
MAKING RUNTIME MONITORING OF PARAMETRIC
PROPERTIES PRACTICAL

BY

DONGYUN JIN

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2012

Urbana, Illinois

Doctoral Committee:

Associate Professor Grigore Roşu, Chair and Director of Research
Senior Research Scientist Klaus Havelund, JPL, NASA
Professor Gul Agha
Associate Professor Darko Marinov

PhD Thesis, University of Illinois, August 2012

Abstract

Software reliability has become more important than ever in recent years, as a

wide spectrum of software solutions are being used on various platforms. To this

end, runtime monitoring is one of the most promising and feasible solutions for

enhancing software reliability. In particular, runtime monitoring of parametric

properties (parametric monitoring) has been receiving growing attention for

its suitability in object-oriented systems. Despite many parametric monitoring

approaches that have been proposed recently, they are still not widely used in real

applications, implying that parametric monitoring is not sufficiently practical yet.

In this dissertation, three perspectives for better practicality of parametric

monitoring are proposed: expressiveness, efficiency, and scalability. A number

of techniques on all three perspectives are developed and integrated to the

JavaMOP framework, which is a formalism-independent, extensible runtime

monitoring framework for parametric properties. One limitation in expressing

parametric properties is that the first event must alway initiate all parameters.

This limitation is removed in the proposed work to improve expressiveness of

parametric monitoring. Further, a new logical formalism, PTCaRet, is introduced

for describing properties of the call stack. As for efficiency, the ‘enable set

optimization’, the ‘indexing cache’, and the ‘monitor garbage collection’ are

proposed for optimizing creation of monitors, access to monitors, and termination

of monitors, respectively. In addition, several scalable parametric monitoring

techniques are introduced. These techniques, for the first time, allow a large

number of simultaneous parametric specifications to be monitored efficiently.

The optimization techniques presented in this dissertation were implemented

into the JavaMOP framework, yielding JavaMOP 3.0, the latest and most

efficient version of JavaMOP. Thorough evaluations show that these techniques

can improve runtime performance of JavaMOP by 3 times on average, and up

to 63 times in some cases; as for memory usage, by 3 times on average. While

Tracematches and the previous version of JavaMOP crashed on several cases due

to out of memory errors, the newer version of JavaMOP did not crash on any case

during the evaluations. Considering that the previous version of JavaMOP was

one of the most efficient parametric monitoring frameworks in terms of runtime

performance, the results presented in the dissertation can be argued significant.

ii

PhD Thesis, University of Illinois, August 2012

To my family...

iii

PhD Thesis, University of Illinois, August 2012

Acknowledgments

I have learned many things throughout my PhD. It truly was a great experience.

I was very lucky to have a great advisor, Grigore Roşu, and would like to thank

him first. I deeply thank him for training me as an independent researcher, not

to mention all of his constructive comments on this dissertation. I would also like

to thank my doctoral committee, Doctor Klaus Havelund, Professor Gul Agha,

and Professor Darko Marinov, for their insightful comments for the dissertation.

I have truly enjoyed the great research environment of the Formal Systems

Laboratory and thank all the past and present members of FSL, Feng Chen,

Patrick Meredith, Choonghwan Lee, Chucky Ellison, Traian Şerbănuţă, Andrei

Ştefănescu, Mark Hills, Michael Ilseman, Dennis Griffith, Soha Hussein, Kyle

Blocher, Yaniv Eytani, and Qingzhou Luo, for all the discussions and help they

offered on my research. Special thanks goes to Feng Chen for being a great

mentor for my early stage in this research. Also, without his introduction of

JavaMOP in 2005, this dissertation would not exist. I pray that his soul is

resting in peace. I would also like to thank Patrick Meredith for his great help in

presenting my research and for his direct collaboration in developing JavaMOP.

During my PhD, I have been fortunate enough to meet many good friends. I

thank Donghee Om and Eunkyung Lee. They have been very close friends and

good mentors of my life. I thank all my roommates, Sunjin Im and MyungJoo

Ham. It was fun living with you guys. I thank Junho Huh for his great help and

comments on this dissertation. I thank Sundeep Katasani and Ravinder Shankesi

for previous friendship. I thank my godfather, Sangkym Kim for helping my

spiritual growth. I also thank all my friends in Urbana-Champaign, especially

Sangchul Lee, Yoonkyung Lee, Kanghoon Jun and Hyunduk Kim.

I would like to thank Professor U Jin Choi for his great support and advice

in pursuing the Ph.D. degree. I would like to extend my thanks to all my

college friends and members of GoN (the best hacking group in my college),

especially Kiho Lee, Juyeong Ji, Ujin Jung, Donghyuk Im, Dongjin Seo, Sangmin

Hong, Yunho Kim, and Hongkee Yoon, who have all provided great advices, and

triggered creative discussions.

Finally, I would like to thank my family. My parents, Sungkyu Jin and

Soonduk Choi, and my sister, Hyeyoon Jin have always encouraged me during

my graduate years. None of this would have been possible without great support

iv

PhD Thesis, University of Illinois, August 2012

and love from them. My nephew, Jihwan So was born last year, and I haven’t

had a chance to meet him yet, but it has been a joy to watch his photos.

The research in this dissertation has been supported in part by NSF grants

CCF-0916893, CNS-0720512, and CCF-0448501, by NASA contract NNL08AA23C,

and by an NSA grant, a UIUC Campus Research Board Award, and a Samsung

SAIT grant.

v

PhD Thesis, University of Illinois, August 2012

Table of Contents

Chapter 1 Introduction . 1

Chapter 2 Background . 10

Chapter 3 Expressive Parametric Monitoring 27

Chapter 4 Efficient Parametric Monitoring 41

Chapter 5 Scalable Parametric Monitoring 69

Chapter 6 Multi-Threaded Unit Testing 92

Chapter 7 Related Work . 103

Chapter 8 Conclusions and Future Work 107

Bibliography . 109

vi

PhD Thesis, University of Illinois, August 2012

Chapter 1

Introduction

Software reliability has become increasingly more important in recent years, as

a very wide spectrum of software solutions are being used on various platforms –

ranging from hand-held devices like smart phones to more critical infrastructures

like industrial control systems and spaceships. Some software failures result in a

huge financial loss. The loss of the NASA Mars Climate Orbiter due to a simple

programming error was 327.6 million dollars in total including the cost of the

orbiter and the cost of lander [4]. In effect, it slowed down scientific discoveries

about Mars. Even worse, some software failures can result in a tragic loss of

human lives. Software errors in Therac-25, a radiation therapy machine, caused

deaths and serious injuries in at least six known accidents between 1985 and

1987 [60]. Even in our daily lives, software failures in home electronics can hurt

user experience, and they might result in a loss of manufacturer’s market share.

Many methods from theorem proving to testing have been developed over

the last few decades; each method was designed with different goals in mind,

and the assurances and the costs are also different. Runtime monitoring is one

of the promising methods for enhancing software reliability. Runtime monitoring

(simply referred to as monitoring for the rest of this dissertation) observes an

execution of a system for analyzing its behavior to check if it is faithful to the

expected properties. Monitoring can be used not only in system development

stages (e.g., debugging, testing) but also in the deployed systems as a mechanism

to increase system reliability and/or security.

Parametric properties are properties that describe behaviors of objects (pa-

rameter instances), which a program should conform with during its execution.

For example, they can describe use of protocols for classes, pre-conditions for

using classes, prohibited activities, and so forth. Typestates [71] are a similar

concept, but only allow one single parameter, while parametric properties in

general can describe properties about any number of parameters. Parametric

specifications are formalized parametric properties in some formal specification

language with auxiliary information or definitions needed when monitoring.

Thus, for the rest of this dissertation, these two terms – parametric property

and parametric specification – will be used without distinction, sometimes

omitting the word “parametric.”

1

PhD Thesis, University of Illinois, August 2012

q0

q1

q2

q3

err

modifyMap(m), modifyCol(c)

modifyMap(m), modifyCol(c)

getiter(c, i)

getset(m, c)

useiter(i)

useiter(i)

modifyMap(m), modifyCol(c)

Figure 1.1: Map UnsafeIterator property (m: Map, c: Collection, i: Iterator)

For example, Map is an interface of map data structures in the standard Java

Library that map keys to values. Map allows one to iterate all keys/values in

its mappings by providing a collection of keys/values. To use this feature, a

property must be followed; the Java API documentation states:

“If the map is modified while an iteration over the set/collection is in

progress (except through the iterator’s own remove operation), the

results of the iteration are undefined.”

Since it is allowed to modify other maps which are not being iterated, related

method calls (events) should be parameterized in this property – meaning that

each combination of Map, Collection, and Iterator instances must conform

with this property separately. Figure 1.1 represents this parametric property,

Map UnsafeIterator from [59] as a multi-state finite state machine with param-

eterized events. A parameterized event comes with related parameters which

bound to actual parameter instances in runtime (this term is formally defined in

Chapter 2). In this property, there are five parameterized events: getset(m, c),

getiter(c, i), useiter(i), modifyMap(m), and modifyCol(c). Note that the parameter-

ized events require multiple states (one for each combination of Map, Collection,

and Iterator instances) in the finite state machine; Typestates [71] cannot

monitor this property.

Figure 1.2 formalizes this property using JavaMOP. While the detailed Java-

MOP syntax is discussed in Chapter 2, here we briefly introduce what this

2

PhD Thesis, University of Illinois, August 2012

Map UnsafeIterator(Map m, Collection c, Iterator i) {
creation event getset after(Map m) returning(Collection c) :

(call(Set Map+.keySet()) || call(Collection Map+.values()))

&& target(m) {}

event getiter after(Collection c) returning(Iterator i) :

call(Iterator Iterable+.iterator()) && target(c) {}

event modifyMap before(Map m) :

(call(* Map+.clear*(..)) || call(* Map+.put*(..))

|| call(* Map+.remove(..))) && target(m) {}

event modifyCol before(Collection c) :

(call(* Collection+.clear(..))

|| call(* Collection+.offer*(..))

|| call(* Collection+.pop(..))

|| call(* Collection+.push(..))

|| call(* Collection+.remove*(..))

|| call(* Collection+.retain*(..))) && target(c) {}

event useiter before(Iterator i) :

(call(* Iterator.hasNext(..))

|| call(* Iterator.next(..))) && target(i) {}

ere : getset (modifyMap | modifyCol)* getiter useiter*

(modifyMap | modifyCol)+ useiter

@match {
System.err.println("a violation detected!");

}
}

Figure 1.2: Map UnsafeIterator specification in JavaMOP

specification contains. This specification defines five parametric events with the

corresponding AspectJ [54] pointcuts that pick out interesting program points.

The property is formalized using an extended regular expression (ERE), as speci-

fied by the ere keyword. If a program behavior matches this pattern, and violates

the property from the Java API documentation, the defined handler containing

the user-defined Java code will be executed; here we simply print out an error

message in the handler. Handler can be any code, from logging to recovery.

Monitoring of Parametric properties (referred to as parametric monitoring

for the rest of this dissertation) enables us to analyze program behaviors more

precisely, especially in object-oriented programs. A user or a software developer

describes specifications that a program should conform with, like the one in

Figure 1.2. Then, JavaMOP will generate actual monitoring code and instru-

mentation code in AspectJ [54], which can contain a large number of lines of

code that is not easy to code manually. By using any AspectJ compiler like

ajc [15], this monitoring code can be instrumented into the original program

and monitor its execution.

3

PhD Thesis, University of Illinois, August 2012

1.1 Motivation

In spite of significant recent progress and several parametric monitoring ap-

proaches being developed, parametric monitoring is still not widely used in

real-life software applications. For making parametric monitoring more practical,

there are still challenges remaining that need to be addressed.

First, parametric monitoring should be scalable to the number of properties

to monitor. To the best knowledge of the author, all earlier efforts on parametric

monitoring have been focusing on monitoring a single property more efficiently

and/or effectively [51, 64, 36, 19, 62, 18]. However, in real usages, there are

likely to be multiple properties that have to be monitored for a program. Some

monitoring systems support simultaneous parametric monitoring of multiple

properties with overheads greater than the sum of overheads from monitoring each

property, which can easily become too large to tolerate. To make a parametric

monitoring system more practical, it is crucial to support scalable simultaneous

parametric monitoring of multiple properties.

Second, parametric monitoring should be efficient, i.e., runtime and memory

overheads of monitoring a property should be as small as possible. Also, we are

interested not only in average performance but also in worst case performance.

While many parametric monitoring systems show efficient average performance,

there are still some extreme cases that many monitoring systems cannot monitor

due to excessive overheads. For example, monitoring a property about Iterator

in Java can show a huge overhead since the Iterator type can be heavily used in

many programs. Although there are many static analysis techniques that can be

used to reduce overheads, they only analyze places where runtime monitoring cost

can be hidden; monitoring costs incurring from other places will still exist and

will be counted as part of the overall overhead. Moreover, most of static analysis

is formalism-dependent. When a new logical formalism is introduced, new static

analysis have to follow for efficient monitoring of properties in the new logical

formalism. Also, static analysis techniques might not be effective in some cases,

depending on the nature of the monitored program and the specifications. Thus,

improving runtime monitoring cost itself is definitely beneficial. Furthermore,

two different types of techniques are orthogonal to each other, implying that

more improvements can be achieved from using both techniques.

Third, parametric monitoring should be expressive. From the nature of

parametric monitoring that observes behaviors of parameters separately, it

introduces overheads that can easily be excessive. To the best knowledge of the

author, all parametric monitoring systems such as [32, 19, 62, 43, 21] among

others, have restrictions on monitoring parametric properties for this performance

reason. Many of them follow a formalism-dependent approach, that is, they

hardwire their parametric specification formalisms as a feasible solution to this,

limiting expressiveness and leading to inefficient monitoring. Note that some

properties can be monitored more efficiently in different logical formalisms.

4

PhD Thesis, University of Illinois, August 2012

Another approach, that the previous version of JavaMOP chose, is to restrict

creation events to initiate all parameters. Although, in this way, parametric

monitoring can be efficient, focusing on monitoring fully instantiated parameter

instances only, this restriction hurts expressiveness in describing parametric

properties. For example, the Map UnsafeIterator property in Figure 1.1 cannot

be expressed with this restriction since the creation event, getset instantiates

only two parameters out of the three. Practical parametric monitoring must

support various logical formalisms without putting any restrictions on expressing

properties.

To apply parametric monitoring to more areas, we need to develop scalable,

efficient and expressive parametric monitoring techniques which are capable

of monitoring multiple specifications simultaneously, while supporting multiple

formalisms. The ultimate goal is to provide a practical parametric runtime

monitoring framework that can be used in real software development stages and

even in deployed systems for enhancing reliability and security.

1.2 Contributions

This dissertation presents research for practical runtime monitoring of parametric

properties, and an application to multi-threaded unit testing. The research

outcomes from this dissertation have been integrated into JavaMOP and resulted

in a new, more practical version. Before the advancements made through this

work, JavaMOP was not capable of addressing the challenges listed in Section 1.1.

The key contributions of this dissertation are as follows:

1. The practical JavaMOP framework

(a) Scales in the number of specifications that it monitors at

the same time. For making parametric monitoring practical, it

is essential to support efficient monitoring of multiple simultaneous

properties. If the runtime and memory overhead increases linearly

(or worse), parametric monitoring easily becomes prohibitive with

the existence of a large number of properties. Based on a reasonable

assumption that some properties describe behaviors of the same pa-

rameter, sharing some events and parameters, parametric monitoring

can be done more efficiently than linear sum of overheads that would

incur from monitoring them separately. This work is described in

detail in Chapter 5

(b) Shows the best runtime performance and competitive mem-

ory performance compared to other parametric monitoring

systems. The previous version of JavaMOP already showed a better

runtime performance than other parametric monitoring systems in

most cases and a reasonable memory performance. A number of opti-

mization techniques, presented in Chapter 4, dramatically improve

5

PhD Thesis, University of Illinois, August 2012

this runtime and memory performance of the JavaMOP framework

even further – resulting in orders of magnitude faster runtime perfor-

mance and competitive memory performance compared to runtime

performance of other systems.

(c) Supports multiple logical formalisms in describing proper-

ties. The previous version of JavaMOP already supported multiple

logical formalisms including extended regular expressions, finite state

machines, and linear temporal logics.

In addition to those logical formalisms, another logical formalism

called past time linear temporal logic with calls and returns (PTCaRet)

is implemented, which is an extension of past time linear temporal

logic; this work is described in Chapter 3. Context-free grammar is

added by Patrick Meredith [64], in collaboration with the author,

but this will not be covered in this dissertation. To ensure that

multiple logical formalisms are still supported, all the work done on

the JavaMOP framework chooses formalism-independent approaches.

(d) Provides parametric monitoring without any restriction for

better expressiveness in describing parametric properties.

Due to performance reasons, the previous version of JavaMOP has a

restriction that all creation events must instantiate all parameters;

this is so that JavaMOP can focus on monitoring fully instantiated

parameter instances only. This dissertation removes this restriction,

while keeping its efficiency, by using the enable set optimization, which

tells what parameter instances need to be monitored. The outcomes

from this work are described in detail in Chapters 3 and 4.

2. Application of JavaMOP

JavaMOP is used in the improved multithreaded unit testing framework

for describing/monitoring events and enforcing the desired schedules. To

enable this, a new logic plugin called partial orders is implemented and

integrated with the JavaMOP framework. Thanks to the JavaMOP archi-

tecture, there were not too many technical barriers in implementing the

logic plugin, yet it gets all the advantages of the JavaMOP framework.

1.3 Dissertation Overview

Chapter 2 provides the background information on JavaMOP, that is required to

understanding the rest of the dissertation. We introduce the JavaMOP framework

with its architecture, the syntax of JavaMOP, and provide examples. Also, we

explain the indexing tree technique, which is the key technique in implementing

parametric monitoring. In this chapter, we focus on the indexing tree technique

that is used in the previous version of JavaMOP, while other chapters discuss

the modifications and improvements that were made.

6

PhD Thesis, University of Illinois, August 2012

Chapter 3 describes the author’s work on expanding the expressiveness of

JavaMOP. The limitation in expressing parametric properties that creation events

must initiate all parameters, is removed; it allows more parametric properties to

be written in JavaMOP, including some examples found in Chapter 2. A new

logical formalism, Past Time Linear Temporal Logic with Calls and Returns (PT-

CaRet) for monitoring stack-based properties is implemented. Also a specification

inheritance for reusing specifications just like the Java inheritance, is supported.

Chapter 4 offers several optimization techniques to improve the runtime and

memory performance of parametric monitoring. First, the enable set optimization

avoids monitoring parametric instances that are not need to be monitored. Then,

the new data structures for the indexing tree are proposed, and unnecessary

monitors can be garbage collected within the new data structures by using

the co-enable set optimization. The indexing cache for the indexing tree is

introduced for reducing the number of expensive operations that need to be

performed on the indexing tree.

Chapter 5 presents scalable parametric monitoring techniques, which are

capable of monitoring more than 100 parametric specifications simultaneously.

The common part in the indexing trees is extracted into a shared resource

between multiple specifications. Indexing trees within each specification are

also combined when possible, reducing the space usage and the maintenance

cost. Also, simple specification activators effectively suppress unnecessary over-

head from inactive specifications.

Chapter 6 introduces some application of parametric monitoring. JavaMOP is

used for monitoring/enforcing the desired schedules to improve the multi-threaded

unit testing. Instead of using sleep statements, which are fragile and slow, in

unit testings, we propose an improved multi-threaded unit testing framework

that a user can explicitly describe the desired schedule for testing. Then, the

framework monitors the thread scheduling and enforces the desired ones. In the

framework, JavaMOP takes charge of monitoring and enforcing the schedules.

Finally, Chapter 7 discusses related work, and Chapter 8 concludes the

dissertation with opportunities for future research.

1.4 Relationship to Previous Work

Monitoring-Oriented Programming [30], abbreviated MOP, is a generic moni-

toring framework that integrates specification and implementation by checking

the former against the latter at runtime. JavaMOP which was first introduced

by Chen and Rosu [31, 32], is an instance of the MOP framework specific to

the Java programming language. The research on parametric monitoring in this

dissertation integrates into the JavaMOP framework, resulting in a series of

new versions of JavaMOP. Before the research in this dissertation, JavaMOP

was showing a reasonable runtime and memory performance. This dissertation

presents expressive, efficient, and scalable parametric monitoring techniques,

7

PhD Thesis, University of Illinois, August 2012

promoting JavaMOP to one of the fastest and the most scalable parametric

monitoring frameworks with competitive memory performance. The paramet-

ric monitoring algorithm without any limitation on parameters has first been

proposed by Chen and Rosu [33], which is efficiently implemented in this dis-

sertation. Monitoring algorithm for the Past Time Linear Temporal Logic with

Calls and Returns (PTCaRet) has been proposed by Rosu et al. [69], which is

also efficiently implemented in this dissertation, along with an optimization to

handle a huge number of method calls and returns.

1.5 Related Publications

This section provides a quick overview of the author’s publications that are

relevant to the research presented in this dissertation. All the work in this

dissertation was done in collaboration with Grigore Roşu. The work on the

JavaMOP framework and all the optimizations are done in collaboration with

Patrick Meredith, Feng Chen, Choonghwan Lee, and Dennis Griffith. The

improved multithread unit testing framework is developed in collaboration with

Vilas Jagannath, Milos Gligoric, Qingzhou Luo and Darko Marinov.

JavaMOP Framework All work on parametric monitoring in this disserta-

tion is integrated into the JavaMOP framework, resulting in a new version of Java-

MOP. The JavaMOP tool was introduced in a number of publications including

‘JavaMOP: Efficient Parametric Runtime Monitoring Framework’ [52]presented

at the 2012 International Conference on Software Engineering For-

mal Demonstrations, and ‘Monitoring Oriented Programming - A Project

Overview’ [35]presented at the 2009 International Conference on Intelli-

gent Computing and Information Systems. Also, the detailed syntax and

semantics of the JavaMOP framework, the structure of the JavaMOP frame-

work, and the detailed syntax, semantics, and monitoring algorithm of each

logical formalism that the JavaMOP framework supports are explained in ‘An

Overview of the MOP Runtime Verification Framework’ [65]in the Journal on

Software Tools for Technology Transfer. Since the JavaMOP framework

is used throughout the dissertation, Chapter 2 summarizes its structure, syntax,

and semantics, as well as the indexing tree technique, on which many parametric

monitoring systems are based on.

Parametric Monitoring Parametric Monitoring was supported in the pre-

vious version of JavaMOP framework, but with the restriction that creation

events must instantiate all parameters. It is not trivial to remove this restriction

since monitoring all possible combinations of parameter instances is infeasible.

To address this, ‘Efficient Formalism-Independent Monitoring of Parametric

Properties’ [36]which is presented at the 2009 International Conference on

Automated Software Engineering , proposes enable set optimization, which

8

PhD Thesis, University of Illinois, August 2012

is described in detail in Chapter 4. It enables general parametric monitoring

without any restriction; it also expands expressiveness of parametric monitor-

ing that is explained in Chapter 3. All other work on parametric monitoring

described in this dissertation is done based on this.

Monitor Garbage Collection Parametric monitoring introduces a large

number of monitors even after optimizations. Therefore, it is important to

garbage collect unnecessary monitors to improve the memory performance as

well as the runtime performance. However, it is not trivial to collect unnec-

essary monitors efficiently. The efficient monitor garbage collection, found in

Chapter 4, is presented in ‘Garbage Collection for Monitoring Parametric Prop-

erties’ [51]which is presented in 2011 Programming Language Design and

Implementation, improving the performance of parametric monitoring greatly.

Scalable Parametric Monitoring For monitoring multiple specifications

more efficiently, Chapter 5 introduces Scalable parametric monitoring techniques,

which are also presented in ‘Scalable Parametric Runtime Monitoring’ [53].

These scalability techniques improve the efficiency of JavaMOP with respect to

monitoring multiple simultaneous specifications; in addition, performance for

single specification cases are also improved.

Improved Multithreaded Unit Testing Monitoring ability of JavaMOP is

applied to unit testing in multithreaded environments for monitoring/enforcing

the thread scheduling. This provides more benefits over traditional sleep-based

multithreaded unit tests which are unreliable and slow. This work is published as

‘Improved Multithreaded Unit Testing’ [47, 48] in 2011 Foundations of Soft-

ware Engineering and the 2010 International Workshop on Multicore

Software Engineering, and also explained in Chapter 6.

9

PhD Thesis, University of Illinois, August 2012

Chapter 2

Background

This chapter provides the background information necessary to follow the rest

of the dissertation. We present the architecture of JavaMOP in Section 2.1,

the syntax of JavaMOP in Section 2.2, and examples of JavaMOP specification

in Section 2.3. We formally define parametric monitoring and give algorithm

in Section 2.4. Also, we explain the indexing tree technique that JavaMOP

uses for locating associated monitors upon each event, in Section 2.5. Since all

the work in this dissertation is based on the JavaMOP framework, we focus

on parametric monitoring and the indexing tree technique used in the previous

version of JavaMOP. Then, the current version of JavaMOP is explained in the

following chapters, covering the improvements made. There are many other

parametric monitoring frameworks that directly or indirectly use the indexing

tree technique. Many optimization techniques presented in this dissertation can

also be applied to these frameworks.

2.1 JavaMOP

JavaMOP [31, 32] is an instance of the generic MOP framework specific to

the Java programming language. It allows concise descriptions of parametric

properties using a combination of event specifications that uses an extension

of AspectJ [54] as well as properties specified over these events. From these

specifications, JavaMOP generates AspectJ code for monitoring, which is weaved

into the target program by any AspectJ compiler, such as the standard AspectJ

compiler ajc. In this way, the generated monitoring code observes the program,

catches the events defined by a specification, and checks whether the program

is compliant to the given specification. When a specification is validated or

violated, user-defined code, called handlers, are executed. User-defined code can

be any Java code ranging from a code that performs logging to something that

performs runtime recovery according to a user’s objectives. The ability to supply

actual recovery code in the handlers allows JavaMOP-generated monitors to

enforce specifications within a program.

Table 2.1 lists a number of other monitoring systems and the logical formal-

ism they support. While all monitoring systems in the table except JavaMOP

follow a formalism-dependent approach, that is, they hardwire their parametric

10

PhD Thesis, University of Illinois, August 2012

Approach Language Logic Scope Mode Handler

Hawk [38] Java Eagle global inline violation
J-Lo [25] Java ParamLTL global inline violation
Jass [23] Java assertions global inline violation

JavaMaC [56] Java PastLTL class outline violation
jContractor [8] Java contracts global inline violation

JML [58] Java contracts global inline violation
JPaX [44] Java LTL class offline violation
P2V [61] C, C++ PSL global inline validation/

violation
PQL [62] Java PQL global inline validation

PTQL [43] Java SQL global outline validation
Spec# [20] C# contracts global inline/ violation

offline
RuleR [22] Java RuleR global inline violation

Temporal Rover [40] several MiTL class inline violation
Tracematches [19] Java Reg. Exp. global inline validation

Table 2.1: Runtime monitoring breakdown

specification formalisms (limiting expressiveness and leading to inefficient moni-

toring, JavaMOP follows a formalism-independent approach). We believe that

there is no ultimate formalism that concisely expresses every property. Users

will likely use different formalisms, depending on what properties they want to

express. Four logic-plugins were provided with JavaMOP before this dissertation:

Java Modeling Language (JML) [58], Extended Regular Expressions (ERE), and

Past-Time and Future-time Linear Temporal Logics (PTLTL and FTLTL) [34].

We have introduced two more logical formalisms, namely Context-Free Grammar

(CFG) [63] and Past-Time Linear Temporal Logics with Calls and Returns

(PTCaRet). However, only PTCaRet is covered in the dissertation since CFG

was not one of the author’s primary contributions.

Figure 2.1 shows the architecture of JavaMOP. JavaMOP communicates

with the Logic Repository which generates platform-independent monitoring

pseudo-code for the given property. All logical formalism plugins are contained

within the Logic Repository, which is a standalone program that can be used with

other instances of the MOP framework (e.g., CMOP, C#MOP, PythonMOP

and so on). The JavaMOP component has several translators to interpret

pseudo-code from the Logic Repository into AspectJ monitoring code. From this

architecture, one can easily introduce new logical formalism into JavaMOP by

adding a logic plugin – this can be done without worrying about other features

and optimizations which are formalism-independent. JavaMOP provides several

interfaces including a web-based interface, a command-line interface and an

Eclipse-based GUI, providing the developer with different means to manage and

process MOP specifications. For other usages, interfaces can be extended as well

sharing the core implementation of JavaMOP.

11

PhD Thesis, University of Illinois, August 2012

Figure 2.1: JavaMOP architecture

For performance reasons, the previous version of JavaMOP had a limitation

that the creation event was required to initiate all parameters. If all parameters

are always initiated at the creation event, we know exactly what parameter

instances to monitor. Otherwise, we should monitor all possible parameter

instances, including combinations of multiple parameter instances. It was not

possible to do this efficiently before this dissertation, thus the previous version

of JavaMOP chose an easy way around this, only allowing the first case. The

research to eliminate this limitation can be found in Chapter 3.

Since JavaMOP relies on an external AspectJ compiler for weaving monitoring

code, JavaMOP only allows events which can be defined in the standard AspectJ.

There are many extended components of AspectJ in different tools and they

are shown to be useful ([26, 39, 46, 11] among others). However, it is unknown

which AspectJ compiler is best suited for everything. There is unlikely to be

a best compiler as such. Conservatively, JavaMOP only supports components

from the standard AspectJ, allowing users to choose their AspectJ compiler.

Also, weaving-time optimization should be done independently from JavaMOP

since the resulting code from JavaMOP is program-independent as well.

12

PhD Thesis, University of Illinois, August 2012

2.2 JavaMOP Syntax

As there can be multiple instances of MOP (e.g., BusMOP [66] for monitoring

system buses using FPGA-based monitors), the MOP syntax is structured to

keep consistency. Figure 2.2 shows the structured MOP syntax. All of the

grammars used to define MOP syntax in this section use Extended Backus-Naur

Form (EBNF) [2]. Non-terminals in the grammars are surrounded by “⟨” and

“⟩”. Braces (“{” and “}”) enclose portions of the grammar that may appear

zero or more times. Brackets (“[” and “]”) enclose portions of the grammar

that are optional (i.e., it may or may not appear). Concrete examples of the

syntax defined below can be found in Section 2.3. There are the shared syntax

for every MOP instance, the instance specific syntax, and the logic plugin

specific syntax that each logic can freely define. The syntax of any instance of

MOP can be generated by defining certain syntactic categories (non-terminals)

of the MOP syntax.

The following syntax constructs are shared by different MOP instances:

• ⟨Specification⟩ — It describes the generic MOP specification syntax which

can be instantiated for MOP language instances and MOP logic plugins.

• ⟨Event⟩ — The ⟨Event⟩ declaration code allows for the definition of events,

which may then be referred to in the property (see ⟨Property⟩ below).

Event declarations can also have arbitrary code associated with them

(⟨Instance Action⟩), which is run when the event is observed (⟨Instance

Event Definition⟩), e.g. code to modify the program or the monitor state.

For manual indication of events that can start a trace, the keyword creation

is used at the beginning of each declaration.

• ⟨Property⟩ — Every MOP specification may contain zero or more properties.

A ⟨Property⟩ consists of a named formalism (⟨Logic Name⟩), followed by

a colon, followed by a property specification using the named formalism

(see ⟨Logic Syntax⟩ below) and usually referring to the declared events. If

the property is missing, then the MOP specification is called raw. Raw

specifications are useful when no existing logic plugin is powerful or efficient

enough to specify the desired property; in that case, one embeds the custom

monitoring code manually within the ⟨Instance Action⟩ code.

• ⟨Property Handler⟩ — Handlers contain arbitrary code from the instance

source language, and are invoked when a certain logic state (see ⟨Logic State⟩
below) or category is reached, e.g., match, fail, or a particular state in a

finite state machine description.

The following constructs are based on the particular instance of MOP used

for a particular specification. JavaMOP should define these six components in

the instance specific syntax. Figure 2.3 shows the JavaMOP specific syntax,

which defines six components listed below and auxiliary components for them.

13

PhD Thesis, University of Illinois, August 2012

Shared syntax

⟨Specification⟩ ∶∶= {⟨Instance Modifier⟩} ⟨Id⟩ ⟨Instance Parameters⟩“{”
{⟨Instance Declaration⟩}
{⟨Event⟩}
{⟨Property⟩

{⟨Property Handler⟩}
}

“}”
⟨Event⟩ ∶∶= [“creation”]“event” ⟨Id⟩ ⟨Instance Event Def⟩“{”

⟨Instance Action⟩
“}”

⟨Property⟩ ∶∶= ⟨Logic Name⟩“ ∶ ” ⟨Logic Syntax⟩
⟨Property Handler⟩ ∶∶= “@” ⟨Logic State⟩ ⟨Instance Handler⟩

Instance-specific syntax

⟨Instance Modifier⟩ ∶∶= ⟨Id⟩
⟨Instance Parameters⟩ ∶∶= ⟨JavaMOP Parameters⟩

∣ ⟨BusMOP Parameters⟩
∣ ...

⟨Instance Declaration⟩ ∶∶= ⟨JavaMOP Declaration⟩
∣ ⟨BusMOP Declaration⟩
∣ ...

⟨Instance Event Def⟩ ∶∶= ⟨JavaMOP Event Definition⟩
∣ ⟨BusMOP Event Definition⟩
∣ ...

⟨Instance Action⟩ ∶∶= ⟨JavaMOP Event Action⟩
∣ ⟨BusMOP Event Action⟩
∣ ...

⟨Instance Handler⟩ ∶∶= ⟨JavaMOP Event Handler⟩
∣ ⟨BusMOP Event Handler⟩
∣ ...

Logic-plugin-specific syntax

⟨Logic Name⟩ ∶∶= ⟨Id⟩
⟨Logic Syntax⟩ ∶∶= ⟨FSM Syntax⟩ ∣ ⟨ERE Syntax⟩ ∣ ⟨LTL Syntax⟩

∣ ⟨PTLTL Syntax⟩ ∣ ⟨CFG Syntax⟩
∣ ⟨PTCaRet Syntax⟩ ∣ ...

⟨Logic State⟩ ∶∶= ⟨FSM State⟩ ∣ ⟨ERE State⟩ ∣ ⟨LTL State⟩
∣ ⟨PTLTL State⟩ ∣ ⟨CFG State⟩
∣ ⟨PTCaRet State⟩ ∣ ...

Figure 2.2: MOP syntax

14

PhD Thesis, University of Illinois, August 2012

⟨JavaMOP Modifier⟩ ∶∶= “full−binding” ∣ “maximal−binding”
∣ “any−binding” ∣ “connected” ∣ “unsynchronized”
∣ “decentralized” ∣ “perthread” ∣ “suffix”

⟨JavaMOP Parameters⟩ ∶∶= “(”[⟨JavaMOP Type⟩ ⟨Id⟩
{“,” ⟨JavaMOP Type⟩ ⟨Id⟩}]“)”

⟨JavaMOP Declaration⟩ ∶∶= syntax of declarations in Java
⟨JavaMOP Event Def⟩ ∶∶= ⟨AspectJ AdviceSpec⟩“ ∶ ”

⟨AspectJ Pointcut⟩ [“&&” ⟨JavaMOP Pointcut⟩]
⟨JavaMOP Action⟩ ∶= Java statements, which may refer to monitor

local variables
⟨JavaMOP Handler⟩ ∶= Java statements with additional keywords

⟨JavaMOP Type⟩ ∶= Any valid Java type
⟨AspectJ AdviceSpec⟩ ∶∶= syntax of AdviceSpec in AspectJ

⟨AspectJ Pointcut⟩ ∶∶= syntax of Pointcut in AspectJ
⟨JavaMOP Pointcut⟩ ∶∶= “thread”“(” ⟨Id⟩“)”

∣ “condition”“(” ⟨Boolean Exp⟩“)”
∣ “endProgram”“(”“)”
∣ “endObject”“(” ⟨Id⟩“)”
∣ “endThread”“(”“)”
∣ ⟨AspectJ Pointcut⟩
∣ ⟨JavaMOP Pointcut⟩“&&” ⟨JavaMOP Pointcut⟩

⟨Boolean Exp⟩ ∶∶= ⟨Id⟩ ∣ “!” ⟨Boolean Exp⟩
∣ ⟨Boolean Exp⟩ ⟨Boolean Operator⟩ ⟨Boolean Exp⟩
∣ “(” ⟨Boolean Exp⟩“)”

⟨Boolean Operator⟩ ∶∶= “ ∣∣ ” ∣ “&&” ∣ “ ∣ ” ∣ “&” ∣ “ == ” ∣ “! = ”

Figure 2.3: JavaMOP syntax

• ⟨Instance Modifier⟩ — ⟨Instance Modifier⟩s are specific to each language

instance of MOP. Syntactically, they can be any valid identifier restricted

by the given language. They change the behavior of the monitoring code.

• ⟨Instance Parameters⟩ — allow one to define the parameters of a paramet-

ric specification using the language corresponding to the MOP instance.

Not all MOP instances are parametric (e.g., BusMOP), however, so this

non-terminal may be empty.

• ⟨Instance Declaration⟩ — ⟨Instance Declaration⟩s are specific to each in-

stance of MOP. They allow for the declaration of monitor local variables.

• ⟨Instance Event Definition⟩ — ⟨Instance Event Definition⟩s are specific

to each language instance of MOP. They define the conditions under

which an event is triggered.

• ⟨Instance Action⟩ — An event can have arbitrary code associated with it,

called an action. The action is run when the event is observed. An action

can modify the program or the monitor state, and the syntax of the allowed

statements are dependent upon the MOP instance in question. Typically

the statements used in actions have different variables and functions that

may be referred to than handlers. This is why different non-terminals are

used for actions and handlers.

15

PhD Thesis, University of Illinois, August 2012

• ⟨Instance Handler⟩ — ⟨Instance Handler⟩s are arbitrary code that is exe-

cuted when a property handler is triggered.

The following constructs are based on the logic plugin(s) used in a particular

specification.

• ⟨Logic Name⟩ — ⟨Logic Name⟩ is an identifier to indicate in which logic a

property is defined.

• ⟨Logic Syntax⟩ — This refers to the syntax of the actual property definition,

and is defined in the syntax section for each plugin.

• ⟨Logic State⟩ — ⟨Logic State⟩s are constants defined for each plugin. They

state for which monitor states or categories (match, fail, etc.) a han-

dler may be written.

2.3 Examples

In this section, we explain a few examples of JavaMOP specifications. More

examples can be found in the JavaMOP website (http://javamop.com) and

the project page of categorizing the Java API (http://annotated-java-api.

googlecode.com).

2.3.1 Iterator HasNext

Figure 2.4 shows a JavaMOP specification for the unsafe use of Iterator which

is a simple data structure that iterates elements of the underlying data structure.

This specification is also modified for demonstration purposes. While the original

specification does not have any event action, it prints out the event details. Note

that these event actions can be any code. Iterator has only three methods:

hasNext() to check if there is any remaining element to iterate, next() to retrieve

the element at the current cursor, and remove() to remove the element at the

current cursor from the underlying data structure. So, it is recommended to call

hasNext() before calling next() unless the size of the data structure is for sure.

When the next() method is called and there is no element to return, the Java

Virtual Machine (JVM) usually throws a runtime exception, but the exception

is not guaranteed to be thrown in a multi-threaded environment.

This specification is parameterized by only one parameter ⟨i⟩, where i stands

for Iterator. There are three parametric events defined in this specification:

hasnexttrue ⟨i⟩, hasnextfalse ⟨i⟩, and next ⟨i⟩. Since this specification has only one

parameter, Typestates can monitor this specification as well. In this specifi-

cation, a new pointcut “condition(⟨BooleanExpression⟩)” is used and it is not

in the standard AspectJ. This pointcut is an extended pointcut supported by

JavaMOP, for checking a boolean expression. The difference between this and

the pointcut “if(⟨BooleanExpression⟩)” from the standard AspectJ is that this

16

PhD Thesis, University of Illinois, August 2012

http://javamop.com
http://annotated-java-api.googlecode.com
http://annotated-java-api.googlecode.com

1 Iterator_HasNext(Iterator i) {

2 event hasnexttrue after(Iterator i) returning(boolean b) :

3 call(* Iterator+.hasNext())

4 && target(i) && condition(b) {

5 System.out.println("hasNext() returns true.");

6 }

7

8 event hasnextfalse after(Iterator i) returning(boolean b) :

9 call(* Iterator+.hasNext())

10 && target(i) && condition(!b) {

11 System.out.println("hasNext() returns false.");

12 }

13

14 event next before(Iterator i) :

15 call(* Iterator+.next())

16 && target(i) {

17 System.out.println("next() is called.");

18 }

19

20 ltl: [](next => (*) hasnexttrue)

21

22 @violation {

23 System.out.println("Iterator.hasNext() was not called before calling next().");

24 }

25 }

Figure 2.4: Modified Iterator HasNext specification in JavaMOP using the LTL
plugin

extended pointcut can use user-defined monitor variables and even the return

value of the method call that the event is defined for, which are not in the scope

of the if pointcut. JavaMOP supports this extended pointcut by removing it in

the resulting AspectJ code, and checking the condition at the beginning of the

event so that the resulting AspectJ code only contains standard pointcuts.

2.3.2 Collection UnsafeIterator

Figure 2.5 shows a JavaMOP specification for the unsafe use of Collection and

Iterator. This specification can be found in [59], but it is modified in this

section for demonstration purposes. In the original specification, there is no

modifier and there is only one property in an extended regular expression (ERE).

Here, we added two modifiers and another property which is the same to the

original property but represented in a different logical formalism, linear temporal

logic (LTL). The decentralized modifier is for using the decentralized indexing

tree, which is faster than the centralized indexing tree but it might require

instrumenting the Java library depending on the types of specification parameters.

Since the first parameter in this specification is Collection from the Java API, it

requires instrumentation of the Java library. The other modifier, unsynchronized,

means that this specification does not require any synchronization between

events, indicating that the program never generates events from different threads

at the same time. For example, there can be only one thread or there can be

already an external synchronization means.

