
Recursive Proofs for Inductive Tree Data-Structures

P. Madhusudan Xiaokang Qiu Andrei Stefanescu
University of Illinois at Urbana-Champaign, USA

{madhu, qiu2, stefane1}@illinois.edu

Abstract
We develop logical mechanisms and procedures to facilitate the
verification of full functional properties of inductive tree data-
structures using recursion that are sound, incomplete, but terminat-
ing. Our contribution rests in a new extension of first-order logic
with recursive definitions called Dryad, a syntactical restriction
on pre- and post-conditions of recursive imperative programs us-
ing Dryad, and a systematic methodology for accurately unfold-
ing the footprint on the heap uncovered by the program that leads
to finding simple recursive proofs using formula abstraction and
calls to SMT solvers. We evaluate our methodology empirically
and show that several complex tree data-structure algorithms can be
checked against full functional specifications automatically, given
pre- and post-conditions. This results in the first automatic termi-
nating methodology for proving a wide variety of annotated algo-
rithms on tree data-structures correct, including max-heaps, treaps,
red-black trees, AVL trees, binomial heaps, and B-trees.

Categories and Subject Descriptors F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams: Mechanical verification; D.2.4 [Software Engineering]:
Software/Program Verification: Assertion checkers

General Terms Algorithms, Reliability, Theory, Verification

Keywords heap analysis, recursive program, tree, SMT solver

1. Introduction
The area of program verification using theorem provers, utilizing
manually provided proof annotations (pre- and post-conditions for
functions, loop-invariants, etc.) has been a focus of intense re-
search in the field of programming languages. Automatic theory
solvers (SMT solvers) that handle a variety of quantifier-free the-
ories including arithmetic, uninterpreted functions, Boolean logic,
etc., serve as effective tools that automatically discharge the valid-
ity checking of many verification conditions [7].

A key area that has eluded the above paradigm of specification
and verification is heap analysis: the verification of programs that
dynamically allocate memory and manipulate them using point-
ers, maintaining structural invariants (e.g. “the nodes form a tree”),
aliasing invariants, and invariants on the data stored in the locations
(e.g. “the keys of a list are sorted”). The classical examples of these
are the basic data-structures taught in undergraduate computer sci-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’12, January 25–27, 2012, Philadelphia, PA, USA.
Copyright c© 2012 ACM 978-1-4503-1083-3/12/01. . . $10.00

ence courses, and include linked lists, queues, binary search trees,
max-heaps, balanced AVL trees, partially-balanced tree structures
like red-black trees, etc. [10]. Object-oriented programs are rich
with heap structures as well, and structures are often found in the
form of records or lists of pointers pointing to other hierarchically
arranged data-structures.

Dynamically allocated heaps are difficult to reason with for
several reasons. First, the specification of proof annotations itself
is hard, as the annotation needs to talk about several intricate
properties of an unbounded heap, often requiring quantification and
reachability predicates, and needs to specify aliasing as well as
structural properties of the heap. Also, in experiences with manual
verification, it has been observed that pre- and post-conditions get
unduly complex, including large formulas that say how the frame
of the heap that is not touched by the program remains the same
across a function. Separation logic [19, 23] has emerged as a way to
address this problem, mainly the frame problem mentioned above,
and gives a logic that permits us to compositionally reason with the
footprint touched by the program and the frame it resides in.

Most research on program logics for functional verification
of heap-manipulating programs can be roughly divided into two
classes:1

• Logics for manual/semi-automatic reasoning: The most pop-
ular of these are the class of separation logics[19, 23], but sev-
eral others exist (see matching logic [24], for example). Com-
plex structural properties of heaps are expressed using induc-
tive algebraic definitions, the logic combines several other the-
ories like arithmetic, etc., and uses a special separation opera-
tor (∗) to compositionally reason with a footprint and the frame.
The analysis is either manual or semi-automatic, the latter being
usually sound, incomplete, and non-terminating, and proceeds
by heuristically searching for proofs using a proof system, un-
rolling recursive definitions arbitrarily. Typically, such tools can
find simple proofs if they exist, but are unpredictable, and can-
not robustly produce counter-examples.
• Logics for completely automated reasoning: These logics

stem from the SMT (Satisfiability Modulo Theories) and au-
tomata theory literature, where the goal is to develop fast, ter-
minating, sound and complete decision procedures, but where
the logics are often constrained heavily on expressivity in or-
der to reach these goals. Examples include several logics that
extend first-order logic with reachability, the logics Lisbq [14]
and CSL [6], and the logic Stranddec [16] that combines tree
theories with integer theories. The problem with these logics,
in general, is that they are often not sufficiently expressive to
state complex properties of the heap (e.g. the balancedness of

1 We do not discuss abstraction-based approaches such as shape analysis
here as such approaches are geared towards less complex specifications,
and often are completely automatic, not even requiring proof annotations
such as loop invariants; see Section 6.

an AVL tree, or that the set of keys stored in a heap do not
change across a program).

We prefer an approach that combines the two methodologies
above. We propose a strategy that (a) identifies a class of simple
and natural proofs for proving verification conditions for heap-
based programs, founded on how people prove these conditions
manually, and (b) builds terminating procedures that efficiently and
thoroughly search this class of proofs. This results in a sound,
incomplete, but terminating procedure that finds natural proofs
automatically and efficiently. Many correct programs have simple
proofs of correctness, and a terminating procedure that searches for
these simple proofs efficiently can be a very useful tool in program
verification. Incompleteness is, of course, a necessary trade-off to
keep the logics expressive while having a terminating procedure,
and a terminating automatic procedure is useful as it does not
need manual help. Furthermore, as we shall see in this paper, such
decision algorithms are particularly desirable when they can be
made to work very efficiently, especially using the fast-growing
class of efficient SMT solvers for quantifier-free theories.

The idea of searching for only simple and natural proofs is
not new; after all, type systems that prove properties of programs
are essentially simple (and often scalable) proof mechanisms. The
class of simple and natural proofs that we identify in this paper is,
however, quite different from those found by type systems.

