
JavaMOP: Efficient Parametric Runtime Monitoring Framework

Dongyun Jin, Patrick O’Neil Meredith, Choonghwan Lee, and Grigore Roşu
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL, U.S.A.

{djin3, pmeredit, clee83, grosu}@illinois.edu

Abstract—Runtime monitoring is a technique usable in all
phases of the software development cycle, from initial testing, to
debugging, to actually maintaining proper function in produc-
tion code. Of particular importance are parametric monitoring
systems, which allow the specification of properties that relate
objects in a program, rather than only global properties. In
the past decade, a number of parametric runtime monitoring
systems have been developed. Here we give a demonstration
of our system, JavaMOP. It is the only parametric monitoring
system that allows multiple differing logical formalisms. It is
also the most efficient in terms of runtime overhead, and very
competitive with respect to memory usage.

Keywords-runtime verification; runtime monitoring; testing;
debugging; aspect-oriented programming;

I. INTRODUCTION

Monitoring executions of a system against expected prop-
erties plays an important role not only in system develop-
ment stages, e.g., debugging, testing, but also in the de-
ployed system as a mechanism to increase system reliability
or security. Monitoring a program execution generates an
execution trace consisting of events that the user is interested
in. When an execution trace validates/violates the given
property, appropriate actions according to the purpose of the
monitor will be triggered.

Parametric properties are properties with free variables,
allowing one to describe not only global behaviors but also
behaviors of objects. Although it gives more expressiveness,
it is not trivial to monitor parametric properties efficiently.
There can be a huge number of parameter instances during
monitoring. For example, in Java, it is not uncommon to see
hundreds of thousands of iterators during one execution of a
program, which leads to hundreds of thousands of parameter
instances in a specification about iterators. There have been
numerous approaches such as [1], [2], [3], [4], [5], [6],
[7] to build effective and efficient parametric monitoring
solutions for different applications. However, many moni-
toring systems follow a formalism-dependent approach, that
is, they hardwire their parametric specification formalisms,
as a feasible solution to this, limiting expressiveness and
leading to inefficient monitoring; note that some properties

Supported by NSF grant CCF-0916893.

Approach Language Logic Scope Mode Handler

Hawk [8] Java Eagle global inline violation
J-Lo [9] Java ParamLTL global inline violation
Jass [10] Java assertions global inline violation
JavaMaC [11] Java PastLTL class outlineviolation
jContractor [12] Java contracts global inline violation
JML [13] Java contracts global inline violation
JPaX [1] Java LTL class offline violation
P2V [14] C,

C++
PSL global inline validation/

violation
PQL [5] Java PQL global inline validation
PTQL [6] Java SQL global outlinevalidation
Spec# [15] C# contracts global inline/

offline
violation

RuleR [16] Java RuleR global inline violation
Temporal
Rover [2]

several MiTL class inline violation

Tracematches [4]Java Reg. Exp. global inline validation

Figure 1. Runtime Monitoring Breakdown

can be monitored more efficiently using a different formal-
ism. Figure 1 lists a number of other monitoring systems
and the logical formalism they support. Note that all have
some hardwired formalism.

Our approach slices an execution trace according to
parameter instance, then checks each slice by a monitor
dedicated to the slice. In this way, a monitor can be from
any formalism and the framework can focus on efficient
parametric slicing no matter what formalism is being used.
The challenge of this approach that there can be a huge
number of monitors, has been overcome by many tech-
niques. By ignoring parameter instances that can never
reach the target states [17], we can reduce the number of
monitors to create, reducing runtime and memory overhead
greatly. Also, some monitors can become unnecessary during
execution because objects necessary for a policy violation
can be garbage collected. We detect such unnecessary mon-
itors and eliminate them efficiently [18]. In this way, the
number of monitors to update upon an event decreases
and monitors take less memory, resulting in better runtime
and memory performance.

ICSE'12, IEEE, pp 1427-1430. 2012

Figure 2. JavaMOP Architecture

II. JAVAMOP

JavaMOP [19] is an instance of the generic MOP frame-
work specific to the Java programming language. It al-
lows concise descriptions of parametric properties using
a combination of event specifications using an extension
of AspectJ [20] as well as properties specified over these
events. From these specifications, JavaMOP generates As-
pectJ code for monitoring, which is weaved into the target
program by any AspectJ compiler, such as the standard
AspectJ compiler ajc. In this way, the generated monitoring
code observes the program, catches the events defined by
a specification, and checks whether the program is com-
pliant to the given specification. When a specification is
validated or violated, user-defined actions, called handlers,
are executed. User-defined actions can be any Java code
from logging to runtime recovery. The ability to supply
actual recovery code in the event of a violated specification
allows JavaMOP-generated monitors to actually enforce a
specification within a program.