17

PhD Thesis, University of Illinois, August 2012

1 decentralized unsynchronized Collection_UnsafeIterator(Collection c, Iterator i) {

2 creation event create after(Collection c) returning(Iterator i) :

3 call(Iterator Iterable+.iterator()) && target(c) {}

4

5 event modify before(Collection c) :

6 (

7 call(* Collection+.add*(..)) ||

8 call(* Collection+.clear(..)) ||

9 call(* Collection+.offer*(..)) ||

10 call(* Collection+.pop(..)) ||

11 call(* Collection+.push(..)) ||

12 call(* Collection+.remove*(..)) ||

13 call(* Collection+.retain*(..))

14) && target(c) {}

15

16 event useiter before(Iterator i) :

17 (

18 call(* Iterator.hasNext(..)) ||

19 call(* Iterator.next(..))

20) && target(i) {}

21

22 ere : create useiter* modify+ useiter

23

24 @match {

25 System.err.println("The collection was modified while an iterator is being used.");

26 }

27

28 ltl : [](useiter => (not modify S create))

29

30 @violation {

31 System.err.println("The collection was modified while an iterator is being used.");

32 }

33

34 }

Figure 2.5: Modified Collection UnsafeIterator specification in JavaMOP using
the ERE plugin and LTL plugin

This specification is parameterized by those two parameters ⟨c, i⟩, where c

stands for Collection and i stands for Iterator. Three parametric events are

defined: create ⟨c, i⟩, modify ⟨c⟩, and useiter ⟨i⟩. Among events, the create event is

the only event that can create monitors, which is called a creation event. All

events on the same parameter instance before this event will be simply ignored.

Since the create event creates Iterator, only possible event before this event

is the modify event. Therefore, any modification on the Collection before the

creation of Iterator is allowed and it will not create any monitor. Each event

has a pointcut of AspectJ that picks out program points as events. For example,

the create event has “call(Iterator Iterable+.iterator()) && target(c)” as its pointcut.

Every call of iterator() to an object compatible to Iterable is considered to be

a create event, and the target object is captured as the parameter c. Thus, the

object should be also compatible to Collection.

The properties flag them as an error if an Iterator is created, its underlying

Collection is modified, and then the Iterator is used again. In this specification,

we use the extended regular expression (ERE) formalism and the linear temporal

logic (LTL) formalism, as specified by the ere and ltl keywords, respectively. We

wish to catch this behavior because Java Collections do not allow concurrent

18

PhD Thesis, University of Illinois, August 2012

1 PipedStream_SingleThread(PipedInputStream i, PipedOutputStream o, Thread t) {

2 creation event create after(PipedOutputStream o) returning(PipedInputStream i) :

3 call(PipedInputStream+.new(PipedOutputStream+)) && args(o) {}

4

5 creation event create before(PipedInputStream i, PipedOutputStream o) :

6 call(* PipedInputStream+.connect(PipedOutputStream+)) && target(i) && args(o) {}

7

8 creation event create after(PipedInputStream i) returning(PipedOutputStream o) :

9 call(PipedOutputStream+.new(PipedInputStream+)) && args(i) {}

10

11 creation event create before(PipedOutputStream o, PipedInputStream i) :

12 call(* PipedOutputStream+.connect(PipedInputStream+)) && target(o) && args(i) {}

13

14 event write before(PipedOutputStream o, Thread t) :

15 call(* PipedOutputStream+.write(..)) && target(o) && thread(t) {}

16

17 event read before(PipedInputStream i, Thread t) :

18 call(* PipedInputStream+.read(..)) && target(i) && thread(t) {}

19

20 ere: create (write* | read*)

21

22 @fail {

23 System.err.println("A single thread attempted to use both a PipedInputStream instance and a

PipedOutputStream instance, which may deadlock the thread.");

24 }

25 }

Figure 2.6: PipedStream SingleThread specification in JavaMOP using the ERE
plugin

modification while iterating elements using Iterator. A runtime exception

will be thrown when this occurs, but it is not guaranteed in a multi-threaded

environment. When the properties are violated, it simply prints out an error

message in this specification, but it can be any user-defined Java code.

2.3.3 PipedStream SingleThread

Figure 2.6 shows a JavaMOP specification for the potentially unsafe use of

PipedInputStream and PipedOutputStream in each Thread. According to the Java

API documentation, once a PipedInputStream and a PipedOutputStream are con-

nected, attempting to use both objects from a single thread is not recommended

since it may lead to a deadlock. However, JVM does not detect this usage at

all. The violation of this property may not mean an actual deadlock, but it can

catch potential deadlocks, advising developers to review the code.

This specification is parameterized by three parameters ⟨i, o, t⟩, where i stands

for PipedInputStream, o stands for PipedOutputStream, and t stands for Thread.

There are three parametric events defined: create ⟨i, o⟩, write ⟨o, t⟩, and read ⟨i, t⟩.

Unlike to the previous examples, this specification has four definitions of the

creation event: one for each possible connection between two kinds of objects.

They have different parameter mapping styles, resulting in four definitions.

However, all four event definitions generate the same event, create; monitors

will consider them as the same event. Among pointcuts in the event definitions,

there is a new pointcut “thread(t)”, which is not in the standard AspectJ. This

19

PhD Thesis, University of Illinois, August 2012

1 Map_UnsafeIterator(Map m, Collection c, Iterator i) {

2 creation event getset after(Map m) returning(Collection c) :

3 (

4 call(Set Map+.keySet()) ||

5 call(Collection Map+.values())

6) && target(m) {}

7

8 event getiter after(Collection c) returning(Iterator i) :

9 call(Iterator Iterable+.iterator()) && target(c) {}

10

11 event modifyMap before(Map m) :

12 (

13 call(* Map+.clear*(..)) ||

14 call(* Map+.put*(..)) ||

15 call(* Map+.remove(..))

16) && target(m) {}

17

18 event modifyCol before(Collection c) :

19 (

20 call(* Collection+.clear(..)) ||

21 call(* Collection+.offer*(..)) ||

22 call(* Collection+.pop(..)) ||

23 call(* Collection+.push(..)) ||

24 call(* Collection+.remove*(..)) ||

25 call(* Collection+.retain*(..))

26) && target(c) {}

27

28 event useiter before(Iterator i) :

29 (

30 call(* Iterator.hasNext(..)) ||

31 call(* Iterator.next(..))

32) && target(i) {}

33

34 ere : getset (modifyMap | modifyCol)* getiter useiter* (modifyMap | modifyCol)+ useiter

35

36 @match {

37 System.err.println("The map was modified while an iteration over the set is in progress.");

38 }

39 }

Figure 2.7: Map UnsafeIterator specification in JavaMOP using the ERE plugin

pointcut is an extended pointcut supported by JavaMOP, for capturing the

current thread of the event. JavaMOP will simply remove this pointcut in the

resulting AspectJ code, and assign the current thread to the parameter when

the event occurs.

Note that, in this specification, the creation event create does not initiate all

parameters. The create event only initiates i and o, since the property is not

concerned about which thread connects them. Therefore, the previous version of

JavaMOP cannot monitor this specification.

2.3.4 Map UnsafeIterator

Figure 2.7 shows a JavaMOP specification for the unsafe use of Map, Collection,

and Iterator. This specification is similar to Collection UnsafeIterator except

that, in this specification, a Collection comes from a Map. A Collection is

either the values or the key set of the Map. While iterating elements of the

Collection, both the Map and the Collection should not be modified according

20

PhD Thesis, University of Illinois, August 2012

to the Java API documentation. This causes an undefined behavior of the

iterator and should be avoided.

This specification is parameterized by three parameters ⟨m,c, i⟩, where m

stands for Map, c stands for Collection, and i stands for Iterator. There are five

parametric events defined: getset ⟨m,c⟩, getiter ⟨c, i⟩, modifyMap ⟨m⟩, modifyCol ⟨c⟩,

and useiter ⟨i⟩. This specification also has the creation event getset which does not

initiate all parameters. It only initiates Map and Collection; again, the previous

version of JavaMOP cannot monitor this specification.

2.4 Parametric Properties and Monitoring

In this section, we formally define parametric properties and parametric mon-

itoring, starting with a high-level overview. The notations and terminologies

introduced in this section are used consistently throughout the dissertation.

2.4.1 Overview

Monitoring a program execution generates an execution trace consisting of events

that the user is interested in. An event can be any monitorable program activity

such as a method call or field access/update. A property is a formula in a logical

formalism where events are atomic formulas. It describes behaviors that the

program should or should not follow. A specification contains event definitions,

properties, event actions (Java codes to be executed upon events), and handlers

(Java codes to be executed upon validation/violation). When an event occurs,

the event action for the event will be executed, and when an execution trace

validates/violates the given property, the appropriate handler will be executed.

A parameter instance is a mapping from parameters (e.g., classes in Java) to

parameter values (e.g., objects in Java). For example, for the parameters ⟨c, i⟩,
a parameter instance could be ⟨c ↦ c1, i ↦ i1⟩, where c stands for Collection,

i stands for Iterator, and c1 and i1 are instances of Collection and Iterator,

respectively. A event is a program point which can be monitored (e.g., a method

call or a field access). A parametric event is an event that comes with a parameter

instance. For example, the event next of method call next() to Iterator can be

parameterized by Iterator. Instead of next, we have next ⟨i↦ i1⟩, where i1 is an

instance of Iterator. A parametric property is a formula in a logical formalism

where parametric events are atomic formulas.

A parametric specification is a specification whose events and properties are

parameterized, along with specification parameters. Specification parameters are

the free variables for the parametric specification. Therefore, we can describe

behaviors of objects using parametric specifications. In parametric monitoring,

an execution trace consisting of parametric events is generated. We slice the

execution trace into trace slices according to parameter instances so that each

21

PhD Thesis, University of Illinois, August 2012

parameter instance associates with one trace slice. We monitor the parametric

specification for the trace slice of each parameter instance.

2.4.2 Definitions and Algorithms

We begin by introducing the notions of event, trace, and property, first non-

parametric and then parametric. Trace slicing is then defined as a reduct

operation that forgets events that are unrelated to the given parameter instance.

Definition 1. (Base events). Let E be a finite set of (non-parametric) events,

called base events or simply events. An E-trace, or simply a (non-parametric)

trace when E is understood or not important, is any finite sequence of events

in E, that is, an element in E∗. If event e ∈ E appears in trace w ∈ E∗ then

we write e ∈ w. ε is the empty trace.

For Collection UnsafeIterator (referred to as Col UnsafeIter) in Section 2.3,

the set of events E is {create, modify, useiter}, and a possible trace is “create

useiter modify useiter”.

Definition 2. (Properties). An E-property P , or simply a (base or non-

parametric) property, is a function P ∶ E∗ → C partitioning the set of traces into

(verdict) categories C. In general, C may be any set.

Consider again Col UnsafeIter. The match traces are those matching the pattern,

e.g., “create useiter modify useiter”. There are also traces that have not matched

yet, but may still match in the future, such as “modify create”, which we call ?

(unknown) traces. Lastly, there are traces that may never match again, such

as “create modify useiter useiter”, which we refer to as fail traces. Thus we pick C
to be the set {match, fail, ?}, and define its property PCol UnsafeIter ∶ E∗ → C as

follows: PCol UnsafeIter(w) = match if w is in the language of the Col UnsafeIter

ere, PCol UnsafeIter(w) = ? if w is a prefix of a string in the language of the ere,

and PCol UnsafeIter(w) = fail otherwise.

We next extend the above definitions to the parametric case. Let [A →
B] be the set of total functions, and let [A⇁B] be the set of partial func-

tions from A to B.

Definition 3. (Parametric instances, events and traces). Let X be a

finite set of parameters and let V be a set of corresponding parameter values.

Partial functions θ in [X⇁V] are called parameter instances. Let E be a set

of base events, then E⟨X⟩ is the set of parametric events e⟨θ⟩, where e is a

base event in E and θ is a parameter instance. A parametric trace is a trace

with events in E⟨X⟩, that is, a word in E⟨X⟩∗.

A parametric trace for Col UnsafeIter could be “modify⟨c ↦ c1⟩ modify⟨c ↦ c2⟩
create⟨c ↦ c1, i ↦ i1⟩ useiter⟨i ↦ i1⟩”. To simplify writing we often assume the

parameter set implicit, as in the following, which is the same trace: “modify⟨c1⟩
modify⟨c2⟩ create⟨c1, i1⟩ useiter⟨i1⟩”.

22

PhD Thesis, University of Illinois, August 2012

Definition 4. (Parametric event definition). Let X be a finite set of

parameters. Given a set of base events E, we define a parametric event

definition, or event definition for short, as a function D∶E → P(X), where

P is the power set, that maps each event e to a set of parameters D(e) that

will be instantiated by e at runtime. D is extended to E∗ as D(ε) = ∅ and

D(ew) = D(e)∪D(w), and to P(E) as D(∅) = ∅ and D({e}∪E) = D(e)∪D(E).

Parametric event e⟨θ⟩ is D-consistent if dom(θ) = D(e). Parametric trace τ is

D-consistent if e⟨θ⟩ is D-consistent for each e⟨θ⟩ ∈ τ .

The Col UnsafeIter property contains the parametric event definition D(create) =
{c, i}, D(modify) = {c}, D(useiter) = {i}. It states that, for example, parameters

c and i will be instantiated at runtime when a parametric event create⟨θ⟩ is

received. For a trace “create modify”, D(create modify) is {c, i}.

Definition 5. (Compatibility). θ, θ′ ∈ [A⇁B] are compatible if for any

x ∈ dom(θ) ∩ dom(θ′), θ(x) = θ′(x). We can combine compatible instances θ

and θ′, written θ ⊔ θ′, as follows:

(θ ⊔ θ′)(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

θ(x) if θ(x) is defined

θ′(x) if θ′(x) is defined

undefined otherwise

θ ⊔ θ′ is also called the least upper bound (lub) of θ and θ′. θ is less infor-

mative than θ′, written θ ⊑ θ′, if for any x ∈X, if θ(x) is defined then θ′(x) is

also defined and θ(x) = θ′(x). ⊔ is extended to Pf([X⇁V]) in the natural way.

Here Pf is the finite power set.

Definition 6. (Trace slicing). Given parametric trace τ ∈ E⟨X⟩∗ and θ in

[X⇁V], let the θ-trace slice τ↾θ ∈ E∗ be the non-parametric trace defined as:

• ε↾θ= ε (recall that ε is the empty trace)

• (τ e⟨θ′⟩)↾θ=
⎧⎪⎪⎨⎪⎪⎩

(τ↾θ) e if θ′ ⊑ θ
τ↾θ otherwise

The trace slice τ↾θ first filters out all the parametric events that are not relevant

for the instance θ, i.e., which contain instances of parameters that θ does not care

about, and then, for the remaining events relevant to θ, it forgets the parameters

so that the trace can be checked against base, non-parametric properties. It is

crucial to discard events from parameter instances that are not relevant to θ

during the slicing, including those more informative than θ. Referring back to

our parametric trace from above, the non-parametric trace slice for parameter

instance ⟨c2⟩ is “modify”, that for ⟨c1⟩ is “modify”, the slice for ⟨c1, i1⟩ is “modify

useiter”, and the slice for ⟨i1⟩ is “useiter”.

Definition 7. (Parametric properties). Let X be a finite set of parameters

together with their corresponding parameter values V , and let P ∶ E∗ → C be a

non-parametric property like in Definition 2. Then we define the paramet-

23

PhD Thesis, University of Illinois, August 2012

ric property ΛX.P as the property (over traces E⟨X⟩∗ and verdict categories

[[X⇁V] → C])
ΛX.P ∶ E⟨X⟩∗ → [[X⇁V] → C]

as (ΛX.P)(τ)(θ) = P (τ↾θ) for each τ ∈ E⟨X⟩∗, θ ∈ [X⇁V].

A parametric property is therefore similar to a normal property, but one par-

titioning parametric traces in E⟨X⟩∗ into verdict categories in [[X⇁V] → C],
that is, original (as in the non-parametric property) verdict categories indexed

by parameter instances. This allows the parametric property to associate an

original category for each parameter instance from [X⇁V].
Next we define monitors and parametric monitors. Like for parametric

properties, which are just properties over parametric traces, parametric monitors

are also just monitors, but for parametric events and with instance-indexed

states and verdict categories.

Definition 8. (Monitors). A monitor M is a tuple (S,E ,C, ı, σ, γ), where S

is the set of states, E is the set of input events, C is the set of verdict categories,

ı ∈ S is the initial state, σ∶S × E → S is the transition function, and γ∶S → C is

the verdict function. The transition function is extended to handle traces, i.e.,

σ∶S ×E∗ → S where σ(s, ε) = s and σ(s, ew) = σ(σ(s, e),w). M = (S,E ,C, ı, σ, γ)
is a monitor for property P ∶ E∗ → C if γ(σ(ı,w)) = P (w) for each w ∈ E∗.

Monitor M defines the property PM ∶ E∗ → C with PM(w) = γ(σ(ı,w)). Monitors

M and M ′ are equivalent iff PM = PM ′ .

We next define parametric monitors starting with a base monitor and a set of

parameters: the corresponding parametric monitor can be thought of as a set of

base monitors running in parallel, one for each parameter instance.

Definition 9. (Parametric monitors). Given parameters X with corre-

sponding values V and monitor M = (S,E ,C, ı, σ, γ), the parametric monitor

ΛX.M is the monitor ([[X⇁V] → S],E⟨X⟩, [[X⇁V] → C], λθ.ı,ΛX.σ,ΛX.γ),
with

• ΛX.σ∶ [[X⇁V]→S] × E⟨X⟩ → [[X⇁V]→S]

• ΛX.γ∶ [[X⇁V]→S] → [[X⇁V]→C]

defined as

(ΛX.σ)(δ, e⟨θ′⟩)(θ) =
⎧⎪⎪⎨⎪⎪⎩

σ(δ(θ), e) if θ′ ⊑ θ
δ(θ) otherwise

(ΛX.γ)(δ)(θ) = γ(δ(θ))

for each δ ∈ [[X⇁V]→S] and each θ, θ′ ∈ [X⇁V].

Therefore, a parametric monitor ΛX.M maintains a state δ(θ) of M for each

parameter instance θ, takes parametric events as input, and outputs categories

24

PhD Thesis, University of Illinois, August 2012

m

c

i

...

...
i

...

... c

...

m

c

...

... c

...

m

...

c

i

...

...
i

...

c

...

i

...

Map

Monitor

Set of Monitors

Figure 2.8: Indexing trees for Map UnsafeIterator before combining

indexed by parameter instances (one category of M per instance). Intuitively,

one can think of a parametric monitor as a collection of “monitor instances”.

Each monitor instance, which is indexed by a parameter instance, keeps track of

the state of one trace slice. The rule for ΛX.σ can be read as stating that when

an event with parameter instance θ′ is evaluated, it updates the state for all

monitor instances more informative than the instance for θ′, and the instance for

θ′ itself, leaving all other monitor instances untouched. The rule for ΛX.γ simply

states that γ is applied to a state, as normal, but the state is found by looking

up the state of the monitor instance for θ. One of the major results in [33] states

that if M is a monitor for P , parametric monitor ΛX.M is a monitor for the

parametric property ΛX.P .

2.5 Indexing Tree

As shown in Section 2.4, JavaMOP slices the program execution trace for

each parameter instance so that a monitor for each parameter instance can

forget about the parameters and focus on the property. In this way, a monitor

can be independent from parameters, resulting in a formalism-independent

parametric monitoring system. For slicing the program execution trace, the

monitoring code needs to dispatch each event to the related monitors for the

parameter instance of the event.

The indexing tree is an efficient means to locate the monitors for a given

parameter instance. The indexing tree is implemented as a multi-level map that,

at each level, indexes each parameter object of the parameter instance. For

25

PhD Thesis, University of Illinois, August 2012

example, Figure 2.8 shows indexing trees for the Map UnsafeIterator specification

from Section 2.3.4. The indexing tree for ⟨Map, Collection, Iterator⟩ (top-left

tree) is a 3-level map. With a map, a collection, and an iterator, we can retrieve

the related monitor. The indexing tree for ⟨Map, Collection⟩ (top-middle tree)

is a 2-level map. For a map and a collection, this indexing tree returns a set of

monitors because there can be multiple monitors for the given map and collection

(one monitor for each iterator).

If an indexing tree stores all parameter objects directly, it will block them

from being garbage collected, leading to a memory leak. Instead of storing

parameter objects directly, the indexing tree uses the WeakReference class from

the Java API. WeakReference is a reference to an object that will not disallow

garbage collection for said object. When the object is garbage collected, the

JVM changes the referent field of all weak references setting it to null. In

effect, parameter objects can be garbage collected without any interference from

monitoring.

Mappings in the indexing tree can be broken when parameter objects are

garbage collected and their weak references point to null. The Java API provides

a way to queue weak references of garbage collected objects into a ReferenceQueue

object. By using this feature, broken mappings can be easily removed from

the indexing tree. However, using this feature also slows down the system

significantly because queuing weak references involves synchronization.

The previous version of JavaMOP was using ReferenceIdentityMap, one of

the general data structures from the Apache Commons Collections Library [42].

While ReferenceIdentityMap is based on the WeakReference, allowing moni-

tors to be garbage collected when they can be, ReferenceIdentityMap uses

ReferenceQueue for cleaning up broken mapping, which shows a performance

degradation as explained. Our new indexing tree implementation in Chap-

ter 4 does not use ReferenceQueue for these performance reasons. Instead of

using ReferenceQueue, we iterate through mappings and remove the broken ones.

Surprisingly, iterating through mappings is significantly faster than using the

queuing feature from the Java API. This self-cleaning feature of our indexing tree

also allows for efficient garbage collection of unnecessary monitors in Chapter 4;

when we iterate through the mappings, we simply check whether any of the

monitors have become unnecessary. By doing this, we can reduce memory usage

and unnecessary updates to those collected monitors.

26

PhD Thesis, University of Illinois, August 2012

Chapter 3

Expressive
Parametric Monitoring

There is no doubt that a parametric monitoring system becomes more practical

if it can express more properties and monitor them. The expressiveness of a

parametric monitoring system is determined not only by logical formalisms that

it supports, but also by how it supports parameters, what it can do upon an

event and a match of the property, what kinds of events it can capture, and so

fourth. There are many challenges in supporting multiple formalisms without

any limitation on parameters, yet keeping its efficiency and freedom in the

user-given code to be executed upon an event and a match of the property. As

a feasible solution to this, many parametric monitoring systems hardwire their

logical formalism, restrict parameters, or give up efficiency and/or freedom in

the user-given code.

The previous JavaMOP supported multiple logical formalisms and it was

extensible so that any logical formalism can be easily introduced. However, there

was an restriction in expressing parametric properties that the creation events

must initiate all parameters. In this chapter, we expand the expressiveness

of JavaMOP by removing the restriction in expressing parametric properties,

adding a new logical formalism, and introducing inheritance into specifications.

3.1 Non-Restrictive Parametric Monitoring

In this Section, we introduce a generic, in terms of specification formalism,

solution to monitoring parametric specifications without any limitation on pa-

rameters. Our solution is based on a general, theoretical solution for handling

parametric traces [33]. We implement this algorithm with the enable set opti-

mization using static knowledge about the desired property. While the enable

set optimization can be found in Chapter 4, this section discusses the generic

parametric monitoring algorithm and some examples of real specifications from

the Java API documentation, that the previous JavaMOP was not able to

express/monitor, but the new JavaMOP can.

3.1.1 Approach Outline

The Map UnsafeIterator specification from Chapter 2 expresses a property for the

unsafe use of Map, Collection, and Iterator. Map and Collection implement data

27

PhD Thesis, University of Illinois, August 2012

structures for mappings and collections, respectively. Iterator is an interface

used to enumerate elements in a collection-typed object. One can also enumerate

elements in a Map object using Iterator. But, since a Map object contains key-

value pairs, one needs to first obtain a collection object that represents the

contents of the map, e.g., the set of keys or the set of values stored in the map,

and then create an iterator from the obtained collection. An intricate safety

property in this usage, according to the Java API documentation, is that when

the iterator is used to enumerate elements in the map, the contents of the map

should not be changed, or unexpected behaviors may occur. A violating behavior

with regards to this property can be naturally specified using future time linear

temporal logic (FTLTL) with parameters. Given that m,c, i are objects of Map,

Collection and Iterator, respectively:

∀m,c, i. ◇ (getset⟨m,c⟩ ∧ ◇(getiter⟨c, i⟩

∧ ◇ ((modifyMap⟨m⟩ ∨modifyCol⟨c⟩) ∧ ◇useiter⟨i⟩)))

Where getset is creating a collection from a map, getiter is creating an iterator

from a collection, modifyMap is updating the map, modifyCol is updating the

collection, and useiter is using the iterator; ◇ means eventually in the future.

The formula describes the following sequence of actions: Collection c is

obtained from a Map m, an iterator i is created from c, m and/or c are changed,

and then i is accessed. When an observed execution satisfies this formula, the

Map UnsafeIterator property is broken. The violating behavior can also be

specified as an extended regular expression (ERE) that is more understandable

for programmers but less concise:

∀m,c, i.getset⟨m,c⟩ (modifyMap⟨m⟩∣modifyCol⟨c⟩)∗ getiter⟨c, i⟩

useiter⟨i⟩∗ (modifyMap⟨m⟩∣modifyCol⟨c⟩)+ useiter⟨i⟩

Note that, the first event in both formulas, getset, which creates a monitor for

the parameter instance, initiates only part of the parameters, e.g., ⟨m1, c1⟩ that

binds parameters m and c with a map object m1 and a collection c1, respectively.

Then, we create a monitor for the parameter instance ⟨m1, c1⟩. When the next

event, modifyMap⟨c1, i1⟩ comes, obviously, we create a monitor for ⟨c1, i1⟩. Also,

we need to create another monitor for ⟨m1, c1, i1⟩ and this monitor should be

updated with both events; it can be done by copying the monitor for ⟨m1, c1⟩
and updating the copied monitor with the second event. We need all three

monitors because there might be another upcoming event that expands the

existing parameter instance; then, we need to copy the monitor for the parameter

instance that the event expands.

It becomes more complex, when the second event is useiter⟨i2⟩. Without the

knowledge that there is only one underlying Collection for an Iterator, which

28

PhD Thesis, University of Illinois, August 2012

Event # Event
1 getset⟨m1, c1⟩ 7 modifyMap⟨m1⟩
2 getset⟨m1, c2⟩ 8 useiter⟨i2⟩
3 getiter⟨c1, i1⟩ 9 getset⟨m2, c3⟩
4 getiter⟨c1, i2⟩ 10 getiter⟨c3, i4⟩
5 useiter⟨i1⟩ 11 useiter⟨i4⟩
6 getiter⟨c2, i3⟩

Table 3.1: Possible execution trace over for Map UnsafeIterator

is not available in general, we do not know, in advance, whether i2 is going

to expand the parameter instance ⟨m1, c1⟩. Therefore, we need to just expand

it into ⟨m1, c1, i2⟩ just in case, which is actually unnecessary in monitoring

Map UnsafeIterator. This can generate a huge number of unnecessary monitors

in an actual monitoring, making it prohibitive to use. It is highly non-trivial

to monitor such parametric specifications efficiently. This is why the previous

JavaMOP only allows the first event that initiates all parameters.

Our approach to monitoring parametric traces against parametric properties

is based on the observation that each parametric trace actually contains multiple

non-parametric trace slices, each for a particular parameter binding instance.

Intuitively, a slice of a parametric trace for a particular parameter binding

consists of names of all the events that have less informative parameter bindings.

Consider the example parametric trace of eleven events in Table 3.1 over the

events from Map UnsafeIterator. The # column gives the numbering of the events

for easy reference. Every event in the trace starts with the name of the event, e.g.,

getset, followed by the parameter binding information, e.g., ⟨m1, c1⟩. Then, Table

3.2 shows the trace slices and their corresponding parameter bindings contained

in the trace in Table 3.1. The Status column denotes the output category that

the slice falls into (for ERE). In this case, the slice for ⟨m1, c1, i2⟩, which matches

the property, is in the “match” category, the slices for ⟨m1, c1, i4⟩, ⟨m1, c2, i1⟩,
⟨m1, c2, i2⟩, and ⟨m1, c2, i4⟩ are in the “fail” category, and all others are in “?”

(undecided) category. Note that all events before the creation event getset, are

ignored. The trace for the binding ⟨m1, c1⟩ contains getset modifyMap (the first

and seventh events in the trace) and the trace for the binding ⟨m1, c1, i2⟩ is getset

getiter modifyMap useiter (the first, fourth, seventh, and eighth events in the trace).

Based on this observation, our approach creates a set of monitor instances

during the monitoring process, each handling a trace slice for a parameter binding.

Figure 3.1 shows the set of monitors created for the trace in Table 3.1, each

monitor labeled by the corresponding parameter binding. This way, the monitor

does not need to handle the parameter information and can employ any existing

technique for ordinary, non-parametric traces, including state machines and push-

down automata, providing a formalism-independent way to check parametric

properties. When an event comes, our algorithm will dispatch it to related

monitors, which will update their states accordingly. For example, the seventh

29

PhD Thesis, University of Illinois, August 2012

Instance Slice Status
⟨m1⟩ modifyMap ?
⟨i1⟩ useiter ?
⟨i2⟩ useiter ?
⟨i4⟩ useiter ?
⟨m1, c1⟩ getset modifyMap ?
⟨m1, c2⟩ getset modifyMap ?
⟨m1, i1⟩ useiter modifyMap ?
⟨m1, i2⟩ modifyMap useiter ?
⟨m1, i4⟩ modifyMap useiter ?
⟨m2, c3⟩ getset ?
⟨c1, i1⟩ getiter useiter ?
⟨c1, i2⟩ getiter useiter ?
⟨c2, i3⟩ getiter ?
⟨c3, i4⟩ getiter useiter ?
⟨m1, c1, i1⟩ getset getiter useiter modifyMap ?
⟨m1, c1, i2⟩ getset getiter modifyMap useiter match
⟨m1, c1, i4⟩ getset modifyMap useiter fail
⟨m1, c2, i1⟩ getset useiter modifyMap fail
⟨m1, c2, i2⟩ getset modifyMap useiter fail
⟨m1, c2, i3⟩ getset getiter modifyMap ?
⟨m1, c2, i4⟩ getset modifyMap useiter fail
⟨m1, c3, i4⟩ modifyMap getiter useiter ?
⟨m2, c3, i1⟩ useiter getset ?
⟨m2, c3, i2⟩ useiter getset ?
⟨m2, c3, i4⟩ getset getiter useiter ?

Table 3.2: Slices for the trace in Table 3.1

 m1, c1

 m1, c1, i1 m1, c1, i2

 m1, c2

 m1, c2 ,i3

 m2, c3 ,i4

 m2, c3

Event update map〈m1〉 create coll〈m1, c1〉 create coll〈m2, c2〉 create iter〈c1, i1〉

∆ ∅ 〈m1, c1〉:σ(i, create coll) 〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)

〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)
〈m1, c1, i1〉:σ(σ(i, create coll), create iter)

U ∅ ⊥ : 〈m1, c1〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉

⊥ : 〈m1, c1〉, 〈m2, c2〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉

⊥ : 〈m1, c1〉, 〈m2, c2〉, 〈m1, c1, i1〉
〈m1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈c1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉
〈i1〉:〈m2, c2〉, 〈m2, c2, i1〉
〈m1, c1〉:〈m1, c1, i1〉
〈m1, i1〉:〈m1, c1, i1〉
〈c1, i1〉:〈m1, c1, i1〉

Table 1. Sample run of C+〈X〉. The first row gives the received events; the second and the third
rows give the content of ∆ and U , respectively, after every event is processed. Monitor states are
represented symbolically in the table, e.g., σ(i, create coll) represents the state after a monitor
processes event create coll.

instantiates a finite number of parameters, which is always
the case in practice.

Figure 3 shows the algorithm C+〈X〉 for online monitor-
ing of parametric property ΛX.P , given that M is a monitor
for P . The algorithm shows which actions to perform, e.g.,
creating a new monitor state and/or updating the state of
related monitors, when an event is received. It is a slightly
different variant of algorithm C〈X〉 in [7]. C+〈X〉 is jus-
tified and motivated by experience with implementing and
evaluating C〈X〉, mainly by the following observation: one
often chooses to starting monitoring at the witness of a spe-
cific set of events (instead of monitoring from the beginning
of the program). For example, when we monitor the prop-
erty in Figure 1, we can choose to start monitoring on a pair
of m and c objects, (m1, c1), only when a create coll event
is received, ignoring all the update map〈m1〉 events before
the creation. We call such events that lead to creation of
new monitor states (monitor) creation events. Algorithm
C+〈X〉 extends C〈X〉 in [7] to support creation events. It
is easy to see that C〈X〉 can be regarded as a special case
of C+〈X〉, when all the events are creation events.

Two mappings are used in this algorithm: ∆ and U .
∆ stores the monitor states for parameter instances and U
maps a parameter instance θ to all the parameter instances
that have been defined and are properly more informative
than θ. In what follows, “the monitor state for θ” is used
to refer to ∆(θ) to facilitate reading in some contexts, and,
accordingly, “to create a parameter instance θ” and “to cre-
ate a monitor state for parameter instance θ”have the same
meaning: to define ∆(θ).

When parametric event e〈θ〉 is received, the algorithm
first checks whether θ has been encountered yet by checking
if its corresponding monitor state, i.e., ∆(θ), is defined(line
1 in main). If θ is encountered for the first time, new param-
eter instances may need to be created. In such a case, we
first try to locate the maximum parameter instance (θm)
which is less informative than θ and for which a monitor

state has been created (lines 2 to 6 in main). If such θm

is found, its monitor state is used to initialize the monitor
state for θ (lines 7 and 8 in main); otherwise, a new moni-
tor state is created for θ only if e is a creation event (lines
9 and 10 in main). Also, new parameter instances can be
created by combining θ with existing parameter instances
that are compatible with θ, i.e., they do not have conflicting
parameter bindings. An observation here is that if parame-
ter instance θcomp has been created and is compatible with
θ then θcomp can be found in U(θm) for some θm ! θ ac-
cording to the definition of U . Therefore, algorithm C+〈X〉
searches through all the θm ! θ to find all possible θcomp,
examining whether any new parameter instance should be
created (lines 12 to 17 in main).

If θ has been seen before, or otherwise after all the new
monitor states have been created/initialized as explained
above, algorithm C+〈X〉 invokes all the monitors that need
to process e, namely, those whose corresponding parameter
instances are more informative than or equal to θ (lines
20 to 22 in main). The updates also make use of the lists
stored in U . There are two auxiliary functions: defineNew

and defineTo. The former initializes a new monitor state
for the input parameter instance and the latter creates a
monitor state for the first input parameter instance using
the monitor state for the second instance. Both functions
then update the lists in table U to maintain its integrity.

It can be proved that C+〈X〉 correctly creates and up-
dates monitor states according to the received event. The
proof can be easily derived from the proof for algorithm
C〈X〉 in [7] and is omitted here. We next use an example
run, illustrated in Table 1, to show how C+〈X〉 works. In
Table 1, we show the contents of ∆ and U after every event
(given in the first row of the table) is processed. The ob-
served trace is update map〈m1〉 create coll〈m1, c1〉 create coll

〈m2, c2〉 create iter〈c1, i1〉. We assume that create coll is the
only creation event. For the time being we make abstrac-
tion of the particular property being monitored (e.g., the
one in Fig 1); hence, we assume that monitor states are

Event update map〈m1〉 create coll〈m1, c1〉 create coll〈m2, c2〉 create iter〈c1, i1〉

∆ ∅ 〈m1, c1〉:σ(i, create coll) 〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)

〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)
〈m1, c1, i1〉:σ(σ(i, create coll), create iter)

U ∅ ⊥ : 〈m1, c1〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉

⊥ : 〈m1, c1〉, 〈m2, c2〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉

⊥ : 〈m1, c1〉, 〈m2, c2〉, 〈m1, c1, i1〉
〈m1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈c1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉
〈i1〉:〈m2, c2〉, 〈m2, c2, i1〉
〈m1, c1〉:〈m1, c1, i1〉
〈m1, i1〉:〈m1, c1, i1〉
〈c1, i1〉:〈m1, c1, i1〉

Table 1. Sample run of C+〈X〉. The first row gives the received events; the second and the third
rows give the content of ∆ and U , respectively, after every event is processed. Monitor states are
represented symbolically in the table, e.g., σ(i, create coll) represents the state after a monitor
processes event create coll.

instantiates a finite number of parameters, which is always
the case in practice.

Figure 3 shows the algorithm C+〈X〉 for online monitor-
ing of parametric property ΛX.P , given that M is a monitor
for P . The algorithm shows which actions to perform, e.g.,
creating a new monitor state and/or updating the state of
related monitors, when an event is received. It is a slightly
different variant of algorithm C〈X〉 in [7]. C+〈X〉 is jus-
tified and motivated by experience with implementing and
evaluating C〈X〉, mainly by the following observation: one
often chooses to starting monitoring at the witness of a spe-
cific set of events (instead of monitoring from the beginning
of the program). For example, when we monitor the prop-
erty in Figure 1, we can choose to start monitoring on a pair
of m and c objects, (m1, c1), only when a create coll event
is received, ignoring all the update map〈m1〉 events before
the creation. We call such events that lead to creation of
new monitor states (monitor) creation events. Algorithm
C+〈X〉 extends C〈X〉 in [7] to support creation events. It
is easy to see that C〈X〉 can be regarded as a special case
of C+〈X〉, when all the events are creation events.

Two mappings are used in this algorithm: ∆ and U .
∆ stores the monitor states for parameter instances and U
maps a parameter instance θ to all the parameter instances
that have been defined and are properly more informative
than θ. In what follows, “the monitor state for θ” is used
to refer to ∆(θ) to facilitate reading in some contexts, and,
accordingly, “to create a parameter instance θ” and “to cre-
ate a monitor state for parameter instance θ”have the same
meaning: to define ∆(θ).

When parametric event e〈θ〉 is received, the algorithm
first checks whether θ has been encountered yet by checking
if its corresponding monitor state, i.e., ∆(θ), is defined(line
1 in main). If θ is encountered for the first time, new param-
eter instances may need to be created. In such a case, we
first try to locate the maximum parameter instance (θm)
which is less informative than θ and for which a monitor

state has been created (lines 2 to 6 in main). If such θm

is found, its monitor state is used to initialize the monitor
state for θ (lines 7 and 8 in main); otherwise, a new moni-
tor state is created for θ only if e is a creation event (lines
9 and 10 in main). Also, new parameter instances can be
created by combining θ with existing parameter instances
that are compatible with θ, i.e., they do not have conflicting
parameter bindings. An observation here is that if parame-
ter instance θcomp has been created and is compatible with
θ then θcomp can be found in U(θm) for some θm ! θ ac-
cording to the definition of U . Therefore, algorithm C+〈X〉
searches through all the θm ! θ to find all possible θcomp,
examining whether any new parameter instance should be
created (lines 12 to 17 in main).

If θ has been seen before, or otherwise after all the new
monitor states have been created/initialized as explained
above, algorithm C+〈X〉 invokes all the monitors that need
to process e, namely, those whose corresponding parameter
instances are more informative than or equal to θ (lines
20 to 22 in main). The updates also make use of the lists
stored in U . There are two auxiliary functions: defineNew

and defineTo. The former initializes a new monitor state
for the input parameter instance and the latter creates a
monitor state for the first input parameter instance using
the monitor state for the second instance. Both functions
then update the lists in table U to maintain its integrity.

It can be proved that C+〈X〉 correctly creates and up-
dates monitor states according to the received event. The
proof can be easily derived from the proof for algorithm
C〈X〉 in [7] and is omitted here. We next use an example
run, illustrated in Table 1, to show how C+〈X〉 works. In
Table 1, we show the contents of ∆ and U after every event
(given in the first row of the table) is processed. The ob-
served trace is update map〈m1〉 create coll〈m1, c1〉 create coll

〈m2, c2〉 create iter〈c1, i1〉. We assume that create coll is the
only creation event. For the time being we make abstrac-
tion of the particular property being monitored (e.g., the
one in Fig 1); hence, we assume that monitor states are

Event update map〈m1〉 create coll〈m1, c1〉 create coll〈m2, c2〉 create iter〈c1, i1〉

∆ ∅ 〈m1, c1〉:σ(i, create coll) 〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)

〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)
〈m1, c1, i1〉:σ(σ(i, create coll), create iter)

U ∅ ⊥ : 〈m1, c1〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉

⊥ : 〈m1, c1〉, 〈m2, c2〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉

⊥ : 〈m1, c1〉, 〈m2, c2〉, 〈m1, c1, i1〉
〈m1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈c1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉
〈i1〉:〈m2, c2〉, 〈m2, c2, i1〉
〈m1, c1〉:〈m1, c1, i1〉
〈m1, i1〉:〈m1, c1, i1〉
〈c1, i1〉:〈m1, c1, i1〉

Table 1. Sample run of C+〈X〉. The first row gives the received events; the second and the third
rows give the content of ∆ and U , respectively, after every event is processed. Monitor states are
represented symbolically in the table, e.g., σ(i, create coll) represents the state after a monitor
processes event create coll.

instantiates a finite number of parameters, which is always
the case in practice.

Figure 3 shows the algorithm C+〈X〉 for online monitor-
ing of parametric property ΛX.P , given that M is a monitor
for P . The algorithm shows which actions to perform, e.g.,
creating a new monitor state and/or updating the state of
related monitors, when an event is received. It is a slightly
different variant of algorithm C〈X〉 in [7]. C+〈X〉 is jus-
tified and motivated by experience with implementing and
evaluating C〈X〉, mainly by the following observation: one
often chooses to starting monitoring at the witness of a spe-
cific set of events (instead of monitoring from the beginning
of the program). For example, when we monitor the prop-
erty in Figure 1, we can choose to start monitoring on a pair
of m and c objects, (m1, c1), only when a create coll event
is received, ignoring all the update map〈m1〉 events before
the creation. We call such events that lead to creation of
new monitor states (monitor) creation events. Algorithm
C+〈X〉 extends C〈X〉 in [7] to support creation events. It
is easy to see that C〈X〉 can be regarded as a special case
of C+〈X〉, when all the events are creation events.

Two mappings are used in this algorithm: ∆ and U .
∆ stores the monitor states for parameter instances and U
maps a parameter instance θ to all the parameter instances
that have been defined and are properly more informative
than θ. In what follows, “the monitor state for θ” is used
to refer to ∆(θ) to facilitate reading in some contexts, and,
accordingly, “to create a parameter instance θ” and “to cre-
ate a monitor state for parameter instance θ”have the same
meaning: to define ∆(θ).