In this paper, we develop logical mechanisms to identify a sim-
ple class of proofs based on a deterministic proof tactic that (a)
unfolds recursive terms precisely across the footprint, (b) uses for-
mula abstractions (that replace recursively defined terms with unin-
terpreted terms) to restate the verification condition in a quantifier-
free decidable theory, and (c) checks the resulting formula using
an automatic decision procedure. We deploy this technique for the
specialized domain of imperative programs manipulating tree data-
structures, developing an extension of first-order logic with recur-
sion on trees called Dryad to state properties of programs, and
building procedures based on precise unfoldings and formula ab-
stractions.

Motivating formula abstractions
When reasoning with formulas that have recursively defined terms,
which can be unrolled forever, a key idea is to use formula abstrac-
tion that makes the terms uninterpreted. Intuitively, the idea is to
replace recursively defined predicates, sets, etc. by uninterpreted
Boolean values, uninterpreted sets, etc.

The idea of formula abstraction is extremely natural, and uti-
lized very often in manual proofs. For instance, let us consider a
binary search tree (BST) search routine searching for a key k on the
root node x. The verification condition of a path of this program,
typically, would require checking:

(bst(x) ∧ k ∈ keys(x) ∧ k < x.key)⇒ (k ∈ keys(x.left))

where bst() is a recursive predicate defined on trees that identifies
binary search trees, and keys() is a recursively defined set that
collects the multiset of keys under a node. Unrolling the definition
of keys() and bst() gives the following formula (below, i < S means
that i is less than every element in S):
bst(x.left)∧ bst(x.right)∧ keys(x.left)<x.key∧ keys(x.right)>x.key∧
k∈(keys(x.left)∪keys(x.right)∪{x.key})∧k<x.key)⇒ (k∈keys(x.left))

Now, while the above formula is quite complex, involving recur-
sive definitions that can be unrolled ad infinitum, we can prove its
validity soundly by viewing bst() and keys() as uninterpreted func-
tions that map locations to Booleans and sets, respectively. Doing
this gives (modulo some renaming and modulo theory of equality):
(b1 ∧ b2 ∧ K1≤xkey ∧ K2>xkey ∧ k ∈ (K1 ∪ K2 ∪ {xkey}) ∧ k<xkey)
⇒ (k∈K1)

Note that the above formula is a quantifier-free formula over in-
tegers and multisets of integers, and furthermore is valid (since
k<xkey and K2>xkey, k must be in K1). Validity of quantifier-free
formulas over sets/multisets of integers with addition is decidable
(they can be translated to quantifier-free formulas over integers and
uninterpreted functions), and can be solved using SMT solvers effi-
ciently. Consequently, we can prove that the verification condition
is valid, completely automatically. Note that formula abstraction is
sound but incomplete.

This idea has been explored in the literature. For example,
Suter et al. [25] have proposed abstraction schemes for algebraic
data-types that soundly (but incompletely) transform logical valid-
ity into much simpler decidable problems using formula abstrac-
tions, and developed mechanisms for proving functional programs
correct.

Reasoning with Dryad

In order to build the procedures for reasoning with programs ma-
nipulating trees, using precise unfolding and abstraction, we de-
velop a new recursive extension of first-order logic, called Dryad
that allows stating complex properties of heaps without recourse to
explicit quantification. Dryad combines quantifier-free first-order
logic with recursive definitions, and these recursive definitions,
themselves expressed in Dryad, can capture several interesting
properties of trees, including their height, the multiset of keys
stored in them, whether they correspond to a binary search tree (or
an AVL tree), etc.

The main technical contribution of this paper is to show how
a Hoare-triple corresponding to a basic path in a recursive imper-
ative program (we disallow while-loops and demand all recursion
be through recursive function calls) with proof annotations written
in Dryad, can be expressed as a pair consisting of a finite foot-
print and a Dryad formula. The finite footprint is a symbolic heap
that captures the heap explored by the basic block of the program
precisely. The construction of this footprint and formula calls for
a careful handling of the mutating footprint defined by a recursive
imperative program, calls for a disciplined approach to unrolling
recursion, and involves capturing aliasing and separation by ex-
ploiting the fact that the manipulated structures are trees. In par-
ticular, the procedure keeps track of locations in the footprint cor-
responding to trees and precisely computes the value of recursive
terms on the these. Furthermore, the verification condition is ac-
curately described by unfolding the pre-condition so that it is ex-
pressed purely on the frontier of the footprint, so as to enable ef-
fective use of the formula abstraction mechanism. In order to be
accurate, we place several key restrictions on the logical syntax of
pre- and post-conditions expressed for functions.

We then consider the problem of solving the validity problem
for the verification condition expressed as a footprint and a Dryad
formula. We first show a small syntactic fragment of verification
conditions that is entirely decidable (without formula abstraction)
by a reduction to the decidable logic Stranddec [16]. Although
this fragment of Dryad is powerful enough to express certain re-
stricted structural properties of simple tree data-structures like bi-
nary search trees, max-heaps, and treaps, it is completely inade-
quate in verifying more complex properties of the above structures
as well as properties of more complex tree data-structures such as
red-black trees, binomial heaps, etc.

We turn next to abstraction schemes for Dryad, and show how
to abstract Dryad formulas into quantifier-free theories of sets/mul-
tisets of integers; the latter can then be translated into formulas in
the standard quantifier-free theory of integers with uninterpreted
functions. The final formula’s validity can be proved using stan-
dard SMT solvers, and its validity implies the validity of the Dryad
formula.

dir ∈ Dir i∗ : Loc→ Int x ∈ Loc Variables S ∈ S(Int) Variables
f ∈ DF si∗ : Loc→ S(Int) j ∈ Int Variables MS ∈ MS(Int) Variables
p∗ : Loc→ {true, false} msi∗ : Loc→MS(Int) q ∈ Boolean Variables c : Int Constant

Loc Term: lt, lt1, lt2 . . . ::= x | nil | lt.dir
Int Term: it, it1, it2, . . . ::= c | j | lt.f | i∗(lt) | it1 + it2 | it1 − it2 | ite(ϕ, it1, it2)

S(Int) Term: sit, sit1, sit2, . . . ::= ∅ | S | {it} | si∗(lt) | sit1 ∪ sit2 | sit1 ∩ sit2 | sit1 \ sit2 | ite(ϕ, sit1, sit2)
MS(Int) Term: msit,msit1,msit2, . . . ::= ∅m | MS | {it}m | msi∗(lt) | msit1 ∪ msit2 | msit1 ∩ msit2 | msit1\msit2 | ite(ϕ,msit1,msit2)