JavaMOP is distinguished by several features which make
it one of the best runtime monitoring systems. First, Java-
MOP supports efficient formalism-independent parametric
monitoring [17]. While other tools have some restrictions
in their parametric monitoring or hardwire formalisms in
order to support parametric monitoring efficiently, JavaMOP
has no restrictions in parametric monitoring and is com-
pletely logical formalism agnostic. JavaMOP already has

support for finite state machines (FSM), extended regular
expressions (ERE), context-free grammars (CFG), past time
(specific) linear temporal logic (PTLTL), a linear temporal
logic supporting both future and past operators simultane-
ously (LTL), and past time linear temporal logic with calls
and returns (PTCaRet). JavaMOP is unique1 among run-
time monitoring systems in supporting efficient parametric
context-free properties, and is the only monitoring system
of any kind that supports LTL specifications with simulta-
neous future and past operators. Additionally, JavaMOP can
be extended to support more logical formalisms using its
plugin interface. Since we believe that there is no ultimate
formalism that every property can be expressed concisely,
users will likely use different formalisms, depending on what
properties they want to express. Currently, JavaMOP2 has the
best runtime performance of any monitoring system, while
maintaining competitive memory performance. Several years
of research [7], [21], [17], [18] have focused on improving
its performance, resulting in only 15% average runtime
overhead on the DaCapo benchmark [22].

Figure 2 shows the architecture of JavaMOP. JavaMOP
communicates with the Logic Repository which generates
platform-independent monitoring pseudo-code for the given
property. All logical formalism plugins are contained within
the Logic Repository, which is a standalone program that
can be used with other instances of the MOP framework3.
The JavaMOP component has several translators to interpret
pseudo-code from the Logic Repository into AspectJ moni-
toring code. JavaMOP provides several interfaces including
command-line and web interfaces, and it can be extended
as well, for other usages.

Since JavaMOP relies on an external AspectJ com-
piler for weaving monitoring code, JavaMOP only allows
events which can be defined in the standard AspectJ.
Additionally, it cannot do any weaving-time optimization.
For the broader scope of events and target code specific
optimization, we leave integrating JavaMOP into an AspectJ
compiler as a future work.

The installer and the source distribution of JavaMOP
command-line interface are available from the JavaMOP
website, http://javamop.com. The website also contains the
web interface to JavaMOP, detailed JavaMOP syntax, in-
structions for use, and experimental results.

III. DEMONSTRATION

In the accompanying video, we demonstrate three Java-
MOP properties with different formalisms, how to instru-
ment example programs with the generated monitoring code,
and the results of monitoring the example code. We monitor

1RV-Monitor, a product under development by Runtime Verification, Inc.
also supports these, but it is a derivative of JavaMOP.

2And its RV-Monitor derivative.
3A C instance of MOP is forthcoming.

ICSE'12, IEEE, pp 1427-1430. 2012

http://javamop.com

SafeEnum(Vector v, Enumeration e) {
event create after(Vector v)

returning(Enumeration e) :
call(Enumeration Vector+.elements())

&& target(v) {}
event updatesource after(Vector v) :

(call(* Vector+.remove*(..))
|| call(* Vector+.add*(..))
|| call(* Vector+.clear(..))
|| call(* Vector+.insertElementAt(..))
|| call(* Vector+.set*(..))
|| call(* Vector+.retainAll(..)))
&& target(v) {}

event next before(Enumeration e) :
call(* Enumeration+.nextElement())

&& target(e) {}

ere : create next* updatesource+ next
@match {

System.out.println("improper enumeration usage");
__RESET;

}
}

Figure 3. SafeEnum Property in ERE

SafeLock(Lock l, Thread t) {
event acquire before(Lock l, Thread t):

call(* Lock.acquire()) && target(l)
&& thread(t) {}

event release before(Lock l, Thread t):
call(* Lock.release()) && target(l)

&& thread(t) {}
event begin before(Thread t) :

execution(* *.*(..)) && thread(t)
&& !within(Lock+) {}

event end after(Thread t) :
execution(* *.*(..)) && thread(t)

&& !within(Lock+) {}

cfg : S -> S begin S end |
S acquire S release | epsilon

@fail {
System.out.println("improper lock usage");

}
}

Figure 4. SafeLock Property in CFG

our example programs against three well-known properties
that have been discussed in other works [21], [4], [7].
We rewrote the properties into three different formalisms
for demonstration purposes. For the last property, we also
demonstrate how we can provide a recovery action so that
the property is actually enforced, rather than simply checked.