When parametric event e〈θ〉 is received, the algorithm
first checks whether θ has been encountered yet by checking
if its corresponding monitor state, i.e., ∆(θ), is defined(line
1 in main). If θ is encountered for the first time, new param-
eter instances may need to be created. In such a case, we
first try to locate the maximum parameter instance (θm)
which is less informative than θ and for which a monitor

state has been created (lines 2 to 6 in main). If such θm

is found, its monitor state is used to initialize the monitor
state for θ (lines 7 and 8 in main); otherwise, a new moni-
tor state is created for θ only if e is a creation event (lines
9 and 10 in main). Also, new parameter instances can be
created by combining θ with existing parameter instances
that are compatible with θ, i.e., they do not have conflicting
parameter bindings. An observation here is that if parame-
ter instance θcomp has been created and is compatible with
θ then θcomp can be found in U(θm) for some θm ! θ ac-
cording to the definition of U . Therefore, algorithm C+〈X〉
searches through all the θm ! θ to find all possible θcomp,
examining whether any new parameter instance should be
created (lines 12 to 17 in main).

If θ has been seen before, or otherwise after all the new
monitor states have been created/initialized as explained
above, algorithm C+〈X〉 invokes all the monitors that need
to process e, namely, those whose corresponding parameter
instances are more informative than or equal to θ (lines
20 to 22 in main). The updates also make use of the lists
stored in U . There are two auxiliary functions: defineNew

and defineTo. The former initializes a new monitor state
for the input parameter instance and the latter creates a
monitor state for the first input parameter instance using
the monitor state for the second instance. Both functions
then update the lists in table U to maintain its integrity.

It can be proved that C+〈X〉 correctly creates and up-
dates monitor states according to the received event. The
proof can be easily derived from the proof for algorithm
C〈X〉 in [7] and is omitted here. We next use an example
run, illustrated in Table 1, to show how C+〈X〉 works. In
Table 1, we show the contents of ∆ and U after every event
(given in the first row of the table) is processed. The ob-
served trace is update map〈m1〉 create coll〈m1, c1〉 create coll

〈m2, c2〉 create iter〈c1, i1〉. We assume that create coll is the
only creation event. For the time being we make abstrac-
tion of the particular property being monitored (e.g., the
one in Fig 1); hence, we assume that monitor states are

Event update map〈m1〉 create coll〈m1, c1〉 create coll〈m2, c2〉 create iter〈c1, i1〉

∆ ∅ 〈m1, c1〉:σ(i, create coll) 〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)

〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)
〈m1, c1, i1〉:σ(σ(i, create coll), create iter)

U ∅ ⊥ : 〈m1, c1〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉

⊥ : 〈m1, c1〉, 〈m2, c2〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉

⊥ : 〈m1, c1〉, 〈m2, c2〉, 〈m1, c1, i1〉
〈m1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈c1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉
〈i1〉:〈m2, c2〉, 〈m2, c2, i1〉
〈m1, c1〉:〈m1, c1, i1〉
〈m1, i1〉:〈m1, c1, i1〉
〈c1, i1〉:〈m1, c1, i1〉

Table 1. Sample run of C+〈X〉. The first row gives the received events; the second and the third
rows give the content of ∆ and U , respectively, after every event is processed. Monitor states are
represented symbolically in the table, e.g., σ(i, create coll) represents the state after a monitor
processes event create coll.

instantiates a finite number of parameters, which is always
the case in practice.

Figure 3 shows the algorithm C+〈X〉 for online monitor-
ing of parametric property ΛX.P , given that M is a monitor
for P . The algorithm shows which actions to perform, e.g.,
creating a new monitor state and/or updating the state of
related monitors, when an event is received. It is a slightly
different variant of algorithm C〈X〉 in [7]. C+〈X〉 is jus-
tified and motivated by experience with implementing and
evaluating C〈X〉, mainly by the following observation: one
often chooses to starting monitoring at the witness of a spe-
cific set of events (instead of monitoring from the beginning
of the program). For example, when we monitor the prop-
erty in Figure 1, we can choose to start monitoring on a pair
of m and c objects, (m1, c1), only when a create coll event
is received, ignoring all the update map〈m1〉 events before
the creation. We call such events that lead to creation of
new monitor states (monitor) creation events. Algorithm
C+〈X〉 extends C〈X〉 in [7] to support creation events. It
is easy to see that C〈X〉 can be regarded as a special case
of C+〈X〉, when all the events are creation events.

Two mappings are used in this algorithm: ∆ and U .
∆ stores the monitor states for parameter instances and U
maps a parameter instance θ to all the parameter instances
that have been defined and are properly more informative
than θ. In what follows, “the monitor state for θ” is used
to refer to ∆(θ) to facilitate reading in some contexts, and,
accordingly, “to create a parameter instance θ” and “to cre-
ate a monitor state for parameter instance θ”have the same
meaning: to define ∆(θ).

When parametric event e〈θ〉 is received, the algorithm
first checks whether θ has been encountered yet by checking
if its corresponding monitor state, i.e., ∆(θ), is defined(line
1 in main). If θ is encountered for the first time, new param-
eter instances may need to be created. In such a case, we
first try to locate the maximum parameter instance (θm)
which is less informative than θ and for which a monitor

state has been created (lines 2 to 6 in main). If such θm

is found, its monitor state is used to initialize the monitor
state for θ (lines 7 and 8 in main); otherwise, a new moni-
tor state is created for θ only if e is a creation event (lines
9 and 10 in main). Also, new parameter instances can be
created by combining θ with existing parameter instances
that are compatible with θ, i.e., they do not have conflicting
parameter bindings. An observation here is that if parame-
ter instance θcomp has been created and is compatible with
θ then θcomp can be found in U(θm) for some θm ! θ ac-
cording to the definition of U . Therefore, algorithm C+〈X〉
searches through all the θm ! θ to find all possible θcomp,
examining whether any new parameter instance should be
created (lines 12 to 17 in main).

If θ has been seen before, or otherwise after all the new
monitor states have been created/initialized as explained
above, algorithm C+〈X〉 invokes all the monitors that need
to process e, namely, those whose corresponding parameter
instances are more informative than or equal to θ (lines
20 to 22 in main). The updates also make use of the lists
stored in U . There are two auxiliary functions: defineNew

and defineTo. The former initializes a new monitor state
for the input parameter instance and the latter creates a
monitor state for the first input parameter instance using
the monitor state for the second instance. Both functions
then update the lists in table U to maintain its integrity.

It can be proved that C+〈X〉 correctly creates and up-
dates monitor states according to the received event. The
proof can be easily derived from the proof for algorithm
C〈X〉 in [7] and is omitted here. We next use an example
run, illustrated in Table 1, to show how C+〈X〉 works. In
Table 1, we show the contents of ∆ and U after every event
(given in the first row of the table) is processed. The ob-
served trace is update map〈m1〉 create coll〈m1, c1〉 create coll

〈m2, c2〉 create iter〈c1, i1〉. We assume that create coll is the
only creation event. For the time being we make abstrac-
tion of the particular property being monitored (e.g., the
one in Fig 1); hence, we assume that monitor states are

Event update map〈m1〉 create coll〈m1, c1〉 create coll〈m2, c2〉 create iter〈c1, i1〉

∆ ∅ 〈m1, c1〉:σ(i, create coll) 〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)

〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)
〈m1, c1, i1〉:σ(σ(i, create coll), create iter)

U ∅ ⊥ : 〈m1, c1〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉

⊥ : 〈m1, c1〉, 〈m2, c2〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉

⊥ : 〈m1, c1〉, 〈m2, c2〉, 〈m1, c1, i1〉
〈m1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈c1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉
〈i1〉:〈m2, c2〉, 〈m2, c2, i1〉
〈m1, c1〉:〈m1, c1, i1〉
〈m1, i1〉:〈m1, c1, i1〉
〈c1, i1〉:〈m1, c1, i1〉

Table 1. Sample run of C+〈X〉. The first row gives the received events; the second and the third
rows give the content of ∆ and U , respectively, after every event is processed. Monitor states are
represented symbolically in the table, e.g., σ(i, create coll) represents the state after a monitor
processes event create coll.

instantiates a finite number of parameters, which is always
the case in practice.

Figure 3 shows the algorithm C+〈X〉 for online monitor-
ing of parametric property ΛX.P , given that M is a monitor
for P . The algorithm shows which actions to perform, e.g.,
creating a new monitor state and/or updating the state of
related monitors, when an event is received. It is a slightly
different variant of algorithm C〈X〉 in [7]. C+〈X〉 is jus-
tified and motivated by experience with implementing and
evaluating C〈X〉, mainly by the following observation: one
often chooses to starting monitoring at the witness of a spe-
cific set of events (instead of monitoring from the beginning
of the program). For example, when we monitor the prop-
erty in Figure 1, we can choose to start monitoring on a pair
of m and c objects, (m1, c1), only when a create coll event
is received, ignoring all the update map〈m1〉 events before
the creation. We call such events that lead to creation of
new monitor states (monitor) creation events. Algorithm
C+〈X〉 extends C〈X〉 in [7] to support creation events. It
is easy to see that C〈X〉 can be regarded as a special case
of C+〈X〉, when all the events are creation events.

Two mappings are used in this algorithm: ∆ and U .
∆ stores the monitor states for parameter instances and U
maps a parameter instance θ to all the parameter instances
that have been defined and are properly more informative
than θ. In what follows, “the monitor state for θ” is used
to refer to ∆(θ) to facilitate reading in some contexts, and,
accordingly, “to create a parameter instance θ” and “to cre-
ate a monitor state for parameter instance θ”have the same
meaning: to define ∆(θ).

When parametric event e〈θ〉 is received, the algorithm
first checks whether θ has been encountered yet by checking
if its corresponding monitor state, i.e., ∆(θ), is defined(line
1 in main). If θ is encountered for the first time, new param-
eter instances may need to be created. In such a case, we
first try to locate the maximum parameter instance (θm)
which is less informative than θ and for which a monitor

state has been created (lines 2 to 6 in main). If such θm

is found, its monitor state is used to initialize the monitor
state for θ (lines 7 and 8 in main); otherwise, a new moni-
tor state is created for θ only if e is a creation event (lines
9 and 10 in main). Also, new parameter instances can be
created by combining θ with existing parameter instances
that are compatible with θ, i.e., they do not have conflicting
parameter bindings. An observation here is that if parame-
ter instance θcomp has been created and is compatible with
θ then θcomp can be found in U(θm) for some θm ! θ ac-
cording to the definition of U . Therefore, algorithm C+〈X〉
searches through all the θm ! θ to find all possible θcomp,
examining whether any new parameter instance should be
created (lines 12 to 17 in main).

If θ has been seen before, or otherwise after all the new
monitor states have been created/initialized as explained
above, algorithm C+〈X〉 invokes all the monitors that need
to process e, namely, those whose corresponding parameter
instances are more informative than or equal to θ (lines
20 to 22 in main). The updates also make use of the lists
stored in U . There are two auxiliary functions: defineNew

and defineTo. The former initializes a new monitor state
for the input parameter instance and the latter creates a
monitor state for the first input parameter instance using
the monitor state for the second instance. Both functions
then update the lists in table U to maintain its integrity.

It can be proved that C+〈X〉 correctly creates and up-
dates monitor states according to the received event. The
proof can be easily derived from the proof for algorithm
C〈X〉 in [7] and is omitted here. We next use an example
run, illustrated in Table 1, to show how C+〈X〉 works. In
Table 1, we show the contents of ∆ and U after every event
(given in the first row of the table) is processed. The ob-
served trace is update map〈m1〉 create coll〈m1, c1〉 create coll

〈m2, c2〉 create iter〈c1, i1〉. We assume that create coll is the
only creation event. For the time being we make abstrac-
tion of the particular property being monitored (e.g., the
one in Fig 1); hence, we assume that monitor states are

Event update map〈m1〉 create coll〈m1, c1〉 create coll〈m2, c2〉 create iter〈c1, i1〉

∆ ∅ 〈m1, c1〉:σ(i, create coll) 〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)

〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)
〈m1, c1, i1〉:σ(σ(i, create coll), create iter)

U ∅ ⊥ : 〈m1, c1〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉

⊥ : 〈m1, c1〉, 〈m2, c2〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉

⊥ : 〈m1, c1〉, 〈m2, c2〉, 〈m1, c1, i1〉
〈m1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈c1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉
〈i1〉:〈m2, c2〉, 〈m2, c2, i1〉
〈m1, c1〉:〈m1, c1, i1〉
〈m1, i1〉:〈m1, c1, i1〉
〈c1, i1〉:〈m1, c1, i1〉

Table 1. Sample run of C+〈X〉. The first row gives the received events; the second and the third
rows give the content of ∆ and U , respectively, after every event is processed. Monitor states are
represented symbolically in the table, e.g., σ(i, create coll) represents the state after a monitor
processes event create coll.

instantiates a finite number of parameters, which is always
the case in practice.

Figure 3 shows the algorithm C+〈X〉 for online monitor-
ing of parametric property ΛX.P , given that M is a monitor
for P . The algorithm shows which actions to perform, e.g.,
creating a new monitor state and/or updating the state of
related monitors, when an event is received. It is a slightly
different variant of algorithm C〈X〉 in [7]. C+〈X〉 is jus-
tified and motivated by experience with implementing and
evaluating C〈X〉, mainly by the following observation: one
often chooses to starting monitoring at the witness of a spe-
cific set of events (instead of monitoring from the beginning
of the program). For example, when we monitor the prop-
erty in Figure 1, we can choose to start monitoring on a pair
of m and c objects, (m1, c1), only when a create coll event
is received, ignoring all the update map〈m1〉 events before
the creation. We call such events that lead to creation of
new monitor states (monitor) creation events. Algorithm
C+〈X〉 extends C〈X〉 in [7] to support creation events. It
is easy to see that C〈X〉 can be regarded as a special case
of C+〈X〉, when all the events are creation events.

Two mappings are used in this algorithm: ∆ and U .
∆ stores the monitor states for parameter instances and U
maps a parameter instance θ to all the parameter instances
that have been defined and are properly more informative
than θ. In what follows, “the monitor state for θ” is used
to refer to ∆(θ) to facilitate reading in some contexts, and,
accordingly, “to create a parameter instance θ” and “to cre-
ate a monitor state for parameter instance θ”have the same
meaning: to define ∆(θ).

When parametric event e〈θ〉 is received, the algorithm
first checks whether θ has been encountered yet by checking
if its corresponding monitor state, i.e., ∆(θ), is defined(line
1 in main). If θ is encountered for the first time, new param-
eter instances may need to be created. In such a case, we
first try to locate the maximum parameter instance (θm)
which is less informative than θ and for which a monitor

state has been created (lines 2 to 6 in main). If such θm

is found, its monitor state is used to initialize the monitor
state for θ (lines 7 and 8 in main); otherwise, a new moni-
tor state is created for θ only if e is a creation event (lines
9 and 10 in main). Also, new parameter instances can be
created by combining θ with existing parameter instances
that are compatible with θ, i.e., they do not have conflicting
parameter bindings. An observation here is that if parame-
ter instance θcomp has been created and is compatible with
θ then θcomp can be found in U(θm) for some θm ! θ ac-
cording to the definition of U . Therefore, algorithm C+〈X〉
searches through all the θm ! θ to find all possible θcomp,
examining whether any new parameter instance should be
created (lines 12 to 17 in main).

If θ has been seen before, or otherwise after all the new
monitor states have been created/initialized as explained
above, algorithm C+〈X〉 invokes all the monitors that need
to process e, namely, those whose corresponding parameter
instances are more informative than or equal to θ (lines
20 to 22 in main). The updates also make use of the lists
stored in U . There are two auxiliary functions: defineNew

and defineTo. The former initializes a new monitor state
for the input parameter instance and the latter creates a
monitor state for the first input parameter instance using
the monitor state for the second instance. Both functions
then update the lists in table U to maintain its integrity.

It can be proved that C+〈X〉 correctly creates and up-
dates monitor states according to the received event. The
proof can be easily derived from the proof for algorithm
C〈X〉 in [7] and is omitted here. We next use an example
run, illustrated in Table 1, to show how C+〈X〉 works. In
Table 1, we show the contents of ∆ and U after every event
(given in the first row of the table) is processed. The ob-
served trace is update map〈m1〉 create coll〈m1, c1〉 create coll

〈m2, c2〉 create iter〈c1, i1〉. We assume that create coll is the
only creation event. For the time being we make abstrac-
tion of the particular property being monitored (e.g., the
one in Fig 1); hence, we assume that monitor states are

Event update map〈m1〉 create coll〈m1, c1〉 create coll〈m2, c2〉 create iter〈c1, i1〉

∆ ∅ 〈m1, c1〉:σ(i, create coll) 〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)

〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)
〈m1, c1, i1〉:σ(σ(i, create coll), create iter)

U ∅ ⊥ : 〈m1, c1〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉

⊥ : 〈m1, c1〉, 〈m2, c2〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉

⊥ : 〈m1, c1〉, 〈m2, c2〉, 〈m1, c1, i1〉
〈m1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈c1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉
〈i1〉:〈m2, c2〉, 〈m2, c2, i1〉
〈m1, c1〉:〈m1, c1, i1〉
〈m1, i1〉:〈m1, c1, i1〉
〈c1, i1〉:〈m1, c1, i1〉

Table 1. Sample run of C+〈X〉. The first row gives the received events; the second and the third
rows give the content of ∆ and U , respectively, after every event is processed. Monitor states are
represented symbolically in the table, e.g., σ(i, create coll) represents the state after a monitor
processes event create coll.

instantiates a finite number of parameters, which is always
the case in practice.

Figure 3 shows the algorithm C+〈X〉 for online monitor-
ing of parametric property ΛX.P , given that M is a monitor
for P . The algorithm shows which actions to perform, e.g.,
creating a new monitor state and/or updating the state of
related monitors, when an event is received. It is a slightly
different variant of algorithm C〈X〉 in [7]. C+〈X〉 is jus-
tified and motivated by experience with implementing and
evaluating C〈X〉, mainly by the following observation: one
often chooses to starting monitoring at the witness of a spe-
cific set of events (instead of monitoring from the beginning
of the program). For example, when we monitor the prop-
erty in Figure 1, we can choose to start monitoring on a pair
of m and c objects, (m1, c1), only when a create coll event
is received, ignoring all the update map〈m1〉 events before
the creation. We call such events that lead to creation of
new monitor states (monitor) creation events. Algorithm
C+〈X〉 extends C〈X〉 in [7] to support creation events. It
is easy to see that C〈X〉 can be regarded as a special case
of C+〈X〉, when all the events are creation events.

Two mappings are used in this algorithm: ∆ and U .
∆ stores the monitor states for parameter instances and U
maps a parameter instance θ to all the parameter instances
that have been defined and are properly more informative
than θ. In what follows, “the monitor state for θ” is used
to refer to ∆(θ) to facilitate reading in some contexts, and,
accordingly, “to create a parameter instance θ” and “to cre-
ate a monitor state for parameter instance θ”have the same
meaning: to define ∆(θ).

When parametric event e〈θ〉 is received, the algorithm
first checks whether θ has been encountered yet by checking
if its corresponding monitor state, i.e., ∆(θ), is defined(line
1 in main). If θ is encountered for the first time, new param-
eter instances may need to be created. In such a case, we
first try to locate the maximum parameter instance (θm)
which is less informative than θ and for which a monitor

state has been created (lines 2 to 6 in main). If such θm

is found, its monitor state is used to initialize the monitor
state for θ (lines 7 and 8 in main); otherwise, a new moni-
tor state is created for θ only if e is a creation event (lines
9 and 10 in main). Also, new parameter instances can be
created by combining θ with existing parameter instances
that are compatible with θ, i.e., they do not have conflicting
parameter bindings. An observation here is that if parame-
ter instance θcomp has been created and is compatible with
θ then θcomp can be found in U(θm) for some θm ! θ ac-
cording to the definition of U . Therefore, algorithm C+〈X〉
searches through all the θm ! θ to find all possible θcomp,
examining whether any new parameter instance should be
created (lines 12 to 17 in main).

If θ has been seen before, or otherwise after all the new
monitor states have been created/initialized as explained
above, algorithm C+〈X〉 invokes all the monitors that need
to process e, namely, those whose corresponding parameter
instances are more informative than or equal to θ (lines
20 to 22 in main). The updates also make use of the lists
stored in U . There are two auxiliary functions: defineNew

and defineTo. The former initializes a new monitor state
for the input parameter instance and the latter creates a
monitor state for the first input parameter instance using
the monitor state for the second instance. Both functions
then update the lists in table U to maintain its integrity.

It can be proved that C+〈X〉 correctly creates and up-
dates monitor states according to the received event. The
proof can be easily derived from the proof for algorithm
C〈X〉 in [7] and is omitted here. We next use an example
run, illustrated in Table 1, to show how C+〈X〉 works. In
Table 1, we show the contents of ∆ and U after every event
(given in the first row of the table) is processed. The ob-
served trace is update map〈m1〉 create coll〈m1, c1〉 create coll

〈m2, c2〉 create iter〈c1, i1〉. We assume that create coll is the
only creation event. For the time being we make abstrac-
tion of the particular property being monitored (e.g., the
one in Fig 1); hence, we assume that monitor states are

Event update map〈m1〉 create coll〈m1, c1〉 create coll〈m2, c2〉 create iter〈c1, i1〉

∆ ∅ 〈m1, c1〉:σ(i, create coll) 〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)

〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)
〈m1, c1, i1〉:σ(σ(i, create coll), create iter)

U ∅ ⊥ : 〈m1, c1〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉

⊥ : 〈m1, c1〉, 〈m2, c2〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉

⊥ : 〈m1, c1〉, 〈m2, c2〉, 〈m1, c1, i1〉
〈m1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈c1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉
〈i1〉:〈m2, c2〉, 〈m2, c2, i1〉
〈m1, c1〉:〈m1, c1, i1〉
〈m1, i1〉:〈m1, c1, i1〉
〈c1, i1〉:〈m1, c1, i1〉

Table 1. Sample run of C+〈X〉. The first row gives the received events; the second and the third
rows give the content of ∆ and U , respectively, after every event is processed. Monitor states are
represented symbolically in the table, e.g., σ(i, create coll) represents the state after a monitor
processes event create coll.

instantiates a finite number of parameters, which is always
the case in practice.

Figure 3 shows the algorithm C+〈X〉 for online monitor-
ing of parametric property ΛX.P , given that M is a monitor
for P . The algorithm shows which actions to perform, e.g.,
creating a new monitor state and/or updating the state of
related monitors, when an event is received. It is a slightly
different variant of algorithm C〈X〉 in [7]. C+〈X〉 is jus-
tified and motivated by experience with implementing and
evaluating C〈X〉, mainly by the following observation: one
often chooses to starting monitoring at the witness of a spe-
cific set of events (instead of monitoring from the beginning
of the program). For example, when we monitor the prop-
erty in Figure 1, we can choose to start monitoring on a pair
of m and c objects, (m1, c1), only when a create coll event
is received, ignoring all the update map〈m1〉 events before
the creation. We call such events that lead to creation of
new monitor states (monitor) creation events. Algorithm
C+〈X〉 extends C〈X〉 in [7] to support creation events. It
is easy to see that C〈X〉 can be regarded as a special case
of C+〈X〉, when all the events are creation events.

Two mappings are used in this algorithm: ∆ and U .
∆ stores the monitor states for parameter instances and U
maps a parameter instance θ to all the parameter instances
that have been defined and are properly more informative
than θ. In what follows, “the monitor state for θ” is used
to refer to ∆(θ) to facilitate reading in some contexts, and,
accordingly, “to create a parameter instance θ” and “to cre-
ate a monitor state for parameter instance θ”have the same
meaning: to define ∆(θ).

When parametric event e〈θ〉 is received, the algorithm
first checks whether θ has been encountered yet by checking
if its corresponding monitor state, i.e., ∆(θ), is defined(line
1 in main). If θ is encountered for the first time, new param-
eter instances may need to be created. In such a case, we
first try to locate the maximum parameter instance (θm)
which is less informative than θ and for which a monitor

state has been created (lines 2 to 6 in main). If such θm

is found, its monitor state is used to initialize the monitor
state for θ (lines 7 and 8 in main); otherwise, a new moni-
tor state is created for θ only if e is a creation event (lines
9 and 10 in main). Also, new parameter instances can be
created by combining θ with existing parameter instances
that are compatible with θ, i.e., they do not have conflicting
parameter bindings. An observation here is that if parame-
ter instance θcomp has been created and is compatible with
θ then θcomp can be found in U(θm) for some θm ! θ ac-
cording to the definition of U . Therefore, algorithm C+〈X〉
searches through all the θm ! θ to find all possible θcomp,
examining whether any new parameter instance should be
created (lines 12 to 17 in main).

If θ has been seen before, or otherwise after all the new
monitor states have been created/initialized as explained
above, algorithm C+〈X〉 invokes all the monitors that need
to process e, namely, those whose corresponding parameter
instances are more informative than or equal to θ (lines
20 to 22 in main). The updates also make use of the lists
stored in U . There are two auxiliary functions: defineNew

and defineTo. The former initializes a new monitor state
for the input parameter instance and the latter creates a
monitor state for the first input parameter instance using
the monitor state for the second instance. Both functions
then update the lists in table U to maintain its integrity.

It can be proved that C+〈X〉 correctly creates and up-
dates monitor states according to the received event. The
proof can be easily derived from the proof for algorithm
C〈X〉 in [7] and is omitted here. We next use an example
run, illustrated in Table 1, to show how C+〈X〉 works. In
Table 1, we show the contents of ∆ and U after every event
(given in the first row of the table) is processed. The ob-
served trace is update map〈m1〉 create coll〈m1, c1〉 create coll

〈m2, c2〉 create iter〈c1, i1〉. We assume that create coll is the
only creation event. For the time being we make abstrac-
tion of the particular property being monitored (e.g., the
one in Fig 1); hence, we assume that monitor states are

Event update map〈m1〉 create coll〈m1, c1〉 create coll〈m2, c2〉 create iter〈c1, i1〉

∆ ∅ 〈m1, c1〉:σ(i, create coll) 〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)

〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)
〈m1, c1, i1〉:σ(σ(i, create coll), create iter)

U ∅ ⊥ : 〈m1, c1〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉

⊥ : 〈m1, c1〉, 〈m2, c2〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉

⊥ : 〈m1, c1〉, 〈m2, c2〉, 〈m1, c1, i1〉
〈m1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈c1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉
〈i1〉:〈m2, c2〉, 〈m2, c2, i1〉
〈m1, c1〉:〈m1, c1, i1〉
〈m1, i1〉:〈m1, c1, i1〉
〈c1, i1〉:〈m1, c1, i1〉

Table 1. Sample run of C+〈X〉. The first row gives the received events; the second and the third
rows give the content of ∆ and U , respectively, after every event is processed. Monitor states are
represented symbolically in the table, e.g., σ(i, create coll) represents the state after a monitor
processes event create coll.

instantiates a finite number of parameters, which is always
the case in practice.

Figure 3 shows the algorithm C+〈X〉 for online monitor-
ing of parametric property ΛX.P , given that M is a monitor
for P . The algorithm shows which actions to perform, e.g.,
creating a new monitor state and/or updating the state of
related monitors, when an event is received. It is a slightly
different variant of algorithm C〈X〉 in [7]. C+〈X〉 is jus-
tified and motivated by experience with implementing and
evaluating C〈X〉, mainly by the following observation: one
often chooses to starting monitoring at the witness of a spe-
cific set of events (instead of monitoring from the beginning
of the program). For example, when we monitor the prop-
erty in Figure 1, we can choose to start monitoring on a pair
of m and c objects, (m1, c1), only when a create coll event
is received, ignoring all the update map〈m1〉 events before
the creation. We call such events that lead to creation of
new monitor states (monitor) creation events. Algorithm
C+〈X〉 extends C〈X〉 in [7] to support creation events. It
is easy to see that C〈X〉 can be regarded as a special case
of C+〈X〉, when all the events are creation events.

Two mappings are used in this algorithm: ∆ and U .
∆ stores the monitor states for parameter instances and U
maps a parameter instance θ to all the parameter instances
that have been defined and are properly more informative
than θ. In what follows, “the monitor state for θ” is used
to refer to ∆(θ) to facilitate reading in some contexts, and,
accordingly, “to create a parameter instance θ” and “to cre-
ate a monitor state for parameter instance θ”have the same
meaning: to define ∆(θ).

When parametric event e〈θ〉 is received, the algorithm
first checks whether θ has been encountered yet by checking
if its corresponding monitor state, i.e., ∆(θ), is defined(line
1 in main). If θ is encountered for the first time, new param-
eter instances may need to be created. In such a case, we
first try to locate the maximum parameter instance (θm)
which is less informative than θ and for which a monitor

state has been created (lines 2 to 6 in main). If such θm

is found, its monitor state is used to initialize the monitor
state for θ (lines 7 and 8 in main); otherwise, a new moni-
tor state is created for θ only if e is a creation event (lines
9 and 10 in main). Also, new parameter instances can be
created by combining θ with existing parameter instances
that are compatible with θ, i.e., they do not have conflicting
parameter bindings. An observation here is that if parame-
ter instance θcomp has been created and is compatible with
θ then θcomp can be found in U(θm) for some θm ! θ ac-
cording to the definition of U . Therefore, algorithm C+〈X〉
searches through all the θm ! θ to find all possible θcomp,
examining whether any new parameter instance should be
created (lines 12 to 17 in main).

If θ has been seen before, or otherwise after all the new
monitor states have been created/initialized as explained
above, algorithm C+〈X〉 invokes all the monitors that need
to process e, namely, those whose corresponding parameter
instances are more informative than or equal to θ (lines
20 to 22 in main). The updates also make use of the lists
stored in U . There are two auxiliary functions: defineNew

and defineTo. The former initializes a new monitor state
for the input parameter instance and the latter creates a
monitor state for the first input parameter instance using
the monitor state for the second instance. Both functions
then update the lists in table U to maintain its integrity.

It can be proved that C+〈X〉 correctly creates and up-
dates monitor states according to the received event. The
proof can be easily derived from the proof for algorithm
C〈X〉 in [7] and is omitted here. We next use an example
run, illustrated in Table 1, to show how C+〈X〉 works. In
Table 1, we show the contents of ∆ and U after every event
(given in the first row of the table) is processed. The ob-
served trace is update map〈m1〉 create coll〈m1, c1〉 create coll

〈m2, c2〉 create iter〈c1, i1〉. We assume that create coll is the
only creation event. For the time being we make abstrac-
tion of the particular property being monitored (e.g., the
one in Fig 1); hence, we assume that monitor states are

Event update map〈m1〉 create coll〈m1, c1〉 create coll〈m2, c2〉 create iter〈c1, i1〉

∆ ∅ 〈m1, c1〉:σ(i, create coll) 〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)

〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)
〈m1, c1, i1〉:σ(σ(i, create coll), create iter)

U ∅ ⊥ : 〈m1, c1〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉

⊥ : 〈m1, c1〉, 〈m2, c2〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉

⊥ : 〈m1, c1〉, 〈m2, c2〉, 〈m1, c1, i1〉
〈m1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈c1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉
〈i1〉:〈m2, c2〉, 〈m2, c2, i1〉
〈m1, c1〉:〈m1, c1, i1〉
〈m1, i1〉:〈m1, c1, i1〉
〈c1, i1〉:〈m1, c1, i1〉

Table 1. Sample run of C+〈X〉. The first row gives the received events; the second and the third
rows give the content of ∆ and U , respectively, after every event is processed. Monitor states are
represented symbolically in the table, e.g., σ(i, create coll) represents the state after a monitor
processes event create coll.

instantiates a finite number of parameters, which is always
the case in practice.

Figure 3 shows the algorithm C+〈X〉 for online monitor-
ing of parametric property ΛX.P , given that M is a monitor
for P . The algorithm shows which actions to perform, e.g.,
creating a new monitor state and/or updating the state of
related monitors, when an event is received. It is a slightly
different variant of algorithm C〈X〉 in [7]. C+〈X〉 is jus-
tified and motivated by experience with implementing and
evaluating C〈X〉, mainly by the following observation: one
often chooses to starting monitoring at the witness of a spe-
cific set of events (instead of monitoring from the beginning
of the program). For example, when we monitor the prop-
erty in Figure 1, we can choose to start monitoring on a pair
of m and c objects, (m1, c1), only when a create coll event
is received, ignoring all the update map〈m1〉 events before
the creation. We call such events that lead to creation of
new monitor states (monitor) creation events. Algorithm
C+〈X〉 extends C〈X〉 in [7] to support creation events. It
is easy to see that C〈X〉 can be regarded as a special case
of C+〈X〉, when all the events are creation events.

Two mappings are used in this algorithm: ∆ and U .
∆ stores the monitor states for parameter instances and U
maps a parameter instance θ to all the parameter instances
that have been defined and are properly more informative
than θ. In what follows, “the monitor state for θ” is used
to refer to ∆(θ) to facilitate reading in some contexts, and,
accordingly, “to create a parameter instance θ” and “to cre-
ate a monitor state for parameter instance θ”have the same
meaning: to define ∆(θ).

When parametric event e〈θ〉 is received, the algorithm
first checks whether θ has been encountered yet by checking
if its corresponding monitor state, i.e., ∆(θ), is defined(line
1 in main). If θ is encountered for the first time, new param-
eter instances may need to be created. In such a case, we
first try to locate the maximum parameter instance (θm)
which is less informative than θ and for which a monitor

state has been created (lines 2 to 6 in main). If such θm

is found, its monitor state is used to initialize the monitor
state for θ (lines 7 and 8 in main); otherwise, a new moni-
tor state is created for θ only if e is a creation event (lines
9 and 10 in main). Also, new parameter instances can be
created by combining θ with existing parameter instances
that are compatible with θ, i.e., they do not have conflicting
parameter bindings. An observation here is that if parame-
ter instance θcomp has been created and is compatible with
θ then θcomp can be found in U(θm) for some θm ! θ ac-
cording to the definition of U . Therefore, algorithm C+〈X〉
searches through all the θm ! θ to find all possible θcomp,
examining whether any new parameter instance should be
created (lines 12 to 17 in main).

If θ has been seen before, or otherwise after all the new
monitor states have been created/initialized as explained
above, algorithm C+〈X〉 invokes all the monitors that need
to process e, namely, those whose corresponding parameter
instances are more informative than or equal to θ (lines
20 to 22 in main). The updates also make use of the lists
stored in U . There are two auxiliary functions: defineNew

and defineTo. The former initializes a new monitor state
for the input parameter instance and the latter creates a
monitor state for the first input parameter instance using
the monitor state for the second instance. Both functions
then update the lists in table U to maintain its integrity.

It can be proved that C+〈X〉 correctly creates and up-
dates monitor states according to the received event. The
proof can be easily derived from the proof for algorithm
C〈X〉 in [7] and is omitted here. We next use an example
run, illustrated in Table 1, to show how C+〈X〉 works. In
Table 1, we show the contents of ∆ and U after every event
(given in the first row of the table) is processed. The ob-
served trace is update map〈m1〉 create coll〈m1, c1〉 create coll

〈m2, c2〉 create iter〈c1, i1〉. We assume that create coll is the
only creation event. For the time being we make abstrac-
tion of the particular property being monitored (e.g., the
one in Fig 1); hence, we assume that monitor states are

Event update map〈m1〉 create coll〈m1, c1〉 create coll〈m2, c2〉 create iter〈c1, i1〉

∆ ∅ 〈m1, c1〉:σ(i, create coll) 〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)

〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)
〈m1, c1, i1〉:σ(σ(i, create coll), create iter)

U ∅ ⊥ : 〈m1, c1〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉

⊥ : 〈m1, c1〉, 〈m2, c2〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉

⊥ : 〈m1, c1〉, 〈m2, c2〉, 〈m1, c1, i1〉
〈m1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈c1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉
〈i1〉:〈m2, c2〉, 〈m2, c2, i1〉
〈m1, c1〉:〈m1, c1, i1〉
〈m1, i1〉:〈m1, c1, i1〉
〈c1, i1〉:〈m1, c1, i1〉

Table 1. Sample run of C+〈X〉. The first row gives the received events; the second and the third
rows give the content of ∆ and U , respectively, after every event is processed. Monitor states are
represented symbolically in the table, e.g., σ(i, create coll) represents the state after a monitor
processes event create coll.

instantiates a finite number of parameters, which is always
the case in practice.

Figure 3 shows the algorithm C+〈X〉 for online monitor-
ing of parametric property ΛX.P , given that M is a monitor
for P . The algorithm shows which actions to perform, e.g.,
creating a new monitor state and/or updating the state of
related monitors, when an event is received. It is a slightly
different variant of algorithm C〈X〉 in [7]. C+〈X〉 is jus-
tified and motivated by experience with implementing and
evaluating C〈X〉, mainly by the following observation: one
often chooses to starting monitoring at the witness of a spe-
cific set of events (instead of monitoring from the beginning
of the program). For example, when we monitor the prop-
erty in Figure 1, we can choose to start monitoring on a pair
of m and c objects, (m1, c1), only when a create coll event
is received, ignoring all the update map〈m1〉 events before
the creation. We call such events that lead to creation of
new monitor states (monitor) creation events. Algorithm
C+〈X〉 extends C〈X〉 in [7] to support creation events. It
is easy to see that C〈X〉 can be regarded as a special case
of C+〈X〉, when all the events are creation events.

Two mappings are used in this algorithm: ∆ and U .
∆ stores the monitor states for parameter instances and U
maps a parameter instance θ to all the parameter instances
that have been defined and are properly more informative
than θ. In what follows, “the monitor state for θ” is used
to refer to ∆(θ) to facilitate reading in some contexts, and,
accordingly, “to create a parameter instance θ” and “to cre-
ate a monitor state for parameter instance θ”have the same
meaning: to define ∆(θ).

When parametric event e〈θ〉 is received, the algorithm
first checks whether θ has been encountered yet by checking
if its corresponding monitor state, i.e., ∆(θ), is defined(line
1 in main). If θ is encountered for the first time, new param-
eter instances may need to be created. In such a case, we
first try to locate the maximum parameter instance (θm)
which is less informative than θ and for which a monitor

state has been created (lines 2 to 6 in main). If such θm

is found, its monitor state is used to initialize the monitor
state for θ (lines 7 and 8 in main); otherwise, a new moni-
tor state is created for θ only if e is a creation event (lines
9 and 10 in main). Also, new parameter instances can be
created by combining θ with existing parameter instances
that are compatible with θ, i.e., they do not have conflicting
parameter bindings. An observation here is that if parame-
ter instance θcomp has been created and is compatible with
θ then θcomp can be found in U(θm) for some θm ! θ ac-
cording to the definition of U . Therefore, algorithm C+〈X〉
searches through all the θm ! θ to find all possible θcomp,
examining whether any new parameter instance should be
created (lines 12 to 17 in main).

If θ has been seen before, or otherwise after all the new
monitor states have been created/initialized as explained
above, algorithm C+〈X〉 invokes all the monitors that need
to process e, namely, those whose corresponding parameter
instances are more informative than or equal to θ (lines
20 to 22 in main). The updates also make use of the lists
stored in U . There are two auxiliary functions: defineNew

and defineTo. The former initializes a new monitor state
for the input parameter instance and the latter creates a
monitor state for the first input parameter instance using
the monitor state for the second instance. Both functions
then update the lists in table U to maintain its integrity.

It can be proved that C+〈X〉 correctly creates and up-
dates monitor states according to the received event. The
proof can be easily derived from the proof for algorithm
C〈X〉 in [7] and is omitted here. We next use an example
run, illustrated in Table 1, to show how C+〈X〉 works. In
Table 1, we show the contents of ∆ and U after every event
(given in the first row of the table) is processed. The ob-
served trace is update map〈m1〉 create coll〈m1, c1〉 create coll

〈m2, c2〉 create iter〈c1, i1〉. We assume that create coll is the
only creation event. For the time being we make abstrac-
tion of the particular property being monitored (e.g., the
one in Fig 1); hence, we assume that monitor states are

Event update map〈m1〉 create coll〈m1, c1〉 create coll〈m2, c2〉 create iter〈c1, i1〉

∆ ∅ 〈m1, c1〉:σ(i, create coll) 〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)

〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)
〈m1, c1, i1〉:σ(σ(i, create coll), create iter)

U ∅ ⊥ : 〈m1, c1〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉

⊥ : 〈m1, c1〉, 〈m2, c2〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉

⊥ : 〈m1, c1〉, 〈m2, c2〉, 〈m1, c1, i1〉
〈m1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈c1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉
〈i1〉:〈m2, c2〉, 〈m2, c2, i1〉
〈m1, c1〉:〈m1, c1, i1〉
〈m1, i1〉:〈m1, c1, i1〉
〈c1, i1〉:〈m1, c1, i1〉

Table 1. Sample run of C+〈X〉. The first row gives the received events; the second and the third
rows give the content of ∆ and U , respectively, after every event is processed. Monitor states are
represented symbolically in the table, e.g., σ(i, create coll) represents the state after a monitor
processes event create coll.

instantiates a finite number of parameters, which is always
the case in practice.

Figure 3 shows the algorithm C+〈X〉 for online monitor-
ing of parametric property ΛX.P , given that M is a monitor
for P . The algorithm shows which actions to perform, e.g.,
creating a new monitor state and/or updating the state of
related monitors, when an event is received. It is a slightly
different variant of algorithm C〈X〉 in [7]. C+〈X〉 is jus-
tified and motivated by experience with implementing and
evaluating C〈X〉, mainly by the following observation: one
often chooses to starting monitoring at the witness of a spe-
cific set of events (instead of monitoring from the beginning
of the program). For example, when we monitor the prop-
erty in Figure 1, we can choose to start monitoring on a pair
of m and c objects, (m1, c1), only when a create coll event
is received, ignoring all the update map〈m1〉 events before
the creation. We call such events that lead to creation of
new monitor states (monitor) creation events. Algorithm
C+〈X〉 extends C〈X〉 in [7] to support creation events. It
is easy to see that C〈X〉 can be regarded as a special case
of C+〈X〉, when all the events are creation events.

Two mappings are used in this algorithm: ∆ and U .
∆ stores the monitor states for parameter instances and U
maps a parameter instance θ to all the parameter instances
that have been defined and are properly more informative
than θ. In what follows, “the monitor state for θ” is used
to refer to ∆(θ) to facilitate reading in some contexts, and,
accordingly, “to create a parameter instance θ” and “to cre-
ate a monitor state for parameter instance θ”have the same
meaning: to define ∆(θ).