Formula: ϕ, ϕ1, ϕ2, . . . ::= true | q | p∗(lt) | lt1 = lt2 | it1 ≤ it2 | sit1 ⊆ sit2 | msit1 ⊆ msit2 |

sit1 ≤ sit2 | msit1 ≤ msit2 | it ∈ sit | it ∈ msit | ¬ϕ | ϕ1 ∨ ϕ2

Recursively-defined integer : i∗(x)
def
= ite(x = nil, ibase, iind)

Recursively-defined set-of-integers : si∗(x)
def
= ite(x = nil, sibase, siind)

Recursively-defined multiset-of-integers : msi∗(x)
def
= ite(x = nil, msibase, msiind)

Recursively-defined predicate : p∗(x)
def
= ite(x = nil, pbase, pind)

Figure 1. Syntax of Dryad

Finally, we evaluate our logical mechanisms and procedures, by
writing several tree data-structure algorithms using pure recursive
imperative programs, annotating them using Dryad in order to
state their complete functional correctness, derive the verification
conditions expressed as footprints and Dryad formulae, and prove
them valid using the formula abstraction scheme. Much to our
surprise, all verification conditions in all the programs were proved
valid automatically and efficiently by our procedure.

We have verified full functional correctness of data-structures
ranging from sorted linked lists, binary search trees, max-heaps,
treaps (which are binary search trees on the first key and max-
heaps on the second), AVL trees and red-black trees (semi-balanced
search trees), B-trees, and binomial heaps. This set of bench-
marks is an almost exhaustive list of algorithms on tree-based
data-structures covered in a first undergraduate course on data-
structures [10]. To the best of our knowledge, the work presented
here is the first methodology that can prove such a wide variety of
algorithms on tree data-structures written in an imperative language
fully functionally correct using a sound and terminating procedure.

2. The Dryad Logic for Heaps
The recursive logic over trees, Dryad, is essentially a quantifier-free
first-order logic over heaps augmented with recursive definitions of
various types (e.g., integers, sets/multisets of integers, etc.) defined
for locations that have a tree under them. While first-order logic
gives the necessary power to talk precisely about locations that are
near neighbors, the recursive definitions allow expressing proper-
ties that require quantifiers, including reachability, collecting the
set/multiset of keys in a tree, and defining natural metrics, like the
height of a tree, that are typically useful in defining properties of
trees.

Given a finite set of directions Dir, let us define Dir-trees as
finite trees where every location has either |Dir| children, or is the
nil location, which has no children (we assume there is a single
nil location). Binary trees have two directions: Dir = {l, r}.

The logic Dryad is parameterized by a finite set of directions
Dir and also by a finite set of data-fields DF. Let us fix these sets.

Let Bool = {true, false} stand for the set of Boolean values,
Int stand for the set of integers and Loc stand for the universe of
locations. For any set A, let S(A) denote the set of subsets of A, and
letMS(A) denote the set of all multisets with elements in A.

The Dryad logic allows four kinds of recursively defined no-
tions for a location that is the root of a Dir-tree: recursively

defined integer functions (Loc → Int), recursively defined set-
of-keys/integers functions (Loc → S(Int)), recursively defined
multiset-of-keys/integers functions (Loc → MS(Int)), and recur-
sively defined Boolean predicates (Loc→ Bool). Let us fix disjoint
sets of countable names for such functions. We will refer to these
recursive functions as recursively defined integers, recursively de-
fined sets/multisets of integers, and recursively defined predicates,
respectively. Typical examples of these include the height of a tree
or the height of black-nodes in the tree rooted at a node (recursively
defined integers), the set/multiset of keys stored at a particular data-
field under nodes (recursively defined set/multiset of integers), and
the property that the tree rooted at a node is a binary search tree or
a balanced tree (recursively defined predicates).

A Dryad formula consists of a pair (Def, ϕ), where Def is a set of
recursive definitions and ϕ is a formula. The syntax of Dryad logic
is given in Figure 1, where the syntax of the formulas is followed by
the syntax for recursive definitions. We require that every recursive
function/predicate used in the formula ϕ has a unique definition in
Def. The figure does not define the syntax of the base and inductive
formulas in recursive definitions (e.g. ibase, iind, etc.); we give that
in the text below.

Location terms are formed using pointer fields from location
variables, and include a special location called nil. Integer terms
are obtained from integer constants, data-fields of locations, and
from recursively defined integers, and combined using basic arith-
metic operations of addition and subtraction and conditionals (ite
stands for if-then-else terms that evaluate to the second argument if
the first argument evaluates to true and evaluate to the third argu-
ment otherwise).

Terms that evaluate to a set/multiset of integers are obtained
from recursively defined sets/multisets of integers corresponding
to a location term, and are combined using set/multiset operations
as well as conditional choices. Formulas are obtained by Boolean
combinations of Boolean variables, recursively defined predicates
on a location term, and using various relations between set and
multiset terms. The relations on sets and multisets include the
subset relation as well as the relation ≤ which is interpreted as
follows: for two sets (or multisets) of integers S 1 and S 2, S 1 ≤ S 2
holds whenever for every i ∈ S 1, j ∈ S 2, i ≤ j.

The recursively defined functions (or predicates) are defined
using the syntax: f ∗(x) = ite(x = nil, fbase, find), where fbase
and find are themselves terms (or formulas) that stand for what f
evaluates to when x = nil (the base-case) and when x , nil (the

inductive step), respectively. There are several restrictions on these
terms/formulas:

• fbase has no free variables and hence evaluates to a fixed value
(for integers, it is a fixed integer; for sets/multisets of integers,
it is a fixed set; for Boolean predicates, it evaluates to true or
false).
• find only has x as a free variable. Furthermore, the location

terms in it can only be x and x.dir (further dereferences are
disallowed). Moreover, integer terms x.dir.f are disallowed.

Intuitively, the above conditions demand that when x is nil, the
function evaluates to a constant of the appropriate type, and when
x , nil, it evaluates to a function that is defined recursively
using properties of the location x, which may include properties
of the children of x, and these properties may in turn involve other
recursively defined functions.

