cater and J. K. Huggins. An ASM dynamic semantics for Stan-
dard ML. In Y. Gurevich, P. W. Kutter, M. Odersky, and L. Thiele,
editors, International Workshop on Abstract State Machines, Theory
and Applications (ASM’00), pages 203–222. Springer-Verlag, 2000. 16

[25] CEA-LIST and INRIA-Saclay. Frama-C website, 2011. URL http:
//frama-c.com/. 19

[26] F. Chalub and C. Braga. Maude MSOS tool. Electronic Notes in
Theoretical Computer Science, 176(4):133–146, 2007. 2, 20, 21

[27] F. Chen and G. Ros,u. Rewriting logic semantics of Java 1.4,
2004. URL http://fsl.cs.uiuc.edu/index.php/Rewriting_Logic_
Semantics_of_Java. 2, 14

[28] J. Cheney and C. Urban. αProlog: A logic programming language with
names, binding and α-equivalence. In 20th International Conference
on Logic Programming (ICLP’04), volume 3132 of Lecture Notes in
Computer Science, pages 269–283. Springer, 2004. 21

[29] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer,
and J. F. Quesada. Maude: Specification and programming in rewriting
logic. Theoretical Computer Science, 285(2):187–243, 2002. 3

[30] M. Clavel, F. Durán, S. Eker, J. Meseguer, P. Lincoln, N. Martí-
Oliet, and C. Talcott. All About Maude, A High-Performance Logical
Framework, volume 4350 of Lecture Notes in Computer Science. Springer,
2007. 3, 20, 24, 55

[31] M. Comstedt. Natural semantics specification for Java. Master’s thesis,
Linköping University, 2009. 14

[32] J. V. Cook and S. Subramanian. A formal semantics for C in Nqthm.
Technical Report 517D, Trusted Information Systems, November 1994.
9, 12

411

PhD Thesis, University of Illinois, July 2012

http://frama-c.com/
http://frama-c.com/
http://fsl.cs.uiuc.edu/index.php/Rewriting_Logic_Semantics_of_Java
http://fsl.cs.uiuc.edu/index.php/Rewriting_Logic_Semantics_of_Java

[33] J. V. Cook, E. L. Cohen, and T. S. Redmond. A formal denotational
semantics for C. Technical Report 409D, Trusted Information Systems,
September 1994. 9, 11, 12, 47

[34] P. Cuoq, J. Signoles, P. Baudin, R. Bonichon, G. Canet, L. Correnson,
B. Monate, V. Prevosto, and A. Puccetti. Experience report: OCaml
for an industrial-strength static analysis framework. In G. Hutton and
A. P. Tolmach, editors, 14th ACM SIGPLAN International Conference
on Functional Programming (ICFP’09), pages 281–286. ACM Press,
2009. 19, 30, 105

[35] P. Cuoq, B. Monate, A. Pacalet, V. Prevosto, J. Regehr, B. Yakobowski,
and X. Yang. Testing static analyzers with randomly generated pro-
grams. In 4th NASA Formal Methods Symposium (NFM 2012), April
2012. 95

[36] C. de O. Braga, E. H. Haeusler, J. Meseguer, and P. D. Mosses. Map-
ping modular SOS to rewriting logic. In M. Leuschel, editor, 12th
International Symposium on Logic-Based Program Synthesis and Trans-
formation (LOPSTR’02), volume 2664 of Lecture Notes in Computer
Science, pages 262–277. Springer, 2002. 20

[37] P. Deransart and G. Ferrand. An operational formal definition of PRO-
LOG: A specification method and its application. New Gen. Comput.,
10(2):121–171, April 1992. 13, 16

[38] A. V. Deursen, J. Heering, H. A. D. Jong, M. D. Jonge, T. Kuipers,
P. Klint, L. Moonen, P. A. Olivier, J. J. Vinju, E. Visser, and J. Visser.
The ASF+SDF Meta-Environment: A component-based language de-
velopment environment. In 10th International Conference on Compiler
Construction (CC’01), volume 2027 of Lecture Notes in Computer Sci-
ence, pages 365–370. Springer, 2001. 20

[39] W. Dietz, P. Li, J. Regehr, and V. Adve. Understanding integer overflow
in C/C++. In 34th International Conference on Software Engineering
(ICSE’12), 2012. To appear. 63

[40] A. Dijkstra and S. Swierstra. Ruler: Programming type rules. In
Functional and Logic Programming, volume 3945 of Lecture Notes in
Computer Science, pages 30–46. Springer Berlin / Heidelberg, 2006. 21