When parametric event e〈θ〉 is received, the algorithm
first checks whether θ has been encountered yet by checking
if its corresponding monitor state, i.e., ∆(θ), is defined(line
1 in main). If θ is encountered for the first time, new param-
eter instances may need to be created. In such a case, we
first try to locate the maximum parameter instance (θm)
which is less informative than θ and for which a monitor

state has been created (lines 2 to 6 in main). If such θm

is found, its monitor state is used to initialize the monitor
state for θ (lines 7 and 8 in main); otherwise, a new moni-
tor state is created for θ only if e is a creation event (lines
9 and 10 in main). Also, new parameter instances can be
created by combining θ with existing parameter instances
that are compatible with θ, i.e., they do not have conflicting
parameter bindings. An observation here is that if parame-
ter instance θcomp has been created and is compatible with
θ then θcomp can be found in U(θm) for some θm ! θ ac-
cording to the definition of U . Therefore, algorithm C+〈X〉
searches through all the θm ! θ to find all possible θcomp,
examining whether any new parameter instance should be
created (lines 12 to 17 in main).

If θ has been seen before, or otherwise after all the new
monitor states have been created/initialized as explained
above, algorithm C+〈X〉 invokes all the monitors that need
to process e, namely, those whose corresponding parameter
instances are more informative than or equal to θ (lines
20 to 22 in main). The updates also make use of the lists
stored in U . There are two auxiliary functions: defineNew

and defineTo. The former initializes a new monitor state
for the input parameter instance and the latter creates a
monitor state for the first input parameter instance using
the monitor state for the second instance. Both functions
then update the lists in table U to maintain its integrity.

It can be proved that C+〈X〉 correctly creates and up-
dates monitor states according to the received event. The
proof can be easily derived from the proof for algorithm
C〈X〉 in [7] and is omitted here. We next use an example
run, illustrated in Table 1, to show how C+〈X〉 works. In
Table 1, we show the contents of ∆ and U after every event
(given in the first row of the table) is processed. The ob-
served trace is update map〈m1〉 create coll〈m1, c1〉 create coll

〈m2, c2〉 create iter〈c1, i1〉. We assume that create coll is the
only creation event. For the time being we make abstrac-
tion of the particular property being monitored (e.g., the
one in Fig 1); hence, we assume that monitor states are

Event update map〈m1〉 create coll〈m1, c1〉 create coll〈m2, c2〉 create iter〈c1, i1〉

∆ ∅ 〈m1, c1〉:σ(i, create coll) 〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)

〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)
〈m1, c1, i1〉:σ(σ(i, create coll), create iter)

U ∅ ⊥ : 〈m1, c1〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉

⊥ : 〈m1, c1〉, 〈m2, c2〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉

⊥ : 〈m1, c1〉, 〈m2, c2〉, 〈m1, c1, i1〉
〈m1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈c1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉
〈i1〉:〈m2, c2〉, 〈m2, c2, i1〉
〈m1, c1〉:〈m1, c1, i1〉
〈m1, i1〉:〈m1, c1, i1〉
〈c1, i1〉:〈m1, c1, i1〉

Table 1. Sample run of C+〈X〉. The first row gives the received events; the second and the third
rows give the content of ∆ and U , respectively, after every event is processed. Monitor states are
represented symbolically in the table, e.g., σ(i, create coll) represents the state after a monitor
processes event create coll.

instantiates a finite number of parameters, which is always
the case in practice.

Figure 3 shows the algorithm C+〈X〉 for online monitor-
ing of parametric property ΛX.P , given that M is a monitor
for P . The algorithm shows which actions to perform, e.g.,
creating a new monitor state and/or updating the state of
related monitors, when an event is received. It is a slightly
different variant of algorithm C〈X〉 in [7]. C+〈X〉 is jus-
tified and motivated by experience with implementing and
evaluating C〈X〉, mainly by the following observation: one
often chooses to starting monitoring at the witness of a spe-
cific set of events (instead of monitoring from the beginning
of the program). For example, when we monitor the prop-
erty in Figure 1, we can choose to start monitoring on a pair
of m and c objects, (m1, c1), only when a create coll event
is received, ignoring all the update map〈m1〉 events before
the creation. We call such events that lead to creation of
new monitor states (monitor) creation events. Algorithm
C+〈X〉 extends C〈X〉 in [7] to support creation events. It
is easy to see that C〈X〉 can be regarded as a special case
of C+〈X〉, when all the events are creation events.

Two mappings are used in this algorithm: ∆ and U .
∆ stores the monitor states for parameter instances and U
maps a parameter instance θ to all the parameter instances
that have been defined and are properly more informative
than θ. In what follows, “the monitor state for θ” is used
to refer to ∆(θ) to facilitate reading in some contexts, and,
accordingly, “to create a parameter instance θ” and “to cre-
ate a monitor state for parameter instance θ”have the same
meaning: to define ∆(θ).

When parametric event e〈θ〉 is received, the algorithm
first checks whether θ has been encountered yet by checking
if its corresponding monitor state, i.e., ∆(θ), is defined(line
1 in main). If θ is encountered for the first time, new param-
eter instances may need to be created. In such a case, we
first try to locate the maximum parameter instance (θm)
which is less informative than θ and for which a monitor

state has been created (lines 2 to 6 in main). If such θm

is found, its monitor state is used to initialize the monitor
state for θ (lines 7 and 8 in main); otherwise, a new moni-
tor state is created for θ only if e is a creation event (lines
9 and 10 in main). Also, new parameter instances can be
created by combining θ with existing parameter instances
that are compatible with θ, i.e., they do not have conflicting
parameter bindings. An observation here is that if parame-
ter instance θcomp has been created and is compatible with
θ then θcomp can be found in U(θm) for some θm ! θ ac-
cording to the definition of U . Therefore, algorithm C+〈X〉
searches through all the θm ! θ to find all possible θcomp,
examining whether any new parameter instance should be
created (lines 12 to 17 in main).

If θ has been seen before, or otherwise after all the new
monitor states have been created/initialized as explained
above, algorithm C+〈X〉 invokes all the monitors that need
to process e, namely, those whose corresponding parameter
instances are more informative than or equal to θ (lines
20 to 22 in main). The updates also make use of the lists
stored in U . There are two auxiliary functions: defineNew

and defineTo. The former initializes a new monitor state
for the input parameter instance and the latter creates a
monitor state for the first input parameter instance using
the monitor state for the second instance. Both functions
then update the lists in table U to maintain its integrity.

It can be proved that C+〈X〉 correctly creates and up-
dates monitor states according to the received event. The
proof can be easily derived from the proof for algorithm
C〈X〉 in [7] and is omitted here. We next use an example
run, illustrated in Table 1, to show how C+〈X〉 works. In
Table 1, we show the contents of ∆ and U after every event
(given in the first row of the table) is processed. The ob-
served trace is update map〈m1〉 create coll〈m1, c1〉 create coll

〈m2, c2〉 create iter〈c1, i1〉. We assume that create coll is the
only creation event. For the time being we make abstrac-
tion of the particular property being monitored (e.g., the
one in Fig 1); hence, we assume that monitor states are

Event update map〈m1〉 create coll〈m1, c1〉 create coll〈m2, c2〉 create iter〈c1, i1〉

∆ ∅ 〈m1, c1〉:σ(i, create coll) 〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)

〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)
〈m1, c1, i1〉:σ(σ(i, create coll), create iter)

U ∅ ⊥ : 〈m1, c1〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉

⊥ : 〈m1, c1〉, 〈m2, c2〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉

⊥ : 〈m1, c1〉, 〈m2, c2〉, 〈m1, c1, i1〉
〈m1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈c1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉
〈i1〉:〈m2, c2〉, 〈m2, c2, i1〉
〈m1, c1〉:〈m1, c1, i1〉
〈m1, i1〉:〈m1, c1, i1〉
〈c1, i1〉:〈m1, c1, i1〉

Table 1. Sample run of C+〈X〉. The first row gives the received events; the second and the third
rows give the content of ∆ and U , respectively, after every event is processed. Monitor states are
represented symbolically in the table, e.g., σ(i, create coll) represents the state after a monitor
processes event create coll.

instantiates a finite number of parameters, which is always
the case in practice.

Figure 3 shows the algorithm C+〈X〉 for online monitor-
ing of parametric property ΛX.P , given that M is a monitor
for P . The algorithm shows which actions to perform, e.g.,
creating a new monitor state and/or updating the state of
related monitors, when an event is received. It is a slightly
different variant of algorithm C〈X〉 in [7]. C+〈X〉 is jus-
tified and motivated by experience with implementing and
evaluating C〈X〉, mainly by the following observation: one
often chooses to starting monitoring at the witness of a spe-
cific set of events (instead of monitoring from the beginning
of the program). For example, when we monitor the prop-
erty in Figure 1, we can choose to start monitoring on a pair
of m and c objects, (m1, c1), only when a create coll event
is received, ignoring all the update map〈m1〉 events before
the creation. We call such events that lead to creation of
new monitor states (monitor) creation events. Algorithm
C+〈X〉 extends C〈X〉 in [7] to support creation events. It
is easy to see that C〈X〉 can be regarded as a special case
of C+〈X〉, when all the events are creation events.

Two mappings are used in this algorithm: ∆ and U .
∆ stores the monitor states for parameter instances and U
maps a parameter instance θ to all the parameter instances
that have been defined and are properly more informative
than θ. In what follows, “the monitor state for θ” is used
to refer to ∆(θ) to facilitate reading in some contexts, and,
accordingly, “to create a parameter instance θ” and “to cre-
ate a monitor state for parameter instance θ”have the same
meaning: to define ∆(θ).

When parametric event e〈θ〉 is received, the algorithm
first checks whether θ has been encountered yet by checking
if its corresponding monitor state, i.e., ∆(θ), is defined(line
1 in main). If θ is encountered for the first time, new param-
eter instances may need to be created. In such a case, we
first try to locate the maximum parameter instance (θm)
which is less informative than θ and for which a monitor

state has been created (lines 2 to 6 in main). If such θm

is found, its monitor state is used to initialize the monitor
state for θ (lines 7 and 8 in main); otherwise, a new moni-
tor state is created for θ only if e is a creation event (lines
9 and 10 in main). Also, new parameter instances can be
created by combining θ with existing parameter instances
that are compatible with θ, i.e., they do not have conflicting
parameter bindings. An observation here is that if parame-
ter instance θcomp has been created and is compatible with
θ then θcomp can be found in U(θm) for some θm ! θ ac-
cording to the definition of U . Therefore, algorithm C+〈X〉
searches through all the θm ! θ to find all possible θcomp,
examining whether any new parameter instance should be
created (lines 12 to 17 in main).

If θ has been seen before, or otherwise after all the new
monitor states have been created/initialized as explained
above, algorithm C+〈X〉 invokes all the monitors that need
to process e, namely, those whose corresponding parameter
instances are more informative than or equal to θ (lines
20 to 22 in main). The updates also make use of the lists
stored in U . There are two auxiliary functions: defineNew

and defineTo. The former initializes a new monitor state
for the input parameter instance and the latter creates a
monitor state for the first input parameter instance using
the monitor state for the second instance. Both functions
then update the lists in table U to maintain its integrity.

It can be proved that C+〈X〉 correctly creates and up-
dates monitor states according to the received event. The
proof can be easily derived from the proof for algorithm
C〈X〉 in [7] and is omitted here. We next use an example
run, illustrated in Table 1, to show how C+〈X〉 works. In
Table 1, we show the contents of ∆ and U after every event
(given in the first row of the table) is processed. The ob-
served trace is update map〈m1〉 create coll〈m1, c1〉 create coll

〈m2, c2〉 create iter〈c1, i1〉. We assume that create coll is the
only creation event. For the time being we make abstrac-
tion of the particular property being monitored (e.g., the
one in Fig 1); hence, we assume that monitor states are

Figure 3.1: Monitors for the trace in Table 3.1

30

PhD Thesis, University of Illinois, August 2012

Algorithm Monitor(M = (S,E ,C, ı, σ, γ))
function main(τ)
1 ∆← �; ∆(�) ← ı; Θ← {�}
2 foreach e⟨θ⟩ in order in τ do
3 ∶ foreach θ′ ∈ {θ} ⊔Θ do
4 ∶ ∶ ∆(θ′) ← σ(∆(max{θ′′ ∈ Θ ∣ θ′′ ⊑ θ′}), e)
5 ∶ ∶ Γ(θ′) ← γ(∆(θ′))
6 ∶ endfor
7 ∶ Θ← {�, θ} ⊔Θ
8 endfor

Figure 3.2: Generic Parametric Monitoring algorithm

event in Table 3.1, modifyMap⟨m1⟩, will be dispatched to monitors for ⟨m1, c1⟩,
⟨m1, c2⟩, ⟨m1, c1, i1⟩, ⟨m1, c1, i2⟩, and ⟨m1, c2, i3⟩. New monitor instances will be

created if the event contains new parameter instances. For example, when the

third event in Table 3.1, getiter⟨c1, i1⟩, is received, a new monitor will be created

for ⟨m1, c1, i1⟩ by combining ⟨m1, c1⟩ in the first event with ⟨c1, i1⟩.
An algorithm to build parameter instances from observed events, like the

one introduced in [33], often creates many useless monitor instances leading

to prohibitive runtime overheads. For example, Table 3.2 does not need to

contain the binding ⟨m1, c3, i4⟩ even though it can be created by combining

the parameter instances of modifyMap⟨m1⟩ (the seventh event) and getiter⟨c3, i4⟩
(the tenth event). It is safe to ignore this binding here because m1 is not the

underlying map for c3, i4. It is critical to minimize the number of monitor

instances created during monitoring. The advantage is twofold: (1) it reduces

the needed memory space, and (2), more importantly, monitoring efficiency

is improved because fewer monitors are triggered for each received event. In

Chapter 4, the enable set optimization is discussed for reducing the number of

monitor instances.

3.1.2 Generic Parametric Monitoring Algorithm

Figure 3.2 shows the basic abstract monitoring algorithm for parametric prop-

erties from [33]. Given parametric property ΛX.P and M a monitor for P ,

Monitor(M) yields a monitor that is equivalent to ΛX.M , that is, a monitor for

ΛX.P . The functions [[X⇁V] → S] and [[X⇁V] → C] of ΛX.M are encoded

by Monitor(M) as tables ∆ and Γ with entries indexed by parameter instances

in [X⇁V] and with contents states in S and verdict categories in C, respectively.

Such tables will have finite entries because each event e binds only a finite

number of parameters defined by D(e).

1. Begin with a monitor instance for the empty parameter instance � initialized

to the start state of the monitor, ı.

2. As each event, e⟨θ⟩, arrives there are two possibilities:

31

PhD Thesis, University of Illinois, August 2012

• There is already a monitor instance for θ. In this case the instance is

simply updated with e.

• There is not already a monitor instance for θ. In this case an instance

is created for θ. It is initialized to the state of the most informative

θ′ less informative than θ. Such a θ is guaranteed to exist because

we begin with a monitor instance for �, which is less informative

than all other possible θ’s. We also create monitor instances for

every parameter instance that may be created by combining θ with

previously seen parameter instances. Each of these created instances

is initialized similarly to the instance for θ, using the most informative

instance less than itself. All created monitor instances are updated

with e after initialization.

3. e is then used to update the monitor instances for all θ′ that are strictly

more informative than θ.

The monitoring algorithm first clears ∆, which contains the monitor state

for each parameter instance, then assigns ı, the initial state, to ∆(�). Θ,

which contains all known parameter instances, is initialized to contain only

the empty partial function �. For each event e⟨θ⟩ that arrives during program

execution (line 2), Monitor(M) generates every compatible parameter instance

by combining θ with all the previously known compatible parameter instances

(line 3). It then updates the state of every one of these compatible parameter

instances (θ′) with the state, transitioned by event e, of the “monitor instance”

corresponding to the “largest” parameter instance less than or equal to θ′ (line 4).

At the same time we also calculate the verdict category corresponding to that

monitor instance and store it in table Γ (line 5). Rather than storing a whole

slice as in Definition 6 in Chapter 2, the knowledge of the slice is encoded in the

state of the monitor instance for θ′. After the algorithm completes, Γ contains

the verdict category for each possible trace slice. An actual implementation is

free to report a verdict category of interest (e.g., match or fail) as soon as it is

discovered.

3.2 Past-Time Linear Temporal Logic with

Calls and Returns

Past time linear temporal logic with calls and returns (PTCaRet) [69] is a

specialization of CaRet [10], an extension of LTL with calls and returns, for

safety properties and their monitoring. Essentially, PTCaRet is PTLTL extended

by adding abstract variants of temporal operators. Matching call/return events in

traces allows one to express program trace properties not expressible using plain

LTL. One can express properties related to the contents of the program execution

stack, such as “function g is always called from within function f”, or one can

32

PhD Thesis, University of Illinois, August 2012

⟨PTCaRet Name⟩ ∶∶= “ptcaret”
⟨PTCaRet Syntax⟩ ∶∶= “true” ∣ “false” ∣ ⟨Event Name⟩

∣ ⟨Unary Operator⟩ ⟨PTCaRet Syntax⟩
∣ ⟨PTCaRet Syntax⟩ ⟨Binary Operator⟩

⟨PTCaRet Syntax⟩
⟨Unary Operator⟩ ∶∶= “not” ∣ “[∗]” ∣ “<∗>” ∣ “(∗)”

∣ “[∗a]” ∣ “<∗a>” ∣ “(∗a)”
∣ “@b” ∣ “@c”
∣ “[∗s@b]” ∣ “[∗s@c]” ∣ “[∗s@bc]”
∣ “<∗s@b>” ∣ “<∗s@c>” ∣ “<∗s@bc>”

⟨Binary Operator⟩ ∶∶= “and” ∣ “or” ∣ “implies” ∣ “S” ∣ “Sa”
∣ “Ss@b” ∣ “Ss@c” ∣ “Ss@bc”

⟨PTCaRet State⟩ ∶∶= “validation” ∣ “violation”

Figure 3.3: PTCaRet syntax

express properties that are allowed to be temporarily validated/violated, such as

“a user u may never directly access a password file (but may access it through

system procedures)” [69]. Motivated by practical reasons, PTCaRet distinguishes

call and return points from begin and end points: the former take place in the

method caller’s context and the latter take place in the callee’s context. This

distinction allows more flexible and elegant expressions of properties.

3.2.1 Syntax

Figure 3.3 shows the syntax for our PTCaRet plugin. PTCaRet includes all

operators from PTLTL: the standard boolean operators and the temporal opera-

tors. PTCaRet also has abstract temporal operators. The semantics of abstract

operators is defined exactly as the semantics of their concrete counterpart opera-

tors, but they operate on the abstract version of the trace from which all the

intermediate events of terminated method or function executions deeper in the

call stack are erased [69]. In other words, abstract operators refer only to the

trace of the current call stack level. In the syntax of the abstract temporal opera-

tors, “∗” and “S” are followed by “a”, meaning that the operator is an abstract

variant of the concrete counterpart operator. The operators “[∗a]”, “<∗a>”,

“(∗a)”, and “Sa” stand for “abstract always in the past”, “abstract eventually in

the past”, “abstract previously in the past”, and “abstract since”, respectively.

PTCaRet also includes several derived operators which are convenient in

practice, both for temporal and for stack operators. The operators “@b” and

“@c”, read “at begin” and “at call” respectively, are derived temporal operators

meaning that the formula they take as an argument must hold “at the Beginning

of the execution of the current function” and “at the context when the current

function was Called”, respectively. The semantics of the derived stack operators

are defined exactly as the semantics of their abstract counterpart operators, but

they operate only on the begin/call points on the abstract version of the trace.

For example, derived stack operators defined on “begin” operate on a trace where

33

PhD Thesis, University of Illinois, August 2012

enter phase 2 implies (

not (not enter phase 1 Sa begin)

and (not acquire Sa enter phase 1

or not(not release Sa acquire))

and @c (has phase 2 pass)

and <∗s@b>(safe exec))

Figure 3.4: PTCaRet example

we have filtered out all events except events in “begin” contexts from the abstract

trace. Similar to the abstract temporal operators, in the syntax of the derived

stack operators, “*” and “S” are followed by “s”, meaning that the operator

is a derived stack variant of the concrete counterpart operator. In addition

to this keyword, either of “@b”, “@c”, or “@bc” follows right after “s”, to

indicate that the derived stack operator is defined on “begins”, “calls”, or “both

begins and calls”, respectively. In particular, the operators “[∗s@b]”, “<∗s@b>”,

and “Ss@b” are the derived stack operators on the beginnings of method calls,

meaning “always on begin contexts on abstract traces”, “eventually on begin

contexts on abstract traces”, and “since on begin contexts on abstract traces”,

respectively. The derived stack operators for “calls” and “begins” are defined

similarly.

3.2.2 Example

Figure 3.4 shows an example PTCaRet property from [69], which states that

a program carrying out a critical multi-phase task should satisfy the following

safety properties when execution enters the second phase:

• Execution entered the first phase in the same procedure;

• Resources acquired within the same procedure since the first phase must

be released;

• The caller of the current procedure must have had approval for the second

phase;

• Task is executed directly or indirectly by the procedure safe exec.

Since the operators “Sa”, “@c”, and “<∗s@b>” are abstract temporal operators,

the example abstracts out events that happened in the procedure calls from

within the current procedure.

3.2.3 Monitoring Algorithm

The monitor synthesis algorithm presented in [69], generalizes the synthesis

algorithm from plain PTLTL formulae, found in [65]. To summarize it, the

PTLTL synthesis algorithm uses a bitvector to keep the state of each temporal

34

PhD Thesis, University of Illinois, August 2012

if begin then {
push(beta)

exit

}
if end then {
pop(beta)

exit

}
beta[0] ← beta[0] or begin and safe exec

beta[1] ← enter phase 1 or not acquire

and beta[1]

beta[2] ← acquire or not release and beta[2]

beta[3] ← begin or beta[3] and

(not alpha[3] or alpha[2])

beta[4] ← begin or not enter phase 1 and beta[4]

output(not enter phase 2 or not beta[4]

and beta[0]

and (begin or beta[3])

and (not begin or alpha[0])

and (not beta[2] or beta[1])))

alpha[3] ← begin

alpha[2] ← alpha[1]

alpha[1] ← has phase 2 pass

alpha[0] ← has phase 2 pass

Figure 3.5: PTCaRet example output

operator in the formula. A series of sequential assignments updates the bitvector

as each event arrives. If one of the operands to a temporal formula is itself a

temporal formula, it will appear as a bitvector index in the assignment. It is,

then, essential to generate the assignments in the proper order (depth-first).

The difference in generating monitors from PTCaRet formulae is that two

bitvectors are kept for PTCaRet monitors, alpha[] and beta[]. The former plays

the same role as the bitvector b from PTLTL. The other bitvector, beta[],

stores the validity status of the subformulae corresponding to abstract temporal

operators. When a new function or method is called, a copy of the abstract

bitvector is pushed onto the top of a stack. When the function or method

ends, the bitvector is popped from the stack, effectively erasing all updates that

happened during the called function or method.

Figure 3.5 shows the output for Figure 3.4. PTCaRet uses the sequential

assignments as explained above. In this example, we use the bitvector names

and roles from previously, alpha[] and beta[]. Note that all elements in alpha[]

and beta[] are initialized to false. When a new function or method is called, a

copy of beta[] is pushed onto the top of a stack and when the function or method

returns, the bitvector is popped from the stack, replacing beta[], while alpha[]

stays as it is. Updating bitvectors before output is related to “since” operators,

processing inner “since” operators before the outer ones. Updating bitvectors

35

PhD Thesis, University of Illinois, August 2012

after output is related to “previously” operators, processing outer “previously”

operators before the inner ones. Thus, bitvector updates before output are in

order and bitvector updates after output are in reverse order. More detailed

monitor synthesis algorithm can be found in [69].

3.2.4 Optimization

Although the monitor synthesis algorithm is already presented in [69], it is not

easy to efficiently monitor properties in PTCaRet because, at each method

return, we need to update states of all monitors. This is so that they forget

about all the intermediate events of terminated method. A naive approach that

keeps a stack of states and updates the stack at each method call/return will

easily cause a huge overhead simply because there can be a huge number of

method calls/returns. Static analysis to remove unnecessary stack maintenance

at calls/returns of methods (that do not contain any event) can greatly improve

monitoring PTCaRet in many cases. However, it is still important to improve

the performance without help of static analysis because static analysis might

not be available for some monitored programs, or more importantly, we cannot

expect much improvement from static analysis when many methods are involved

in the events. Also, our optimization technique is orthogonal to static analysis,

so both of them can be used together for even more improvements.

Monitoring a PTCaRet formula involves pushing and popping of the bitvector

beta[] at each method call and return. We observe that not all push and pop

operations are necessary in monitoring it. For example, if a method is called

and returned and there was no event during the method execution, then beta[]

will be pushed into the stack and popped without any change; we can ignore

this method, doing no operation on the stack.

Our static analysis can remove those unnecessary method begin and end

events. If a method does not contain any point that can generate an event,

begin and end of the method will be just ignored. If a method contains such a

point, then we do stack operations on begin and end of the method although

the method might not generate any event after all since an event point is not

guaranteed to be reached. However, this static analysis requires one more step

in generating the monitoring code for the given specification. Also, the resulting

monitoring code is program specific so that it cannot be re-used for monitoring

other programs.

We also implement a dynamic optimization which does not require any static

analysis. The main idea is to maintain the stack of states as lazy as possible so

that unnecessary maintenance can be offset by accumulated calls and returns.

At each call and return, instead of updating stacks of all monitors, we maintain

one global vector to represent how many times the executed program visits each

depth of the call stack. By comparing the global vector with each monitor’s own

vector, we can maintain the stack of states for each monitor upon every event.

36

PhD Thesis, University of Illinois, August 2012

Global Monitor
Event Call Depth Version Vector Version Vector
begin 1 (1)

begin 2 (1, 1)
end 2 (1, 1)
begin 2 (1, 2)

enter phase 1 3 (1, 2)
end 2 (1, 2) (1, 2)
begin 2 (1, 3) (1, 2)

begin 3 (1, 3, 1) (1, 2)
end 3 (1, 3, 1) (1, 2)
begin 3 (1, 3, 2) (1, 2)
end 3 (1, 3, 2) (1, 2)
begin 3 (1, 3, 3) (1, 2)

acquire 4 (1, 3, 3) (1, 2)
release 4 (1, 3, 3) (1, 3, 3)

end 3 (1, 3, 3) (1, 3, 3)
end 2 (1, 3, 3) (1, 3, 3)

end 1 (1, 3, 3) (1, 3, 3)

Table 3.3: An example trace of the PTCaRet property in Figure 3.4

For example, Table 3.3 shows an example trace of the PTCaRet property in

Figure 3.4, with the changes in call depth and version vector. When the first

event except begin and end events, enter phase 1 comes, we compare the version

vectors. Since two levels are new, we push twice. Then, at the event acquire,

again we compare the version vectors. There is one common prefix, one different

verion, and one new version. Therefore, we pop once to reach the depth of the

common prefix, and push twice to reach the current depth. At the event release,

there is nothing to push or pop. In total, we have five push or pop operations,

while there are 14 push or pop operations without optimizations. In a real

monitoring, there are likely to be more method calls without actual events; this

optimization works more effectively.

This algorithm improves the performance of monitoring PTCaRet immensely

because we can cancel out method calls and returns if there is no event between

them, and we do not have to maintain stacks for monitors that are not used

afterwards. Note that this optimization is orthogonal to static analysis, imply-

ing that it is possible to have further improvements by using static analysis

based on this optimization algorithm.

3.3 Specification Inheritance

There are many specifications which share the same events, especially when

expressing multiple properties on the same object in Java. Thus, it is natural to

reuse specifications. Specification inheritance allows one to write a specification

based on existing ones by adding/overriding/disabling events, properties, and

37

PhD Thesis, University of Illinois, August 2012

1 Improved_Map_UnsafeIterator(Map m, Collection c, Iterator i) includes Map_UnsafeIterator {

2 event useiter before(Iterator i) :

3 (

4 call(* Iterator.hasNext(..)) ||

5 call(* Iterator.next(..))

6 call(* Iterator.remove(..))

7) && target(i) {

8 System.err.println("iterator has been used.");

9 }

10

11 ere Map_UnsafeIterator.prop : getset+ (modifyMap | modifyCol)* getiter useiter* (modifyMap |

modifyCol)+ useiter

12

13 @Map_UnsafeIterator.prop@match {

14 System.err.println("The map was modified while an iteration over the set is in progress at:

" + __LOC);

15 }

16 }

Figure 3.6: Improved Map UnsafeIterator specification inheriting
Map UnsafeIterator in Chapter 2

handlers to them. In addition to specification inheritance, we support a way to

capture an event or a handler in other specification. This allows meta monitoring

that observes other monitoring and takes actions based on that. Our work on

specification inheritance not only makes reuse of specification possible, but also

allows one to describe more complex behaviors related to other specifications

that we monitor at the same time.

Currently, JavaMOP supports primitive level of specification inheritance, that

is, a sub-specification should contain all parameters from the parent specifications

and there is no access control that Java has in its class inheritance. Due to

the similarity between Java, AspectJ and the JavaMOP Framework, many

features and concepts can be adopted into JavaMOP for more benefits. We leave

this as a future work.

3.3.1 Example

Figure 3.6 shows an example of inherited specification for explaining how the

specification inheritance can be used and demonstrating the syntax. This

specification inherits Map UnsafeIterator to improve and change the behavior of

the original specification. In the original specification, the useiter event does not

capture remove() method calls as iterator usages, thus the improved specification

overrides the useiter to capture this method call as well. Also, it prints out

a logging message for each useiter event, while the original specification does

nothing. The property is also modified so that it allows multiple getset events at

the beginning. When the property matches, it additionally prints out the source

code location of the last event. In this way, modified specifications can be easily

achieved without changing the original specifications.

38

PhD Thesis, University of Illinois, August 2012

3.3.2 Syntax

Figure 3.7 shows the syntax for the prototype of specification inheritance in

JavaMOP. Note that modified or new constructs are highlighted. A specification

can include parent specifications if they have the same parameters. It means

that all the events, the properties and the handlers in the parent specifications

are included into the current specification. Then, new syntax allows a user to

modify them. The following syntax constructs are modified or added:

• ⟨Parents⟩ — ⟨Parents⟩ describes a list of specification names that this

specification includes. The included specifications must have the same

parameter type pattern with the current specification.

• ⟨Event Modifier⟩ — ⟨Event Modifier⟩ changes the behavior of the event.

Only creation events can create monitors, starting monitoring, and abstract

events are only for expanding it further in child specifications.

• ⟨Property Handler⟩ — ⟨Property Handler⟩ now can indicate the specifica-

tion and property names so that it can modify an existing one.

• ⟨JavaMOP Pointcut⟩ — Two new pointcuts are added to this construct.

handler pointcut catches an execution of the specified handler of the

specified specification and property. If specification and property names

are not given, it indicates the current specification and its only property

by default. When there are multiple properties in the current specification,

then the property name must be given.

39

PhD Thesis, University of Illinois, August 2012

⟨JavaMOP Specification⟩ ∶∶= {⟨JavaMOP Modifier⟩} ⟨Id⟩ ⟨JavaMOP Parameters⟩
[⟨Parents⟩]
“{”

{⟨JavaMOP Declaration⟩}
{⟨Event⟩}
{⟨Property⟩

{⟨Property Handler⟩}
}

“}”
⟨Parents⟩ ∶∶= “includes” ⟨Id⟩ [⟨JavaMOP ParamList⟩]

{“,” ⟨Id⟩ [⟨JavaMOP ParamList⟩]}
⟨Event⟩ ∶∶= {⟨Event Modifier⟩} “event” ⟨Event Id⟩

⟨JavaMOP Event Def⟩“{”
⟨JavaMOP Action⟩

“}”
⟨Event Modifier⟩ ∶∶= “creation” ∣ “abstract”

⟨Property⟩ ∶∶= ⟨Logic Name⟩ [⟨Super Id⟩]“ ∶ ” ⟨Logic Syntax⟩
⟨Property Handler⟩ ∶∶= [“@” ⟨Super Id⟩]“@” ⟨Logic State⟩

⟨JavaMOP Handler⟩
⟨Super Id⟩ ∶∶= [⟨Spec Id⟩“.”] ⟨Property Id⟩
⟨Spec Id⟩ ∶∶= ⟨Id⟩

⟨Property Id⟩ ∶∶= ⟨Id⟩
⟨Event Id⟩ ∶∶= ⟨Id⟩

⟨JavaMOP Modifier⟩ ∶∶= “full−binding” ∣ “maximal−binding”
∣ “any−binding” ∣ “connected” ∣ “unsynchronized”
∣ “decentralized” ∣ “perthread” ∣ “suffix”

⟨JavaMOP Parameters⟩ ∶∶= “(”[⟨JavaMOP Type⟩ ⟨Id⟩
{“,” ⟨JavaMOP Type⟩ ⟨Id⟩}]“)”

⟨JavaMOP Declaration⟩ ∶∶= syntax of declarations in Java
⟨JavaMOP ParamList⟩ ∶∶= “(”[⟨Id⟩ {“,” ⟨Id⟩}]“)”

⟨JavaMOP Event Def⟩ ∶∶= ⟨AspectJ AdviceSpec⟩“ ∶ ”
⟨AspectJ Pointcut⟩ [“&&” ⟨JavaMOP Pointcut⟩]

⟨JavaMOP Action⟩ ∶= Java statements, which may refer to monitor
local variables

⟨JavaMOP Handler⟩ ∶= Java statements with additional keywords

⟨JavaMOP Type⟩ ∶= Any valid Java type
⟨AspectJ AdviceSpec⟩ ∶∶= syntax of AdviceSpec in AspectJ

⟨AspectJ Pointcut⟩ ∶∶= syntax of Pointcut in AspectJ
⟨JavaMOP Pointcut⟩ ∶∶= “thread”“(” ⟨Id⟩“)”

∣ “condition”“(” ⟨Boolean Exp⟩“)”
∣ “endProgram”“(”“)”
∣ “endObject”“(” ⟨Id⟩“)”
∣ “endThread”“(”“)”
∣ “handler”“(”[⟨Super Id⟩]“@” ⟨Logic State⟩“)”
∣ “event”“(”[⟨Spec Id⟩“.”] ⟨Event Id⟩“)”
∣ ⟨AspectJ Pointcut⟩
∣ ⟨JavaMOP Pointcut⟩“&&” ⟨JavaMOP Pointcut⟩

⟨Boolean Exp⟩ ∶∶= ⟨Id⟩ ∣ “!” ⟨Boolean Exp⟩
∣ ⟨Boolean Exp⟩ ⟨Boolean Operator⟩ ⟨Boolean Exp⟩
∣ “(” ⟨Boolean Exp⟩“)”

⟨Boolean Operator⟩ ∶∶= “ ∣∣ ” ∣ “&&” ∣ “ ∣ ” ∣ “&” ∣ “ == ” ∣ “! = ”

Figure 3.7: Specification inheritance syntax (newly introduced syntax is high-
lighted)

40

PhD Thesis, University of Illinois, August 2012

Chapter 4

Efficient
Parametric Monitoring

Our work on efficiency of monitoring has resulted in a runtime monitoring frame-

work that is the most efficient in terms of runtime overhead and competitive

with respect to memory usage. Section 4.1 discusses the enable set optimization

for formalism-independent parametric monitoring without any limitation. Sec-

tion 4.2 introduces indexing cache to reduce the number of expensive operations

that need to be performed on the indexing tree. Section 4.3 presents the monitor

garbage collection that efficiently collects monitors which become unnecessary

during monitoring. Finally, Section 4.4 evaluate how those techniques improve

performance of parametric monitoring in terms of runtime and memory.

Our efficient parametric monitoring techniques presented in this chapter are

orthogonal to other optimization techniques. More precisely, our techniques are

aimed at improving the base performance of parametric monitoring by means

of keeping the number of monitor instances low without relying on (expensive)

knowledge about the source program. Other optimizations can be applied on

top of our techniques and thus start from this base performance and improve

it. For example, staged indexing (or decentralized indexing), which has been

proposed and implemented in [19, 32, 16], piggy-backs indexing trees onto

parameter instances. Also, significant runtime overhead reductions have been

achieved using program static analysis [62, 29, 28, 41], by removing unnecessary

instrumentation. JavaMOP supports both staged indexing and program static

analysis via the Clara approach [29]. Nevertheless, we deliberately disabled these

orthogonal optimizations in our evaluation, to properly measure the effectiveness

of the proposed techniques. Enabling these orthogonal optimizations would only

hide the inefficiency of base monitoring.

4.1 Efficient Formalism-Independent

Monitoring of Parametric Properties

The generic parametric monitoring, found in Chapter 3, can monitor parametric

properties without any limitation on parameters. However, there is a challenge

in this approach that a huge number of monitor instances can be created during

monitoring. For example, if the property is about Collection and Iterator in

Java, there are as many parameter instances as the number of combinations

41

PhD Thesis, University of Illinois, August 2012

of Collection and Iterator. It is not uncommon to see hundreds and thou-

sands of iterators being used during one execution of a program, which would

lead to hundreds and thousands of parameter instances in a specification about

those iterators. However, not all combinations of them need to be monitored.

Each Iterator has its own underlying Collection, therefore only related com-

binations should be monitored. To minimize the created monitor instances

by using this observation, we use static knowledge about the desired property.

By ignoring parameter instances that can never reach the target states, we

can reduce the number of monitor instances to create, reducing runtime and

memory overhead greatly.

It is worth mentioning that one may reduce the number of needed monitors

using static program analysis, e.g., the one introduced in [28]. However, such

techniques are based on the program targeted for monitoring, leading to two

drawbacks: (1) it is a more complex and thus slower analysis and (2) the analysis

must be run for every target program, making the approach non-modular. For

example, if the property to monitor is related to some library, one will have to

run the analysis for every program using the library, which can be expensive,

and often infeasible. The analysis needed by our approach, on the other hand,

is usually much quicker1, because properties tend to be much smaller than the

programs they are designed to monitor. Moreover, our optimization technique

requires no additional analysis when used in a situation, like for a library,

where a property is checked for different programs, because the enable set is

derived only from the property.

In Section 4.1.1, enable sets are formally defined with intuitive explanations

and examples. In Section 4.1.2, the algorithms to compute enable sets for

finite-state machine (FSM) and context free grammars (CFG) are given. Then,

Section 4.1.3 presents the parametric monitoring algorithm with enable sets and

Section 4.1.4 discusses other possible optimizations.

4.1.1 Enable Sets

An enable set is constructed for each event, say e, defined for a particular

property. The enable set associated with e is a set of sets of parameters. Each

of these sets of parameters denotes parameters that must have been seen before

the arrival of event e, for e to be acceptable by a monitor instance. Consider

the event modifyMap from the Map UnsafeIterator specification in Chapter 2

and the example parametric trace in Table 3.1 in Chapter 3, it may occur

anywhere in a matching trace, except for as the first event. Because the first

event must be getset in a matching trace, and because getset instantiates both m

and c, one of the sets in the enable set for modifyMap must be {m,c}. However,

modifyMap may (in fact, must, to match the pattern) occur after the getiter event.

1The analysis is bounded above by the number of acyclic paths from the start state/symbol
through a finite state machine/context free grammar, because convergence is achieved through
one cycle. Finite state machines and context free grammars for properties tend to be small.

42

PhD Thesis, University of Illinois, August 2012

Because getiter may not occur before getset, we also have the set {m,c, i} in the

enable set for modifyMap. The final result for the enable set for modifyMap is

thus: {{m,c},{m,c, i}}. Therefore, when modifyMap⟨m1⟩ arrives (seventh event

in Table 3.1), the instance monitors for ⟨m1, c1⟩ and ⟨m1, c2⟩ must be updated

because they bind {m,c}, and the instance monitors for ⟨m1, c1, i1⟩, ⟨m1, c1, i2⟩,
and ⟨m1, c2, i3⟩ must be updated because they bind {m,c, i}, and have the same

value for m (m1). In this example all of the instances to update have already

been created by the time the event arrives, while no new instances can be created

because at least m and c must be bound before modifyMap can occur.

When monitoring a program against a specific property, usually only a certain

subset of property categories, (C in Definition 2), is checked. For example, in the

Map UnsafeIterator specification in Chapter 2, the regular expression specifies a

defective interaction among related Map, Collection and Iterator objects. To

find an error in the program using monitoring is thus to detect matches of the

specified pattern during the execution. In other words, we are only interested

in the validation category of the specified pattern. Obviously, to match the

pattern, for a parameter instance of parameter set {m,c, i}, getset and getiter

should be observed before useiter is encountered for the first time in monitoring.

Otherwise, the trace slice for {m,c, i} will never match the pattern. Based on

this information, we next show that creating the monitor state for ⟨m1, c2, i1⟩ in

Table 3.2 in Chapter 3 is not needed. When event useiter⟨i1⟩ is encountered, if

the monitor state for a parameter instance ⟨m1, c2⟩ exists without the monitor

state for ⟨m1, c2, i1⟩, it can be inferred that in the trace slice for ⟨m1, c2, i1⟩, only

events getset and/or modifyMap occur before useiter because, otherwise, if getiter

also occurred before useiter, the monitor state for ⟨m1, c2, i1⟩ should have been

created. Therefore, we can infer, when event useiter⟨i1⟩ is observed and before

the execution continues, that no match of the specified pattern can be reached

by the trace slice for ⟨m1, c2, i1⟩, that is to say, the monitor for ⟨m1, c2, i1⟩ will

never reach the match state.

This observation shows that the knowledge about the specified property can

be applied to avoid unnecessary creation of monitor states. We next formalize

the information needed for the optimization and argue that it is not specific

to the underlying specification formalism. How this information is used is

discussed in Section 4.1.3.

Definition 10. Given τ ∈ E∗ and e, e′ ∈ τ , we denote that e′ occurs before an

occurrence of e in τ as e′ ;τ e. Let the trace enable set of e ∈ E be the

function enableτ ∶ E → Pf(E), defined as: enableτ(e) = {e′ ∣ e′;τ e}.