• SafeEnum (ERE): Ensures that one does not modify a
Collection while its Enumeration is in use;

• SafeLock (CFG): Ensures that each method in each
thread releases each Lock as many times as the method
acquires the lock;

HasNext(Iterator i) {
event hasnexttrue after(Iterator i)

returning(boolean b) :
call(* Iterator.hasNext())
&& target(i) && condition(b) {}

event hasnextfalse after(Iterator i)
returning(boolean b) :

call(* Iterator.hasNext())
&& target(i) && condition(!b) {}

event next before(Iterator i) :
call(* Iterator.next()) && target(i) {}

ltl: [](next => (*) hasnexttrue)
@violation {

System.out.println("improper iterator usage");
}

}

Figure 5. HasNext Property in LTL

• HasNext (LTL): Ensures that one does not use the next
element in an Iterator without checking for the existence
of a next element.

In the first specification, SafeEnum (Figure 3), we have
three events: create, updatesource, and next. Once we see
any updatesource event, there should be no following next
event. Our first example program follows the specification
and no errors are reported by the monitoring code. Our sec-
ond program violates the specification, and the monitoring
code detects it and signals an error.

In the second specification, SafeLock (Figure 4), each
acquire and release event should be paired in the
same method. Any mismatched acquire or release is
considered to be a violation to the property. Note that
this property cannot be expressed using regular patterns.
We again show both validation and violation of the property
with example programs.

In the last specification, HasNext (Figure 5), there are
three events: hasnexttrue, hasnextfalse, and next. The
events hasnexttrue and hasnextfalse represent the same
method call but different return values. The property states
that every time a next event is seen, there should be a
hasnexttrue event immediately preceding it. This time we
show only a violating program, and we show how recovery
from the violation can be performed by checking that
another element is present before allowing the call to the
next() method by using an around pointcut (not pictured).

IV. CONCLUSION

Parametric monitoring is useful at all stages during the
software development cycle, either to aid in the detection of
errors, or to recover from errors gracefully. Many systems
have been developed to allow the monitoring of parametric
properties, but they all have fixed formalisms. JavaMOP
allows the user to use whatever logical formalism with which
they feel most comfortable, in fact, they may even add new
formalisms if they desire. Not only is JavaMOP not fixed in

ICSE'12, IEEE, pp 1427-1430. 2012

logical formalism, but it is also the most efficient monitoring
system in terms of runtime overhead, and very competitive
in terms of memory efficiency.

With our tool demo, we showcase the JavaMOP tool.
We demonstrate three different properties. For two of the
properties, we show two example programs, in each case
one that causes a violation of the property and one that
does not. For the third property, we show an example
program that violates the property, and then show how
JavaMOP’s recovery actions allow for ensuring that the
violation can be avoided entirely.

The demonstration video is available at:
http://fsl.cs.uiuc.edu/JavaMOPDemo.html.

REFERENCES

[1] K. Havelund and G. Roşu, “Monitoring Java programs with
Java PathExplorer,” in Runtime Verification (RV’01), ser.
ENTCS, vol. 55, no. 2. Elsevier, 2001.

[2] D. Drusinsky, “The Temporal Rover and the ATG Rover,”
in Model Checking and Software Verification (SPIN’00), ser.
LNCS, vol. 1885. Springer, 2000, pp. 323–330.

[3] H. Barringer, A. Goldberg, K. Havelund, and K. Sen, “Rule-
Based Runtime Verification,” in VMCAI’04, ser. LNCS, vol.
2937. Springer, 2004, pp. 44–57.

[4] P. Avgustinov, J. Tibble, and O. de Moor, “Making trace
monitors feasible,” in Object Oriented Programming, Systems,
Languages and Applications (OOPSLA’07). ACM, 2007, pp.
589–608.