[41] M. Dominus. Undefined behavior in Perl and other languages, October
2007. URL http://blog.plover.com/prog/perl/undefined.html.
71

412

PhD Thesis, University of Illinois, July 2012

http://blog.plover.com/prog/perl/undefined.html

[42] D. Draper, P. Fankhauser, M. F. Fernández, A. Malhotra, K. H. Rose,
M. Rys, J. Siméon, and P. Wadler. XQuery 1.0 and XPath 2.0 formal
semantics. World Wide Web Consortium, Recommendation REC-
xquery-semantics-20070123, January 2007. 18

[43] S. Drossopoulou and S. Eisenbach. Describing the semantics of Java and
proving type soundness. In J. Alves-Foss, editor, Formal Syntax and
Semantics of Java, volume 1523 of Lecture Notes in Computer Science,
pages 41–82. Springer, 1999. 14

[44] S. Drossopoulou, T. Valkevych, and S. Eisenbach. Java type soundness
revisited, 2000. 13, 14

[45] T. Duff. On Duff’s device, 1988. URL http://www.lysator.liu.se/
c/duffs-device.html. Msg. to the comp.lang.c Usenet group. 53

[46] S. Eker, J. Meseguer, and A. Sridharanarayanan. The Maude LTL
model checker. In 4th International Workshop on Rewriting Logic
and Its Applications (WRLA’02), volume 71 of Electronic Notes in
Theoretical Computer Science, Amsterdam, September 2002. Elsevier.
3, 20, 59

[47] C. Ellison and G. Ros,u. A formal semantics of C with applications.
Technical Report http://hdl.handle.net/2142/17414, University of
Illinois, November 2010. 29

[48] C. Ellison and G. Ros,u. An executable formal semantics of C with appli-
cations. In J. Field and M. Hicks, editors, 39th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL’12), pages
533–544. ACM, 2012. 29, 71

[49] C. Ellison and G. Ros,u. Defining the undefinedness of C. Technical
Report http://hdl.handle.net/2142/30780, University of Illinois,
April 2012. 61

[50] C. Ellison, T. F. S, erbănut,ă, and G. Ros,u. A rewriting logic approach
to type inference. In 19th International Workshop on Algebraic De-
velopment Techniques (WADT’08), volume 5486 of Lecture Notes in
Computer Science, pages 135–151, 2009. 3, 10, 102

[51] J. Engblom. Dekker’s algorithm does not work, as expected, January
2008. URL http://jakob.engbloms.se/archives/65. 58

[52] R. Farahbod, V. Gervasi, and U. Glässer. CoreASM: An extensible ASM
execution engine. Fundamenta Informaticae, 77(1-2):71–103, January
2007. 21

413

PhD Thesis, University of Illinois, July 2012

http://www.lysator.liu.se/c/duffs-device.html
http://www.lysator.liu.se/c/duffs-device.html
http://hdl.handle.net/2142/17414
http://hdl.handle.net/2142/30780
http://jakob.engbloms.se/archives/65

[53] A. Farzan, F. Chen, J. Meseguer, and G. Ros,u. Formal analysis of Java
programs in JavaFAN. In 16th International Conference on Computer
Aided Verification (CAV’04), volume 3114 of Lecture Notes in Computer
Science, pages 501–505. Springer, 2004. 2, 3, 14

[54] K.-F. Faxén. A static semantics for Haskell. Journal of Functional
Programming, 12(5):295–357, July 2002. 18

[55] M. Felleisen, R. B. Findler, and M. Flatt. Semantics Engineering with
PLT Redex. The MIT Press, 1st edition, 2009. 21

[56] J.-C. Filliâtre and C. Marché. Multi-prover verification of C programs.
Formal Methods and Software Engineering, pages 15–29, 2004. 19

[57] J.-C. Filliâtre and C. Marché. The Why/Krakatoa/Caduceus platform
for deductive program verification. In 19th International Conference on
Computer Aided Verification (CAV’07), volume 4590 of Lecture Notes
in Computer Science, pages 173–177, 2007. 19

[58] Free Software Foundation. GNU compiler collection, 2010. URL http:
//gcc.gnu.org. 49

[59] Free Software Foundation. Using the GNU compiler collection (GCC),
2010. URL http://gcc.gnu.org/onlinedocs/gcc/. 103

[60] P. Fritzson, A. Pop, D. Broman, and P. Aronsson. Formal semantics
based translator generation and tool development in practice. In 20th
Australian Software Engineering Conference (ASWEC’09), pages 256–
266. IEEE, 2009. 2, 21