Note that if e /∈ τ then enableτ(e) = ∅. The trace enable set can be used to

examine whether the execution under observation may generate a particular

trace of interest, or not: if event e is encountered during monitoring but some

event e′ ∈ enableτ(e) has not been observed, then the (incomplete) execution

being monitored will not produce the trace τ when it finishes. This observation

43

PhD Thesis, University of Illinois, August 2012

Event enableEG enableXG

getset {∅} {∅}

getiter

{{getset},
{getset, modifyMap},
{getset, modifyCol},
{getset, modifyMap, modifyCol}}

{{m,c}}

modifyMap

{{getset},
{getset, modifyCol},
{getset, getiter},
{getset, modifyCol, getiter},
{getset, getiter, useiter},
{getset, modifyCol, getiter, useiter}}

{{m,c},
{m,c, i}}

modifyCol

{{getset},
{getset, modifyMap},
{getset, getiter},
{getset, modifyMap, getiter},
{getset, getiter, useiter},
{getset, modifyMap, getiter, useiter}}

{{m,c},
{m,c, i}}

useiter

{{getset, getiter},
{getset, getiter, modifyCol},
{getset, getiter, modifyMap},
{getset, getiter, modifyMap, modifyCol}}

{{m,c, i}}

Table 4.1: Property and parameter enable sets for Map UnsafeIterator

can be extended to check, before an execution finishes, whether the execution

can generate a trace belonging to some designated property categories. The

designated categories are called the goal of the monitoring.

Definition 11. Given P ∶ E∗ → C and a set of categories G ⊆ C as the goal, the

property enable set is defined as a function enableEG ∶ E → Pf(Pf(E)) with

enableEG(e) = {enableτ(e) ∣ P (τ) ∈ G}.

Intuitively, if event e is encountered during monitoring but none of event sets

enableEG(e) has been completely observed, the (incomplete) execution being

monitoring will not produce a trace τ s.t. P (τ) ∈ G. For example, given the

regular expression specifying the Map UnsafeIterator specification, where G
contains only the match, fail, and ? categories, the second column in Table 4.1

shows the property enable sets of events in Map UnsafeIterator.

The property enable set provides a sound and fast way to decide whether

an incomplete trace slice has the possibility of reaching the desired categories

by looking at the events that have already occurred. In the above example, if a

trace slice starts with getset useiter, it will never reach the match category, because

getset /∈ enableEG(useiter). In such case, no monitor state need be created even when

the newly observed event may lead to new parameter instances. For example,

suppose that the observed (incomplete) trace is getset useiter from before. At

the second event, useiter, a new parameter instance can be constructed, namely,

⟨m1, c1, i1⟩, and a monitor state s will be created for ⟨m1, c1, i1⟩ if the generic

algorithm (Figure 3.2) is applied. However, since the trace slice for s is getset

44

PhD Thesis, University of Illinois, August 2012

useiter, we immediately know that s cannot reach state match. So there is no

need to create and maintain s during monitoring if match is the goal.

A direct application of the above idea to optimize the generic algorithm

(Figure 3.2) requires maintaining observed events for every created monitor and

comparing event sets when a new parameter instance is found, reducing the

improvement of performance. Therefore, we extend the notion of the enable set

to be based on parameter sets instead of event sets.

Definition 12. Given a property P ∶ E∗ → C, a set of categories G ⊆ C as the

goal, a set of parameters X and a function D ∶ E → Pf(X) mapping an event to

its parameters, the property parameter enable set of event e ∈ E is defined

as a function enableXG ∶ E → Pf(Pf(X)) as follows: enableXG (e) = {∪{D(e′) ∣ e′ ∈
enableτ(e)} ∣ P (τ) ∈ G}.

From now on, we use “enable set” to refer to “property parameter enable set”

for simplicity. For example, given the regular pattern for the Map UnsafeIterator

specification in Chapter 2 and G = {match}; the third column in Table 4.1 shows

the parameter enable sets of events in Map UnsafeIterator. Then, given again the

trace getset⟨m1, c1⟩ useiter⟨i1⟩, no monitor state need be created at the second

event for ⟨m1, c1, i1⟩ since the parameter instance used to initialize the new

monitor state, namely, ⟨m1, c1⟩, is not in enableXG (useiter). In other words, one

may simply compare the parameter instance used to initialize the new parameter

instance with the enable set of the observed event to decide whether a new

monitor state is needed or not. Note that in JavaMOP, the property parameter

enable sets are generated from the property enable sets provided by the formalism

plugin. This allows the plugins to remain totally parameter agnostic.

4.1.2 Computing Enable Sets

As we mentioned, the definition of the enable set is general and does not depend

on a specific formalism to write the property. We next show two algorithms

to compute enable sets for finite-state machine (FSM) based monitors and

context-free grammars (CFG), respectively.

Case 1: FSM The algorithm in Figure 4.1 computes the property enable sets

for a finite state machine. We use this algorithm to compute the enable sets

for any logic that is reducible to a finite state machine, including ERE, FTLTL,

and PTLTL (past time linear temporal logic). The algorithm assumes a finite

state machine, defined as FSM = (E , S, s0 ∈ S, δ ∶ S × E
○→S). E is the alphabet,

traditionally listed as Σ but changed for consistency, because the alphabets of

our FSMs are event sets. s0 is the start state, corresponding to ı in the definition

of a monitor. δ is the transition partial function, taking a state and an event

and potentially mapping to a next state for the machine. We assume that all

states not reachable from the initial state and not coreachable from the states of

interest (states of interest being those states s such that γ(s) ∈ G) are pruned

45

PhD Thesis, University of Illinois, August 2012

Algorithm EN fsm(FSM = (E , S, s0, δ))

Globals: mapping Vµ ∶ S → Pf(Pf(E))
mapping enableEG ∶ E → Pf(Pf(E))

Initialization: Vµ(s) ← ∅ for any s ∈ s
enableEG(e) ← ∅ for any e ∈ E

function main()
1 compute enables(s0,∅)

function compute enables(s, µ)
1 foreach defined δ(s, e) do
2 ∶ enableEG(e) ← enableEG(e) ∪ {µ}
3 ∶ let µ′ ← µ ∪ {e}
4 ∶ if µ′ /∈ Vµ(s)
5 ∶ ∶ Vµ(s) ← Vµ(s) ∪ {µ′}
6 ∶ ∶ compute enables(δ(s, e), µ′)
7 ∶ endif
8 endfor

Figure 4.1: FSM enableEG computation algorithm.

from the FSM before running the algorithm, leaving the transitions that pointed

to them undefined. Vµ is a mapping from states to sets of events; it is used

to check for algorithm termination. enableEG is the output property enable set,

which is converted into a parameter enable set by JavaMOP.

Function compute enables is first called from main with µ = ∅ and the initial

state s0. If we think of the FSM as a graph, µ represents the set of edges we

have seen at least once in a given traversal path. For each defined δ(s, e) (line 1),

we add the current µ to the enableEG(e) (line 2) because this means we have seen

a viable prefix set (as all non-viable paths in the machine have been pruned).

This follows from the definition of enableEG . Line 3 begins the recursive step of the

algorithm. We let µ′ = µ∪{e}, because we have traversed another edge, and that

edge is labeled as e. The map Vµ tells us which µ have been seen in previous

recursive steps, in a given state. If a µ has been seen before, in a state, taking a

recursive step can add no new information. Because of this, line 4 ensures that

we only call the recursive step on line 6, if new information can be added. Line 5

keeps V consistent. Thus the algorithm terminates only when every viable µ has

been seen in every reachable state, effectively computing a fixed point. Thus,

the algorithm is bounded above by the number of one cycle paths through the

graph (and is faster in practice, because most paths will have repeated events,

collapsing them into smaller µ’s).

46

PhD Thesis, University of Illinois, August 2012

Event e1⟨p1⟩ e2⟨p2⟩ e3⟨p1, p2⟩

∆
⟨p1⟩∶σ(i, e1) ⟨p1⟩∶σ(i, e1) ⟨p1⟩∶σ(i, e1)

⟨p1, p2⟩∶σ(σ(i, e1), e3)

Table 4.2: Unsound usage of the enable set

Case 2: CFG We also provide an algorithm to compute the match enable set

for a context-free pattern, which has an infinite monitor state space, as briefly

explained in what follows2. This is a modification of the algorithm in Figure 4.1.

Let G = {match}. For enableEG and a given CFG G = (NT,E , P, S) we begin

with all productions S → γ and the set µ0 = ∅ ∈ Pf(E). For each production, we

investigate each s ∈ γ (where ∈ is, by abuse of notation, used to denote a symbol

in a right hand side) from left to right. If s ∈ E we add µi to enableEG(s), thus

if s is the first symbol in γ we add µ0. We then add s to µi forming µi+1. If

s ∈ NT we recursively invoke the algorithm, but rather than use µ0, we use µi,

and each production investigated will be of the form s→ γ′. We keep track of

which s ∈ NT have been processed, to ensure termination of the algorithm.

4.1.3 Monitoring with Enable Sets

We next integrate the concept of enable sets and creation events with the generic

algorithm (Figure 3.2), to improve performance and memory usage. Given a

set of desired value categories G, we can optimize the monitoring process by

omitting creating monitor states for certain parameter instances when an event is

received using the enable set without missing any trace belonging to G. However,

skipping the creation of monitor states may result in false alarms, i.e., a trace

that is not in G can be reported to belong to G. Let us consider the following

example. We monitor to find matching of a regular pattern e1e3. Relevant

events and their parameters are e1(p1), e2(p2), e3(p1, p2). The observed trace is

e1⟨p1⟩e2⟨p2⟩e3⟨p1, p2⟩. Also, suppose e1 is the only creation event. Obviously,

the trace does not match the pattern. Figure 4.2 shows the run using the

enable set optimization (i.e., not creating monitor states for parameter instances

disallowed by the enable sets). At e1, a monitor state is created for ⟨p1⟩ since

it is the creation event. At e2, no action is taken since enableXG (e2) = ∅. At

e3, a monitor state will be created for ⟨p1, p2⟩ using the monitor state for

⟨P1 ↦ p1⟩ since enableXG e3 = {P1}. This way, e2 is forgotten and a match of the

pattern is reported incorrectly.

To avoid unsoundness, we introduce the notion of disable stamps of events.

disable ∶ [[X⇁V]⇁integer] maps a parameter instance to an integer timestamp.

disable(θ) gives the time when the last event with θ was received. We maintain

timestamps for monitors using a mapping T ∶ [[X⇁V]⇁integer]. T maps a

parameter instance for which a monitor state is defined to the time when the

2We assume a certain familiarity with context free patterns; definitions can be found in
[63], together with explanations on CFG monitoring.

47

PhD Thesis, University of Illinois, August 2012

Event e1⟨p1⟩ e2⟨p2⟩ e3⟨p1, p2⟩

∆
⟨p1⟩∶σ(i, e1) ⟨p1⟩∶σ(i, e1) ⟨p1⟩∶σ(i, e1)

T ⟨p1⟩∶1 ⟨p1⟩∶1 ⟨p1⟩∶1

disable
⟨p1⟩∶2 ⟨p1⟩∶2

⟨p2⟩∶3
⟨p1⟩∶2
⟨p2⟩∶3
⟨p1, p2⟩∶4

Table 4.3: Sound monitoring using timestamps

original monitor state is created from a creation event. Specifically, if a monitor

state for θ is created using the initial state when a creation event is received,

T (θ) is set to the time of creation; if a monitor state for θ is created from the

monitor state for θ′, T (θ′) is passed to T (θ). Table 4.3 shows the evolution of

disable and T while processing the trace in Table 4.2.

disable and T can be used together to track “skipped events”: when a monitor

state for θ is created using the monitor state for θ′, if there exists some θ′′ < θ

s.t. θ′′ /< θ′ and disable(θ′′) > T (θ′) then the trace slice for θ does not belong

to the desired value categories G. Intuitively, disable(θ′′) > T (θ′) implies that

an event e⟨θ′′⟩ has been encountered after the monitor state for θ′ was created.

But θ′′ was not taken into account (θ′′ /< θ′). The only possibility is that e is

omitted due to the enable set and thus the trace slice for θ does not belong to G
according to the definition of the enable set. Therefore, in Table 4.3, no monitor

instance is created for ⟨p1, p2⟩ at e3 because disable(⟨p2⟩) > T (⟨p1⟩).
The above discussion applies when the skipped event occurs after the initial

creation of the monitor state. The other case, i.e., an event is omitted before

the initial monitor state is created, can also be handled using timestamps. If

the skipped event is not a creation event, it does not affect the soundness of the

algorithm because of the definition of creation events. In the above example,

if the observed trace is e2⟨p2⟩e1⟨p1⟩e3⟨p1, p2⟩, we will ignore e2 and report the

matching at e3 since e1 is the only creation event. It is more sophisticated (but

not much different) when the skipped event is a creation event.

Based on the above discussion, we develop a new parametric monitoring algo-

rithm that optimizes the generic algorithm using the enable set and timestamps,

as shown in Figure 4.2. This algorithm makes use of the mappings discussed

above, namely, enableXG , ∆, disable and T , and maintains an integer variable to

track the timestamp. It also introduces U which maps a parameter instance θ

to all the parameter instances that have been defined and are properly more

informative than θ. When event e⟨θ⟩ is received, algorithm D⟨X⟩ first checks

whether ∆(θ) is defined or not (line 1 in main). If not, monitor states may

be generated for new encountered parameter instances, which is achieved by

function createNewMonitorStates in algorithm D⟨X⟩. Unlike in the generic algo-

rithm, where all the parameter instances less informative than θ are searched to

48

PhD Thesis, University of Illinois, August 2012

Algorithm D⟨X⟩(M = (S,E ,C, ı, σ, γ))

Input: mapping enableXG ∶ [E⇁Pf(Pf(X))]

Globals: mapping ∆ ∶ [[X⇁V]⇁S]
mapping T ∶ [[X⇁V]⇁integer]
mapping U ∶ [X⇁V] → Pf([X⇁V])
mapping disable ∶ [[X⇁V]⇁integer]
integer timestamp

Initialization: U(θ) ← ∅ for any θ, timestamp← 0

function main(e⟨θ⟩)
1 if ∆(θ) undefined then
2 ∶ createNewMonitorState(e⟨θ⟩)
3 ∶ if ∆(θ) undefined and e is a creation event then
4 ∶ ∶ defineNew(θ)
5 ∶ endif
6 ∶ disable(θ) ← timestamp; timestamp← timestamp + 1
7 endif
8 foreach θ′ ∈ {θ} ∪ U(θ) s.t. ∆(θ′) defined do
9 ∶ ∆(θ′) ← σ(∆(θ′), e)

10 endfor

function createNewMonitorStates(e⟨θ⟩)
1 foreach Xe ∈enableXG (e) (in reversed topological order) do
2 ∶ if dom(θ) /⊆Xe then
3 ∶ ∶ θm ← θ′ s.t. θ′ < θ and dom(θ′) = dom(θ) ∩Xe

4 ∶ ∶ foreach θ′′ ∈ U(θm) ∪ {θm} s.t. dom(θ′′) =Xe do
5 ∶ ∶ ∶ if ∆(θ′′) defined and ∆(θ′′ ⊔ θ) undefined then
6 ∶ ∶ ∶ ∶ defineTo(θ′′ ⊔ θ, θ′′)
7 ∶ ∶ ∶ endif
8 ∶ ∶ endfor
9 ∶ endif

10 endfor

function defineNew(θ)
1 foreach θ′′ < θ do
2 ∶ if ∆(θ′′) defined then return endif
3 endfor
4 ∆(θ) ← ı; T (θ) ← timestamp; timestamp← timestamp + 1
5 foreach θ′′ < θ do U(θ′′) ← U(θ′′) ∪ {θ} endfor

function defineTo(θ, θ′)
1 foreach θ′′ ⊑ θ s.t. θ′′ /⊑ θ′ do
2 ∶ if disable(θ′′) > T (θ′) or T (θ′′) < T (θ′) then
3 ∶ ∶ return
4 ∶ endif
5 endfor
6 ∆(θ) ←∆(θ′); T (θ) ← T (θ′)
7 foreach θ′′ < θ do U(θ′′) ← U(θ′′) ∪ {θ} endfor

Figure 4.2: Optimized monitoring algorithm D⟨X⟩.

49

PhD Thesis, University of Illinois, August 2012

find all the compatible parameter instances, createNewMonitorStates enumerates

parameter sets in enableXG (e) and looks for parameter instances whose domains

are in enableXG (e) and which are compatible with θ, using U . The inclusion

check at line 2 in createNewMonitorStates is to omit unnecessary search since if

dom(θ) ⊆Xe then no new parameter instance will be created from θ. This way,

createNewMonitorStates creates all the parameter instances from θ whenever the

enable set of e is satisfied using fewer lists in U .

If e is a creation event then a monitor state for θ is initialized (lines 3 - 5 in

main). Note that ∆(θ) can be defined in function createNewMonitorStates if ∆(θ′)
has been defined for some θ′ < θ. disable(θ) is set to the current timestamp

after all the creations and the timestamp is increased (line 6 in main). Then,

all the relevant monitor states are updated according to e. Function defineNew

in D⟨X⟩ first searches for a defined sub-instance of θ. If such instance exists, θ

should be defined using it; otherwise, ∆(θ) is set to the initial state. Then T (θ)
is set to the current timestamp, and the timestamp is incremented. Function

defineTo in D⟨X⟩ checks disable and T as discussed above to decide whether

∆(θ) can be defined using ∆(θ′). If ∆(θ) is defined using ∆(θ′), T (θ) is set

to T (θ′). Both functions then add θ to the sets in table U for the bindings

less informative than θ.

4.1.4 Discussion

The general definition of the enable set allows us to separate the concerns of

generating efficient monitoring code. On the framework level, such as the algo-

rithms discussed in this dissertation, we can focus on applying the information

encoded in the enable set to generate an efficient monitoring process for para-

metric properties, while on the logic level, where a monitor is generated for a

given on-parametric property written in a specific formalism, one can focus on

creating the fastest monitor that verifies the input trace against the property

and also on producing the enable set information. The enable set represents

static information about the given property and only need be generated once.

As mentioned, the static analysis presented in [28], while effective, requires a

complex analysis of the target program, which must be performed for every

program one wants to monitor.

We discuss two other possibilities for optimization. The first is to make use

of the semantics of the program. In the example of the Map UnsafeIterator

specification, we know that an i object is created from a c object and does not

relate to other c objects. Hence, we can avoid creating a combination of ⟨m2, c2⟩
and ⟨i1⟩ because i1 is created from c1. However, such semantic information

is very difficult to achieve automatically and may require human input. The

enable set, on the contrary, can be easily computed by statically analyzing the

specification without analyzing any program or human interferences; indeed, the

specified property already indicates some semantics of the involved parameters.

50

PhD Thesis, University of Illinois, August 2012

Nevertheless, we believe that static analysis on the program to monitor, such as

that in [28], can and should be applied in conjunction with enable sets to further

reduce the monitoring overhead, whenever it is feasible.

Other optimizations are based on heuristics. One reasonable heuristic which

can be applied here is that we may only combine parameter instances that are

connected to one another through some events which have been observed (we

cannot rely on future events in online monitoring). For example, in the possible

execution trace for Map UnsafeIterator (Table 3.1), ⟨i1⟩ and ⟨m1, c1⟩ need to be

combined to build a new parameter instance because c1 and i1 are connected

in the third event, getiter⟨c1, i1⟩, but ⟨i1⟩ and ⟨m1, c2⟩ should not combined

due to the heuristic. The intuition is that if two parameter instances do not

interact in any event, it may imply that they are not relevant to each other

even if they are compatible. However, because no information about future

events available, such a heuristic can break, for example, an event connecting

the two parameter instances comes afterward. The enable set provides a sound

optimization, and we believe that it performs as well as, if not better than, such

heuristics in most cases.

4.2 Indexing Caching

In our parametric monitoring approach that we keep a monitor for each parameter

instance, we need to locate relevant monitors for each received event to update

their states. As an efficient solution to this, many monitoring systems including

ours use the indexing tree technique presented in Chapter 2. Indexing trees locate

the relevant monitors by using multi-level mappings. Although indexing trees

are fairly efficient – it is the most frequently used data structure in monitoring –

it can cause a noticeable overhead in the presence of a large number of events.

The major overhead in retrieving monitor(s) through an indexing tree comes

from the cost of hashing. Hashing should happen at each level of the tree since

an indexing tree consists of HashMap-based data structures. Thus, retrieving

monitors through an indexing tree is much more expensive than a regular access

to local variables or object fields.

To increase the performance of indexing trees even further, we introduce

‘indexing caching’ that caches the last retrieved monitor(s) at each indexing

tree to serve them right away without any hashing cost. By doing this, we

can utilize the temporal locality among monitors. For example, in monitoring

Map UnsafeIterator, after creating an Iterator from a Collection, the Iterator

will likely to be used many times in succession, and thus we will process many

events about Iterator usage. Many other programs and properties have events

that occur as part of a long string of repeated events. Thus, if we cache the

monitor(s) that need to be updated, we only need to pay the hashing cost once.

Once we have introduced a cache, we have an opportunity to tweak many

parameters (e.g., number of entries, eviction schemes). In order to find reasonable

51

PhD Thesis, University of Illinois, August 2012

Cache Entries 1 2 3 4
Lookups 157011738 157875749 156297661 157047943
Cache Hits 150147057 152707467 151257225 152047105
Cache Hit Rate 95.63% 96.73% 96.78% 96.82%

Table 4.4: Cache hit rate when monitoring bloat against Map UnsafeIterator

monitor(s) for these parameters, we tried monitoring a program bloat from the

DaCapo benchmark suite [24] against UnsafeIter using different cache sizes.

Table 4.4 shows our results when using a least recently used (LRU) eviction

algorithm. Because we do not perform the search in parallel, the search time

grows linearly with the size of the cache. More entries only offer marginal

improvements to hit rate, if any, so we maintain a cache with only one element.

With only one cache entry the question of which entry to evict becomes moot, it

is unnecessary to investigate this further.

With this simple idea, we can increase the performance of indexing trees

greatly. In our evaluation in Section 4.4, this is one of major factors for the

performance improvements. This indexing cache technique is further improved

in Chapter 5, for monitoring multiple simultaneous specifications.

4.3 Garbage Collection for Monitoring

Parametric Properties

In parametric monitoring systems, the parameters are dynamically bound to

objects at runtime, thus resulting in a potentially unlimited number of monitor

instances, one for each parameter instance. The main challenge underlying

the monitoring of parametric properties is therefore how to effectively manage

these monitor instances, in particular how to efficiently retrieve all the monitor

instances interested in an event when it takes place, and how to efficiently

garbage collect monitor instances which have become unnecessary.

The previous version of JavaMOP was only able to collect monitor instances

when all the bound parameters are garbage collected, which ensures that no

event can happen to the corresponding monitor instance. The problem with

this method of garbage collection can be clearly seen in the Map UnsafeIterator

specification in Chapter 2. Because it is the next event at the end of the pattern

that actually causes the error, there is no way to ever match the pattern if

the Iterator bound to a given monitor instance is garbage collected. However,

the previous version of JavaMOP is only able to collect the associated monitor

instance if all the three Map, Collection and the Iterator are garbage collected.

Unfortunately, in most realistic programs, Map and Collection objects have much

longer lifetimes than the Iterator objects created from them. Because of this,

the previous version of JavaMOP would have large numbers of monitor instances

52

PhD Thesis, University of Illinois, August 2012

– when monitoring most programs – that could never possibly match the pattern

because their bound Iterators had been collected.

In this section, we present the monitor garbage collection technique, a

means to prune unnecessary monitor instances based on a static analysis of the

monitored property. The results of the static analysis, which we refer to as

coenable sets, are used at runtime to determine when a monitor instance can no

longer reach a triggering state, and can thus be garbage collected. Although we

know what monitor instances to collect, removing such unnecessary monitors is

still an expensive task, and in the interest of making it as efficient as possible, a

lazy garbage collection scheme is used. There are two performance benefits to

garbage collecting unnecessary monitors: reduced memory usage, and reduction

in the time needed to update monitor instances because many of the monitor

instances that would be updated are no longer necessary.

Section 4.3.1 formally describes coenable sets, and Section 4.3.2 presents the

efficient monitor garbage collection algorithm, based on coenable sets, that lazily

propagates the information of garbage collections of parameter objects and lazily

removes unnecessary monitors.

4.3.1 Coenable Sets

When monitoring parametric properties, it is easy to generate a large number

of monitor instances. For example, as seen in Section 4.4, the program bloat

generates 1.9 million monitor instances when monitored for the UnsafeIter

specification. After some time, some of these monitor instances may become

unnecessary, e.g., because they have no hope of reaching a verdict category in

G. Indeed, as seen in Section 4.4, the garbage collection technique flags 1.8

million of these monitor instances as unnecessary. In Section 4.1 proposed the

enable set optimization, to avoid needlessly creating monitors that will never

trigger. In this section, we show how a dual method can be derived to avoid

needlessly retaining monitors that will never trigger. Computing the coenable

sets is expected to be a quick static operation in practice, because they are a

function of the specification to monitor (which is expected to be small) and not

of the program (which is expected to be large).

Definition 13. Given w ∈ E∗ and e, e′ ∈ w, we let e;w e
′ denote that e′ occurs

after e in w. Let Coenablew(e) = {e′ ∣ e;w e
′} be the trace coenable set of

e. Given property P ∶ E∗ → C and a subset of verdict categories of interest (or goal)

G ⊆ C, the property coenable set is defined as the map CoenableP,G ∶ E →
P(P(E)) where CoenableP,G(e) = {Coenablew(e) ∣ w ∈ E∗ s.t. P (w) ∈ G, e ∈
w, Coenablew(e) /= ∅} for each e ∈ E.

Intuitively, if event e is encountered during monitoring, but none of the event

sets of CoenableP,G(e) are possible in the future, it is impossible to reach any

verdict category in G, so a monitor for P observing e will never trigger. We

53

PhD Thesis, University of Illinois, August 2012

drop all ∅s from CoenableP,G because they can cause monitor instances to be

retained that are unnecessary. An ∅ in CoenableP,G(e) means that the trace

suffix consisting of only the event e can lead to a category in G for some trace

prefix. However, our interest is in the ability to reach G again in the future. If

there is a trace suffix that can lead to a state in G from e, then its events will

be added to CoenableP,G(e). If there is no trace suffix that can lead back to

a state in G, there is no reason to maintain the monitor instance after it has

executed the proper handler due to the occurrence of e.

FSM Example We define finite state machines in the spirit of Definition 8. A

finite state machine is a tuple (S,E ,C, ı, σ, γ) where E is a finite alphabet, S is

a finite set of states, ı ∈ S is the initial state, σ∶S × E ⇁ S a partial transition

function, C a set of verdict categories, and γ∶S → C the verdict function. The

property monitored by an FSM classifies a trace w into γ(σ(ı,w)), where σ is

extended to strings in the natural way, and fail if σ(ı,w) is undefined.

We can find CoenableP,G , for the property monitored by an FSM, by the

least fixed point of the following equations. Recall that G ⊆ C is the set of verdict

categories of interest:

Seeable(s) = ⋃
σ(s,e)=s′

{{e} ∪ T ∣ T ∈ Seeable(s′)}

CoenableP,G(e) = ⋃
σ(s,e)=s′

Seeable(s′)

For the Collection UnsafeIterator specification from Chapter 2, we can

use the equations above to generate coenable sets; it requires generating a

finite state machine from the property’s ERE, which is simple enough. For

P = Collection UnsafeIterator and G = {match}, the CoenableP,G sets are:

CoenableP,G(create) = {{useiter,modify}}
CoenableP,G(modify) = {{useiter},{useiter,modify}}
CoenableP,G(useiter) = {{useiter,modify}}

Note that if we did not remove ∅s, CoenableP,G(useiter) would contain ∅. Each

inner set can be thought of as a conjunction of events that must occur at least

once for a verdict category in G to still be reachable, while the outer sets are

a disjunction (see Section 4.3.2). For example, if the event seen by monitor

instance M is modify and useiter can still be seen at some future point, then

M is still necessary. Likewise, if the event seen by M is useiter, then both

useiter and modify must be possible for M to ever match. In particular, if the

corresponding Collection object instance is already dead then we know that

the event modify will never be possible, so we can safely garbage collect M .

Definition 14 formalizes this notion.

CFG Example A CFG is a tuple (N,E ,S,Π) where N is a finite set of non-

terminals, E is a finite set of terminals, S ∈ N is the initial nonterminal, and Π

54

PhD Thesis, University of Illinois, August 2012

is a set of productions of the form A → β where A ∈ N and β ∈ (N ∪ E)∗. The

monitor for a CFG classifies traces that are in the language of the grammar into

the verdict category match.

For a CFG, to compute CoenableP,{match} we find the least fixed point of

the following equations:

G(ε) = {∅} G(e) = {{e}} G(A) = ⋃A→βG(β)
G(β1β2) = {T1 ∪ T2 ∣ T1 ∈G(β1), T2 ∈G(β2)}

C(x) = {T1 ∪ T2
RRRRRRRRRRRR

A→ β1xβ2,

T1 ∈ C(A), T2 ∈G(β2)

⎫⎪⎪⎬⎪⎪⎭
CoenableP,{match}(e) = C(e)

Informally, G(A) is the set of events generated by the CFG, if the symbol

A were used as the initial nonterminal of the CFG. The equation G(β1β2) =
{T1 ∪ T2 ∣ T1 ∈ G(β1), T2 ∈ G(β2)} generalizes this notion to entire traces of

symbols (where symbols are either events or non-terminals). C is the coenable

sets function generalized to traces that include both non-terminals and events.

For a production, A → β1Bβ2, C(B) needs to cope with the fact that A has its

own coenable sets. Thus its definition unions possible coenable sets of A with the

sets of symbols that are generated by β2. The rest of JavaMOP only needs to

know coenable sets for events so coenables is just the restriction of C to events.

Definition 14. Given property P ∶ E∗ → C, goal G ⊆ C, set of parameters X

and event definition D∶E → P(X) (see Definition 4), the property parame-

ter coenable set is defined as the map CoenableXP,G ∶ E → P(P(X)) where

CoenableXP,G(e) = {D(E) ∣ E ∈ CoenableP,G(e)} for each e ∈ E.

The CoenableXP,G sets tell us which parameter objects must be alive for a verdict

category in G to be reachable. For P = Collection UnsafeIterator, G = {match},

and X = {c, i}, the CoenableXP,G sets are:

CoenableXP,G(create) = {{c, i}}
CoenableXP,G(modify) = {{i},{c, i}}
CoenableXP,G(useiter) = {{c, i}}

Now with the CoenableXP,G sets we can explicitly decide when a monitor

instance may be collected. For example, in Collection UnsafeIterator we know

that if, at any time, the Iterator bound to i is garbage collected, then a match

can never occur because i occurs in every one of the inner sets. This makes sense

because the event that causes a match in the Collection UnsafeIterator pattern

is use of the Iterator. This situation could produce a very large memory leak

in the previous version of JavaMOP where long living Collections would cause

monitor instances for dead Iterators to be retained because it could not remove

a monitor instance unless all bound parameter objects were collected. We prove

55

PhD Thesis, University of Illinois, August 2012

this concept by showing that certain parameters specified by CoenableXP,G(e)
for a trace wew′ must be able to occur in w′ for a verdict category to be reached.

Theorem 1. Consider the same assumptions as in Definition 14, and a trace

slice wew′ ∈ E∗. If for each Y ∈ CoenableXP,G(e) there exists some y ∈ Y such

that y /∈ D(w′) then P (wew′) /∈ G.

Proof. Suppose, for the sake of contradiction, that P (wew′) ∈ G and that each

Y ∈ CoenableXP,G(e) contains a y such that y /∈ D(w′). By Definition 13, because

P (wew′) ∈ G there must be some E ∈ CoenableP,G(e) that contains exactly

those events in w′. Then, by Definition 14, there must be Y ∈ CoenableXP,G(e)
containing exactly the parameters in D(w′). Contradiction.

Discussion The CoenableXP,G sets are a conservative approximation of the

situations in which a monitor instance may be collected. From Definition 6 we

know that an event e where x ∈ D(e) can only occur in a trace-slice τ↾θ if θ(x) is

still alive in the system. If θ(x) has been garbage collected, there is no way for

any e with x ∈ D(e) to occur in trace slice for θ. This is precisely how monitoring

arrives in the situation presented in Theorem 1, where all possible suffixes w′

of the trace slice wew′ do not contain at least one parameter in each set of the

CoenableXP,G(e), and it becomes impossible to reach a verdict category in G.

Clearly, if it is impossible for the θ trace slice to ever reach a verdict category in

G, there is no reason to keep the monitor instance for θ.

The Tracematches system uses a more precise formulation, which is similar,

but based on the state of the monitor. Intuitively, the Tracematches garbage

collection technique can be thought of as coenables sets indexed by state rather

than events, but the formulation as presented in [19] is considerably different.

While theirs is more precise, our empirical results, presented in Section 4.4,

show that the coenable set technique is able to reduce memory usage in the

JavaMOP framework to comparable levels with Tracematches, while the Java-

MOP framework has considerably lower runtime overhead. More importantly,

the Tracematches garbage collection technique is limited to finite logics, such

as the regular expressions of Tracematches. However, our coenable approach

is extensible to any underlying monitor implementation. We have a coenables

sets generation algorithm for the context-free grammar plugin. A static state-

based technique, such as the one used by Tracematches, could not be used for

context-free properties because the state space is unbounded.

The coenables technique reclaims much more memory than the garbage

collection of the previous version of JavaMOP, which, as already explained, has

to wait for all bound parameter objects to be collected (see Section 4.4).

4.3.2 Monitor Garbage Collection

By using coenable sets, we can decide whether a monitor is unnecessary. However,

removing unnecessary monitors efficiently from data structures is not trivial.

56

PhD Thesis, University of Illinois, August 2012

• • • • • •• • • • • •

�c, i�-Tree

�c�-Tree

�i�-Tree

c1

c2

i1

i2

i3

m1

m2

m3

1

�c, i�-Tree

�c�-Tree

�i�-Tree

c1

c2

i1

i2

i3

m1

m2

m3

1

�c, i�-Tree

�c�-Tree

�i�-Tree

c1

c2

i1

i2

i3

m1

m2

m3

1

�c, i�-Tree

�c�-Tree

�i�-Tree

c1

c2

i1

i2

i3

m1

m2

m3

1

�c, i�-Tree

�c�-Tree

�i�-Tree

c1

c2

i1

i2

i3

m1

m2

m3

1

�c, i�-Tree

�c�-Tree

�i�-Tree

c1

c2

i1

i2

i3

m1

m2

m3

1

�c, i�-Tree

�c�-Tree

�i�-Tree

c1

c2

i1

i2

i3

i4

m1

m2

1

�c, i�-Tree

�c�-Tree

�i�-Tree

c1

c2

i1

i2

i3

i4

m1

m2

1

�c, i�-Tree

�c�-Tree

�i�-Tree

c1

c2

i1

i2

i3

i4

m1

m2

1

�c, i�-Tree

�c�-Tree

�i�-Tree

c1

c2

i1

i2

i3

i4

m1

m2

1

�c, i�-Tree

�c�-Tree

�i�-Tree

c1

c2

i1

i2

i3

i4

m1

m2

1

�c, i�-Tree

�c�-Tree

�i�-Tree

c1

c2

i1

i2

i3

i4

m1

m2

1

�c, i�-Tree

�c�-Tree

�i�-Tree

c1

c2

i1

i2

i3

i4

m1

m2

1

m3

m4

Map

Set

Monitor

2

m3

m4

Map

Set

Monitor

2

m3

m4

Map

Set

Monitor

2

�c, i�-Tree

�c�-Tree

�i�-Tree

c1

c2

i1

i2

i3

i4

m1

m2

1

m3

m4

Map

Set

Monitor

2

�c, i�-Tree

�c�-Tree

�i�-Tree

c1

c2

i1

i2

i3

i4

m1

m2

1

m3

m4

Map

Set

Monitor

2

Sunday, November 14, 2010

Figure 4.3: Indexing trees for Collection UnsafeIterator

Consider the Collection UnsafeIterator specification. Figure 4.3 shows the index-

ing trees for this specification. When i1 is garbage collected, m1 will be removed

from ⟨c, i⟩-tree and ⟨i⟩-tree automatically because i1 links are broken now. But

m1 will not be removed from ⟨c⟩-tree since its Collection c2 is still alive. To

remove the monitor m1 from the ⟨c⟩-tree, either we should retrieve the set which

contains m1, causing more runtime overhead, or we should keep the set reference

in m1, increasing memory usage. After retrieving the set anyhow, we should

remove m1 from the set, which is expensive to do repeatedly. If we remove

monitors actively like above (eager collection), the overhead of monitor removal

easily overwhelms the benefit of having fewer monitors. This is because eager

collection requires propagating the information regarding liveness of parameter

objects to monitors far too frequently. Additionally, eager collection can result

in removing monitors from some data structures that will never be used again.

Therefore, we use a lazy garbage collection scheme. We iterate monitor

instances and propagate the information of garbage collections of parameter

objects lazily, and we remove unnecessary monitors lazily. When an indexing

tree containing a garbage collected parameter object is accessed and the tree

detects this, it informs all the relevant monitors that it contains. Note that this

is later than the actual garbage collection of the parameter object. Then, the

monitor decides if it can still possibly reach a target state in the absence of the

parameter object that has been garbage collected. Later when more space is

needed in the data structure or when monitors are updated, we remove monitors

from the accessed data structure but not from other data structures. A monitor

is garbage collected when it is removed from all data structures. This is similar to

mark-and-sweep garbage collection. If a data structure itself is garbage collected,

the contained monitors do not have to be garbage collected separately.

57

PhD Thesis, University of Illinois, August 2012

• • • • • •• • • • • •

�c, i�-Tree

�c�-Tree

�i�-Tree

c1

c2

i1

i2

i3

m1

m2

m3

1

�c, i�-Tree

�c�-Tree

�i�-Tree

c1

c2

i1

i2

i3

m1

m2

m3

1

�c, i�-Tree

�c�-Tree

�i�-Tree

c1

c2

i1

i2

i3

m1

m2

m3

1

�c, i�-Tree

�c�-Tree

�i�-Tree

c1

c2

i1

i2

i3

m1

m2

m3

1

�c, i�-Tree

�c�-Tree

�i�-Tree

c1

c2

i1

i2

i3

m1

m2

m3

1

�c, i�-Tree

�c�-Tree

�i�-Tree

c1

c2

i1

i2

i3

m1

m2

m3

1

�c, i�-Tree

�c�-Tree

�i�-Tree

c1

c2

i1

i2

i3

i4

m1

m2

1

�c, i�-Tree

�c�-Tree

�i�-Tree

c1

c2

i1

i2

i3

i4

m1

m2

1

�c, i�-Tree

�c�-Tree

�i�-Tree

c1

c2

i1

i2

i3

i4

m1

m2

1

�c, i�-Tree

�c�-Tree

�i�-Tree

c1

c2

i1

i2

i3

i4

m1

m2

1

�c, i�-Tree

�c�-Tree

�i�-Tree

c1

c2

i1

i2

i3

i4

m1

m2

1

�c, i�-Tree

�c�-Tree

�i�-Tree

c1

c2

i1

i2

i3

i4

m1

m2

1

�c, i�-Tree

�c�-Tree

�i�-Tree

c1

c2

i1

i2

i3

i4

m1

m2

1

m3

m4

Map

Set

Monitor

2

m3

m4

Map

Set

Monitor

2

m3

m4

Map

Set

Monitor

2

�c, i�-Tree

�c�-Tree

�i�-Tree

c1

c2

i1

i2

i3

i4

m1

m2

1

m3

m4

Map

Set

Monitor

2

�c, i�-Tree

�c�-Tree

�i�-Tree

c1

c2

i1

i2

i3

i4

m1

m2

1

m3

m4

Map

Set

Monitor

2

m3

m4

m5

m6

m7

m8

m9

Map

Set

Monitor

(A)

2

Sunday, November 14, 2010

(B)

3

• • • • • •• • • • • •

�c, i�-Tree

�c�-Tree

�i�-Tree

c1

c2

i1

i2

i3

m1

m2

m3

1

�c, i�-Tree

�c�-Tree

�i�-Tree

c1

c2

i1

i2

i3

m1

m2

m3

1

�c, i�-Tree

�c�-Tree

�i�-Tree

c1

c2

i1

i2

i3

m1

m2

m3

1

�c, i�-Tree

�c�-Tree

�i�-Tree

c1

c2

i1

i2

i3

m1

m2

m3

1

�c, i�-Tree

�c�-Tree

�i�-Tree

c1

c2

i1

i2

i3

m1

m2

m3

1

�c, i�-Tree

�c�-Tree

�i�-Tree

c1

c2

i1

i2

i3

i4

m1

m2

1

�c, i�-Tree

�c�-Tree

�i�-Tree

c1

c2

i1

i2

i3

i4

m1

m2

1

�c, i�-Tree

�c�-Tree

�i�-Tree

c1

c2

i1

i2

i3

i4

m1

m2

1

�c, i�-Tree

�c�-Tree

�i�-Tree

c1

c2

i1

i2

i3

i4

m1

m2

1

�c, i�-Tree

�c�-Tree

�i�-Tree

c1

c2

i1

i2

i3

i4

m1

m2

1

�c, i�-Tree

�c�-Tree

�i�-Tree

c1

c2

i1

i2

i3

i4

m1

m2

1

�c, i�-Tree

�c�-Tree

�i�-Tree

c1

c2

i1

i2

i3

i4

m1

m2

1

m3

m4

Map

Set

Monitor

2

m3

m4

Map

Set

Monitor

2

m3

m4

Map

Set

Monitor

2

�c, i�-Tree

�c�-Tree

�i�-Tree

c1

c2

i1

i2

i3

i4

m1

m2

1

m3

m4

Map

Set

Monitor

2

�c, i�-Tree

�c�-Tree

�i�-Tree

c1

c2

i1

i2

i3

i4

m1

m2

1

m3

m4

Map

Set

Monitor

2

Sunday, November 14, 2010

Figure 4.4: (A) Notifying monitors for garbage collected ⟨c2⟩ in the ⟨c⟩-tree. (B)
Cleaning up the broken mapping in the ⟨c⟩-tree

The data structures used by previous runtime monitoring systems [9, 38, 32]

are not sufficient for this lazy mechanism of monitor garbage collection. The

challenge is how to efficiently garbage collect unnecessary monitor instances

that are contained in the data structures. Using the standard data structures of

previous systems, the overhead of instance removal easily overwhelms the benefit

of having fewer monitor instances. Our specialized data structures, introduced

here, track the garbage collection of parameter objects and remove unnecessary

monitor instances when discovered using coenable sets (Section 4.3.1). In this

section, we present the modified indexing trees as well as the mechanism by

which unnecessary monitors are garbage collected.