We assume that the inductive definitions are not circular. For-
mally, let Def be a set of definitions and consider a recursive def-
inition of a function f ∗ in Def. Define the sequence ψ0, ψ1, . . . as
follows. Set ψ0 = f ∗(x). Obtain ψi+1 by replacing every occurrence
of g∗(x) in ψi by gind(x), where g is any recursively defined func-
tion in Def. We require that this sequence eventually stabilizes (i.e.
there is a k such that ψk = ψk+1). Intuitively, we require that the
definition of f ∗(x) be rewritable into a formula that does not refer
to a recursive definition of x (by getting rewritten to properties of
its descendants). We require that every definition in Def have the
above property.

Example: Red Black Trees Red black trees are semi-balanced
binary search trees with nodes colored red and black, with all the
leaves colored black, satisfying the condition that the left and right
children of a red node are black, and the condition that the number
of black nodes on paths from the root to any leaf is the same. This
ensures that the longest path from root to a leaf is at most twice the
shortest path from root to a leaf, making the tree roughly balanced.

We have two directions Dir = {l, r}, and two data fields, key,
and color. We model the color of nodes using an integer data-field
color, which can be 0 (black) or 1 (red). We define four recursive
functions/predicates: a predicate black∗(x) that checks whether the
root of the tree under x is colored black (this is defined as a
recursive predicate for technical reasons), the black height of a tree,
bh∗(x), the multiset of keys stored in a tree, keys∗(x), and a recursive
predicate that identifies red-black trees, rbt∗(x).

black∗(x)
de f
= ite(x = nil, true, x.color = 0)

bh∗(x)
de f
= ite(x = nil, 1, ite(x.color = 0, 1, 0) +

ite(bh∗(x.l) ≥ bh∗(x.r), bh∗(x.l), bh∗(x.r))

keys∗(x)
de f
= ite(x = nil, ∅, {x.key} ∪ keys∗(x.l) ∪ keys∗(x.r))

rbt∗(x)
de f
= ite (x = nil, true,

rbt∗(x.l) ∧ rbt∗(x.r) ∧
keys∗(x.l) ≤ {x.key} ∧ {x.key} ≤ keys∗(x.r) ∧
(x.color = 1→ (black∗(x.l) ∧ black∗(x.r)))∧
bh∗(x.l) = bh∗(x.r))

The bh∗(t) function definition says that the black height of a
tree is 1 for a nil node (nil nodes are assumed to be black), and,
otherwise, the maximum of the black heights of the left and right
subtree if the node x is red, and the maximum of the black heights
of the left and right subtree plus one, if x is black. The keys∗(t)
function says that the multiset of keys stored in a tree is ∅ for a
nil-node, and the union of the key stored in the node, and the keys
of the left and right subtrees. Finally, the rbt∗(t) holds if: (1) the left
and right subtrees are valid red black trees; (2) the keys of the left
subtree are no greater than the key in the node, and the keys of the
right subtree are no less than the key in the node; (3) if the node is

red, both its children are black; and (4) the black heights of the
left and the right subtrees are equal.

We can also express, in our logic, various properties of red black
trees, by including the above definitions and a formula like:

(rbt∗(t) ∧ ¬black∗(t) ∧ t.key = 20)→ 10 < keys∗(t.r)

and using the procedures outlined in this paper, check the validity
of the above statement.

Semantics
The Dryad logic is interpreted on (concrete) heaps. Let us fix a
finite set of program variables PV. Concrete heaps are defined as
follows (f : A ⇀ B denotes a partial function from A to B):

Definition 2.1. A concrete heap over a set of directions Dir, a set
of data-fields DF, and a set of program variables PV is a tuple

(N, nil, pf, df, pv)

where:
• N is a finite or infinite set of locations;
• nil ∈ N is a special location representing the null pointer;
• pf : (N \ {nil}) × Dir → N is a function defining the direction

fields;
• df : (N \ {nil}) × DF→ Z is a function defining the data-fields;
• pv : PV ⇀ N ∪ Z is a partial function mapping program

variables to locations or integers, depending on the type of the
variable. �

A concrete heap consists of a finite/infinite set of locations,
with a pointer-field function pf that maps locations to locations for
each direction dir∈Dir, a data-field function df mapping locations
to integers for each data-field DF, along with a unique constant
location representing nil that has no data-fields or pointer-fields
from it. Moreover, the function pv is a partial function that maps
program variables to locations and integers.

A Dryad formula with free variables F is interpreted by inter-
preting the program variables in F according to the function pv and
the other variables being given an interpretation (hence, for validity,
these other variables are universally quantified, and for satisfiabil-
ity, they are existentially quantified).

Each term evaluates to either a normal value of the correspond-
ing type, or to undef. A location term is evaluated by dereferencing
pointers in the heap. If a dereference is undefined, the term evalu-
ates to undef. The set of locations that are roots of Dir-trees are
special in that they are the only ones over which recursive defi-
nitions are properly defined. A term of the form i∗(lt), si∗(lt) or
msi∗(lt) will evaluate to undef if lt evaluates to undef or is not
a root of a tree in the heap; otherwise it will be evaluated induc-
tively using its recursive definition. Other aspects of the logic are
interpreted with the usual semantics of first-order logic, unless they
contain some subterm evaluating to undef, in which case they also
evaluate to undef.

Each Dryad formula evaluates to either true or false. To
evaluate a formula ϕ, we first convert ϕ to its negation normal form
(NNF), and evaluate each atomic formula of the form p∗(lt) first.
If lt is not undefined, p∗(lt) will be evaluated inductively using
the recursive definition of p∗; if lt evaluates to undef, p∗(lt) will
evaluate to false if p∗(lt) appears positively, and will evaluate to
true otherwise. Intuitively, undefined recursive predicates cannot
help in making the formula true over a model. Similarly, atomic
formulas involving terms that evaluate to undef are set to false or
true depending on whether the atomic formula occurs within an
even or odd number of negations, respectively. All other relations
between integers, sets, and multisets are interpreted in the natural
way, and we skip defining their semantics.

We assume that the Dryad formulas always include a recursively
defined predicate tree that is defined as:

tree∗(x)
de f
= (x = nil, true, true)

Note that since recursively defined predicates can hold only on trees
and since the above formula vacuously holds on any tree, tree∗(x)
holds iff x is a root of a Dir-tree.