[61] FSF. C language testsuites: “C-torture” version 4.4.2, 2010. URL
http://gcc.gnu.org/onlinedocs/gccint/C-Tests.html. 51

[62] E. R. Gansner and J. H. Reppy. The Standard ML basis library, 2004.
URL http://www.standardml.org/Basis/. 71

[63] A. Gargantini, E. Riccobene, and P. Scandurra. Model-driven language
engineering: The ASMETA case study. In 3rd International Conference
on Software Engineering Advances (ICSEA’08), pages 373–378. IEEE
Computer Society, 2008. doi: 10.1109/ICSEA.2008.62. URL http:
//dx.doi.org/10.1109/ICSEA.2008.62. 21

[64] A. Garrido, J. Meseguer, and R. Johnson. Algebraic semantics of the
c preprocessor and correctness of its refactorings. Technical Report
UIUCDCS-R-2006-2688, University of Illinois, February 2006. URL
http://hdl.handle.net/2142/11162. 20

[65] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language
Specification. Addison-Wesley, 3rd edition, 2005. 71

414

PhD Thesis, University of Illinois, July 2012

http://gcc.gnu.org
http://gcc.gnu.org
http://gcc.gnu.org/onlinedocs/gcc/
http://gcc.gnu.org/onlinedocs/gccint/C-Tests.html
http://www.standardml.org/Basis/
http://dx.doi.org/10.1109/ICSEA.2008.62
http://dx.doi.org/10.1109/ICSEA.2008.62
http://hdl.handle.net/2142/11162

[66] Y. Gurevich. Evolving algebras 1993: Lipari guide. In E. Börger, editor,
Specification and validation methods, pages 9–36. Oxford University
Press, Inc., 1995. 21

[67] Y. Gurevich and J. K. Huggins. The semantics of the C programming
language. In Computer Science Logic, volume 702 of Lecture Notes in
Computer Science, pages 274–308, 1993. 8, 12

[68] Y. Gurevich, B. Rossman, and W. Schulte. Semantic essence of AsmL.
Theoretical Computer Science, 343(3):370–412, October 2005. ISSN
0304-3975. doi: 10.1016/j.tcs.2005.06.017. 21

[69] K. Hammond and C. Hall. A dynamic semantics for Haskell, 1993.
Draft. 18

[70] D. R. Hanson and C. W. Fraser. A Retargetable C Compiler: Design
and Implementation. Addison-Wesley, 1995. 53

[71] C. Hathhorn. Semantics for CUDA in K, 2012. URL https://github.
com/chathhorn/cuda-sem. 103

[72] J. Heering and P. Klint. Semantics of programming languages: A tool-
oriented approach. Technical report, CWI (Centre for Mathematics and
Computer Science), 1999. 2

[73] M. Hills and G. Roşu. KOOL: An application of rewriting logic to
language prototyping and analysis. In 18th International Conference
on Rewriting Techniques and Applications (RTA’07), volume 4533 of
Lecture Notes in Computer Science, pages 246–256. Springer, 2007. 2

[74] M. Hills, F. Chen, and G. Ros,u. A rewriting logic approach to static
checking of units of measurement in C. In 9th International Workshop on
Rule-Based Programming (RULE’08), volume To Appear of Electronic
Notes in Theoretical Computer Science. Elsevier, 2008. 3

[75] M. Holmén. Natural semantics specification and frontend generation
for Java 1.2. Master’s thesis, Linköping University, 2009. 14

[76] IEEE. Posix.1c, threads extensions. Technical Report IEEE Std 1003.1c-
1995, IEEE, 1996. 23, 43

[77] INRIA. CompCert C compiler, version 1.9, August 2011. URL http:
//compcert.inria.fr/. 11

[78] ISO/IEC JTC 1, SC 22, WG 14. ISO/IEC 9899:1990: Programming
languages—C. Technical report, International Organization for Stan-
dardization, 1990. 23

415

PhD Thesis, University of Illinois, July 2012

https://github.com/chathhorn/cuda-sem
https://github.com/chathhorn/cuda-sem
http://compcert.inria.fr/
http://compcert.inria.fr/

[79] ISO/IEC JTC 1, SC 22, WG 14. ISO/IEC 9899:1999: Programming
languages—C. Committee Draft N1256, International Organization for
Standardization, December 1999. 23, 29, 34, 82, 83

[80] ISO/IEC JTC 1, SC 22, WG 14. Rationale for international standard—
programming languages—C. Technical Report 5.10, International Or-
ganization for Standardization, April 2003. 3, 23, 64, 104