58

PhD Thesis, University of Illinois, August 2012

Parameter Object Garbage Collection Notification

Propagation of parameter object garbage collection information starts from the

mappings in the indexing tree. The mappings used in indexing trees of JavaMOP

are implemented as a class called MOPMap. MOPMap uses WeakReferences for its keys

as explained in Chapter 2. A WeakReference in Java does not stop the garbage

collector from collecting its referent; when the referent is garbage collected, the

WeakReference points to null. Whenever an operation (put or get) is performed

on an MOPMap – or the hash table underlying the map needs to be expanded to

store more entries – it looks through a subset of its entries for keys with null

referents. When there is a key with a null referent due to a garbage collection,

MOPMap notifies all of the monitor instances below itself in the indexing tree.

For example, Figure 4.4 (A) shows a possible scenario where ⟨c2⟩ is garbage

collected and the ⟨c⟩-tree is accessed. The ⟨c⟩-tree notifies all of the monitor

instances below ⟨c2⟩.

Determining When Monitor Instances are Unnecessary

When a monitor is notified of a newly garbage collected parameter object, it

decides whether it can still reach a verdict category of interest in the absence

of garbage collected parameter objects by using the coenable sets introduced

in Section 4.3.1. Each monitor instance stores the last event it receives, e, so

that it may check CoenableXP,G(e), when this notification takes place. The

monitor instance need simply check if all the parameter objects of any set in

CoenableXP,G(e) are alive. JavaMOP statically translates CoenableXP,G(e) to

a minimized boolean formula to make this check as efficient as possible:

Aliveness(e) = ⋁
S ∈ CoenableXP,G(e)

(⋀
x ∈ S

livex)

where livex is a boolean that is true only if the parameter object of parameter x

has not been garbage collected. Then, Aliveness(e) is true only if the monitor

is necessary. Maintaining livex variables in a given monitor instance for each

parameter and checking the generated boolean expression at runtime is sufficient

for determining when said instance becomes unnecessary.

The monitor instances notified of garbage collected parameters in Fig-

ure 4.4 (A) check their Aliveness to determine if they are unnecessary. Here,

m1 and m3 are unnecessary and therefore marked. Note that the set under

⟨c2⟩ is not altered because other MOPMaps in the index tree still point to it. In

Figure 4.4 (B), the MOPMap removed the broken map entry index by c2. m1

and m3 will be removed at some future time when the ⟨c, i⟩-tree or ⟨i⟩-tree are

accessed or expanded, as we explain in the next.

59

PhD Thesis, University of Illinois, August 2012

�c, i�-Tree

�c�-Tree

�i�-Tree

c1

c2

i1

i2

i3

i4

m1

m2

1

�c, i�-Tree

�c�-Tree

�i�-Tree

c1

c2

i1

i2

i3

i4

m1

m2

1

m3

m4

m5

m6

m7

m8

m9

Map

Set

Monitor

2

m3

m4

m5

m6

m7

m8

m9

Map

Set

Monitor

2

m3

m4

m5

m6

m7

m8

m9

Map

Set

Monitor

2

m3

m4

m5

m6

m7

m8

m9

Map

Set

Monitor

2

m3

m4

m5

m6

m7

m8

m9

Map

Set

Monitor

2

m3

m4

m5

m6

m7

m8

m9

Map

Set

Monitor

2

m3

m4

m5

m6

m7

m8

m9

Map

Set

Monitor

2

�c, i�-Tree

�c�-Tree

�i�-Tree

c1

c2

i1

i2

i3

i4

m1

m2

1

�c, i�-Tree

�c�-Tree

�i�-Tree

c1

c2

i1

i2

i3

i4

m1

m2

1

m3

m4

m5

m6

m7

m8

m9

Map

Set

Monitor

2

m3

m4

m5

m6

m7

m8

m9

Map

Set

Monitor

2

m3

m4

m5

m6

m7

m8

m9

Map

Set

Monitor

2

Friday, November 19, 2010

Figure 4.5: A compaction in MOPSet when some monitor instances are collectable

Removing Unnecessary Monitor Instances

Monitor instances are removed lazily because in many cases the maps and

sets containing monitor instances flagged for removal may be garbage collected

themselves. Eager removal would result in unnecessary work in such cases. For

example, in Figure 4.4 (B), if the ⟨c2⟩-subtree in the ⟨c, i⟩-tree is going to be

garbage collected, there is no reason to remove flagged monitor instances from it.

Unnecessary monitor instances are only removed when an indexing tree is

accessed. Whenever an MOPMap looks for keys with null referents it also checks

the values of mappings which do not have null referents. The value can be

either a monitor instance, a set, or a lower level map. If the value is a flagged

monitor instance or an empty data structure, it removes the mapping. If it is

a set, it must be checked for internal monitor instances that have been flagged

for removal. When a set is checked for unnecessary monitor instances, all of

the instances are collected, and the remaining necessary monitor instances are

compacted in one pass, as can be seen in Figure 4.5.

4.4 Evaluation

We evaluate our techniques for efficient parametric monitoring that integrate

into a new version of JavaMOP. The new version of JavaMOP implements the

generic parametric monitoring with the enable set optimization (Section 4.1),

the indexing cache (Section 4.2), and formalism-independent monitor garbage

collection (Section 4.3). Also, we compare the performance to the previous

version of JavaMOP, and Tracematches, two of the most optimized monitoring

systems in runtime and memory, respectively.

4.4.1 Experimental Settings

For our experiments, we used a Pentium 4 2.66GHz / 2GB RAM / Ubuntu 9.10

machine and version 9.12 of the DaCapo (DaCapo 9.12) benchmark suite [24].

We also present the result from the previous version, 2006-10 MR2 of DaCapo

(DaCapo 2006-10), but only for the benchmarks that are not included in the

new version of DaCapo: antlr, bloat, chart, hsqldb, and jython. Among deprecated

benchmarks that DaCapo 9.12 does not provide any more, we favor the bloat

benchmark from the DaCapo 2006-10 because it generates large overheads when

60

PhD Thesis, University of Illinois, August 2012

monitoring Iterator-based properties. The bloat benchmark with the UnsafeIter

specification causes 11258% runtime overhead (i.e., 113 times slower) and uses

7.8MB of heap memory in Tracematches, and causes 769% runtime overhead

and uses 175MB in the previous version of JavaMOP, while the original program

uses only 4.9MB. Also, although the DaCapo 9.12 provides jython, Tracematches

cannot instrument jython due to an error, while all versions of JavaMOP can

instrument it. Thus, we present the result of jython from the DaCapo 2006-

10. The default data input for DaCapo was used and the -converge option to

obtain the numbers after convergence within ±3%. We also looked into other

benchmarks including Java Grande [70] and SPECjvm 2008 [5], and saw little

to no overhead even with our Iterator-based properties; we omit the result

in the dissertation. Instrumentation introduces a different garbage collection

behavior in the monitored program, sometimes causing the program to slightly

outperform the original program; this accounts for the negative overheads seen

in both runtime and memory.

We used the Sun JVM 1.6.0 for the entire evaluation. The AspectJ compiler

(ajc) version 1.6.4 is used for weaving the aspects generated by JavaMOP into the

target benchmarks. Another AspectJ compiler, abc [17] 1.3.0, is used for weaving

Tracematches properties because Tracematches is part of abc and does not work

with ajc. For the previous version of JavaMOP, we used the release version,

2.1.2, from the JavaMOP website [3], but with the -noopt1 option to turn off the

enable set optimization. For the new version of JavaMOP, we used the release

version, 2.3.2, from the JavaMOP website, as well. For Tracematches, we used

the release version, 1.3.0, from [7], which is included in the abc compiler as an

extension. To figure out the reason that some examples do not terminate when

using Tracematches, we also used the abc compiler for weaving aspects generated

from JavaMOP properties. Note that JavaMOP is AspectJ compiler independent.

JavaMOP shows similar overheads and terminates on all examples when using

the abc compiler for weaving as when ajc is used. Because the overheads are

similar, we do not present the results of using abc to weave JavaMOP generated

aspects in the dissertation. However, using abc to weave JavaMOP properties

confirms that the high overhead and non-termination come from Tracematches

itself, not from the abc compiler.

The following properties are used in our experiments. They were borrowed

from [28, 27, 64, 36].

• HasNext: Do not use the next element in an Iterator without checking

for the existence of it;

• UnsafeIter: Do not update a Collection when using the Iterator interface

to iterate its elements;

• UnsafeMapIter: Do not update a Map when using the Iterator interface to

iterate its values or its keys;

61

PhD Thesis, University of Illinois, August 2012

• UnsafeSyncColl: If a Collection is synchronized, then its iterator also

should be accessed synchronously;

• UnsafeSyncMap: If a Collection is synchronized, then its iterators on

values and keys also should be accessed in a synchronized manner.

All of them are tested on Tracematches, and the previous and new versions of

JavaMOP for comparison. We have tested several non-Iterator based properties:

HashSet, SafeEnum, SafeFile, and SafeFileWriter [28, 27, 64, 36]. None of these

properties produce overheads above 5% in any of the DaCapo benchmarks, thus

their results are not presented in the dissertation.

4.4.2 Results and Discussions

Tables 4.5, 4.6, 4.7, 4.8, 4.9, and 4.10 summarize the results of the evaluation.

Note that the structure of the DaCapo 9.12 allows us to instrument all of the

benchmarks plus all supplementary libraries that the benchmarks use, which

was not possible for DaCapo 2006-10. Therefore, fop and pmd show higher

overheads than the benchmarks using DaCapo 2006-10 from [36]. While other

benchmarks show overheads less than 80% in the previous version of JavaMOP,

bloat, avrora, batik, and pmd show prohibitive overhead in both runtime and

memory performance. This is because they generate many iterators and all

properties in this evaluation are intended to monitor iterators. For example,

bloat creates 1,625,770 collections and 941,466 iterators in total while 19,605

iterators coexist at the same time at peak, in an execution. avrora and pmd

also create many collections and iterators. Also, they call hasNext() 78,451,585

times, 1,158,152 times and 4,670,555 times and next() 77,666,243 times, 352,697

times and 3,607,164 times, respectively. Therefore, in this section, we mainly

discuss those examples that have shown most overhead for the previous version

of JavaMOP, although the new version of JavaMOP shows improvements for

other examples as well.

Tables 4.5, 4.6, 4.7 show the percent runtime overhead of Tracematches and

the previous and new versions of JavaMOP. The previous version of JavaMOP

shows, on average, 54% runtime overhead, but the optimized JavaMOP shows

only 21% runtime overhead (16% except the cases where the previous version

crashed for out of memory). This is less than half of the average runtime overhead

that the previous version of JavaMOP showed. Compared to Tracematches,

the optimized JavaMOP shows orders of magnitude less runtime overhead;

Tracematches shows, on average, 309% runtime overhead. Even if we ignore

the fact that Tracematches and the previous version of JavaMOP crashed on

several cases, it clearly shows the improvements in runtime overhead when our

optimization techniques were used. In the worst case benchmark program, bloat,

the optimized JavaMOP managed its runtime overhead under 260%, while the

previous JavaMOP shows more than 440% runtime overhead and Tracematches

62

PhD Thesis, University of Illinois, August 2012

HasNext UnsafeIter
ORIG (sec) TM Old New TM Old New

antlr 3.6 -1 4 -2 0 0 -2
bloat 14.4 2119 448 116 11258 769 251
chart 12.2 0 0 -2 11 5 -1
hsqldb 8.4 15 0 -3 17 -1 -3
jython 9.0 13 0 0 11 -4 1
avrora 13.9 45 48 55 637 298 118
batik 3.5 3 4 3 355 11 8
eclipse 79.5 -2 1 -1 0 2 -1
fop 2.0 200 57 48 350 23 13
h2 18.7 89 17 13 128 7 4
luindex 2.9 0 1 1 0 1 1
lusearch 25.3 -1 7 0 1 0 2
pmd 8.4 176 89 59 1423 162 123
sunflow 32.5 47 5 3 7 0 0
tomcat 14.1 8 -1 1 37 -1 1
tradebeans 45.7 0 1 1 1 0 2
tradesoap 95.0 1 0 0 2 -2 1
xalan 20.9 4 -2 2 27 2 2

Table 4.5: Average Percent Runtime Overhead for Tracematches(TM), Previous
JavaMOP(Old), and optimized JavaMOP(New) against HasNext and UnsafeIter
(convergence within 3%, OOM = Out of Memory)

UnsafeMapIter UnsafeSyncColl
ORIG (sec) TM Old New TM Old New

antlr 3.6 -2 5 1 -1 2 -1
bloat 14.4 OOM OOM 178 1359 735 212
chart 12.2 -1 4 -2 -2 1 -1
hsqldb 8.4 29 0 -3 9 0 -2
jython 9.0 150 11 3 11 -4 1
avrora 13.9 OOM OOM 42 75 140 80
batik 3.5 OOM 65 5 208 444 9
eclipse 79.5 5 -1 0 -4 -1 1
fop 2.0 OOM OOM 14 OOM OOM 25
h2 18.7 1350 OOM 6 868 69 4
luindex 2.9 1 0 1 1 1 1
lusearch 25.3 2 2 0 4 0 1
pmd 8.4 OOM OOM 188 1818 OOM 76
sunflow 32.5 9 6 1 13 6 5
tomcat 14.1 3 -1 1 2 -1 1
tradebeans 45.7 5 -1 -1 -1 -1 2
tradesoap 95.0 2 0 1 0 0 1
xalan 20.9 10 1 2 3 1 3

Table 4.6: Average Percent Runtime Overhead for Tracematches(TM), Previous
JavaMOP(Old), and optimized JavaMOP(New) against UnsafeMapIter and
UnsafeSyncColl (convergence within 3%, OOM = Out of Memory)

63

PhD Thesis, University of Illinois, August 2012

UnsafeSyncMap
ORIG (sec) TM Old New

antlr 3.6 0 2 0
bloat 14.4 1942 858 130
chart 12.2 -2 3 -2
hsqldb 8.4 7 -1 -3
jython 9.0 10 -4 0
avrora 13.9 54 73 16
batik 3.5 5 7 0
eclipse 79.5 OOM 2 -1
fop 2.0 OOM OOM 19
h2 18.7 83 25 5
luindex 2.9 2 2 0
lusearch 25.3 3 1 1
pmd 8.4 OOM OOM 26
sunflow 32.5 17 8 6
tomcat 14.1 2 -1 3
tradebeans 45.7 3 2 5
tradesoap 95.0 2 0 5
xalan 20.9 4 -2 3

Table 4.7: Average Percent Runtime Overhead for Tracematches(TM), Previ-
ous JavaMOP(Old), and optimized JavaMOP(New) against UnsafeSyncMap
(convergence within 3%, OOM = Out of Memory)

HasNext UnsafeIter
ORIG (MB) TM Old New TM Old New

antlr 4.3 4.4 4.1 3.8 4.8 4.0 4.5
bloat 4.9 40.3 19.3 13.9 7.8 175.4 79.0
chart 17.0 17.4 17.3 17.0 16.9 16.5 17.2
hsqldb 136.5 136.1 136.7 137.6 139.1 136.8 137.6
jython 4.9 5.1 4.7 4.8 5.5 5.1 5.0
avrora 4.7 4.6 12.1 9.1 4.4 114.0 15.8
batik 77.3 79.2 81.9 79.3 75.2 93.4 86.6
eclipse 101.0 100.8 104.0 97.1 98.3 100.3 110.3
fop 23.9 97.4 47.1 52.5 24.3 25.6 29.4
h2 267.1 267.8 588.8 565.2 267.2 267.5 262.4
luindex 6.8 5.6 6.7 5.6 6.3 7.4 6.8
lusearch 4.6 4.7 4.6 4.8 4.6 4.3 4.2
pmd 22.3 56.9 65.5 48.5 17.2 147.2 86.4
sunflow 4.5 4.5 4.8 4.9 4.8 4.6 4.7
tomcat 11.7 11.4 11.6 11.4 12.5 11.8 11.5
tradebeans 62.9 62.9 62.4 62.1 63.7 63.9 64.1
tradesoap 63.9 61.8 64.8 63.3 63.4 64.7 64.4
xalan 4.9 4.9 5.0 5.1 4.9 5.0 4.9

Table 4.8: Peak memory usage (in MB) for Tracematches(TM), Previous Java-
MOP(Old), and optimized JavaMOP(New) against HasNext and UnsafeIter
(during 5 iterations, OOM = Out of Memory)

64

PhD Thesis, University of Illinois, August 2012

UnsafeMapIter UnsafeSyncColl
ORIG (MB) TM Old New TM Old New

antlr 4.3 4.1 4.0 4.6 4.1 4.2 4.2
bloat 4.9 OOM OOM 56.7 6.7 100.0 48.3
chart 17.0 16.6 15.9 19.2 17.0 16.4 17.2
hsqldb 136.5 136.0 140.0 136.8 136.1 146.2 146.3
jython 4.9 6.1 20.9 5.1 5.3 4.9 5.4
avrora 4.7 OOM OOM 8.5 4.3 18.4 12.6
batik 77.3 OOM 173.8 79.6 78.2 180.7 85.1
eclipse 101.0 106.9 198.9 101.1 100.4 115.1 90.1
fop 23.9 OOM OOM 28.1 OOM OOM 24.8
h2 267.1 312.4 OOM 268.2 271.4 1456.7 265.5
luindex 6.8 7.4 6.8 6.9 7.4 7.5 7.5
lusearch 4.6 4.0 4.2 4.8 4.5 4.3 4.6
pmd 22.3 OOM OOM 93.6 20.3 OOM 84.6
sunflow 4.5 4.7 4.6 4.4 5.1 4.4 4.9
tomcat 11.7 11.9 12.0 11.0 11.3 11.9 11.3
tradebeans 62.9 63.3 62.4 62.7 63.2 62.8 62.0
tradesoap 63.9 64.1 65.4 62.0 60.7 64.1 65.9
xalan 4.9 4.9 4.9 4.9 5.0 4.7 5.0

Table 4.9: Peak memory usage (in MB) for Tracematches(TM), Previous
JavaMOP(Old), and optimized JavaMOP(New) against UnsafeMapIter and
UnsafeSyncColl (during 5 iterations, OOM = Out of Memory)

UnsafeSyncMap
ORIG (MB) TM Old New

antlr 4.3 4.6 4.4 4.9
bloat 4.9 6.9 25.8 12.3
chart 17.0 17.4 16.4 17.1
hsqldb 136.5 142.1 136.4 137.0
jython 4.9 5.8 5.0 5.1
avrora 4.7 4.4 12.4 4.9
batik 77.3 79.9 84.8 76.7
eclipse 101.0 OOM 102.3 98.7
fop 23.9 OOM OOM 25.2
h2 267.1 271.0 688.2 270.0
luindex 6.8 7.1 7.3 11.0
lusearch 4.6 4.6 4.8 4.7
pmd 22.3 OOM OOM 32.9
sunflow 4.5 4.5 4.8 4.5
tomcat 11.7 11.4 11.3 11.8
tradebeans 62.9 64.0 62.7 64.0
tradesoap 63.9 65.5 65.1 65.6
xalan 4.9 5.1 5.1 4.9

Table 4.10: Peak memory usage (in MB) for Tracematches(TM), Previous
JavaMOP(Old), and optimized JavaMOP(New) against UnsafeSyncMap (during
5 iterations, OOM = Out of Memory)

65

PhD Thesis, University of Illinois, August 2012

shows more than 1300%, and both of them crashed for UnsafeMapIter. With

avrora, on average, the new version of JavaMOP shows 62% runtime overhead,

while the previous version of JavaMOP shows 140% runtime overhead and

Tracematches shows 203% and both of them hang for UnsafeMapIter. With pmd,

on average, the new version of JavaMOP shows 94% runtime overhead, while the

previous version of JavaMOP shows 125% runtime overhead and hangs for three

specifications, and Tracematches shows 1139% and hangs for two specifications.

Tables 4.8, 4.9, and 4.10 show the peak memory usage of the three systems.

the new version of JavaMOP has lower peak memory usage than the previous

version of JavaMOP in most cases. The cases where the new version of JavaMOP

does not show lower peak memory usage are within the limits of expected memory

jitter. However, memory usage of the new version of JavaMOP is still higher than

the memory usage of Tracematches in some cases. Tracematches has several finite

automata specific memory optimizations [19], which cannot be implemented in

a formalism-independent system like the new version of JavaMOP. Although

Tracematches is sometimes more memory efficient, it shows prohibitive runtime

overhead monitoring bloat and pmd. There is a trade-off between memory

usage and runtime overhead. If the new version of JavaMOP more actively

removes terminated monitors, memory usage will be lower, at the cost of runtime

performance. Overall, our monitor termination optimization achieves the most

efficient parametric monitoring system with reasonable memory performance.

From this experiment, considering the fact that these cases are the worst

combinations of benchmark programs and properties, we can see that our research

on efficiency of runtime monitoring were successful in realizing efficient runtime

monitoring of parametric properties.

4.4.3 Characteristics of Specifications and Optimization

Techniques

Each specification has different number of parameters, different number of events,

and event patterns so that optimization techniques improve them differently.

We look into the characteristics of specifications and the nature of optimization

techniques. Figure 4.11 summarizes the evaluation with partially enabled op-

timization techniques, on bloat which shows the most runtime overhead in the

main evaluation in this section. As more optimization techniques are applied, the

runtime performances improve accordingly. Indexing Cache improves runtime

performance over all specifications; therefore we focus on how the other two

techniques affect each specification.

HasNext

HasNext has only one parameter, Iterator and there is no non-parameterized

event. Thus, there is no partial initialization of parameters; the enable set

optimization does not make any change on this specification. Also, it is clear

66

PhD Thesis, University of Illinois, August 2012

Old New
Enable Set � � �
Indexing Cache � �
Monitor Collection �
HasNext 448 448 135 116
UnsafeIter 769 769 400 251
UnsafeMapIter OOM 1091 920 178
UnsafeSyncColl 735 712 487 212
UnsafeSyncMap 858 660 407 130

Table 4.11: Average Percent Runtime Overhead for JavaMOP, gradually en-
abling the optimization techniques from Previous JavaMOP(Old) to optimized
JavaMOP(New), against bloat (convergence within 3%, OOM = Out of Memory)

that we can garbage collect a monitor when its parameter is garbage collected.

Therefore, the JVM garbage collection effectively collects unnecessary monitors

without help from our monitor garbage collection. As we can see in Figure 4.11,

the enable set optimization makes no change and the monitor collection makes

only a small change, which comes from more lighter data structures that the

new version of JavaMOP supports.

UnsafeIter

UnsafeIter has two parameters, Collection and Iterator. Since the creation

event initiates all two parameters, the enable set optimization does not affect

this specification as well. However, unlike HasNext, it is unclear when to garbage

collect monitors in this specification. When all parameters are garbage collected,

it is obvious that the corresponding monitor can be collected; the JVM garbage

collection can handle this case. When an Iterator is collected, there is no

way for the related monitor to reach the final state. Since the JVM garbage

collection cannot handle this case, our monitor garbage collection can handle it,

improving the performance.

UnsafeMapIter

UnsafeMapIter has three parameters, Map, Collection, and Iterator. It has a

creation event which initiates only the first two parameters. Thus, enable set

optimization effectively removes unnecessary creation of monitors. In Figure 4.11,

it was not possible to monitor this specification without the enable set opti-

mization, but it becomes possible after applying this optimization. When an

Iterator is garbage collected, the related monitor cannot reach to the final state,

therefore the monitor can be garbage collected although its map and collection

are still alive. While the JVM garbage collector cannot handle this case since the

monitor is still accessible, our monitor garbage collection can effectively handle

this. In Figure 4.11, we can see a great improvement since Map and Collection

have much longer lifetime than Iterator.

67

PhD Thesis, University of Illinois, August 2012

UnsafeSyncColl

UnsafeSyncColl has two parameters, Collection and Iterator. Its creation event

initiates only one parameter, Collection, therefore the enable set optimization

improves the performance. However, the improvement is small since it has only

two parameters while UnsafeMapIter and UnsafeSyncMap has three parameters.

This is because there are more possible partial parameter instances to skip

monitoring in the specifications with three parameters. Like UnsafeIter, the

garbage collection improves the performance of monitoring this specification

since it can handle the case where only the Iterator is collected.

UnsafeSyncMap

UnsafeSyncMap has three parameters, Map, Set, and Iterator. The creation event

initiates only the first parameter, Map and it has more number of parameters than

UnsafeSyncColl, therefore the enable set optimization improves the performance

of monitoring this specification more than it does on UnsafeSyncColl (Figure 4.11).

Also, the garbage collection greatly improves the performance for UnsafeMapiter

due to the same reason.

4.5 Summary

In this chapter, we present a series of formalism-independent optimization

techniques for parametric monitoring. Our thorough evaluation shows our

optimization techniques effectively improves not only average performance but

also worst case performance. Since all optimization techniques introduced

in this chapter are formalism-independent, there are some advantages and

disadvantages. While these techniques can be applied to other parametric

monitoring system for its generality, they cannot fully utilize characteristics of

each logical formalism for better optimization. Although we achieved the best

performance among parametric monitoring systems even with these formalism-

independent optimization techniques, further improvements can be achieved using

formalism-dependent optimizations. For example, in the enable set optimization,

state-based analysis can give finer grained results than the current event-based

analysis. However, state-based analysis might not be applied to other formalisms

(e.g. context free grammar).

68

PhD Thesis, University of Illinois, August 2012

Chapter 5

Scalable
Parametric Monitoring

In real usages of parametric runtime monitoring, it is natural to monitor multiple

specifications simultaneously (e.g., security policies). However, to the best of

the author’s knowledge, all earlier efforts on parametric monitoring have been

focusing on better performance when monitoring a single specification. Many

of the existing parametric monitoring systems are not capable of monitoring

multiple specifications simultaneously, or their runtime and memory overheads

increase linearly (or worse) as they monitor more specifications. Those parametric

monitoring systems easily become prohibitive with the existence of a large number

of specifications. A practical parametric monitoring system must be scalable to

the number of specifications that it monitors simultaneously.

Theoretically, if all specifications are independent from each other without

any overlap in declared events or parameter types, there is no way to monitor

them more efficiently. However, in practice, there are likely multiple specifica-

tions on the same class, often sharing some events and parameter types. Among

137 specifications from the Java API documentation of three main packages,

in [59], only 42 specifications are totally independent from all the other specifica-

tions. Therefore, it is a reasonable assumption that some specifications describe

behaviors of the same parameter, sharing events and parameters.

In this chapter, we present scalable parametric monitoring techniques for

monitoring multiple simultaneous specifications more efficiently in the presence

of some overlaps between specifications. The main idea of the scalable techniques

is to share resources for monitoring between specifications, reducing the memory

usage and utilizing the caches more often. Since our scalable techniques are

formalism-independent and address general issues in the indexing tree technique,

they can be applied to other parametric monitoring systems that use similar

indexing tree structures. Also, they are orthogonal to other optimization tech-

niques like static optimization [62, 29, 28, 41], which reduce runtime and memory

overhead significantly. However, we deliberately disabled static optimizations in

this chapter to measure the effectiveness of our scalable techniques properly.

This chapter is structured as follows: Section 5.1 presents a thorough pro-

filing of current runtime overheads from monitoring, and discusses the main

current bottlenecks in monitoring; Section 5.2 discusses our scalable parametric

monitoring techniques in detail; Section 5.3 presents our evaluation results for

69

PhD Thesis, University of Illinois, August 2012

the 137 specifications; Section 5.4 discusses some ineffectual approaches that we

have tried; and Section 5.5 concludes.

5.1 Overhead Analysis

In this section, we analyze the overhead of monitoring to find the main bottlenecks

in monitoring. For this analysis, we have selected 9 specifications1 that have

caused the most overhead in previous evaluations. We run the specifications on

the bloat and pmd benchmarks because they have shown the largest overheads

among the benchmarks in our evaluation (Section 5.3). We use the same

system settings from the evaluation, and HPROF, the Heap/CPU profiling tool

included in the Sun JDK [6] is used to obtain performance statistics. There

are two modes for CPU usage analysis in HPROF: the CPU Usage Times

Profile and the CPU Usage Sampling Profile. The CPU Usage Times Profile

adds a considerable amount of overhead, obstructing the analysis of the actual

bottlenecks. Moreover, we do not need to know the exact time distribution to

figure out where bottlenecks occur. The CPU Usage Sampling Profile, which

causes less performance degradation, is good enough for this analysis. Since the

CPU Usage Sampling Profile does not combine the results for the same method

of different object instances, we manually combine them and categorize.

Tables 5.1 and 5.2 summarize the profiling results for monitoring bloat and

pmd. The results for bloat show total overhead of 1330%; that is 1430% total

execution time compared to the original non-monitored bloat. In the same

way, monitoring pmd shows a total overhead of 831%. Because profiling can

change the program behavior, numbers may contain errors, so they should be

considered as rough estimations.

The MOPSet.event entry in Table 5.1 shows the overhead spent updating

monitor states when events occur. This component is formulated from the

property of the specification, and is already optimized well. MOPMap.cleanup

and MOPMap.full cleanup remove mappings of garbage collected parameter

objects and monitors. The difference is whether it partially or fully scans the

map. These cleanup methods are well tuned so that they are unlikely to be im-

proved significantly. The methods MOPMap.endObject and MOPSet.endObject

propagate information about garbage collected parameters. They consist of

simple statements and have already been thoroughly optimized [51].

System.identityHashCode is the system default hashing function provided in

the Java API, which is based on reference identity instead of the equals method

provided by classes. It returns the same hash code for objects a and b if a == b,

and tries to return different codes otherwise, but uniqueness is not guaranteed.

Although this is just one of several statements in the MOPMap.get method that

1 Map UnsafeIterator, Collection UnsafeIterator, Iterator HasNext,
Collections SynchronizedCollection, NavigableMap Modification,
Collections SynchronizedMap, Iterator RemoveOnce,
List UnsynchronizedSubList, Collections SortBeforeBinarySearch

70

PhD Thesis, University of Illinois, August 2012

Overhead Fraction Method Name

355% Original Program
281% MOPSet.event
205% MOPMap.cleanup
130% System.identityHashCode
69% MOPMap.get
67% MOPSet.size
51% MOPMap.endObject
28% Aspect Code
27% MOPMap.full cleanup
22% MOPSet.endObject

Table 5.1: Overhead distribution when monitoring bloat (total overhead: 1330%)

Overhead Fraction Method Name

479% Original Program
90% MOPSet.event
56% MOPMap.cleanup
28% System.identityHashCode
25% MOPSet.size
13% MOPMap.get
8% MOPMap.full cleanup
7% MOPMap.endObject
6% WeakReference ⟨init⟩
5% MOPSet.endObject

Table 5.2: Overhead distribution when monitoring pmd (total overhead: 831%)

Peak Young Garbage Full Garbage
Description Memory Usage Collection Time Collection Time

Original bloat 5MB 6% 2%
Original pmd 21MB 7% 8%

Monitoring bloat 970MB 278% 258%
(out of 1330% overhead)

Monitoring pmd 603MB 172% 181%
(out of 831% overhead)

Table 5.3: Memory usage analysis

71

PhD Thesis, University of Illinois, August 2012

retrieves monitor(s) for a parameter instance, it produces more overhead than

all other methods combined. Calling this method is unavoidable since it is used

to retrieve keys in the MOPMap implementation. However, we need to call this

method as little as possible.

While many monitoring components show significant overhead, it is notable

that the original program components are also slower when monitoring is present

(i.e. 100%). To understand this situation, we analyze the memory usage

when monitoring, using Java Management Extensions (JMX) [1]. Table 5.3

summarizes the memory usage analysis. Monitoring triggers huge memory

overheads, resulting in significantly more garbage collection time. With respect

to the original program execution time (100%), in monitoring bloat, young object

garbage collection takes 278% and full garbage collection takes 258%. In total,

garbage collection takes 536% when monitoring bloat and 353% when monitoring

pmd. This explains why the original components of the code run far slower when

monitoring is present.

We must conclude that the main remaining bottleneck to runtime performance

in monitoring is excessive memory usage. Huge memory overhead causes more

frequent and longer garbage collections, resulting in larger runtime overhead. We

should reduce memory overhead to optimize runtime performance. For example,

in Table 5.2, WeakReference object initializations show 6% overhead, while there

is no other class ranked in the result. This is because there is a very large

number of weak references. We need to reduce the number of objects created for

monitoring purposes, especially weak references.

5.2 Optimizations for Scalability

The more specifications that we monitor simultaneously, the more overhead.

Our goal is to improve the overhead in the presence of multiple specifications by

finding structures and parts of the monitoring algorithm that may be shared

between different specifications. If no specifications overlap with others, in

terms of declared events or parameters types, there is nothing much we can

improve. Theoretically, the overhead in this case will be the sum of overheads

from monitoring them individually. When the memory overhead is excessive, it

can be worse than the sum because of the garbage collection behavior.

However, in practice, there are generally multiple specifications for each

class, often sharing some events. Among 137 specifications from [59], only 42

specifications are totally independent from all other specifications. Another

95 specifications share parameters or events with some of other specifications.

By sharing resources between overlapping specifications we can achieve a truly

scalable parametric runtime monitoring system.

In this Section, we explain new techniques for increasing runtime and memory

performance first, then we focus on the big picture of the new monitoring mech-

anism in comparison with the previous monitoring mechanism. Our techniques

72

PhD Thesis, University of Illinois, August 2012

are formalism-independent and general so that they can be applied to other

parametric monitoring systems that use similar indexing tree structures.

5.2.1 Global WeakReference Table

As explained in Chapter 2, WeakReference is a reference class that refers to an

object without blocking it from garbage collection. The indexing tree uses weak

references to store parameter objects in its mappings, without blocking garbage

collections. In previous versions of JavaMOP, there was no collaboration between

specifications, so each specification created a weak reference object for each

parameter object. Thus, multiple weak references were potentially created for

the same parameter object, if it appeared in different specifications. There is no

need to have multiple copies of WeakReference; it simply wastes memory.

As a solution to share WeakReference objects between specifications, we intro-

duce a global WeakReference table, implemented in the class GlobalWeakRefTable,

for each parameter type, which all specifications share. This table takes a pa-

rameter object as an input and outputs a weak reference. If there is no weak

reference in the table for the input object, the table will create one. Thus,

weak references will be created only by this table and there will be exactly one

copy for one parameter object. Also, upon a non-creation event, we can query

the existence of the weak reference without creating one. If there is no weak

reference for the parameter object in the table, then there is no monitor in any

specification for the parameter object. Thus, we can skip the rest of the steps

for checking the existence of monitors for the non-creation event.

The functionality of the GlobalWeakRefTable is similar to HashMap from the

Java API, but its implementation is totally different. If the GlobalWeakRefTable

stores keys (parameter objects) and values (weak references) in its internal

table like HashMap, it will cause memory leaks. Instead, the GlobalWeakRefTable

stores only weak references. Since weak references can refer to the original

objects, we can retrieve the weak reference for an object by checking if the weak

reference points to the object.

Although the GlobalWeakRefTable introduces one more step in the monitoring

mechanism, it reduces not only memory overhead by reducing the number of

weak references, but also runtime overhead. From the analysis in Section 5.1,

we know that System.identityHashCode() causes the most runtime overhead in

the indexing trees. Instead of calling this method in each indexing tree, each

GlobalWeakRefTable calls this method and stores the result in weak references so

that indexing trees can reuse it. To allow this, we implement MOPWeakReference,

a subclass of WeakReference which has a hashcode field, and change the indexing

tree to take MOPWeakReference as input rather than parameter objects. With

this change, indexing trees no longer call the System.identityHashCode() method,

removing the main overhead in accessing them. The GlobalWeakRefTable calls

73

PhD Thesis, University of Illinois, August 2012

this method at most once for each parameter object in an event, minimizing the

number of the method calls to System.identityHashCode().

The GlobalWeakRefTable is essentially the same as the indexing tree except

that it does not return monitors. It cleans up references to garbage collected

objects and expands the internal data structure just like the indexing tree

does [51]. We can reduce overhead even more by combining GlobalWeakRefTables

with relevant indexing trees, reducing the number of tables and maps. If there

is an indexing tree that has the same parameter type at the first level as the

GlobalWeakRefTable, they can be combined into one data structure. In the

majority of cases, GlobalWeakRefTables can be combined with indexing trees.

Among the many GlobalWeakRefTables for the 137 specifications from [59], there

are only two GlobalWeakRefTables that cannot be combined into indexing trees

when monitoring individually, and all GlobalWeakRefTables can be combined into

indexing trees when monitoring them simultaneously.

5.2.2 Caches for Global WeakReference Table

Under our new technique, the GlobalWeakRefTable is the most frequently ac-

cessed data structure in monitoring since all events should query this table

before accessing any indexing tree. Therefore, it is important to optimize this

table. One natural and common method of optimization is caching. In the

previous approach, there was already an indexing cache (Section 4.2). After

adding GlobalWeakRefTables, it caches not only a monitor but also weak refer-

ences for the monitor so that it can reduce the number of the method calls to

System.identityHashCode(). Thus, it acts as a cache for both the indexing tree and

the GlobalWeakRefTable.

Although the indexing cache provides a good cache hit ratio within a speci-

fication, it is not good enough when monitoring multiple specifications. First,

since there are multiple events from different specifications for the same object,

it is likely that multiple specifications consecutively access GlobalWeakRefTables

for the same object, when their indexing caches miss. Second, the indexing cache

is a one-entry cache which is fragile if more than two objects are frequently used

together in an interleaved way.

To improve the performance upon this observation, we now use a one-entry

level-1 cache to handle the first case and a multi-entry level-2 cache to handle

the second case. On a query to the table, we first check the one-entry cache and

when it misses, we check the multi-entry cache. However, if we linearly search

in the multi-entry cache, the overhead will increase linearly with the number

of entries in the cache. Thus, we use a mapping so that we can check only one

entry at a time. Because each instrumentation point tends to access the same

object consecutively, we index the multi-entry cache by a few least significant

bits of the unique id number for instrumentation points, provided by AspectJ.

74

PhD Thesis, University of Illinois, August 2012

In this way, the multi-entry cache is implemented efficiently. The benefit of the

caches surpasses the overhead from maintaining the caches in most cases.

5.2.3 Combining Indexing Trees

The indexing tree is one of the major bottlenecks in terms of both runtime and

memory performance. It contains all of the mappings from parameter objects to

monitors. The size of the indexing tree grows as the specification creates more

monitors. Additionally, the indexing tree cleans up mappings of garbage collected

parameter objects and monitors by itself. Therefore, we can reduce runtime and

memory overhead by combining indexing trees. We can combine indexing trees if

their defined parameter types share the same prefix. For example, indexing trees

for ⟨Collection, Iterator⟩ and ⟨Collection⟩ can be combined but indexing trees

for ⟨Map, Collection, Iterator⟩ and ⟨Collection, Iterator⟩ cannot be combined

since the first parameter type, Map, appears only in the first.

Combining indexing trees between different specifications is also possible as

long as they satisfy the condition for combining. However, it is usually inefficient

because there is insufficient mapping overlap between specifications (Section 5.4).

Thus, we combine indexing trees only within each specification. Combining index-

ing trees in each specification improves not only the performance of monitoring

multiple specifications but also the performance of monitoring each specification.

For example, Figure 5.1 shows all indexing trees for Map UnsafeIterator

before combining them. There are six indexing trees for:

1. ⟨Map, Collection, Iterator⟩

2. ⟨Map, Collection⟩

3. ⟨Map⟩

4. ⟨Collection, Iterator⟩

5. ⟨Collection⟩

6. ⟨Iterator⟩

Among six indexing trees, the first three indexing trees can be combined into

one, and the fourth and fifth indexing trees can be combined as well. As a result,

three indexing trees will remain (Figure 5.2).

5.2.4 Eliminating HashEntry

HashEntry is an internal data structure of indexing trees for storing a map-

ping from a parameter to a monitor, a set, or a next-level map. HashMap from

the Java API and ReferenceIdentityMap from the Apache Commons Collec-

tions Library [42] also use similar data structures for the same purpose. It

contains a WeakReference object (specifically, MOPWeakReference), a monitor or

75

PhD Thesis, University of Illinois, August 2012

m

c

i

...

...
i

...

... c

...

m

c

...

... c

...

m

...

c

i

...

...
i

...

c

...

i

...

Map

Monitor

Set of Monitors

Figure 5.1: Indexing trees for Map UnsafeIterator before combining

m

c

i

...

...

i

...

...
c

...

c

i

...

...

i

...

i

...

Map

Monitor

Set of Monitors

Figure 5.2: Indexing trees for Map UnsafeIterator after combining

76

PhD Thesis, University of Illinois, August 2012

a set to contain monitors, and a reference to another HashEntry for chaining

them to solve hash conflicts.

Although this data structure is small (it takes only 12 bytes plus some

auxiliary data that the JVM adds, on 32bits x86 machine), it is the most created

data structure in monitoring. For bloat, there are about twice as many HashEntry

objects as monitors, in monitoring 137 specifications simultaneously in Section 5.3.

This is because a monitor can belong to many indexing trees. Then, there are

about 56 million HashEntry objects created. This costs at least 670 Megabytes

in the total memory usage (note that it is not the peak memory usage).

We observe that a monitor or a set belongs to only one HashEntry object.

Although a monitor can belong to many indexing trees, only the indexing tree

for the fully instantiated parameter instances can directly retrieve a monitor for

the given parameter instance. All other indexing trees return a set of monitors,

and a set can belong to only one indexing tree. Therefore, a monitor or a set can

replace HashEntry by piggybacking the information about the mapping. Since

itself is a value, it only needs to piggyback a MOPWeakReference and a reference

to another entry, which is a monitor or a set in this case. When indexing

trees are combined, a HashEntry can contain multiple values. In this case, we

do not apply this technique.

The memory usage of HashEntry is just transferred to monitors and sets except

references to values, so improving the total memory usage is not the key point

in this technique (nevertheless, it reduces about 200 Megabytes of total memory

usage in monitoring bloat against 137 specifications). This technique reduces the

number of objects to garbage collect when monitors are collected. In effect, the

garbage collector of the JVM can reuse more space in the same amount of time;

it improves the runtime and memory performance of monitoring noticeably.