Programs and basic blocks
We consider imperative programs manipulating heap structures and
the data contained in the heap. In this paper, we assume that pro-
grams do not contain while loops and all recursion is captured using
recursive function calls. Consequently, proof annotations only in-
volve pre- and post-conditions of functions, and there are no loop-
invariants.

The imperative programs we analyze will consist of integer
operations, heap operations, conditionals and recursion. In order
to verify programs with appropriate proof annotations, we need to
verify linear blocks of code, called basic blocks, which do not have
conditionals (conditionals are replaced with assume statements).
Basic blocks always start from the beginning of a function and
either end at an assertion in the program (checking an intermediate
assertion), or end at a function call to check whether the pre-
condition to calling the function holds, or ends at the end of the
program in order to check whether the post-condition holds. Basic
blocks can involve recursive and non-recursive function calls.

We define basic blocks using the following grammar, parame-
terized by a set of directions Dir and a set of data-fields DF:

bb :− bb′; | bb′; return u; | bb′; return j;
bb′ :− bb′; bb′ | u := v | u := nil | u := v.dir | u.dir := v |

j := u. f | u. f := j | u := new | j := aexpr |
assume (bexpr) | u := f (v, z1, . . . , zn) | j := g(v, z1, . . . , zn)

aexpr :− j | aexpr + aexpr | aexpr − aexpr
bexpr :− u = v | u = nil | aexpr ≤ aexpr | ¬bexpr | bexpr ∨ bexpr

Since we deal with tree data-structure manipulating programs,
which often involve functions that take as input a tree and return a
tree, we make certain crucial assumptions. One crucial restriction
we assume for the technical exposition is that all functions take in at
most one location parameter as input (the rest have to be integers).
Basic blocks hence have function calls of the form f (v, z1, . . . zn),
where v is the only location parameter. This restriction greatly
simplifies the proofs as it is much easier to track one tree. We
can relax this assumption, but when several trees are passed as
parameters, our decision procedures will implicitly assume a pre-
condition that the trees are all disjoint. This is crucial; our decision
procedures cannot track trees that “collide”; they track only equal
trees and disjoint trees. This turns out to be a natural property of
most data-structure manipulating programs.

Pre- and Post-conditions of functions
We place stringent restrictions on annotations pre- and post-
functions that we allow in our framework, and these are important
for our technique and is the price we pay for automation. Recall
that we allow only two kinds of functions, one returning a location
f (v, z1, . . . , zn) and one returning an integer g(v, z1, . . . , zn) (v is a
location parameter, z1, . . . , zn are integer parameters). We require
that v is the root of a Dir-tree at the point when the function is
called, and this is an implicit pre-condition of the function called.

Each function is annotated with its pre- and post-conditions
using annotating formulas. Annotating terms and formulas are
Dryad terms and formulas that do not refer to any child or any data
field, do not allow any equality between locations and do not allow
ite-expressions. We denote the pre-condition as a pre-annotating
formula ψ(v, z1, . . . , zn).

The post-condition annotation is more complex, as it can talk
about properties of the heap at the pre-state as well as the post-
state. We allow combining terms and formulas obtained from the
pre-heap and the post-heap to express the post-condition. Terms
and formulas over the post-heap are obtained using Dryad annotat-
ing terms and formulas that are allowed to refer to a variable old v
which points to the location v pointed to in the pre-heap. These
terms and formulas can also refer to the variable ret loc or ret int
to refer to the location or integer being returned. Terms and formu-
las over the pre-heap are obtained using Dryad annotating terms
and formulas referring to old v and old zi’s, except that all recur-
sive definitions are renamed to have the prefix old . Then a post-
annotating formula combines terms and formulas expressed over
the pre-heap and the post-heap (using the standard operations).

For a function f (v, z1, . . . zn) that returns a location, we assume
that the returned location always has a Dir-tree under it (and this
is implicitly assumed to be part of the post-condition). The post-
condition for f is either of the form

havoc(old v) ∧ ψ(old v, old z1, . . . , old zn, ret loc)

or of the form

old v#ret loc ∧ ψ(old v, old z1, . . . , old zn, ret loc)

where ψ is a post-annotating formula. In the first kind, havoc(old v)
means that the function guarantees nothing about the location
pointed to in the pre-state by the input parameter v (and nothing
about the locations accessible from that location) and hence the
caller of f cannot assume anything about the location it passed to
f after the call returns. In that case, we restrict ψ from referring
to r∗(oldv), where r∗ is a recursive predicate/function on the post-
heap. In the latter kind old v#ret loc means that f , at the point of
return, assures that the location passed as parameter v now points
to a Dir-tree and this tree is disjoint from the tree rooted at ret loc.

In either case, the formula ψ can relate complex properties of the
returned location and the input parameter, including recursive defi-
nitions on the old parameter and the new ones. For example, a post-
condition of the form havoc(old v)∧ keys∗(old v) = keys∗(ret loc)
says that the keys under the returned location are precisely the same
as the keys under the location passed to the function.

For a function g returning an integer, the post-condition is of the
form

tree(old v) ∧ ψ(old v, old z1, . . . , old zn, ret int)

or of the form

havoc(old v) ∧ ψ(old v, old z1, . . . , old zn, ret int)

The former says that the location passed as input continues to point
to a tree, while the latter says that no property is assured about the
location passed as input (same restriction on ψ applies).

The above restriction that the input tree and the returned tree
either point to completely disjoint trees or that the input pointer
(and nodes accessible from it) are entirely havoc-ed and the re-
turned node is some tree are the only separation and aliasing prop-
erties that the post-condition can assert. Our logical mechanism is
incapable, for example, of saying the the returned node is a reach-
able node from the location passed to the function. We have care-
fully chosen such restrictions in order to simplify tracking tree-ness
and separation in the footprint. In practice, most data-structure al-
gorithms fall into these categories (for example, an insert routine
would havoc the input tree and return a new tree whose keys are
related to the keys of the input tree, while a tree-copying program
will return a tree disjoint from the input tree).