[81] ISO/IEC JTC 1, SC 22, WG 14. ISO/IEC 9899:2011: Programming
languages—C. Committee Draft N1570, International Organization for
Standardization, August 2011. 5, 6, 13, 23, 24, 29, 33, 35, 37, 38, 40,
41, 42, 43, 44, 46, 55, 62, 63, 64, 65, 66, 67, 68, 70, 73, 75, 77, 79, 80,
81, 82, 94, 97, 98, 99, 103

[82] ISO/IEC JTC 1, SC 22, WG 14. C secure coding rules. Committee Draft
N1579, International Organization for Standardization, September 2011.
94

[83] D. M. Jones. The New C Standard: An Economic and Cultural Com-
mentary. Self-published, December 2008. URL http://www.knosof.
co.uk/cbook/cbook.html. 22, 104

[84] S. L. P. Jones and P. Wadler. A static semantics for Haskell. Technical
report, Department of Computing Science, University of Glasgow, 1992.
18

[85] H. Jula and N. G. Fruja. An executable specification of C#. In Abstract
State Machines, pages 275–288, 2005. 15

[86] G. Kahn. Natural semantics. In STACS’87, pages 22–39. Springer, 1987.
20

[87] R. Kelsey, W. Clinger, and J. Rees. Revised5 report on the algorithmic
language Scheme. ACM SIGPLAN Notices, 33:26–76, 1998. 71

[88] B. W. Kernighan and D. M. Ritchie. The C Programming Language.
Prentice Hall, 2nd edition, 1978. 8, 22, 53

[89] C. Klein, J. Clements, C. Dimoulas, C. Eastlund, M. Felleisen, M. Flatt,
J. A. McCarthy, J. Rafkind, S. Tobin-Hochstadt, and R. B. Findler.
Run your research: on the effectiveness of lightweight mechanization.
In J. Field and M. Hicks, editors, 39th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL’12), pages
285–296. ACM, 2012. 21

[90] M. Kulaš and C. Beierle. Defining Standard Prolog in rewriting logic. In
K. Futatsugi, editor, Proc. of the 3rd Int. Workshop on Rewriting Logic
and its Applications (WRLA’2000), Kanazawa, volume 36 of Electronic
Notes in Theoretical Computer Science. Elsevier, 2001. 16, 20

416

PhD Thesis, University of Illinois, July 2012

http://www.knosof.co.uk/cbook/cbook.html
http://www.knosof.co.uk/cbook/cbook.html

[91] M. R. Lakin. An executable meta-language for inductive definitions with
binders. PhD thesis, University of Cambridge, 2010. 21

[92] C. Lattner. What every C programmer should know about unde-
fined behavior, May 2011. URL http://blog.llvm.org/2011/05/
what-every-c-programmer-should-know.html. 63

[93] C. Lattner. LLVM assembly language reference manual, February 2012.
URL http://llvm.org/docs/LangRef.html. 71

[94] X. Leroy. Formal verification of a realistic compiler. Communications
of the ACM, 52(7):107–115, 2009. 62, 69

[95] S. Maharaj and E. Gunter. Studying the ML module system in HOL. In
Higher Order Logic Theorem Proving and its Applications, volume 859
of Lecture Notes in Computer Science, pages 346–361. Springer-Verlag,
1994. 13, 15

[96] N. Martí-Oliet and J. Meseguer. Rewriting logic as a logical and semantic
framework. In J. Meseguer, editor, Electronic Notes in Theoretical
Computer Science, volume 4. Elsevier Science Publishers, 1996. 3

[97] J. Matthews, R. B. Findler, M. Flatt, and M. Felleisen. A visual
environment for developing context-sensitive term rewriting systems. In
15th International Conference on Rewriting Techniques and Applications
(RTA’04), Lecture Notes in Computer Science, pages 301–311. Springer,
2004. 21

[98] J. McCarthy. Datalog for PLT Scheme, 2010. URL
http://planet.racket-lang.org/package-source/jaymccarthy/
datalog.plt/1/3/. 21

[99] M. Mehlich. CheckPointer—A C memory access validator. In 11th
International Working Conference on Source Code Analysis and Manip-
ulation (SCAM’11), pages 165–172. IEEE, 2011. 95

[100] P. Meredith, M. Hills, and G. Ros,u. An executable rewriting logic
semantics of K-Scheme. In D. Dube, editor, 2007 Workshop on Scheme
and Functional Programming (SCHEME’07), Technical Report DIUL-
RT-0701, pages 91–103. Laval University, 2007. 2, 17