5.2.5 Specification Activator

In monitoring multiple specifications, such as the 137 specifications from [59],

it is common that only some of them are actively monitored when applied

to a given program. This is because one program generally does not cover

every specification in such a large set of standardized specifications. When a

specification does not have any creation event during the execution of a program,

it does not need to monitor the program at all. We keep a boolean value as an

activator for each specification and activate it when there is at least one creation

event. When the specification is not activated, we ignore all non-creation events,

suppressing the unnecessary overhead. If there is no creation event at all during

the execution, all non-creation events will be ignored.

This simple technique successfully deactivates unnecessary specifications

during the execution of a program, reducing unnecessary runtime overhead.

Even in monitoring a single specification, it can effectively remove unnecessary

overhead. In our evaluation (Section 5.3), some specifications are effectively

77

PhD Thesis, University of Illinois, August 2012

event (p1, ..., pn)

Indexing Cachemonitor(s)

Indexing Treemonitor(s)

Copy States
from smaller

parameter instance

monitor(s)

Create a
New Monitor

monitor

Update Stop

cache miss

not exist

nothing to copy

a creation event?

yes

no

cache hit

found

copied

created

Figure 5.3: Overview of the previous monitoring mechanism

deactivated and show no overhead at all. The overhead of maintaining speci-

fication activators is essentially unnoticeable, far less than the error range of

our evaluation (up to 3%).

5.2.6 Summary of New Monitoring Techniques

Figure 5.4 summarizes the scalable parametric monitoring mechanism using

techniques introduced in this section. Compared to the previous monitoring

mechanism summarized in Figure 5.3, there is an activator at the beginning

and the GlobalWeakRefTable before the indexing tree. Also, instead of parameter

objects, it uses weak references in accessing indexing trees.

The main idea of our scalable parametric monitoring is that the global

WeakReference table, called GlobalWeakRefTable, allows sharing of weak references,

reducing memory overhead. Also, caching on this table reduces runtime overhead

over all specifications using it. Moreover, there are fewer indexing trees and there

is no hash method call from the indexing tree. Thus, the overhead from indexing

trees has been dramatically decreased. Since the “Copy State” component and

the “Create a New Monitor” component also access the indexing tree to add

new monitors, overheads from both components decrease as well.

78

PhD Thesis, University of Illinois, August 2012

event (p1, ..., pn)

Indexing Cachemonitor(s)

GlobalWeakRefTable

Weak
References

Indexing Treemonitor(s)

Copy State
from smaller

parameter instance

monitor(s)

Create a
New Monitor

monitor

Update Stop

yes, activate

a creation event?
no

activated?
no

yes

cache hit

monitor exists

cache hit, no monitor

cache miss

found or created

not exist

not exist

found

nothing to copy

a creation event?

yes

no

copied

created

Figure 5.4: Overview of the scalable parametric monitoring mechanism

5.3 Evaluation

In this section, we evaluate JavaMOP with the presented scalability improve-

ments on 137 specifications from [59]. We compare our work on scalability to the

optimized version of JavaMOP (JavaMOP 2011) which implements all optimiza-

tion techniques presented in Chapter 4. Before the work in this chapter, when

monitoring a single property, JavaMOP had the best runtime performance of any

monitoring system, while maintaining competitive memory performance (Sec-

tion 4.4). Also, JavaMOP 2011 can monitor 137 specifications but not efficiently

enough. To the best of the author’s knowledge, there is no other parametric

monitoring tool which is capable of practically monitoring 137 specifications

simultaneously.

79

PhD Thesis, University of Illinois, August 2012

5.3.1 Experimental Settings

For our evaluation, we used a Pentium 4 2.66GHz / 2GB RAM / Ubuntu 9.10

machine and Sun JVM 1.6.0 10. For instrumenting benchmark programs with

JavaMOP monitoring code, we used version 1.6.11 of the AspectJ compiler

(ajc). We monitor 137 specifications for version 9.12 of the DaCapo (DaCapo

9.12) benchmark suite. We also present the result from the bloat benchmark

in the old version of the DaCapo (DaCapo 2006-10) benchmark suite, because

it generates large overheads and it is missing in the new version. We used the

default data input size, and the -converge option so that the execution time

result converges within 3%. AspectJ instrumentation can cause the code to

run differently, sometimes resulting in negative overheads even without mon-

itoring. Also, monitoring affects the garbage collection behavior with more

memory pressure, often improving garbage collection time; this also accounts

for the negative overheads.

All 137 specifications from [59] are based on the Java 6 API documentation

concerning three main packages: 30 specifications for java.io, 49 specifications

for java.lang, and 58 specifications for java.util. Some specifications are related

to the end of the program execution. However, two versions of DaCapo iterate

a benchmark program in one execution until the execution time converges.

Therefore, we modified those specifications slightly so that they catch the end of

iteration of a benchmark program.

5.3.2 Results and Discussions

Tables 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 5.10, and 5.11 summarize the results of the

evaluation on the two versions of JavaMOP. Monitoring 137 specifications simul-

taneously is a considerably challenging task. While monitoring 137 specifications

with bloat, there are 839,575,093 events and 27,826,935 monitors created. With

pmd, there are 68,438,904 events and 9,510,880 monitors created. Also, in Java-

MOP 2011, 129 indexing trees are required, but the indexing tree combination

technique (Section 5.2.3) reduces the number of indexing trees to 105. Therefore,

it is not surprising to see a huge overhead. Although JavaMOP 2011 was the

most efficient parametric monitoring system until the work in this chapter, it

shows more than 100% overhead on five benchmarks out of 15, including fop.

For fop, the instrumentation crashes because the added instrumentation

results in a method larger than the 64KB limit for Java methods. The method

size was already too big before the instrumentation, and our instrumentation

makes it exceed the limit. In regular programming, the limit of 64KB seems

reasonable; any method over 64KB should be re-designed and divided into several

methods. However, for procedurally generated code, this limit imposed by Java

seems too harsh. While we were unable to obtain overhead for fop with 137

simultaneous specifications in either version of JavaMOP, we do have numbers

for monitoring the specification of each package separately.

80

PhD Thesis, University of Illinois, August 2012

java.io
of specs 30

Previous Scalable
Orig (sec) Sum Together Sum Together

bloat 14.4 6 -2 -3 0
avrora 13.9 7 8 0 0
batik 3.5 0 4 0 2

eclipse 79.5 0 -1 0 3
fop 2.0 8 7 18 0
h2 18.7 0 0 13 3

jython 13.6 10 -1 0 3
luindex 2.9 9 5 5 5
lusearch 25.3 14 13 17 13

pmd 8.4 0 -1 0 -2
sunflow 32.5 0 1 0 3
tomcat 14.1 0 -1 0 1

tradebeans 45.7 40 12 11 2
tradesoap 95.0 0 2 11 0

xalan 20.9 6 12 -7 24

Table 5.4: Average percent runtime overhead for Previous JavaMOP (JavaMOP
2011) and Scalable JavaMOP (JavaMOP 2012) against 30 specifications from
java.io (convergence within 3%, N/A: instrumentation crashes)

java.lang
of specs 49

Previous Scalable
Orig (sec) Sum Together Sum Together

bloat 14.4 289 327 300 339
avrora 13.9 19 10 12 10
batik 3.5 0 3 0 1

eclipse 79.5 0 1 42 0
fop 2.0 96 56 52 54
h2 18.7 17 24 34 19

jython 13.6 27 21 18 23
luindex 2.9 5 5 12 2
lusearch 25.3 28 34 21 28

pmd 8.4 -3 8 0 6
sunflow 32.5 0 1 0 1
tomcat 14.1 0 0 0 1

tradebeans 45.7 33 3 26 -1
tradesoap 95.0 16 2 9 0

xalan 20.9 -17 -12 -32 -15

Table 5.5: Average percent runtime overhead for Previous JavaMOP (JavaMOP
2011) and Scalable JavaMOP (JavaMOP 2012) against 49 specifications from
java.lang (convergence within 3%, N/A: instrumentation crashes)

81

PhD Thesis, University of Illinois, August 2012

java.util
of specs 58

Previous Scalable
Orig (sec) Sum Together Sum Together

bloat 14.4 1203 1493 762 556
avrora 13.9 468 336 279 177
batik 3.5 50 37 41 24

eclipse 79.5 0 1 7 0
fop 2.0 584 450 380 325
h2 18.7 71 54 70 38

jython 13.6 112 90 85 73
luindex 2.9 3 5 11 6
lusearch 25.3 29 26 25 28

pmd 8.4 858 898 584 371
sunflow 32.5 4 8 4 4
tomcat 14.1 0 0 0 1

tradebeans 45.7 51 1 126 0
tradesoap 95.0 12 0 16 0

xalan 20.9 38 52 27 53

Table 5.6: Average percent runtime overhead for Previous JavaMOP (JavaMOP
2011) and Scalable JavaMOP (JavaMOP 2012) against 58 specifications from
java.util (convergence within 3%, N/A: instrumentation crashes)

All
of specs 137

Previous Scalable
Orig (sec) Sum Together Sum Together

bloat 14.4 1498 1950 1059 886
avrora 13.9 494 364 291 182
batik 3.5 50 40 41 24

eclipse 79.5 0 -2 49 -1
fop 2.0 688 N/A 450 N/A
h2 18.7 88 73 117 55

jython 13.6 149 121 103 83
luindex 2.9 17 9 28 7
lusearch 25.3 71 75 63 59

pmd 8.4 855 988 584 394
sunflow 32.5 4 10 4 5
tomcat 14.1 0 0 0 1

tradebeans 45.7 124 -1 163 0
tradesoap 95.0 28 0 36 -1

xalan 20.9 27 34 -12 23

Table 5.7: Average percent runtime overhead for Previous JavaMOP (JavaMOP
2011) and Scalable JavaMOP (JavaMOP 2012) against 137 specifications from
java.io, java.lang, and java.util (convergence within 3%, N/A: instrumentation
crashes)

82

PhD Thesis, University of Illinois, August 2012

java.io
of specs 30

Previous Scalable
Orig Sum Together Sum Together

bloat 4.9 5.0 5.7 5.0 5.5
avrora 4.7 4.7 4.5 4.6 4.4
batik 77.3 77.3 76.3 77.3 79.2

eclipse 101.0 101.0 100.0 101.0 99.4
fop 23.9 22.9 25.8 25.4 25.9
h2 267.1 267.1 265.3 267.1 260.9

jython 21.9 22.1 23.0 21.9 22.9
luindex 6.8 5.7 7.9 5.7 7.0
lusearch 4.6 4.4 4.7 4.0 4.6

pmd 22.3 22.3 25.1 22.3 26.3
sunflow 4.5 4.5 4.5 4.5 5.0
tomcat 11.7 11.7 11.7 11.7 12.3

tradebeans 62.9 64.3 63.3 67.1 63.2
tradesoap 63.9 63.9 64.2 63.9 64.1

xalan 4.9 4.9 5.0 4.9 4.9

Table 5.8: Peak memory usage (in MB) for Previous JavaMOP (JavaMOP 2011)
and Scalable JavaMOP (JavaMOP 2012) against 30 specifications from java.io
(during 5 iterations, N/A: instrumentation crashes)

java.lang
of specs 49

Previous Scalable
Orig Sum Together Sum Together

bloat 4.9 559.2 626.5 628.0 627.8
avrora 4.7 10.9 12.3 7.9 12.5
batik 77.3 77.3 75.1 77.3 72.5

eclipse 101.0 101.0 103.2 101.0 109.1
fop 23.9 79.0 73.2 49.6 58.0
h2 267.1 303.5 327.1 317.4 357.7

jython 21.9 57.0 76.1 78.6 86.5
luindex 6.8 8.1 18.8 8.0 19.7
lusearch 4.6 4.4 7.5 5.1 7.0

pmd 22.3 87.1 38.5 46.8 38.0
sunflow 4.5 4.5 6.6 4.5 6.3
tomcat 11.7 11.7 11.8 11.7 12.3

tradebeans 62.9 66.6 63.1 66.0 63.1
tradesoap 63.9 69.6 62.1 67.3 64.4

xalan 4.9 20.4 21.4 22.2 21.9

Table 5.9: Peak memory usage (in MB) for Previous JavaMOP (JavaMOP 2011)
and Scalable JavaMOP (JavaMOP 2012) against 49 specifications from java.lang
(during 5 iterations, N/A: instrumentation crashes)

83

PhD Thesis, University of Illinois, August 2012

java.util
of specs 58

Previous Scalable
Orig Sum Together Sum Together

bloat 4.9 330.2 1011.2 112.1 171.8
avrora 4.7 44.8 73.1 33.8 56.2
batik 77.3 99.2 166.2 89.1 89.5

eclipse 101.0 101.0 113.8 101.0 99.2
fop 23.9 341.4 402.6 232.6 117.7
h2 267.1 2307.9 1176.0 1363.2 475.5

jython 21.9 91.8 191.8 85.4 61.5
luindex 6.8 6.4 8.8 6.7 12.8
lusearch 4.6 4.8 4.5 5.0 4.9

pmd 22.3 430.5 1474.9 371.3 175.8
sunflow 4.5 4.7 5.5 4.3 4.5
tomcat 11.7 11.7 11.4 11.7 11.7

tradebeans 62.9 66.3 63.0 63.6 62.8
tradesoap 63.9 68.3 65.4 66.0 62.7

xalan 4.9 4.9 5.0 5.0 4.9

Table 5.10: Peak memory usage (in MB) for Previous JavaMOP (JavaMOP
2011) and Scalable JavaMOP (JavaMOP 2012) against 58 specifications from
java.util (during 5 iterations, N/A: instrumentation crashes)

All
of specs 137

Previous Scalable
Orig Sum Together Sum Together

bloat 4.9 884.6 ≥1500 735.3 1295.9
avrora 4.7 51.0 737.2 36.9 65.0
batik 77.3 99.2 166.7 89.1 92.1

eclipse 101.0 101.0 108.0 101.0 102.6
fop 23.9 395.5 N/A 259.8 N/A
h2 267.1 2344.3 1343.5 1413.5 845.6

jython 21.9 127.1 240.2 142.1 91.7
luindex 6.8 6.6 20.8 6.8 20.8
lusearch 4.6 4.4 7.4 4.9 8.2

pmd 22.3 495.3 1457.4 395.8 254.9
sunflow 4.5 4.7 7.5 4.3 7.1
tomcat 11.7 11.7 11.9 11.7 11.7

tradebeans 62.9 71.4 63.1 70.9 63.1
tradesoap 63.9 74.0 64.7 69.4 63.6

xalan 4.9 20.4 22.9 22.3 25.5

Table 5.11: Peak memory usage (in MB) for Previous JavaMOP (JavaMOP 2011)
and Scalable JavaMOP (JavaMOP 2012) against 137 specifications from java.io,
java.lang, and java.util (during 5 iterations, N/A: instrumentation crashes)

84

PhD Thesis, University of Illinois, August 2012

Tables 5.4, 5.5, 5.6, and 5.7 show the average percent runtime overhead of the

two versions of JavaMOP. They shows the sum of overheads for monitoring each

specification individually, and the overhead of monitoring them simultaneously,

for each benchmark. To avoid the error accumulation, we exclude overheads

under 3% for the summation. Overall, Scalable JavaMOP (JavaMOP 2012)

shows significantly less runtime overhead than JavaMOP 2011. In monitoring

multiple specifications, JavaMOP 2011 shows higher overheads than the sum

of overheads in many places. This is because heavy memory pressure from

multiple specifications triggers garbage collection more often. However, Scalable

JavaMOP shows much less overhead than the sum of overheads in most cases.

JavaMOP 2011 shows 1950% overhead when monitoring all 137 specifications

for bloat, while the sum of overheads is 1498%. For pmd, it shows 988% overhead

when all specifications are monitored, while the sum of overheads is 855%.

However, Scalable JavaMOP shows 886% and 394% overheads for bloat and

pmd, respectively, when all specifications are monitored. These overheads are

less than half of what the previous version showed. Also, they are less than

the sums of overheads in the Scalable JavaMOP, which are 1059% and 584%,

respectively. Note that Scalable JavaMOP also improves the runtime performance

of monitoring a single specification, resulting in smaller sums.

Tables 5.8, 5.9, 5.10, and 5.11 summarize the peak memory usage during 5

iterations. In a similar way to the runtime result, they show the sum of memory

overheads from monitoring each specification individually. In the sum of the peak

memory usage, the original peak memory usage is counted only once. For example,

on bloat, which shows 4.9MB peak memory usage, if two specifications show

5.5MB and 6.2MB peak memory usage, respectively, the sum of peak memory

usage is 6.8MB. Overall, JavaMOP 2012 shows significantly less memory overhead

than JavaMOP 2011. Similar to runtime performance, JavaMOP 2012 uses less

memory, not only when monitoring multiple specifications simultaneously, but

also when monitoring them individually. In monitoring specifications individually,

in total, JavaMOP 2012 uses about 28% less memory than JavaMOP 2011. In

monitoring multiple specifications simultaneously, for avrora and pmd, JavaMOP

2012 shows 11.3 times and 5.7 times less peak memory usage than the JavaMOP

2011, respectively. Also, in total, JavaMOP 2012 uses about 49% less memory

than JavaMOP 2011, in monitoring multiple specifications simultaneously.

Monitoring a large number of specifications shows different memory usage

from monitoring a single specification. During monitoring process, a large number

of objects is generated for the purposes of monitoring. Many of these monitoring

objects must be garbage collected. Since the JVM controls the garbage collection

throughput so that it does not overwhelm the entire execution time, the garbage

collection might not be able to clean up all garbage objects on time. This

can cause parameter objects to live longer than usual, delaying accompanied

monitoring resources from being garbage collected. In this case, the JVM simply

consumes more memory as long as there is more space left. After reaching the

85

PhD Thesis, University of Illinois, August 2012

memory limit, it starts spending more time for garbage collection. This explains

for bloat and others, why monitoring multiple specifications simultaneously shows

more peak memory usage than the sum of peak memory usages of individual

monitoring and the sum of peak memory usages of monitoring specifications in

each package. For example, for bloat and the Scalable JavaMOP, monitoring

all specifications in java.io, java.lang, and java.util shows 5.5MB, 627.8MB,

and 171.8MB, but monitoring all of the specifications simultaneously shows

1295.9MB memory usage at peak.

It is also interesting to see how much our Scalable JavaMOP improves the

runtime and memory performance of monitoring a single specification, compared

to the previous version of JavaMOP (JavaMOP 2011) which already implements

all optimization techniques presented in Chapter 4. Tables 5.12, 5.13, 5.14, 5.15,

5.16, and 5.17 are the tables from Chapter 4, with additional columns named

“Scale” to show the performance changes by scalable techniques presented in this

chapter. While JavaMOP 2012 adds a bit more overhead in a few cases, it shows

a great improvement on many other cases. Especially, for UnsafeSyncColl and

UnsafeSyncMap, it shows less than 25% runtime overhead on bloat, which is

about 30 times and 45 times faster than JavaMOP 2011 before the dissertation,

respectively, and about 9 times and 7 times faster than the optimized version

from Chapter 4, respectively. On average, the Scalable JavaMOP shows 16.6%

runtime overhead, while JavaMOP 2011 shows 54.4% and the optimized version

from Chapter 4 shows 20.9%. Also, as for peak memory usage, the JavaMOP

2012 shows 45.5% memory overhead, while JavaMOP 2011 shows 140.9% and

the optimized version from Chapter 4 shows 65.0%. Tracematches shows, on

average, 309.1% runtime overhead and 17.2% memory overhead.

Overall, the Scalable JavaMOP (JavaMOP 2012) shows, on average, about 3

times faster runtime performance with about 3 times less peak memory usage then

JavaMOP 2011 and about 19 times faster runtime performance and compatible

(3 times more) memory overhead compared to Tracematches, ignoring the fact

that both Tracematches and JavaMOP 2011 crashed on several benchmarks.

Also, in monitoring multiple specification simultaneously, JavaMOP 2012 shows

less than half of runtime overhead and 49% less memory overhead than the

already optimized version of JavaMOP (JavaMOP 2011) from Chapter 4.

5.4 Ineffectual Approaches

In this section, we discuss some ineffectual approaches that we have tried while

improving the scalability of parametric monitoring. Although they turn out

to be ineffectual in parametric monitoring, some of them might be useful in

different settings or they might inspire new effectual ideas.

Combining Indexing Trees between Specifications As mentioned in Sec-

tion 5.2.3, we combine indexing trees only within each specification. If we

86

PhD Thesis, University of Illinois, August 2012

ORIG HasNext UnsafeIter
(sec) TM Old New Scale TM Old New Scale

antlr 3.6 -1 4 -2 1 0 0 -2 -1
bloat 14.4 2119 448 116 146 11258 769 251 269
chart 12.2 0 0 -2 -4 11 5 -1 -1
hsqldb 8.4 15 0 -3 -4 17 -1 -3 -4
jython 9.0 13 0 0 3 11 -4 1 7
avrora 13.9 45 48 55 62 637 298 118 110
batik 3.5 3 4 3 2 355 11 8 11
eclipse 79.5 -2 1 -1 1 0 2 -1 1
fop 2.0 200 57 48 64 350 23 13 17
h2 18.7 89 17 13 17 128 7 4 3
luindex 2.9 0 1 1 1 0 1 1 2
lusearch 25.3 -1 7 0 1 1 0 2 1
pmd 8.4 176 89 59 77 1423 162 123 121
sunflow 32.5 47 5 3 4 7 0 0 1
tomcat 14.1 8 -1 1 -1 37 -1 1 -1
tradebeans 45.7 0 1 1 0 1 0 2 1
tradesoap 95.0 1 0 0 -1 2 -2 1 0
xalan 20.9 4 -2 2 -1 27 2 2 -2

Table 5.12: Average Percent Runtime Overhead for Tracematches(TM), Previous
JavaMOP(Old), and optimized JavaMOP(New) against HasNext and UnsafeIter
(convergence within 3%, OOM = Out of Memory)

ORIG UnsafeMapIter UnsafeSyncColl
(sec) TM Old New Scale TM Old New Scale

antlr 3.6 -2 5 1 2 -1 2 -1 1
bloat 14.4 OOM OOM 178 150 1359 735 212 24
chart 12.2 -1 4 -2 -2 -2 1 -1 -1
hsqldb 8.4 29 0 -3 -4 9 0 -2 -4
jython 9.0 150 11 3 5 11 -4 1 2
avrora 13.9 OOM OOM 42 44 75 140 80 6
batik 3.5 OOM 65 5 3 208 444 9 7
eclipse 79.5 5 -1 0 1 -4 -1 1 1
fop 2.0 OOM OOM 14 38 OOM OOM 25 47
h2 18.7 1350 OOM 6 10 868 69 4 11
luindex 2.9 1 0 1 0 1 1 1 0
lusearch 25.3 2 2 0 -1 4 0 1 0
pmd 8.4 OOM OOM 188 85 1818 OOM 76 58
sunflow 32.5 9 6 1 0 13 6 5 1
tomcat 14.1 3 -1 1 -1 2 -1 1 -1
tradebeans 45.7 5 -1 -1 -1 -1 -1 2 -1
tradesoap 95.0 2 0 1 2 0 0 1 -1
xalan 20.9 10 1 2 2 3 1 3 -2

Table 5.13: Average Percent Runtime Overhead for Tracematches(TM), Previous
JavaMOP(Old), and optimized JavaMOP(New) against UnsafeMapIter and
UnsafeSyncColl (convergence within 3%, OOM = Out of Memory)

87

PhD Thesis, University of Illinois, August 2012

ORIG UnsafeSyncMap
(sec) TM Old New Scale

antlr 3.6 0 2 0 2
bloat 14.4 1942 858 130 19
chart 12.2 -2 3 -2 -2
hsqldb 8.4 7 -1 -3 -5
jython 9.0 10 -4 0 2
avrora 13.9 54 73 16 0
batik 3.5 5 7 0 1
eclipse 79.5 OOM 2 -1 1
fop 2.0 OOM OOM 19 42
h2 18.7 83 25 5 0
luindex 2.9 2 2 0 1
lusearch 25.3 3 1 1 -1
pmd 8.4 OOM OOM 26 48
sunflow 32.5 17 8 6 3
tomcat 14.1 2 -1 3 -1
tradebeans 45.7 3 2 5 0
tradesoap 95.0 2 0 5 -1
xalan 20.9 4 -2 3 -2

Table 5.14: Average Percent Runtime Overhead for Tracematches(TM), Pre-
vious JavaMOP(Old), and optimized JavaMOP(New) against UnsafeSyncMap
(convergence within 3%, OOM = Out of Memory)

ORIG HasNext UnsafeIter
(MB) TM Old New Scale TM Old New Scale

antlr 4.3 4.4 4.1 3.8 4.1 4.8 4.0 4.5 4.1
bloat 4.9 40.3 19.3 13.9 15.7 7.8 175.4 79.0 86.0
chart 17.0 17.4 17.3 17.0 16.3 16.9 16.5 17.2 17.5
hsqldb 136.5 136.1 136.7 137.6 142.2 139.1 136.8 137.6 141.9
jython 4.9 5.1 4.7 4.8 4.7 5.5 5.1 5.0 4.3
avrora 4.7 4.6 12.1 9.1 10.0 4.4 114.0 15.8 18.6
batik 77.3 79.2 81.9 79.3 80.0 75.2 93.4 86.6 86.3
eclipse 101.0 100.8 104.0 97.1 98.1 98.3 100.3 110.3 107.4
fop 23.9 97.4 47.1 52.5 64.7 24.3 25.6 29.4 27.3
h2 267.1 267.8 588.8 565.2 702.6 267.2 267.5 262.4 268.6
luindex 6.8 5.6 6.7 5.6 7.3 6.3 7.4 6.8 7.2
lusearch 4.6 4.7 4.6 4.8 4.6 4.6 4.3 4.2 4.7
pmd 22.3 56.9 65.5 48.5 59.0 17.2 147.2 86.4 114.0
sunflow 4.5 4.5 4.8 4.9 4.4 4.8 4.6 4.7 4.8
tomcat 11.7 11.4 11.6 11.4 11.9 12.5 11.8 11.5 12.1
tradebeans 62.9 62.9 62.4 62.1 62.6 63.7 63.9 64.1 62.8
tradesoap 63.9 61.8 64.8 63.3 63.0 63.4 64.7 64.4 65.7
xalan 4.9 4.9 5.0 5.1 4.9 4.9 5.0 4.9 4.9

Table 5.15: Peak memory usage (in MB) for Tracematches(TM), Previous
JavaMOP(Old), and optimized JavaMOP(New) (during 5 iterations, OOM =
Out of Memory)

88

PhD Thesis, University of Illinois, August 2012

ORIG UnsafeMapIter UnsafeSyncColl
(MB) TM Old New Scale TM Old New Scale

antlr 4.3 4.1 4.0 4.6 3.9 4.1 4.2 4.2 4.7
bloat 4.9 OOM OOM 56.7 14.7 6.7 100.0 48.3 5.0
chart 17.0 16.6 15.9 19.2 17.2 17.0 16.4 17.2 17.1
hsqldb 136.5 136.0 140.0 136.8 140.4 136.1 146.2 146.3 136.3
jython 4.9 6.1 20.9 5.1 4.6 5.3 4.9 5.4 4.8
avrora 4.7 OOM OOM 8.5 7.5 4.3 18.4 12.6 4.7
batik 77.3 OOM 173.8 79.6 78.7 78.2 180.7 85.1 75.8
eclipse 101.0 106.9 198.9 101.1 89.3 100.4 115.1 90.1 94.5
fop 23.9 OOM OOM 28.1 33.9 OOM OOM 24.8 35.3
h2 267.1 312.4 OOM 268.2 382.9 271.4 1456.7 265.5 382.3
luindex 6.8 7.4 6.8 6.9 6.8 7.4 7.5 7.5 8.0
lusearch 4.6 4.0 4.2 4.8 4.7 4.5 4.3 4.6 4.7
pmd 22.3 OOM OOM 93.6 60.4 20.3 OOM 84.6 43.8
sunflow 4.5 4.7 4.6 4.4 4.9 5.1 4.4 4.9 4.8
tomcat 11.7 11.9 12.0 11.0 11.7 11.3 11.9 11.3 11.8
tradebeans 62.9 63.3 62.4 62.7 63.5 63.2 62.8 62.0 64.0
tradesoap 63.9 64.1 65.4 62.0 64.1 60.7 64.1 65.9 63.7
xalan 4.9 4.9 4.9 4.9 4.8 5.0 4.7 5.0 4.9

Table 5.16: Peak memory usage (in MB) for Tracematches(TM), Previous
JavaMOP(Old), and optimized JavaMOP(New) (during 5 iterations, OOM =
Out of Memory)

ORIG UnsafeSyncMap
(MB) TM Old New Scale

antlr 4.3 4.6 4.4 4.9 4.8
bloat 4.9 6.9 25.8 12.3 6.5
chart 17.0 17.4 16.4 17.1 17.1
hsqldb 136.5 142.1 136.4 137.0 145.5
jython 4.9 5.8 5.0 5.1 4.7
avrora 4.7 4.4 12.4 4.9 4.6
batik 77.3 79.9 84.8 76.7 79.2
eclipse 101.0 OOM 102.3 98.7 98.8
fop 23.9 OOM OOM 25.2 31.5
h2 267.1 271.0 688.2 270.0 261.3
luindex 6.8 7.1 7.3 11.0 6.7
lusearch 4.6 4.6 4.8 4.7 4.8
pmd 22.3 OOM OOM 32.9 34.5
sunflow 4.5 4.5 4.8 4.5 4.7
tomcat 11.7 11.4 11.3 11.8 11.2
tradebeans 62.9 64.0 62.7 64.0 63.7
tradesoap 63.9 65.5 65.1 65.6 63.8
xalan 4.9 5.1 5.1 4.9 5.0

Table 5.17: Peak memory usage (in MB) for Tracematches(TM), Previous
JavaMOP(Old), and optimized JavaMOP(New) (during 5 iterations, OOM =
Out of Memory)

89

PhD Thesis, University of Illinois, August 2012

combine indexing trees for different specifications, as well, we can reduce the

number of indexing trees even more. However, there is a lot of wasted space

in the combined indexing tree. For example, an indexing tree A maps p1 to

m1 and p2 to m2, and another indexing tree B maps p2 to m3 and p3 to m4.

The combined indexing tree of A and B will map p1 to (m1,∅), p2 to (m2,m3),
and p3 to (∅,m4). All empty spaces indicated by ∅ will be wasted while the

indexing trees A and B do not have empty space. More memory overhead from

wasted space triggers more garbage collection, slowing down the monitoring.

Enhanced Indexing Cache The indexing cache provides faster retrieval of

monitors from the indexing tree. There are several ideas to improve its hit ratio.

We can apply a multi-entry cache from Section 5.2.2. Also, we can cache not only

monitors but also lack thereof to save searching the indexing tree for nothing.

However, since the indexing cache provides already a high hit ratio and the cost

to access the indexing tree is already decreased by the GlobalWeakRefTable, these

enhancements to the indexing cache do not improve the performance. Certainly

those ideas increase cache hit ratio, but their benefits are cancelled out by the

overheads necessary to support them.

Indexing Tree Cleaning by GlobalWeakRefTables Since we can manage

all weak references for each parameter type in one place, the GlobalWeakRefTable,

we can let the GlobalWeakRefTable clean up the indexing trees. In this way,

we can remove garbage collected parameter objects from all indexing trees at

once, eliminating the need for partial cleanups. Note that partial cleanups could

occur even when there is no garbage collected parameter object. We can also

have a bit map in the weak reference to indicate to which indexing trees the

referent belongs so that we need check only the indexing trees that actually

contain it. However, this approach only moves cleanup costs from indexing

trees to the GlobalWeakRefTable, showing no improvement. The cleanup by the

GlobalWeakRefTable is more effective because it knows which weak references

should be removed. However, cleaning up from outside of the indexing tree

costs more because we must locate the entry before we can remove it.

Statistics-Based Indexing Tree Cleaning As mentioned previously, par-

tial cleanups at indexing trees can occur even when there are no garbage collected

parameter objects. Since we have the GlobalWeakRefTable, we can keep statistics

about garbage collected parameter objects and use it for deciding whether to

trigger a partial cleanup. However, in most cases, there are garbage collected

parameter objects. Saving a relatively small number of partial cleanups does

not compensate the overhead necessary.

Event Activator Similar to the specification activator (Section 5.2.5), non-

creation events can be skipped if there is no monitor created for the parameter

of the event. However, this approach does not improve the performance because

90

PhD Thesis, University of Illinois, August 2012

the specification activator already works effectively and the GlobalWeakRefTable

already returns no weak reference if there was no creation event for the parameter

object. Thus, this approach only introduces an overhead of maintaining activators

(boolean variables), although the overhead is too small to be notable.

5.5 Discussion

Parametric monitoring is a technique for improving the reliability of software

that has received an ever increasing amount of attention. Previous work on

parametric monitoring has focused on the performance of monitoring single

properties in isolation. Realistic uses of monitoring, however, involve monitoring

many properties simultaneously, as the large number of properties from [59]

can attest. In this chapter we have improved the efficiency of JavaMOP with

respect to monitoring multiple simultaneous properties; as an added bonus, we

also improved performance in the case of a single property. We preformed a

thorough analysis of the remaining bottlenecks in the JavaMOP system, and we

addressed those that could be addressed without adding more runtime overhead

than they save. The cases that were ineffectual, presented in this chapter, show

that sometimes it is more expensive to address an inefficiency than to let it be.

The remaining cases produced real, tangible performance enhancements, in some

cases halving overhead in a system that was already heavily optimized.

91

PhD Thesis, University of Illinois, August 2012

Chapter 6

Multi-Threaded Unit
Testing

As runtime monitoring becomes more practical in the dissertation, we expect

more people to use it in a wider spectrum of application domains. Here we present

our work on searching for real world applications for runtime monitoring. We

apply runtime monitoring in our new unit testing framework for multi-threading

environment, to monitor and enforce thread scheduling as specified by the user.

6.1 Improved Multi-threaded Unit Testing

Multi-threaded code is notoriously hard to develop and test. A multi-threaded

unit test exercises the code with two or more threads. Each test execution follows

some schedule/interleaving of the multiple threads, and different schedules can

give different results. Developers often want to enforce a particular schedule

for test execution, and to do so, they use time delays (Thread.sleep in Java).

Unfortunately, this approach can produce false positives or negatives, and can

result in unnecessarily long testing time. There have been many researches

tackling some problems in specifying and enforcing schedules in multi-threaded

unit testing. However, despite these researches, multi-threaded unit testing

still has many issues including readability, modularity, reliability, schedule

language, and so on.

To solve these issues, we develop the improved multi-threaded unit testing

(IMUnit) framework. We first introduce a new language that allows explicit

specification of schedules as orderings on events encountered during test execution.

By describing schedules explicitly, developers can focus more on functionality

testing while writing unit tests, and pay less attention to reasoning about the

execution of threads. Also, this approach has good modularity since the intended

schedule is not intermixed with the test code, and it is much easier to specify

multiple schedules for a particular unit test. Then, the specified schedules are

checked and enforced by the runner in IMUnit, on help of JavaMOP.

When we execute unit tests, we monitor thread schedules and enforce the

intended schedule using JavaMOP. JavaMOP monitors thread schedules by

observing the order of events in each thread and checks if the current thread can

proceed without violating the intended schedule. If a proceeding is expected to

violate the intended schedule, JavaMOP blocks the thread until it is okay for the

92

PhD Thesis, University of Illinois, August 2012

thread to proceed. Sleep-based multi-threaded unit tests are unreliable mainly

because they rely on real time – this often leads to false positives/negatives

and/or slow testing time. Our approach, on the other hand, is more reliable and

achieves faster testing time.

We first give an example in Section 6.1.1, then introduces our schedule lan-

guage that enables natural and explicit specification of schedules, in Section 6.1.2.

Section 6.1.3 discuss how IMUnit enforces/checks schedules by using JavaMOP,

and Section 6.1.4 evaluates our approach.

6.1.1 Example

We illustrate improved multi-threaded unit testing (IMUnit) with the help

of an example multi-threaded unit test for the ArrayBlockingQueue class in

java.util.concurrent (JSR-166) [49]. ArrayBlockingQueue is an array-backed

implementation of a bounded blocking queue. One operation provided by

ArrayBlockingQueue is add, which performs a non-blocking insertion of the given

element at the tail of the queue. If add is performed on a full queue, it throws an

exception. Another operation provided by ArrayBlockingQueue is take, which

removes and returns the object at the head of the queue. If take is performed

on an empty queue, it blocks until an element is inserted into the queue. These

operations could have bugs that get triggered when the add and take operations

execute on different threads. Consider testing some scenarios for these operations

(in fact, the JSR-166 TCK provides over 100 tests for various scenarios for similar

classes).

Figure 6.1 shows a multi-threaded unit test that ArrayBlockingQueue exercises

add and take in two scenarios. In particular, Figure 6.1(a) shows the test written

as a regular JUnit test method, with sleeps used to specify the required schedule.

We invite the reader to consider what scenarios are specified with that test

(without looking at the other figures). It is likely to be difficult to understand

which schedule is being exercised by reading the code of this unit test. While the

sleeps provide hints as to which thread is waiting for another thread to perform

operations, it is unclear which operations are intended to be performed by the

other thread before the sleep finishes.

The test actually checks that take performs correctly both with and without

blocking, when used with add from another thread. To check both scenarios, the

test exercises a particular schedule where the first add operation finishes before

the first take operation starts, and the second take operation blocks before

the second add operation starts. Line 13 shows the first sleep that is intended

to pause the main thread1 while the addThread finishes the first add operation.

Line 9 shows the second sleep which is intended to pause the addThread while

the main thread finishes the first take operation and then proceeds to block while

1JVM names the thread that starts the execution main by default, although the name can
be changed later.

93

PhD Thesis, University of Illinois, August 2012

1 @Test
2 public void testTakeWithAdd() {
3 ArrayBlockingQueue<Integer> q;
4 q = new ArrayBlockingQueue<Integer>(1);
5 new Thread(
6 new CheckedRunnable() {
7 public void realRun() {
8 q.add(1);
9 Thread.sleep(100);

10 q.add(2);
11 }
12 }, ”addThread”).start();
13 Thread.sleep(50);
14 Integer taken = q.take();
15 assertTrue(taken == 1 && q.isEmpty());
16 taken = q.take();
17 assertTrue(taken == 2 && q.isEmpty());
18 addThread.join();
19 }

(a) JUnit

1 public class TestTakeWithAdd
2 extends MultithreadedTest {
3 ArrayBlockingQueue<Integer> q;
4 @Override
5 public void initialize() {
6 q = new ArrayBlockingQueue<Integer>(1);

7 }
8 public void addThread() {
9 q.add(1);

10 waitForTick(2);
11 q.add(2);
12 }
13 public void takeThread() {
14 waitForTick(1);
15 Integer taken = q.take();
16 assertTrue(taken == 1 && q.isEmpty());
17 taken = q.take();
18 assertTick(2);
19 assertTrue(taken == 2 && q.isEmpty());
20 }
21 }

(b) MultithreadedTC

1 @Test
2 @Schedule(”finishedAdd1 −> startingTake1,
3 [startingTake2}] −> startingAdd2”)
4 public void testTakeWithAdd() {
5 ArrayBlockingQueue<Integer> q;
6 q = new ArrayBlockingQueue<Integer>(1);
7 new Thread(
8 new CheckedRunnable() {
9 public void realRun() {

10 q.add(1);
11 @Event(”finishedAdd1”)
12 @Event(”startingAdd2”)
13 q.add(2);
14 }
15 }, ”addThread”).start();
16 @Event(”startingTake1”)
17 Integer taken = q.take();
18 assertTrue(taken == 1 && q.isEmpty());
19 @Event(”startingTake2”)
20 taken = q.take();
21 assertTrue(taken == 2 && q.isEmpty());
22 addThread.join();
23 }

(c) IMUnit

Figure 6.1: Example multi-threaded unit test for ArrayBlockingQueue

94

PhD Thesis, University of Illinois, August 2012

performing the second take operation. If the specified schedule is not enforced

during the execution, there may be a false positive/negative. For example, if

both add operations execute before a take is performed, the test will throw an

exception and fail even if the code has no bug, and if both take operations finish

without blocking, the test will not fail, even if the blocking take code had a bug.

Figure 6.1(b) shows the same test written using MultithreadedTC [68]. Note

that it departs greatly from traditional JUnit where each test is a method. In

MultithreadedTC, each test has to be written as a class, and each method

in the test class contains the code executed by a thread in the test. The

intended schedule is specified with respect to a global, logical clock. Since this

clock measures time in ticks, we call the approach tick-based. When a thread

executes a waitForTick operation, it is blocked until the global clock reaches the

required tick. The clock advances implicitly by one tick when all threads are

blocked (and at least one thread is blocked in a waitForTick operation). While

a MultithreadedTC test does not rely on real time, and is thus more reliable

than a sleep-based test, the intended schedule is still not immediately clear upon

reading the test code. It is especially not clear when waitForTick operations are

blocked/unblocked, because ticks are advanced implicitly when all the threads

are blocked.

Figure 6.1(c) shows the same test written using IMUnit. The interesting

events encountered during test execution are marked with @Event annotations,

and the intended schedule is specified with a @Schedule annotation that contains

a comma-separated set of orderings among events. Note that @Event annotations

appear on statements. The current version of Java (version 6) does not support

annotations on statements, but the upcoming version of Java (version 7) will

add such support. For now the time being, @Event annotations can be written

as comments, e.g., /* @Event("finishedAdd1") */, which IMUnit translates into

code for test execution. Since @Schedule annotations appear on methods, they

are already fully supported in the current version of Java. An ordering is specified

using the binary operator ->, where intuitively the left is intended to execute

before the right . An specified within square brackets denotes that the thread

executing that event is intended to block after that event. It should be clear

from reading the schedule that the addThread should finish the first add operation

before the main thread starts the first take operation, and that the main thread

should block while performing the second take operation before the addThread

starts the second add operation.

6.1.2 Schedule Language

We now describe the syntax and semantics of the language for describing desired

schedules in IMUnit.