3. Describing the Verification Condition in Dryad
We now present the main technical contribution of this paper: given
a set of recursive definitions, and a Hoare-triple (ϕpre, bb, ϕpost),
where bb is a basic block, we show how to systematically define
the verification condition corresponding to it. Note that since we
do not have while-loops, basic blocks always start at the beginning
of a function and go either till the end of the function (spanning
calls to other functions) or go up to a function call (in order to
check if the pre-condition for that call holds). In the former case,
the post-condition is a post-condition annotation. In the latter case,
we need another form:

tree(y) ∧ ψ(x̄)

where x̄ is a subset of program variables. The pre-condition of the
called function implicitly assumes that the input location is a tree
(which is expressed using tree(y) above), and the pre-condition
itself is adapted (after substituting formal parameters with actual
terms passed to the function) and written as the formula ψ.

This verification condition is expressed as a combination of (a)
quantifier-free formulas that define properties of the footprint the
basic block uncovers on the heap, combined with (b) recursive
formulas expressed only on the frontier of the footprint.

This verification condition is formed by unrolling recursive
definitions appropriately as the basic block increases its footprint so
that recursive properties are translated to properties of the frontier.
This allows us to write the (strongest) post-condition of ϕpre on
precisely the same nodes as ϕpost refers to, which then allows us
to apply formula abstractions to prove the verification condition.
Also, recursive calls to functions that process the data-structure
recursively are naturally called on the frontier of the footprint,
which allows us to summarize the call to the function on the
frontier.

We define the verification condition using two steps. In the first
step, we inductively define a footprint structure, composed of a
symbolic heap and a Dryad formula, which captures the state of
the program that results when the basic block executes from a
configuration satisfying the pre-condition. We then incorporate the
post-condition and derive the verification condition.

A symbolic heap is defined as follows:

Definition 3.1. A symbolic heap over a set of directions Dir, a set
of data-fields DF, and a set of program variables PV is a tuple

(C, S , I, cnil, pf, df, pv)

where:

• C is a finite set of concrete nodes;
• S is a finite set of symbolic tree nodes with C ∩ S = ∅;
• I is a set of integer variables;
• cnil ∈ C is a special concrete node representing nil;
• pf : (C \ {cnil}) × Dir ⇀ C ∪ S is a partial function mapping

every pair of a concrete node and a direction to nodes (concrete
or symbolic);
• df : (C \ {cnil})×DF ⇀ I is a partial function mapping concrete

nodes and data-fields pairs to integer variables;
• pv : PV ⇀ C ∪ S ∪ I is a partial function mapping program

variables to nodes or integer variables (location variables are
mapped to C ∪ S and integer variables to I). �

Intuitively, a symbolic heap (C, S , I, cnil, pf, df, pv) has two finite
sets of nodes: concrete nodes C and symbolic tree nodes S , with
the understanding that each s ∈ S stands for a node that may
have an arbitrary Dir-tree under it, and furthermore the separation
constraint that for any two symbolic tree nodes s, s′ ∈ S , the trees
under it would not intersect with each other, nor with the nodes
in C. The tree under a symbolic node is not represented in the

symbolic heap at all. One of the concrete nodes (cnil) represents
the nil location.

The function pf captures the pointer-field dir in the heap that is
within the footprint, and maps the set of concrete nodes to concrete
and symbolic nodes. The pointer fields of symbolic nodes are not
modeled, as they are part of the tree below the node that is not
represented in the footprint. The functions df and pv capture the
data-fields (mapping to integer variables) and program variables
restricted to the nodes in the symbolic heap.

A symbolic heap hence represents a (typically infinite) set of
concrete heaps, namely those in which it can be embedded. We de-
fine this formally using the notion of correspondence that captures
when a concrete heap is represented by a symbolic heap.

Definition 3.2. Let SH = (C, S , I, cnil, pf, df, pv) be a symbolic heap
and let CH = (N, nil, pf′, df′, pv′) be a concrete heap. Then CH is
said to correspond to SH if there are two function h : C ∪ S → N
such that the following conditions hold:

• h(cnil) = nil;
• for any n, n′ ∈ C, if n , n′, then h(n) , h(n′);
• for any two nodes n ∈ C\{cnil}, n′ ∈ C∪S , and for any dir ∈ Dir,

if pf(n, dir) = n′, then pf′(h(n), dir)) = h(n′);
• for any s ∈ S , h(s) is the root of a Dir-tree in CH, and there

is no concrete node c ∈ C \ {cnil} such that h(c) belongs to this
tree;
• for any s, s′ ∈ S , s , s′, the Dir-trees rooted at h(s) and h(s′)

(in CH) are disjoint except for the nil node;
• for any location variable v ∈ PV, if pv(v) is defined, then

pv′(v) = h(pv(v)); �

Intuitively, h above defines a restricted kind of homomorphism
between the nodes of the symbolic heap SH and a portion of the
concrete heap CH. Distinct concrete non-nil nodes are required to
map to distinct locations in the concrete heap. Symbolic nodes are
required to map to trees that are disjoint (save the nil location); they
can map to the nil location as well. The trees rooted at locations cor-
responding to symbolic nodes must be disjoint from the locations
corresponding to concrete nodes. Note that there is no requirement
on the integer variables I and the map pv′ on integer variables and
the maps df and df′. Note also that for a concrete node in the sym-
bolic heap n, the fields defined from n in the symbolic heap must
occur in the concrete heap as well from the corresponding loca-
tion h(n); however, the fields not defined for n may or may not be
defined on h(n).

A footprint is a pair (SH;ϕ) where SH is a symbolic heap and
ϕ is a Dryad formula. The semantics of such a footprint is that it
represents all concrete heaps that both correspond to SH and satisfy
ϕ.

Tree-ness of nodes in symbolic heaps
The key property of a symbolic heap is that we can determine that
certain nodes have Dir-trees rooted under them (i.e. in any con-
crete heap corresponding to the symbolic heap, the corresponding
locations will have a Dir-tree under them).

For a symbolic heap SH = (C, S , I, cnil, pf, df, pv), let the set of
graph nodes of SH be the smallest set of nodes V ⊆ C ∪ S such
that:

• cnil ∈ V and S ⊆ V
• For any node n ∈ C, if for every dir ∈ Dir, pf(n, dir) is defined

and belongs to V , then n ∈ V .

Now define Graph(SH) to be the directed graph (V, E), where V is
as above, and E is the set of edges (u, v) such that pf(u, dir) = v for
some dir ∈ Dir. Note that, by definition, there are no edges out of
u if u ∈ S , as symbolic nodes do not have outgoing fields.