[101] P. Meredith, M. Hills, and G. Ros,u. A K definition of Scheme. Techni-
cal Report Department of Computer Science UIUCDCS-R-2007-2907,
University of Illinois at Urbana-Champaign, 2007. 17

[102] P. Meredith, M. Katelman, J. Meseguer, and G. Ros,u. A formal
executable semantics of Verilog. In 8th ACM/IEEE International Con-
ference on Formal Methods and Models for Codesign (MEMOCODE’10).
IEEE, 2010. To appear. 2, 17

417

PhD Thesis, University of Illinois, July 2012

http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
http://llvm.org/docs/LangRef.html
http://planet.racket-lang.org/package-source/jaymccarthy/datalog.plt/1/3/
http://planet.racket-lang.org/package-source/jaymccarthy/datalog.plt/1/3/

[103] M. Mernik, M. Lenic, E. Avdicausevic, and V. Zumer. Compiler/
interpreter generator system LISA. In 33rd Hawaii International Con-
ference on System Sciences (HICSS’00), pages 590–594. IEEE, 2000.
20

[104] J. Meseguer. Conditional rewriting logic as a unified model of concur-
rency. Theoretical Computer Science, 96(1):73–155, 1992. 3, 20, 24,
30

[105] J. Meseguer and G. Ros,u. The rewriting logic semantics project. Theo-
retical Computer Science, 373(3):213–237, 2007. 20

[106] J. Meseguer and G. Ros,u. The rewriting logic semantics project: A
progress report. In 17th International Symposium on Fundamentals
of Computation Theory (FCT’11), volume 6914 of Lecture Notes in
Computer Science, pages 1–37. Springer, 2011. Invited talk. 20

[107] M. Might. Abstract interpreters for free. In 17th International Con-
ference on Static Analysis (SAS’10), pages 407–421. Springer, 2010.
2

[108] R. Milner, M. Tofte, and D. Macqueen. The Definition of Standard ML.
MIT Press, Cambridge, MA, USA, 1990. 15

[109] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of
Standard ML (Revised). MIT Press, 1997. 13, 15

[110] MISRA Consortium. MISRA-C: 2004—Guidelines for the use of the
C language in critical systems. Technical report, MIRA Ltd., October
2004. 94

[111] MITRE Corporation. The common weakness enumeration (CWE)
initiative, 2012. URL http://cwe.mitre.org/. 94

[112] P. D. Mosses. Modular structural operational semantics. Journal of
Logic and Algebraic Programming, 60–61:195–228, 2004. 20

[113] T. Nagel. Troubles with GCC signed integer overflow opti-
mization, January 2010. URL http://thiemonagel.de/2010/01/
signed-integer-overflow/. 65

[114] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermedi-
ate language and tools for analysis and transformation of C programs.
In 11th International Conference on Compiler Construction (CC’02),
Lecture Notes in Computer Science, pages 213–228. Springer, 2002. 30,
178

418

PhD Thesis, University of Illinois, July 2012

http://cwe.mitre.org/
http://thiemonagel.de/2010/01/signed-integer-overflow/
http://thiemonagel.de/2010/01/signed-integer-overflow/

[115] N. Nethercote and J. Seward. Valgrind: A framework for heavyweight
dynamic binary instrumentation. SIGPLAN Not., 42(6):89–100, June
2007. 95

[116] NIST. Juliet test suite for C/C++, December 2010. URL http://
samate.nist.gov/SRD/testsuite.php. 94

[117] M. Nita, D. Grossman, and C. Chambers. A theory of platform-
dependent low-level software. In 35th ACM Symposium on Principles
of Programming Languages (POPL’08), 2008. 102

[118] L. C. Noll, S. Cooper, P. Seebach, and L. A. Broukhis. The international
obfuscated C code contest, 2010. URL http://www.ioccc.org/. 53

[119] M. Norrish. C formalised in HOL. Technical Report UCAM-CL-TR-453,
University of Cambridge, December 1998. 9, 10, 11, 12, 62, 63, 78, 89

[120] M. Norrish. A formal semantics for C++. Technical report, NICTA,
2008. URL http://nicta.com.au/people/norrishm/attachments/
bibliographies_and_papers/C-TR.pdf. 10, 13, 15

[121] M. Ouimet and K. Lundqvist. The TASM toolset: Specification, simula-
tion, and formal verification of real-time systems. In 19th International
Conference on Computer Aided Verification (CAV’07), pages 126–130,
Berlin, Heidelberg, 2007. Springer-Verlag. 21