95

PhD Thesis, University of Illinois, August 2012

<Schedule> ::= { <Ordering> [”,”] } <Ordering>
<Ordering> ::= <Condition> ”->” <Basic Event>
<Condition> ::= <Basic Event> | <Block Event>

| <Condition> ”||” <Condition>
| <Condition> ”&&” <Condition>
| ”(” <Condition> ”)”

<Basic Event> ::= <Event Name> [”@” <Thread Name>]
| ”start” ”@” <Thread Name>
| ”end” ”@” <Thread Name>

<Block Event> ::= ”[” <Basic Event> ”]”
<Event Name> ::= { <Id> ”.” } <Id>
<Thread Name> ::= <Id>

Figure 6.2: Syntax of the IMUnit schedule language

Concrete Syntax

Figure 6.2 shows the concrete syntax of the implemented IMUnit schedule

language. An IMUnit schedule is a comma-separated set of orderings. Each

ordering defines a condition that must hold before a basic event can take

place. A basic event is an event name possibly tagged with its issuing thread

name when that is not understood from the context. An event name is any

identifier, possibly prefixed with a qualified class name. There are two implicit

event names for each thread, start and end, indicating when the thread starts

and when it terminates. Any other event must be explicitly introduced by

the user with the @Event annotation (see Figure 6.1(c)). A condition is a

conjunctive/disjunctive combination of basic and block events, where block

events are written as basic events in square brackets. A block event [e′] in the

condition c of an ordering c→ e states that e′ must precede e and, additionally,

the thread of e′ is blocked when e takes place.

Schedule Logic

It is more convenient to define a richer logic than what is currently supported

by our IMUnit implementation; the additional features are natural and thus

can also be implemented in the future. The semantics of our logic is given in

Section 6.1.2; here is its syntax:

a ∶∶= start ∣ end ∣ block ∣ unblock ∣ event names

t ∶∶= thread names

e ∶∶= a@t

ϕ ∶∶= [t] ∣ ϕ→ ϕ ∣ usual propositional connectives

The intuition for [t] is “thread t is blocked” and for ϕ→ ψ “if ψ held in the past,

then ϕ must have held at some moment before ψ”. We call these two temporal

operators the blockness and the ordering operators, respectively. For uniformity,

all events are tagged with their thread. There are four implicit events: start@t

and end@t were discussed above, and block@t and unblock@t correspond to

when t gets blocked and unblocked2.

2It is expensive to explicitly generate block/unblock events in Java precisely when they occur,
because it requires polling the status of each thread; our currently implemented fragment only

96

PhD Thesis, University of Illinois, August 2012

For example, the following formula in our logic

(a1@t1 ∧ ([t2] ∨ (¬(start(t2) → a1@t1)))) → a2@t2

∧ (a2@t2 ∧ ([t1] ∨ (end(t1) → a2@t2))) → a2@t2

says that if event a2 is generated by thread t2 then: (1) event a1 must have

been generated before that and, when a1 was generated, t2 was either blocked

or not started yet; and (2) when a2 is generated by t2, t1 is either blocked or

terminated. As explained shortly, every event except for block and unblock is

restricted to appear at most once in any execution trace. Above we assumed

that a1, a2 ∉ {block ,unblock}.

Before we present the precise semantics, we explain how our current IMUnit

language shown in Figure 6.2 (whose design was driven exclusively by practical

needs) is a smaller fragment of the richer logic. An IMUnit schedule is a

conjunction (we use comma instead of ∧) of orderings, and schedules cannot

be nested. Since generating block and unblock events is expensive, IMUnit

currently disallows their explicit use in schedules. Moreover, to reduce their

implicit use to a fast check of whether a thread is blocked or not, IMUnit also

disallows the explicit use of [t] formulas. Instead, it allows block events of the

form [a@t] (note the square brackets) in conditions. Since negations are not

allowed in IMUnit, and since we can show (after we discuss the semantics)

that (ϕ1 ∨ ϕ2) → ψ equals (ϕ1 → ψ) ∨ (ϕ2 → ψ), we can reduce any IMUnit

schedule to a Boolean combination of orderings ϕ→ e, where ϕ is a conjunction

of basic events or block events. All that is left to show is how block events are

desugared. Consider an IMUnit schedule (ϕ ∧ [a1@t1]) → a2@t2, saying that

a1@t1 and ϕ must precede a2@t2 and t1 is blocked when a2@t2 occurs. This

can be expressed as ((ϕ ∧ a1@t1) → a2@t2) ∧ ((a2@t2 ∧ [t1]) → a2@t2), relying

on a2@t2 happening at most once.

Semantics

Our schedule logic is a carefully chosen fragment of past-time linear temporal

logic (PTLTL) over special well-formed multi-threaded system execution traces.

Program executions are abstracted as finite traces of events τ = e1e2 . . . en.

Unlike in conventional LTL, our traces are finite because unit tests always

terminate. Traces must satisfy the obvious condition that events corresponding

to thread t can only appear while the thread is alive, that is, between start@t

and end@t. Using PTLTL, this requirement states that for any trace τ and any

event a@t with a ∉ {start , end}, the following holds:

τ ⊧ ¬⟐ (a@t ∧ (⟐end@t ∨ ¬⟐ start@t))
needs, through its restricted syntax, to check if a given thread is currently blocked or not,
which is fast.

97

PhD Thesis, University of Illinois, August 2012

where ⟐ stands for “eventually in the past”. Moreover, except for block@t and

unblock@t events, we assume that each event appears at most once in a trace.

With PTLTL, this says that the following must hold (� is “previously”):

τ ⊧ ¬⟐ (a@t ∧�⟐ a@t)

for any trace τ and any a@t with a ∉ {block ,unblock}.

The semantics of our logic is defined as follows:

e1e2 . . . en ⊧ e iff e = en
τ ⊧ ϕ ∧/∨ ψ iff τ ⊧ ϕ and/or τ ⊧ ψ
e1e2 . . . en ⊧ [t] iff (∃1 ≤ i ≤ n) (ei = block@t and

(∀i < j ≤ n) ej ≠ unblock@t)

e1e2 . . . en ⊧ ϕ→ ψ iff (∀1 ≤ i ≤ n) e1e2 . . . ei /⊧ ψ or

(∃1 ≤ i ≤ n) (e1e2 . . . ei ⊧ ψ and

(∃1 ≤ j ≤ i) e1e2...ej ⊧ ϕ)

It is not hard to see that the two new operators [t] and ϕ → ψ can be

expressed in terms of PTLTL as

[t] ≡ ¬unblock@t S block@t

ϕ→ ψ ≡ �¬ψ ∨ ⟐(ψ ∧⟐ϕ)

where S stands for “since” and � for “always in the past”.

6.1.3 Enforcing and Checking

We now describe the IMUnit Runner, our tool for enforcing/checking schedules

for IMUnit multithreaded unit tests. It is implemented as a custom test runner

for the JUnit testing framework. It executes each test for each IMUnit schedule

(a test can have multiple schedules) and has two operation modes. In the active

mode, it controls the thread scheduler to enforce an execution of the test to

satisfy the given schedule. Note that this mode avoids the main problem of

sleep-based tests, that of false positives and negatives due to the execution of

unintended schedules. In the passive mode, our tool observes and checks the

execution provided by the JVM against the given schedule, without interfering.

The passive mode is particularly useful for checking whether executions enforced

by the tool for some schedules satisfy other schedules.

The runner is implemented using JavaMOP. As explained in Chapter 2,

JavaMOP is generic in the property specification formalism and provides sev-

eral such formalisms as logic plugins, including past-time linear temporal logic

(PTLTL). Although our schedule language in IMUnit is a semantic fragment of

PTLTL (Section 6.1.2), enforcing PTLTL specifications in their full generality

on multithreaded programs is a rather expensive problem.

Instead, we have developed a custom JavaMOP logic plugin for our current

IMUnit schedule language from Figure 6.2. This plugin synthesizes a correspond-

98

PhD Thesis, University of Illinois, August 2012

1 switch (event) {
2 case finishedAdd1:
3 occurred finishedAdd1 = true; notifyAll();
4 case startingTake2:
5 thread startingTake2 = currentThread();
6 occurred startingTake2 = true; notifyAll();
7 case startingTake1:
8 while (!occurred finishedAdd1)
9 wait();

10 occurred startingTake1 = true; notifyAll();
11 case startingAdd2:
12 while (!(occurred startingTake2 &&
13 isBlocked(thread startingTake2)))
14 wait();
15 occurred startingAdd2 = true; notifyAll(); }

Figure 6.3: Monitor for the schedule in Figure 6.1(c)

ing monitor that either enforces or checks a given IMUnit schedule, depending

on the running mode. The monitor is infused within the test program by means

of appropriate instrumentation in such a way that the schedule is enforced or

checked at runtime, depending on the mode. Since JavaMOP takes care of all

the low-level instrumentation and monitor integration details for us (after a

straightforward mapping of IMUnit events into JavaMOP events), we here only

briefly discuss our new JavaMOP logic plugin. It takes as input an IMUnit

schedule and generates as output a monitor written in pseudo-code; a Java shell

for this language then turns the monitor into AspectJ code [54], which is further

woven into the test program. In the active mode, the resulting monitor enforces

the schedule by blocking the violating thread until all the conditions from the

schedule are satisfied. In the passive mode, it simply prints an error when its

corresponding schedule is violated.

A generated monitor for an IMUnit schedule observes the defined events.

When an event e occurs, the monitor checks all the conditions that the event

should satisfy according to the schedule, i.e., a Boolean combination of basic

events and block events (Figure 6.2). The status of each basic event is maintained

by a Boolean variable which is true iff the event occurred in the past. The

status of a block event is checked as a conjunction of this variable and its

thread’s blocked state when e occurs. In the active mode, the thread of e will be

blocked until this Boolean expression becomes true. If the condition contains any

block event, periodic polling is used for checking thread states. Thus, IMUnit

pauses threads only if their events are getting out of order for the schedule.

Note that the user may have specified an infeasible schedule, which can cause a

deadlock where all threads are paused, waiting for infeasible events. Our runner

includes a low-overhead runtime deadlock detection mechanism that detects and

reports such deadlocks (and other general deadlocks). This way, IMUnit allows

both parallel execution and serialization, depending on the schedule. In the

passive mode, the monitor will simply print an error message when any Boolean

expression is false.

As an example, Figure 6.3 shows the active-mode monitor generated for

the schedule in Figure 6.1(c). When events finishedAdd1 and startingTake2

99

PhD Thesis, University of Illinois, August 2012

occur, the monitor just sets the corresponding Boolean variables, as there is no

condition for those events. For event startingTake1, it checks if there was an

event finishedAdd1 in the past by checking the variable occurred finishedAdd1; if

not, the thread will be blocked until finishedAdd1 occurs. For event startingAdd2,

in addition to checking the Boolean variable for startingTake2, it also checks

whether the thread of the event startingTake2 is blocked; if not, the thread of

the event startingAdd2 will be blocked until both conditions are satisfied.

6.1.4 Evaluation

To evaluate the IMUnit contributions—schedule language, automated migration,

and schedule execution—we analyzed over 200 sleep-based tests from several open-

source projects. Table 6.1 lists the projects and the number of sleep-based tests

that we manually migrated to IMUnit. We first describe our experience with the

IMUnit language. We then present quantitative results of our inference techniques

for migration. We finally discuss the test running time with IMUnit execution.

Schedule Language

It is hard to quantitatively evaluate and compare languages, be it implementation

or specification languages, including languages for specifying schedules. One

metric we use is how expressive the language is, i.e., how many schedules from

sleep-based tests can be expressed in IMUnit such that sleeps can be removed

altogether. Note that IMUnit conceptually subsumes sleeps: sleeps and IMUnit

events/schedules can co-exist in the same test, and developers just need to make

sleeps long enough to account for the IMUnit schedule execution/enforcement.

While every sleep-based test is trivially an IMUnit test, we are interested only

in those tests where IMUnit allows removing sleeps altogether.

We were able to remove sleeps from 198 tests, in fact all sleeps from all but 4

tests. While the current version of IMUnit is highly expressive, we have to point

out that we refined the IMUnit language based on the experience with migrating

the sleep-based tests. When we encountered a case that could not be expressed

in IMUnit, we considered how frequent the case is, and how much IMUnit would

need to change to support it. For example, blocking events are very frequent,

and supporting them required a minimal syntactic extension (adding events with

square brackets) to the initial version of our language. However, some cases

would require bigger changes but are not frequent enough to justify them. The

primary example is events in a loop. IMUnit currently does not support the

occurrence of an event more than once in a trace. We did find 4 tests that

would require multiple event occurrences, but changing the language to support

them (e.g., adding event counters or loop indices to events) would add a layer of

complexity that is not justified by the small number of cases. However, as we

apply IMUnit to more projects, and gain more experience, we expect that the

language could grow in the future.

100

PhD Thesis, University of Illinois, August 2012

Subject Tests Events Orderings

Collections [42] 18 51 32
JBoss-Cache [50] 27 105 47
Lucene [12] 2 3 4
Mina [13] 1 2 1
Pool [14] 2 8 3
Sysunit [37] 9 33 34
JSR-166 TCK [49] 139 577 277

∑ 198 779 398

Table 6.1: Subject Programs Statistics

Subject
Original IMUnit [s] Speedup

[s] DDD DDE DDD DDE

Collections 4.96 1.06 1.67 4.68 2.97
JBoss-Cache 65.58 31.25 31.76 2.10 2.06
Lucene 11.02 3.57 6.12 3.09 1.80
Mina 0.26 0.17 0.20 1.53 1.30
Pool 1.43 1.04 1.04 1.38 1.38
Sysunit 17.67 0.35 0.45 50.49 39.27
JSR-166 TCK 15.20 9.56 9.56 1.59 1.59

GeometricMean 3.39 2.76

Table 6.2: Test execution time. DDD - deadlock detection disabled; DDE -
deadlock detection enabled

Performance

Table 6.2 shows the execution times of the 198 original, sleep-based tests and the

corresponding IMUnit tests (for IMUnit, with deadlock detection both disabled

and enabled). We ran the experiments on an Intel i7 2.67GHz laptop with 4GB

memory, using Sun JVM 1.6.0 06 and AspectJ 1.6.9. Our goal for IMUnit is

to improve readability, modularity, and reliability of multithreaded unit tests,

and we did not expect IMUnit execution to be faster than sleep-based execution.

In fact, one could even expect IMUnit to be slower because of the additional

code introduced by the instrumentation and the cost of controlling schedules. It

came as a surprise that IMUnit is faster than sleep-based tests, on average 3.39x.

Even with deadlock detection enabled, IMUnit was on average 2.76x faster. This

result is with the sleep durations that the original tests had in the code.

We also compared the running time of IMUnit with MultithreadedTC on a

common subset of JSR-166 TCK tests that the MultithreadedTC authors trans-

lated from sleep-based to tick-based [67]. For these 129 tests, MultithreadedTC

was 1.36x faster than IMUnit. Although MultithreadedTC is somewhat faster,

it has a much higher migration cost, and in our view, produces test code that is

harder to understand and modify than the IMUnit test code. Moreover, we were

surprised to notice that running MultithreadedTC on these tests, translated

by the MultithreadedTC authors, can result in some failures (albeit with a low

101

PhD Thesis, University of Illinois, August 2012

probability), which means that these MultithreadedTC tests can be unreliable

and lead to false positives in test runs.

6.2 Discussion

The monitoring ability of JavaMOP can be applied to many areas including

testing, debugging, security, and verification, with its practicality now. In

this chapter, we present the improved multi-threaded unit testing (IMUnit)

framework as an application of parametric monitoring. It can explicitly express

desired thread schedules for multi-threaded unit tests using the proposed novel

schedule language. Then, the IMUnit runner executes the unit tests with

enforcing/checking the thread schedules. In this way, we have achieved the

reliable and fast multi-threaded unit testing. In this application, JavaMOP

provided ease of implementation of monitoring/enforcing thread scheduling,

thanks to its modular architecture. As JavaMOP become more expressive,

efficient, and scalable, we expect more of real applications in the near future;

applying JavaMOP to more real areas is an interesting future research.

102

PhD Thesis, University of Illinois, August 2012

Chapter 7

Related Work

In this chapter, we review other parametric monitoring systems and discuss

their practicality. A practical monitoring system must be capable of expressing

various kinds of specifications (expressiveness) and monitoring them efficiently

(efficiency). Also, it should be able to monitor multiple specifications simul-

taneously (scalability), however, to the best knowledge of the author, there

was no parametric monitoring system which is capable of monitoring a large

number of specifications. Therefore, we focus only on expressiveness and effi-

ciency in this chapter.

As we can see in Table 7.1, all the runtime monitoring systems in the figure

work with hardwired formalism. Also, none of them share the exact same

logical formalism for expressing properties. This observation strengthens our

belief that there is probably no silver bullet logic (or super logic) that serves

all purposes. Besides logical formalism they support, there are three more

orthogonal attributes of a runtime monitoring system: scope, running mode,

and handlers. The scope determines where to check the property; it can be class

invariant, global, interface, etc. The running mode denotes where the monitoring

code runs; it can be inline (weaved into the code), online (operating at the same

time as the program), outline (receiving events from the program remotely, e.g.,

over a socket), or offline (checking logged event traces)1. The handlers specify

what actions to perform under exceptional conditions; there can be violation

and validation handlers. It is worth noting that for many logics, violation and

validation are not complementary to each other, i.e., the violation of a formula

does not always imply the validation of the negation of the formula.

Tracematches [9, 19] enables the programmer to trigger the execution of

certain code by specifying a parametric regular pattern of events in a computation

trace, where the events are defined over entry/exit of AspectJ pointcuts. When

the pattern is matched during the execution, the associated code will be executed.

Tracematches are one of the most optimized runtime parametric monitoring

systems in terms of memory performance, however, it hardwires its property

specification formalism (regular expression only). Also, as shown in Chapters 4

and 5, the average runtime overhead of Tracematches is orders of magnitute

higher than that of JavaMOP.

1Offline implies outline, and inline implies online.

103

PhD Thesis, University of Illinois, August 2012

Approach Language Logic Scope Mode Handler

Hawk [38] Java Eagle global inline violation
J-Lo [25] Java ParamLTL global inline violation
Jass [23] Java assertions global inline violation

JavaMaC [56] Java PastLTL class outline violation
jContractor [8] Java contracts global inline violation

JML [58] Java contracts global inline violation
JPaX [44] Java LTL class offline violation
P2V [61] C, C++ PSL global inline validation/

violation
PQL [62] Java PQL global inline validation

PTQL [43] Java SQL global outline validation
Spec# [20] C# contracts global inline/ violation

offline
RuleR [22] Java RuleR global inline violation

Temporal Rover [40] several MiTL class inline violation
Tracematches [19] Java Reg. Exp. global inline validation

Table 7.1: Runtime Monitoring Breakdown

J-LO [25] is a tool for runtime-checking temporal assertions. These temporal

assertions are specified using LTL, and the syntax adopted in J-LO is similar

to Tracematches’ except that the formulae are written in a different logic. J-

LO mainly focuses on checking properties at runtime rather than providing

programming support. In J-LO, the temporal assertions are inserted into Java

files as annotations that are then compiled into runtime checks. There is no

thorough performance evaluation on J-LO available, but in [25], J-LO shows

“a slowdown of several orders of magnitude” when monitoring Iterator-based

properties on a program which is not mentioned. Also, it shows “the relatively

low additional overhead” when monitoring the same properties on jHotDraw

which does not use Iterator frequently. However, JavaMOP does not show

any noticeable overhead on jHotDraw against Iterator-based properties. As

mentioned in [25], “it suggests that there is room for optimization.”

Both Tracematches and J-LO support parametric events, i.e., free variables

can be used in the event patterns and will be bound to specific values at runtime

for matching events. Conceptually, J-LO can be captured by the JavaMOP tool,

because LTL is supported by the MOP framework, JavaMOP supports the Java

langauge, and J-LO’s temporal assertions can be easily translated into JavaMOP

specifications that contain only action events and validation handlers.

MaC [56, 55, 57], PathExplorer (PaX) [44], Eagle [21], and RuleR [22] are

runtime verification frameworks for logic based monitoring, within which specific

tools for Java – Java-MaC, Java PathExplorer, and Hawk [38], respectively – are

implemented. All these runtime verification systems work in outline monitoring

mode and have hardwired specification languages: MaC uses a specialized

language based on interval temporal logic, JPaX supports just LTL, and Eagle

adopts a fixed-point logic. Java-MaC and Java PathExplorer integrate monitors

104

PhD Thesis, University of Illinois, August 2012

via Java bytecode instrumentation, making them difficult to port to other

languages.

Temporal Rover [40] is a commercial runtime verification tool based on future

time metric temporal logic. It allows programmers to insert formal specifications

in programs via annotations, from which monitors are generated. An Automatic

Test Generation (ATG) component is also provided to generate test sequences

from logic specifications. Temporal Rover and its successor, DB Rover, support

both inline and offline monitoring. However, they also have their specification

formalisms hardwired and are tightly bound to Java.

Jass [23] is a precompiler which turns the assertion comments into Java code.

Besides pre-/post- conditions and class invariants, it also provides refinement

checks. The design of trace assertions in Jass is mainly influenced by CSP [45],

and the syntax is more like a programming language. jContractor is implemented

as a Java library which allows programmers to associate contracts with any

Java class or interface. Contract methods can be included directly within the

Java class or written as a separate contract class. Before loading each class,

jContractor detects the presence of contract code patterns in the Java class

bytecode and performs on-the-fly bytecode instrumentation to enable checking

of contracts during the program’s execution. jContractor also provides a support

library for writing expressions using predicate logic quantifiers and operators

such as Forall, Exists, suchThat, and implies. Using jContractor, the contracts

can be directly inserted into the Java bytecode even without the source code.

This ‘contracts’ approach can be simulated in JavaMOP using a raw specifi-

cation. While a property written in a logical formalism monitors event patterns,

it is also possible to monitor programs without any property. A raw specification

is a specification which does not have any property. In a raw specification, there

are user-defined events and event actions. With these event actions, one can

check pre-/post- conditions.

Java modeling language (JML) [58] is a behavioral interface specification

language for Java. It provides a more comprehensive modeling language than

DBC extensions. Not all features of JML can be checked at runtime; its runtime

checker supports a DBC-like subset of JML. Spec# [20] is a DBC- like extension

of the object-oriented language C#. It extends the type system to include

non-null types and checked exceptions and also provides method contracts in

the form of pre- and post-conditions as well as object invariants. Using the

Spec# compiler, one can statically enforce non-null types, emit run-time checks

for method contracts and invariants, and record the contracts as metadata for

consumption by downstream tools.

Program Query Language (PQL) allows programmers to express design rules

that deal with sequences of events associated with a set of related objects [62].

Both static and dynamic tools have been implemented to find solutions to PQL

queries. The static analysis conservatively looks for potential matches for queries

and is useful to reduce the number of dynamic checks. The dynamic analyzer

105

PhD Thesis, University of Illinois, August 2012

checks the runtime behavior and can perform user-defined actions when matches

are found. PQL has a “hardwired” specification language based on context-free

grammars (CFG) and supports only inline monitoring. CFGs can potentially

express more complex languages than regular expressions, so in principle PQL can

express more complex safety policies than Tracematches. However, in [63], PQL

has shown prohibitive runtime overhead. Although the result was without static

analysis, the evaluation suggests more optimization in its runtime monitoring.

Program Trace Query Language (PTQL) [43] is a language based on SQL-like

relational queries over program traces. The current PTQL compiler, Partiqle,

instruments Java programs to execute the relational queries on the fly. PTQL

events are timestamped and the timestamps can be explicitly used in queries.

PTQL queries can be arbitrarily complex and, as shown in [43], PTQL’s runtime

overhead seems acceptable in many cases but we were unable to obtain a working

package of PTQL and compare it in our experiments with JavaMOP because of

license issues. PTQL properties are globally scoped and their running mode is

inline. PTQL provides no support for recovery, its main use being to detect errors.

106

PhD Thesis, University of Illinois, August 2012

Chapter 8

Conclusions and Future
Work

The goal of the dissertation is to make runtime parametric monitoring practical.

The author suggests three perspectives: expressiveness, efficiency, and scalabil-

ity. The dissertation presents a number of techniques for all three perspective

and they are integrated into the JavaMOP framework, resulting in the most

expressive (with various formalisms) parametric monitoring system that shows

the best runtime performance and competitive memory performance. Also, it

is the first parametric monitoring system that is capable of monitoring a large

number of specifications efficiently.

Chapter 2 provided background on parametric monitoring and the indexing

tree technique. The indexing tree technique is a means to locate relevant monitors

upon each event. In parametric monitoring, there can be multiple monitors

related to an event, since an event can be partially parameterized. In this case,

all monitors for the compatible parameter instances to the partial parameter

instance of the event, should be updated. However, there are many challenges

in implementing efficient indexing trees. First, upon garbage collections of

parameters, indexing trees must clean up broken mappings for them to avoid

memory leaks. Second, indexing trees should provide efficient mappings to

monitors. Third, indexing trees should be capable of storing unlimited number

of mappings since there is no limit in the number of parameter instances. Thus,

indexing trees should adjust the size of its internal data structures.

Chapters 4 and 5 presented a number of optimization techniques closely

related to the indexing tree technique. Instead of general purpose data structures

from the Apache Commons Collections Library [42], custom data structures for

indexing trees are proposed and implemented, which satisfy the above condi-

tions. On top of these custom data structures, the monitor garbage collection

technique and the resource sharing technique for scalability are implemented.

Thorough evaluations show that these techniques effectively have reduced run-

time and memory overheads.

Chapter 3 introduced parametric monitoring without any limitation that

the first events must initiates all parameters. In this way, many specifications

including Map UnsafeIterator from Chapter 2 were able to be expressed in

JavaMOP. Also, a new logical formalism for monitoring stack-based properties,

called PTCaRet, is efficiently implemented with an optimization to reduce

107

PhD Thesis, University of Illinois, August 2012

overhead from tracking every method begin and end. Furthermore, the prototype

of specification inheritance is suggested. It allows reuse of specifications for more

sophisticated structure between specification.

Chapter 6 suggested that JavaMOP can be also used in monitoring/enforcing

thread scheduling. JavaMOP was used in the improved multi-threaded unit

testing framework (IMUnit) as a part of the prototype implementation for

monitoring/enforcing/checking thread scheduling against the desired schedules

which are explicitly given by developers. As a result, IMUnit has shown reliable

and fast multi-threaded unit testing.

Future Work There are still challenges left for even more practical parametric

monitoring. Since JavaMOP is separated from the AspectJ compiler, it is not

capable of analyzing target programs for static analysis, code optimization, and

it cannot support extended pointcuts. For the broader scope of events and

target code specific optimization, we leave integrating JavaMOP into an AspectJ

compiler as a future work. Also, formalism-independent static analysis and

model-checking based on JavaMOP specifications are also interesting ideas that

should be investigated.

Since parametric monitoring became more practical in the dissertation, we

expect more applications in the near future. Parametric monitoring can be used

for enforcing security policies, checking library/module API policies, and runtime

verification framework. With our scalable parametric monitoring techniques,

multiple simultaneous parametric specifications can be monitored efficiently.

As more specifications are described in JavaMOP, more logical formalisms are

required. Although JavaMOP supports the flexible architecture that a new logical

formalism can be easily implemented as a plugin, some logical formalisms might

have challenges in supporting them efficiently, like PTCaRet. Also, structuring

specifications is also becoming more important. The dissertation suggests a

prototype of specification inheritance, but it needs to be investigated further.

108

PhD Thesis, University of Illinois, August 2012

Bibliography

[1] Java Management Extensions. http://www.oracle.com/technetwork/

java/javase/tech/javamanagement-140525.html.

[2] ISO/IEC 14977:1996, Information technology – Syntactic metalanguage –
Extended BNF. ISO, Geneva, Switzerland.

[3] JavaMOP. http://javamop.com.

[4] Mars Climate Orbiter Fact Sheet, NASA. http://mars.jpl.nasa.gov/

msp98/orbiter/fact.html.

[5] SPECjvm 2008. http://www.spec.org/jvm2008/.

[6] Hprof: A heap/cpu profiling tool in j2se 5.0. http://java.sun.com/

developer/technicalArticles/Programming/HPROF.html.

[7] Tracematches Benchmarks. http://abc.comlab.ox.ac.uk/tmahead.

[8] P. Abercrombie and M. Karaorman. jContractor: Bytecode instrumentation
techniques for implementing DBC in Java. In Runtime Verification, volume
70.4 of ENTCS. Elsevier, 2002.

[9] Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie J. Hendren,
Sascha Kuzins, Ondrej Lhoták, Oege de Moor, Damien Sereni, Ganesh
Sittampalam, and Julian Tibble. Adding trace matching with free variables
to AspectJ. In Object-Oriented Programming, Systems, Languages and
Applications (OOPSLA’05), pages 345–364. ACM, 2005.

[10] Rajeev Alur, Kousha Etessami, and P. Madhusudan. A temporal logic of
nested calls and returns. In Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’04), volume 2988 of LNCS, pages 467–481.
Springer, 2004.

[11] Tomoyuki Aotani and Hidehiko Masuhara. Scope: an aspectj compiler for
supporting user-defined analysis-based pointcuts. In Proceedings of the 6th
international conference on Aspect-oriented software development (AOSD
’07), pages 161–172. ACM, 2007.

[12] Apache Software Foundation. Apache Lucene, . http://lucene.apache.

org/.

[13] Apache Software Foundation. Apache MINA, . http://mina.apache.org/.

[14] Apache Software Foundation. Apache Commons Pool, . http://commons.
apache.org/pool/.

[15] aspectj. AspectJ. http://eclipse.org/aspectj/.

109

PhD Thesis, University of Illinois, August 2012

http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://mars.jpl.nasa.gov/msp98/orbiter/fact.html
http://mars.jpl.nasa.gov/msp98/orbiter/fact.html
http://java.sun.com/developer/technicalArticles/Programming/HPROF.html
http://java.sun.com/developer/technicalArticles/Programming/HPROF.html
http://lucene.apache.org/
http://lucene.apache.org/
http://mina.apache.org/
http://commons.apache.org/pool/
http://commons.apache.org/pool/

[16] P. Avgustinov and C. Church. Trace Monitoring with Free Variables. PhD
thesis, Oxford University, 2009.

[17] Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins,
Jennifer Lhotak, Ondrej Lhotak, Oege de Moor, Damien Sereni, Ganesh
Sittampalam, and Julian Tibble. ABC: an extensible AspectJ compiler.
In Aspect-Oriented Software Development (AOSD’05), pages 87–98. ACM,
2005.

[18] Pavel Avgustinov, Julian Tibble, Eric Bodden, Ondrej Lhotak, Laurie
Hendren, Oege de Moor, Neil Ongkingco, and Ganesh Sittampalam. Efficient
trace monitoring. Technical Report abc-2006-1, Oxford University, 2006.

[19] Pavel Avgustinov, Julian Tibble, and Oege de Moor. Making trace mon-
itors feasible. In Object Oriented Programming, Systems, Languages and
Applications (OOPSLA’07), pages 589–608. ACM, 2007.

[20] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec#
programming system: An overview. In CASSIS’04, volume 3362 of LNCS,
pages 49–69. Springer, 2004.

[21] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-Based Runtime
Verification. In VMCAI’04, volume 2937 of LNCS, pages 44–57. Springer,
2004.

[22] Howard Barringer, David Rydeheard, and Klaus Havelund. Rule systems
for run-time monitoring: from EAGLE to RULER. J. Logic Computation,
November 2008.

[23] Detlef Bartetzko, Clemens Fischer, Michael Moller, and Heike Wehrheim.
Jass-Java with Assertions. In Runtime Verification, volume 55.2 of ENTCS.
Elsevier, 2001.

[24] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović,
T. VanDrunen, D. von Dincklage, and B. Wiedermann. The DaCapo
benchmarks: Java benchmarking development and analysis. In Object-
Oriented Programming, Systems, Languages and Applications (OOPSLA’06),
pages 169–190. ACM, 2006.

[25] Eric Bodden. J-LO, a tool for runtime-checking temporal assertions. Master’s
thesis, RWTH Aachen University, 2005.

[26] Eric Bodden, Florian Forster, and Friedrich Steimann. Avoiding infinite
recursion with stratified aspects. In GI-Edition Lecture Notes in Informatics

“NODe 2006 GSEM 2006”, volume P-88, pages 49 – 64. Bonner Köllen Verlag,
September 2006.

[27] Eric Bodden, Laurie Hendren, and Ondřej Lhoták. A staged static program
analysis to improve the performance of runtime monitoring. In European
Conference on Object Oriented Programming (ECOOP’07), volume 4609 of
LNCS, pages 525–549. Springer, 2007.

[28] Eric Bodden, Feng Chen, and Grigore Roşu. Dependent advice: A general
approach to optimizing history-based aspects. In Aspect-Oriented Software
Development (AOSD’09), pages 3–14. ACM, 2009.

110

PhD Thesis, University of Illinois, August 2012

[29] Eric Bodden, Patrick Lam, and Laurie Hendren. Clara: A framework for
partially evaluating finite-state runtime monitors ahead of time. In Runtime
Verification (RV’10), volume 6418 of LNCS, pages 183–197. Springer, 2010.

[30] Feng Chen and Grigore Roşu. Towards monitoring-oriented programming:
A paradigm combining specification and implementation. In Runtime
Verification (RV’03), volume 89 of ENTCS, pages 108–127. Elsevier, 2003.

[31] Feng Chen and Grigore Roşu. Java-MOP: A monitoring oriented program-
ming environment for Java. In Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’05), volume 3440 of LNCS, pages 546–550.
Springer, 2005.

[32] Feng Chen and Grigore Roşu. MOP: An efficient and generic runtime verifi-
cation framework. In Object-Oriented Programming, Systems, Languages
and Applications (OOPSLA’07), pages 569–588. ACM, 2007.

[33] Feng Chen and Grigore Roşu. Parametric trace slicing and monitoring.
In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’09), volume 5505 of LNCS, pages 246–261. Springer, 2009.

[34] Feng Chen, Marcelo D’Amorim, and Grigore Roşu. Checking and correct-
ing behaviors of Java programs at runtime with JavaMOP. In Runtime
Verification (RV’06), volume 144 of ENTCS, pages 3–20. Elsevier, 2006.

[35] Feng Chen, Dongyun Jin, Patrick Meredith, and Grigore Roşu. Monitoring
oriented programming - a project overview. In Proceedings of the Fourth
International Conference on Intelligent Computing and Information Systems
(ICICIS’09), pages 72–77. ACM, 2009.

[36] Feng Chen, Patrick Meredith, Dongyun Jin, and Grigore Roşu. Efficient
formalism-independent monitoring of parametric properties. In Automated
Software Engineering (ASE’09), pages 383–394. IEEE, 2009.

[37] Codehaus. Sysunit. http://docs.codehaus.org/display/SYSUNIT/Home.

[38] Marcelo d’Amorim and Klaus Havelund. Event-based runtime verification
of Java programs. ACM SIGSOFT Software Engineering Notes, 30(4):1–7,
2005.

[39] Bruno De Fraine, Mario Südholt, and Viviane Jonckers. Strongaspectj:
flexible and safe pointcut/advice bindings. In Proceedings of the 7th inter-
national conference on Aspect-Oriented Software Development (AOSD ’08),
pages 60–71. ACM, 2008.

[40] Doron Drusinsky. The Temporal Rover and the ATG Rover. In Model
Checking and Software Verification (SPIN’00), volume 1885 of LNCS, pages
323–330. Springer, 2000.

[41] Matthew Dwyer, Rahul Purandare, and Suzette Person. Runtime verification
in context: Can optimizing error detection improve fault diagnosis. In
Runtime Verification (RV’10), volume 6418 of LNCS, pages 36–50. Springer,
2010.

[42] The Apache Software Foundation. The Apache Commons Collections.
http://commons.apache.org/collections/.

111

PhD Thesis, University of Illinois, August 2012

http://docs.codehaus.org/display/SYSUNIT/Home

[43] Simon Goldsmith, Robert O’Callahan, and Alex Aiken. Relational queries
over program traces. In Object-Oriented Programming, Systems, Languages
and Applications (OOPSLA’05), pages 385–402. ACM, 2005.

[44] Klaus Havelund and Grigore Roşu. Monitoring Java programs with Java
PathExplorer. In Runtime Verification (RV’01), volume 55 of ENTCS.
Elsevier, 2001.

[45] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall Intl.,
New York, 1985.

[46] Kevin Hoffman and Patrick Eugster. Bridging java and aspectj through
explicit join points. In Proceedings of the 5th international symposium on
Principles and practice of programming in Java (PPPJ ’07), pages 63–72.
ACM, 2007.

[47] Vilas Jagannath, Milos Gligoric, Dongyun Jin, Grigore Roşu, and Darko
Marinov. IMUnit: Improved multithreaded unit testing. In Proceedings
of the Third International Workshop on Multicore Software Engineering
(IWMSE’10), IEEE, pages 48–49, 2010.

[48] Vilas Jagannath, Milos Gligoric, Dongyun Jin, Qingzhou Luo, Grigore Roşu,
and Darko Marinov. Improved multithreaded unit testing. In Foundations
of Software Engineering (FSE’11), pages 223–233. ACM, 2011.

[49] Java Community Process. JSR 166: Concurrency utilities. http://g.

oswego.edu/dl/concurrency-interest/.

[50] JBoss Community. JBoss Cache. http://www.jboss.org/jbosscache.

[51] Dongyun Jin, Patrick O’Neil Meredith, Dennis Griffith, and Grigore Roşu.
Garbage collection for monitoring parametric properties. In Programming
Language Design and Implementation (PLDI’11), pages 415–424. ACM,
2011.

[52] Dongyun Jin, Patrick O’Neil Meredith, Choonghwan Lee, and Grigore Roşu.
Javamop: Efficient parametric runtime monitoring framework. In Proceeding
of the 34th International Conference on Software Engineering (ICSE’12).
IEEE, 2012. to appear.

[53] Dongyun Jin, Patrick O’Neil Meredith, and Grigore Roşu. Scalable paramet-
ric runtime monitoring. Technical Report http://hdl.handle.net/2142/30757,
Department of Computer Science, University of Illinois at Urbana-
Champaign, April 2012.

[54] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm,
and William G. Griswold. An overview of AspectJ. In European Conference
on Object Oriented Programming (ECOOP’01), volume 2072 of LNCS, pages
327–353. Springer, 2001.

[55] M. Kim, S. Kannan, I. Lee, and O. Sokolsky. Java-MaC: a runtime assurance
tool for Java. In Runtime Verification, 2001.

[56] Moonjoo Kim, Mahesh Viswanathan, Hanêne Ben-Abdallah, Sampath
Kannan, Insup Lee, and Oleg Sokolsky. Formally specified monitoring
of temporal properties. In Europoean Conference on Real-Time Systems
(ECRTS’99), 1999.

112

PhD Thesis, University of Illinois, August 2012

http://g.oswego.edu/dl/concurrency-interest/
http://g.oswego.edu/dl/concurrency-interest/
http://www.jboss.org/jbosscache

[57] MoonZoo Kim, Mahesh Viswanathan, Sampath Kannan, Insup Lee, and
Oleg Sokolsky. Java-MaC: A run-time assurance approach for Java programs.
J. Formal Methods in System Design, 24(2):129–155, 2004.

[58] Gary T. Leavens, K. Rustan M. Leino, Erik Poll, Clyde Ruby, and Bart
Jacobs. JML: notations and tools supporting detailed design in Java.
In Object Oriented Programming, Systems, Languages and Applications
(OOPSLA’00), pages 105–106. ACM, 2000.

[59] Choonghwan Lee, Dongyun Jin, Patrick O’Neil Meredith, and Grigore
Roşu. Towards categorizing and formalizing the JDK API. Technical
Report http://hdl.handle.net/2142/30006, Department of Computer Science,
University of Illinois at Urbana-Champaign, March 2012.

[60] Nancy G. Leveson. An Investigation of the Therac-25 Accidents. IEEE
Computer, 26:18–41, 1993.

[61] H. Lu and A. Forin. The design and implementation of P2V, an architecture
for zero-overhead online verification of software programs. Technical Report
MSR-TR-2007–99, Microsoft Research, 2007.

[62] Michael Martin, V. Benjamin Livshits, and Monica S. Lam. Finding ap-
plication errors and security flaws using PQL: a program query language.
In Object Oriented Programming, Systems, Languages and Applications
(OOPSLA’07), pages 365–383. ACM, 2005.

[63] Patrick Meredith, Dongyun Jin, Feng Chen, and Grigore Roşu. Efficient
monitoring of parametric context-free patterns. In Automated Software
Engineering (ASE’08), pages 148–157. IEEE, 2008.

[64] Patrick Meredith, Dongyun Jin, Feng Chen, and Grigore Roşu. Efficient
monitoring of parametric context-free patterns. J. Automated Software
Engineering, 17(2):149–180, June 2010.

[65] Patrick O’Neil Meredith, Dongyun Jin, Dennis Griffith, Feng Chen, and
Grigore Roşu. An overview of the MOP runtime verification framework.
International Journal on Software Techniques for Technology Transfer, 2011.

[66] Rodolfo Pellizzoni, Patrick Meredith, Marco Caccamo, and Grigore Roşu.
Hardware runtime monitoring for dependable cots-based real-time embedded
systems. In Real-Time System Symposium (RTSS’08), pages 481–491. IEEE,
2008.

[67] William Pugh and Nathaniel Ayewah. MultithreadedTC - A framework
for testing concurrent Java applications. http://code.google.com/p/

multithreadedtc/.

[68] William Pugh and Nathaniel Ayewah. Unit testing concurrent software. In
ASE, 2007.

[69] Grigore Roşu, Feng Chen, and Thomas Ball. Synthesizing monitors for
safety properties – this time with calls and returns –. In Runtime Verification
(RV’08), volume 5289 of LNCS, pages 51–68. Springer, 2008.

[70] L. A. Smith, J. M. Bull, and J. Obdrzálek. A parallel java grande benchmark
suite. In Supercomputing (SC’01), pages 8–8. ACM, 2001.

[71] Robert E. Strom and Shaula Yemeni. Typestate: A programming language
concept for enhancing software reliability. IEEE Transactions on Software
Engineering, 12:157–171, January 1986.

113

PhD Thesis, University of Illinois, August 2012

http://code.google.com/p/multithreadedtc/
http://code.google.com/p/multithreadedtc/

	Chapter 1 Introduction
	Chapter 2 Background
	Chapter 3 Expressive Parametric Monitoring
	Chapter 4 Efficient Parametric Monitoring
	Chapter 5 Scalable Parametric Monitoring
	Chapter 6 Multi-Threaded Unit Testing
	Chapter 7 Related Work
	Chapter 8 Conclusions and Future Work
	Bibliography