We say that a node u in V is the root of a tree in Graph(SH)
if the set of all nodes reachable from u forms a tree (in the usual
graph-theoretic sense).

The following claim follows and is the crux of using the sym-
bolic heap to determine tree-ness of nodes:

Lemma 3.3. Let SH be a symbolic heap and let CH be a corre-
sponding concrete heap, defined by a function h. If a node u is the
root of a tree in Graph(SH), then h(u) also subtends a tree in CH.

A proof gist is as follows. First, note that symbolic nodes and the
node cnil are always roots of trees in Graph(SH) and the locations
in the concrete heap corresponding to them subtend trees (in fact,
disjoint trees save the nil location). Turning to concrete nodes, we
need to argue that if c is a concrete node in Graph(SH), then h(c) is
the root of a Dir-tree in CH. This follows by induction on the height
of the tree under c in Graph(SH), since each of the Dir children of
c in Graph(SH) must either be the cnil node or a summary node
or a concrete node that is a the root of a tree of less height. The
corresponding locations in CH, by induction hypothesis or by the
above observations, have Dir-trees suspended from them. In fact,
by the definition of correspondence, these trees are all disjoint
except for the nil location (since trees corresponding to summary
nodes are all disjoint and disjoint from locations corresponding
to concrete nodes, and since concrete nodes in the symbolic heap
denote).

The location corresponding to a concrete node in Graph(SH)
that does not have all Dir-fields defined in SH may or may not
have a Dir-tree subtended from it; this is because the notion of
correspondence allows the corresponding location to have more
fields defined. In the sequel, when we use symbolic heaps for
tracking footprints, such concrete nodes with partially defined Dir
fields will occur only when processing function calls (where all
information about a node may not be known).

Initial footprint
Let the pre-condition be ϕpre(u, j1, . . . , jm), where u is the only
location program variable, there is a Dir-tree rooted at u, and
j1, . . . , jm are integer program variables. Then we define the initial
symbolic heap:

(C0, S 0, I0, cnil, pf0, df0, pv0)

where C0 = {cnil}, S 0 = {n0}, I = {i1, . . . im}, pf0 and df0 are empty
functions (i.e. functions with an empty domain), and pv0 maps
u to n0 and j1, ..., jm to i1, ..., im, respectively. The initial formula
ϕ0 is obtained from ϕpre(u, j1, . . . , jm) by replacing u by n0 and
j1, ..., jm by i1, ..., im, and by adding the conjunct p∗(cnil) ↔ pbase
or f ∗(cnil) = fbase for all recursive predicates and functions. Note
that the formula is defined over the variables S 0∪ I0. Intuitively, we
start at the beginning of the function with a single symbolic node
that stands for the input parameter, which is a tree, and a concrete
node that stands for nil. All integer parameters are assigned to
distinct variables in I.

Expanding the footprint
A basic operation on a pair, (SH;ϕ), consisting of a symbolic heap,
and a formula is expansion. Let SH be

(C, S , I, cnil, pf, df, pv)

and n ∈ C ∪ S be a node. We define expand
(
(SH;ϕ), n

)
= (SH′;ϕ′),

where SH′ is the tuple

(C′, S ′, I′, cnil, pf′, df′, pv′)

as follows: if n ∈ C (the node is already expanded), then do nothing
by setting (SH′;ϕ′) to (SH;ϕ); otherwise:

• C′ = C ∪ {n}, where n is the node being expanded

• S ′ = S] {ndir | dir ∈ Dir} \ {n}, where each ndir is a fresh new
node different from the nodes in C ∪ S
• I′ = I] {i f | f ∈ DF}, where each i f is a fresh new integer

variable
• pf′ |C\{cnil}×Dir= pf, and pf′(n, dir) = ndir for all dir ∈ Dir
• df′ |C\{cnil}×DF= df, and df′(n, f) = i f for all f ∈ DF
• pv′ = pv;

The formula ϕ′ is obtained from the formula ϕ as follows:

ϕ′ = ϕ[p̄n, f̄n/ p̄∗(n), f̄ ∗(n)]
∧

∧
p∗

(
pn ↔ p̂ind(n)

)
∧

∧
f ∗

(
fn = f̂ind(n)

)
∧ n , cnil ∧

∧
n′∈C′\{cnil},dir∈Dir

(
n′ , ndir

)
∧

∧
dir∈Dir,s∈S

(
ndir = s→ ndir = cnil

)
∧

∧
dir1 ,dir2∈Dir,dir1,dir2

(
ndir1 = ndir2 → ndir1 = cnil

)
where p̄n are fresh Boolean variables, f̄n are fresh term (integer, set,
...) variables, p∗(x)

def
= ite(x = nil, pbase, pind(x)) ranges over all

the recursive predicates, and f ∗(x)
def
= ite(x = nil, fbase, find(x))

ranges over all the recursive functions. Intuitively, The variables p̄n
and f̄n capture the values of the predicates and functions for the
node n in the current symbolic heap. This is possible because the
values of the recursive predicates and functions for concrete non-nil
nodes are determined by the values of the functions and predicates
for symbolic nodes and the nil node. The formula p̂ind(n) is obtained
from pind(n), by substituting every location term of the form n.dir
with ndir for every dir ∈ Dir, and substituting every integer term of
the form n. f with i f for every f ∈ DF. The term f̂ind(n) is obtained
by the same substitutions.

Evolving the footprint on basic blocks
Given a symbolic heap SH along with a formula ϕ, and a basic
block bb. We compute the symbolic execution of bb using the
transformation function st

(
(SH;ϕ), bb

)
= (SH′;ϕ′). The transfor-

mation function st is computed transitively; i.e., if bb is of the form
(stmt; bb′) where stmt is an atomic statement and bb′ is a basic
block, then

st
(
(SH;ϕ), bb

)
= st

(
st
(
(SH;ϕ), stmt

)
, bb′

)
Therefore, it is enough to define the transformation for the vari-
ous atomic statements. Given SH = (C, S , I, cnil, pf, df, pv), ϕ and
an atomic statement stmt, we define st

(
(SH;ϕ), stmt

)
as follows

by cases of stmt. Unless some assumptions fail (in which case
the transformation is undefined), we describe st

(
(SH;ϕ), stmt

)
as

(SH′;ϕ′).
As per our convention, function updates are denoted in the form

of [arg ← new val]. For example, pv[u ← n] denotes the function
pv except that pv(u) maps to n. Formula substitutions are denoted in
the form of [new/old]. For example, ϕ[df′/df] denotes the formula
obtained from the formula ϕ by substituting every occurrence of df
with df′.