[122] S. Owens, S. Sarkar, and P. Sewell. A better x86 memory model: x86-
TSO. In 22th International Conference on Theorem Proving in Higher
Order Logics (TPHOLs’09), volume 5674 of Lecture Notes in Computer
Science, pages 391–407. Springer, 2009. 46

[123] G. J. Pace and J. He. Formal reasoning with Verilog HDL. In In Work-
shop on Formal Techniques for Hardware and Hardware-like Systems,
Marstrand, 1998. 17

[124] N. S. Papaspyrou. A Formal Semantics for the C Programming Language.
PhD thesis, National Technical University of Athens, 1998. 10

[125] N. S. Papaspyrou. Denotational semantics of ANSI C. Computer
Standards and Interfaces, 23(3):169–185, 2001. 10, 11, 12, 55

[126] N. S. Papaspyrou and D. Maćoš. A study of evaluation order semantics
in expressions with side effects. Journal of Functional Programming, 10
(3):227–244, 2000. 89

[127] U. F. Pleban. Compiler prototyping using formal semantics. SIGPLAN
Not., 19:94–105, June 1984. 2

419

PhD Thesis, University of Illinois, July 2012

http://samate.nist.gov/SRD/testsuite.php
http://samate.nist.gov/SRD/testsuite.php
http://www.ioccc.org/
http://nicta.com.au/people/norrishm/attachments/bibliographies_and_papers/C-TR.pdf
http://nicta.com.au/people/norrishm/attachments/bibliographies_and_papers/C-TR.pdf

[128] G. D. Plotkin. The origins of structural operational semantics. Journal
of Logic and Algebraic Programming, 60:60–61, 2004. 41

[129] J. Regehr. A guide to undefined behavior in C and C++, July 2010.
URL http://blog.regehr.org/archives/213. 63

[130] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang. Test-case
reduction for C compiler bugs. In J. Vitek, H. Lin, and F. Tip, editors,
33rd ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI’12), pages 335–346. ACM, 2012. 61, 87, 88

[131] E. Riccobene, P. Scandurra, and F. Albani. A modeling and executable
language for designing and prototyping service-oriented applications.
Software Engineering and Advanced Applications, Euromicro Conference,
0:4–11, 2011. 21

[132] A. Riesco, A. Verdejo, and N. Martí-Oliet. A complete declarative
debugger for Maude. In 13th International Conference on Algebraic
Methodology and Software Technology (AMAST’10), pages 216–225.
Springer-Verlag, 2011. 3, 20

[133] G. Ros,u. K: A rewriting-based framework for computations—
Preliminary version. Technical Report UIUCDCS-R-2007-2926, Univer-
sity of Illinois, Department of Computer Science, 2007. 3, 28

[134] G. Ros,u and T. F. S, erbănut,ă. An overview of the K semantic framework.
Journal of Logic and Algebraic Programming, 79(6):397–434, 2010. 2, 3,
24, 28

[135] G. Ros,u and A. S, tefănescu. Matching logic: A new program verification
approach (NIER track). In 30th International Conference on Software
Engineering (ICSE’11), pages 868–871, 2011. 102, 103

[136] G. Ros,u and A. S, tefănescu. From Hoare logic to matching logic reacha-
bility. In 18th International Symposium on Formal Methods (FM’12),
Lecture Notes in Computer Science. Springer, 2012. To appear. 103

[137] G. Ros,u and A. S, tefănescu. Towards a unified theory of operational and
axiomatic semantics. In 39th International Colloquium on Automata,
Languages and Programming (ICALP’12), Lecture Notes in Computer
Science. Springer, 2012. To appear. 103

[138] G. Ros,u, W. Schulte, and T. F. S, erbănut,ă. Runtime verification of
C memory safety. In Runtime Verification (RV’09), volume 5779 of
Lecture Notes in Computer Science, pages 132–152, 2009. 2, 3, 32, 80

420

PhD Thesis, University of Illinois, July 2012

http://blog.regehr.org/archives/213

[139] G. Ros,u, C. Ellison, and W. Schulte. Matching logic: An alternative
to Hoare/Floyd logic. In 13th International Conference on Algebraic
Methodology and Software Technology (AMAST’10), volume 6486 of
Lecture Notes in Computer Science, pages 142–162, 2010. 3, 10, 102,
103

[140] Ruby Standardization WG. Programming languages—Ruby. Draft,
Information-technology Promotion Agency, August 2010. 71