[5] M. Martin, V. B. Livshits, and M. S. Lam, “Finding ap-
plication errors and security flaws using PQL: a program
query language,” in Object Oriented Programming, Systems,
Languages and Applications (OOPSLA’07). ACM, 2005, pp.
365–383.

[6] S. Goldsmith, R. O’Callahan, and A. Aiken, “Relational
queries over program traces,” in Object-Oriented Program-
ming, Systems, Languages and Applications (OOPSLA’05).
ACM, 2005, pp. 385–402.

[7] F. Chen and G. Roşu, “MOP: An efficient and generic runtime
verification framework,” in Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA’07). ACM,
2007, pp. 569–588.

[8] M. d’Amorim and K. Havelund, “Event-based runtime ver-
ification of Java programs,” ACM SIGSOFT Software Engi-
neering Notes, vol. 30, no. 4, pp. 1–7, 2005.

[9] E. Bodden, “J-LO, a tool for runtime-checking temporal
assertions,” Master’s thesis, RWTH Aachen University, 2005.

[10] D. Bartetzko, C. Fischer, M. Moller, and H. Wehrheim, “Jass-
Java with Assertions,” in Runtime Verification, ser. ENTCS,
vol. 55.2. Elsevier, 2001.

[11] M. Kim, M. Viswanathan, H. Ben-Abdallah, S. Kannan,
I. Lee, and O. Sokolsky, “Formally specified monitoring of
temporal properties,” in Europoean Conference on Real-Time
Systems (ECRTS’99), 1999.

[12] P. Abercrombie and M. Karaorman, “jContractor: Bytecode
instrumentation techniques for implementing DBC in Java,”
in Runtime Verification, ser. ENTCS, vol. 70.4. Elsevier,
2002.

[13] G. T. Leavens, K. R. M. Leino, E. Poll, C. Ruby, and
B. Jacobs, “JML: notations and tools supporting detailed
design in Java,” in Object Oriented Programming, Systems,
Languages and Applications (OOPSLA’00). ACM, 2000, pp.
105–106.

[14] H. Lu and A. Forin, “The design and implementation of
P2V, an architecture for zero-overhead online verification of
software programs,” Microsoft Research, Tech. Rep. MSR-
TR-2007–99, 2007.

[15] M. Barnett, K. R. M. Leino, and W. Schulte, “The Spec# pro-
gramming system: An overview,” in CASSIS’04, ser. LNCS,
vol. 3362. Springer, 2004, pp. 49–69.

[16] H. Barringer, D. Rydeheard, and K. Havelund, “Rule systems
for run-time monitoring: from EAGLE to RULER,” J. Logic
Computation, November 2008.

[17] F. Chen, P. Meredith, D. Jin, and G. Roşu, “Efficient
formalism-independent monitoring of parametric properties,”
in Automated Software Engineering (ASE’09). IEEE, 2009,
pp. 383–394.

[18] D. Jin, P. O. Meredith, D. Griffith, and G. Roşu, “Garbage
collection for monitoring parametric properties,” in Pro-
gramming Language Design and Implementation (PLDI’11).
ACM, 2011, pp. 415–424.

[19] P. O. Meredith, D. Jin, D. Griffith, F. Chen, and G. Roşu,
“An overview of the MOP runtime verification framework,”
International Journal on Software Techniques for Technology
Transfer, 2011.

[20] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold, “An overview of AspectJ,” in European
Conference on Object Oriented Programming (ECOOP’01),
ser. LNCS, vol. 2072. Springer, 2001, pp. 327–353.

[21] P. Meredith, D. Jin, F. Chen, and G. Roşu, “Efficient mon-
itoring of parametric context-free patterns,” in Automated
Software Engineering (ASE’08). IEEE, 2008, pp. 148–157.

[22] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B.
Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von
Dincklage, and B. Wiedermann, “The DaCapo benchmarks:
Java benchmarking development and analysis,” in Object-
Oriented Programming, Systems, Languages and Applications
(OOPSLA’06). ACM, 2006, pp. 169–190.

ICSE'12, IEEE, pp 1427-1430. 2012

http://fsl.cs.uiuc.edu/JavaMOPDemo.html

	Introduction
	JavaMOP
	Demonstration
	Conclusion
	References