[141] S. Sarkar, M. Batty, S. Owens, K. Memarian, L. Maranget, J. Alglave,
P. Sewell, and D. Williams. Synchronising C/C++ and POWER. In
J. Vitek, H. Lin, and F. Tip, editors, 33rd ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI’12),
pages 311–322. ACM, 2012. 45

[142] H. Sasaki. A formal semantics for Verilog-VHDL simulation interop-
erability by abstract state machine. In 2nd Conference on Design,
Automation and Test in Europe (DATE’99). ACM, 1999. 13, 17

[143] J. Schmid. Introduction to AsmGofer, March 2001. URL http://www.
tydo.de/download/Doktorarbeit/AsmGoferIntro.pdf. 21

[144] R. C. Seacord and J. A. Rafail. The CERT C secure coding standard,
2008. 94

[145] J. R. Senning. Solution of the dining philosophers problem using shared
memory and semaphores, January 2000. URL http://www.math-cs.
gordon.edu/courses/cs322/projects/p2/dp/. 59

[146] T. F. S, erbănut,ă. A Rewriting Approach to Concurrent Programming
Language Design and Semantics. PhD thesis, University of Illinois, 2010.
URL http://hdl.handle.net/2142/18252. 2, 3, 19, 28, 45, 76, 90

[147] T. F. S, erbănut,ă and G. Ros,u. KRAM—extended report. Technical
Report http://hdl.handle.net/2142/17337, UIUC, September 2010.
2

[148] T. F. S, erbănut,ă and G. Ros,u. K-Maude: A rewriting based tool for
semantics of programming languages. In 8th International Workshop
on Rewriting Logic and its Applications (WRLA’09), volume 6381 of
Lecture Notes in Computer Science, pages 104–122, 2010. 2, 3, 24, 28

[149] T. F. S, erbănut,ă, G. Ros,u, and J. Meseguer. A rewriting logic approach
to operational semantics. Information and Computation, 207:305–340,
2009. 19, 20

[150] T. F. S, erbănut,ă, A. Arusoaie, D. Lazar, C. Ellison, D. Lucanu, and
G. Ros,u. The K primer (version 2.5). In M. Hills, editor, K’11, Electronic
Notes in Theoretical Computer Science, to appear. 2, 24, 50, 107

421

PhD Thesis, University of Illinois, July 2012

http://www.tydo.de/download/Doktorarbeit/AsmGoferIntro.pdf
http://www.tydo.de/download/Doktorarbeit/AsmGoferIntro.pdf
http://www.math-cs.gordon.edu/courses/cs322/projects/p2/dp/
http://www.math-cs.gordon.edu/courses/cs322/projects/p2/dp/
http://hdl.handle.net/2142/18252
http://hdl.handle.net/2142/17337

[151] J. Sevčik, V. Vafeiadis, F. Zappa Nardelli, S. Jagannathan, and P. Sewell.
Relaxed-memory concurrency and verified compilation. In T. Ball
and M. Sagiv, editors, 38th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL’11), pages 43–54. ACM,
2011. 45, 46

[152] P. Sewell, F. Z. Nardelli, S. Owens, G. Peskine, T. Ridge, S. Sarkar,
and R. Strniša. Ott: Effective tool support for the working semanti-
cist. In 12th ACM SIGPLAN International Conference on Functional
Programming (ICFP’07), pages 1–12. ACM, 2007. 21

[153] G. J. Smeding. An executable operational semantics for Python. Mas-
ter’s thesis, University of Utrecht, January 2009. 18

[154] M. Sperber, R. K. Dybvig, M. Flatt, A. van Straaten, R. Findler, and
J. Matthews. Revised6 Report on the Algorithmic Language Scheme.
Cambridge University Press, 2010. 17, 21

[155] R. F. Stärk, J. Schmid, and E. Börger. Java and the Java Virtual
Machine: Definition, Verification and Validation. Springer-Verlag, 2001.
14, 21

[156] T. Ströder, F. Emmes, P. Schneider-Kamp, J. Giesl, and C. Fuhs. A
linear operational semantics for termination and complexity analysis of
ISO Prolog. In 21st International Symposium on Logic-Based Program
Synthesis and Transformation (LOPSTR’11), LNCS. Springer, 2011.
17

[157] S. Subramanian and J. V. Cook. Mechanical verification of C programs.
In ACM SIGSOFT Workshop on Formal Methods in Software Practice,
January 1996. 9

[158] S. Summit. C programming FAQs: Frequently asked questions, 2005.
URL http://www.c-faq.com/. 6

[159] TIOBE Software BV. TIOBE programming community index, July
2010. URL http://www.tiobe.com/index.php/content/paperinfo/
tpci/. 22

[160] M. G. J. van den Brand, J. Heering, P. Klint, and P. A. Olivier. Com-
piling language definitions: The ASF+SDF compiler, 2000. 20

[161] M. VanInwegen and E. Gunter. HOL-ML. In J. J. Joyce and C.-
J. H. Seger, editors, 6th International Workshop on Higher Order Logic
Theorem Proving and its Applications (HUG’93), Lecture Notes in
Computer Science, pages 61–74. Springer, 1994. 13, 15

422

PhD Thesis, University of Illinois, July 2012

http://www.c-faq.com/
http://www.tiobe.com/index.php/content/paperinfo/tpci/
http://www.tiobe.com/index.php/content/paperinfo/tpci/

[162] C. Wallace. The semantics of the C++ programming language. In
Specification and Validation Methods, pages 131–164. Oxford University
Press, 1993. 15

[163] C. Wallace. The semantics of the Java programming language: Prelimi-
nary version. Technical Report CSE-TR-355-97, University of Michigan,
1997. 14

[164] D. Watt. The static and dynamic semantics of Standard ML. In
P. D. Mosses and D. A. Watt, editors, 2nd International Workshop on
Action Semantics (AS’99), pages 155–172. Dept of Computer Science,
University of Aarhus, 1999. 16

[165] D. N. Welton. Programming language popularity, April 2011. URL
http://langpop.com/. Accessed May 23, 2012. 22

[166] M. Wolczko. Semantics of Smalltalk-80. In J. Bézivin, J.-M. Hullot,
P. Cointe, and H. Lieberman, editors, 1st European Conference on
Object-Oriented Programming (ECOOP’87), volume 276 of Lecture
Notes in Computer Science, pages 108–120. Springer, 1987. 13, 16

[167] X3J11 Technical Committee on the C Programming Language under
project 381-D by American National Standards Committee on Com-
puters and Information Processing (X3). Programming language C.
Technical Report X3.159-1989, ANSI, 1989. 22

[168] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and understanding
bugs in C compilers. In 32nd ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI’11), pages 283–294,
2011. 7, 87

[169] J. Zhao, S. Nagarakatte, M. M. Martin, and S. Zdancewic. Formalizing
the LLVM intermediate representation for verified program transforma-
tions. In J. Field and M. Hicks, editors, 39th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL’12), pages
427–440. ACM, 2012. 13, 16

[170] W. Zimmermann and A. Dold. A framework for modeling the semantics
of expression evaluation with abstract state machines. In Abstract State
Machines, volume 2589 of Lecture Notes in Computer Science, pages
391–406, 2003. 9

423

PhD Thesis, University of Illinois, July 2012

http://langpop.com/

	Chapter 1 Introduction
	Problem Description and Contribution
	Why Details Matter

	Chapter 2 Related Work
	Comparison with Existing Formal C Semantics
	Other Formal Semantics
	Semantics and Formal Analysis Tools

	Chapter 3 Background
	C Standard Information
	Rewriting Logic and K

	Chapter 4 Positive Semantics
	Introduction
	The Semantics of C in K
	Syntax
	Configuration (Program + State)
	Memory Layout
	Basic Semantics
	Static Semantics
	Concurrency Semantics
	Parametric Behavior
	Expression Evaluation Strategy
	Putting It All Together with kcc

	Testing the Semantics
	GCC Torture Tests
	Exploratory Testing

	Applications
	Debugging
	State Space Search

	Chapter 5 Negative Semantics
	Introduction
	Undefinedness
	What Undefinedness Is
	Undefinedness is Useful
	Undefinedness is also a Problem
	Strangeness of C Undefinedness
	Implementation-Dependent Undefined Behavior
	Difficulties in Detecting Undefined Behavior
	Undefinedness in Other Languages

	Semantics-Based Undefinedness Checking
	Using Side Conditions and Checks to Limit Rules
	Storing Additional Information
	Symbolic Behavior
	Suggested Semantic Styles for Undefinedness

	Applications
	A Semantics-Based Undefinedness Checker
	State Space Search Revisited

	Evaluation
	Third Party Evaluation
	Undefinedness Test Suite

	Conclusion

	Chapter 6 Conclusion
	Limitations
	Future Work
	Semantics
	Tools

	Conclusion

	Appendix A Entire Annotated Semantics
	Syntax
	Configuration
	Expressions
	Statements
	Typing
	Declarations
	Memory
	Standard Library
	Error Handling
	Miscellaneous

	References