The following defines how the footprint evolves across all pos-
sible statements except function calls:

(a) stmt : u := v
If pv(v) is undefined, the transformation is undefined; otherwise

SH′ = (C, S , I, cnil, pf, df, pv[u← pv(v)])
ϕ′ ≡ ϕ

(b) stmt : u := nil

SH′ = (C, S , I, cnil, pf, df, pv[u← cnil])
ϕ′ ≡ ϕ

(c) stmt : u := v.dir
If pv(v) is undefined, or pv(v) ∈ C and pf(pv(v), dir) is unde-
fined, the transformation is undefined. Otherwise we expand the
symbolic heap:

((C′′, S ′′, I′′, cnil, pf′′, df′′, pv′′);ϕ′′) = expand
(
(SH;ϕ), pv(v)

)
Now pv′′(v) must be in C′′ \ {cnil}, and we set

SH′ = (C′′, S ′′, I′′, cnil, pf′′, df′′, pv′′[u← pf′′(pv′′(v), dir)])
ϕ′ ≡ ϕ′′

(d) stmt : j := v. f
If pv(v) is undefined, or pv(v) ∈ C and pf(pv(v), f) is undefined,
the transformation is undefined. Otherwise we expand the sym-
bolic heap:

((C′′, S ′′, I′′, cnil, pf′′, df′′, pv′′);ϕ′′) = expand
(
(SH;ϕ), pv(v)

)
Now pv′′(v) must be in C′′ \ {cnil}, and we set

SH′ = (C′′, S ′′, I′′] {i}, cnil, pf′′, df′′, pv′′[j← i])
ϕ′ ≡ ϕ′′ ∧ i = df′′(pv′′(v), f)

(e) stmt : u.dir := v
If pv(u) or pv(v) is undefined, or pv(u) = cnil, the transformation
is undefined. Otherwise we expand the symbolic heap:

((C′′, S ′′, I′′, cnil, pf′′, df′′, pv′′);ϕ′′) = expand
(
(SH;ϕ), pv(u)

)
Now pv′′(u) must be in C′′ \ {cnil}, and we set

SH′ = (C′′, S ′′, I′′, cnil, pf′′[(pv′′(u), dir)← pv′′(v)], df′′, pv′′)
ϕ′ ≡ ϕ′′

(f) stmt : u. f := j
If pv(u) or pv(j) is undefined, or pv(u) = cnil, the transformation
is undefined. Otherwise we expand the symbolic heap:

((C′′, S ′′, I′′, cnil, pf′′, df′′, pv′′);ϕ′′) = expand
(
(SH;ϕ), pv(u)

)
Now pv′′(u) must be in C′′ \ {cnil}, and we set

SH′ = (C′′, S ′′, I′′] {i}, cnil, pf′′, df′′[(pv′′(u), f)← i], pv′′)
ϕ′ ≡ ϕ′′ ∧ i = pv′′(j)

(g) stmt : u := new
We assume that, for the new location, every pointer initially
points to nil and every data field initially evaluates to 0.

SH′ = (C] {n}, S , I] {i f | f ∈ DF}, cnil, pf′, df′, pv[u← n])
ϕ′ ≡ ϕ ∧

∧
f∈DF

(
i f = 0

)
∧

∧
n′∈C∪S

(
n , n′

)
where pf′ and df′ are defined as follows:
• pf′ |C\{cnil}×Dir= pf, and pf′(n, dir) = cnil for all dir ∈ Dir
• df′ |C\{cnil}×DF= df, and df′(n, f) = i f for all f ∈ DF

(h) stmt : j := aexpr(k̄)
If pv is undefined on any variable in k̄, then the transformation
is undefined; otherwise

SH′ = (C, S , I] {i}, cnil, pf, df, pv[j← i])
ϕ′ ≡ ϕ ∧ i = aexpr[pv(k̄)/k̄]

(i) stmt : assume bexpr(v̄, j̄)
If pv is undefined on any variable in pv(v̄) or in pv(j̄), then the
transformation is undefined; otherwise

SH′ = SH
ϕ′ ≡ ϕ ∧ bexpr[pv(v̄), pv(j̄)/v̄, j̄]

(j) stmt : return u
If pv(u) is undefined, the transformation is undefined; otherwise

SH′ = (C, S , I, cnil, pf, df, pv[ret loc← pv(u)])
ϕ′ ≡ ϕ

(k) stmt : return j
If pv(j) is undefined, the transformation is undefined; otherwise

SH′ = (C, S , I] {i}, cnil, pf, df, pv[ret int← i])
ϕ′ ≡ ϕ ∧ i = pv(j)

We can show that for any atomic statement that is not a function
call, the above computes the strongest post of the footprint:

Theorem 3.4. Let (SH;ϕ) be a footprint and let stmt be any
statement that is not a function call. Let (SH′;ϕ′) be the footprint
obtained from (SH;ϕ) across the statement stmt, as defined above.
Let C denote the set of all concrete heaps that correspond to SH
and satisfy ϕ, and let C′ be the set of all heaps that result from
executing stmt from any concrete heap in C. Then C′ is the precise
set of concrete heaps that correspond to SH′ and satisfy ϕ′. �

Handling function calls
Let us consider the statement u := f (v, j̄) on the pair (SH;ϕ). Let
f (w, k̄) be the function prototype and ϕpost its post-condition. If
pv(v) or any element of pv(j̄) is undefined, the transformation is
undefined. We also assume that the checking of the pre-condition
for f is successful; in particular, pv(v) and all the nodes reachable
from it are roots of trees.

Recall that certain nodes of the symbolic heap can be deter-
mined to point to trees (as discussed earlier). For any node n ∈
C ∪ S , let us define reach nodes(SH, n) to be the subset of C ∪ S
that is reachable from n in Graph(SH). Let

NC = (reach nodes(SH, pv(v)) ∩C) \ {cnil}

NS = reach nodes(SH, pv(v)) ∩ S

Intuitively, NC and NS are the concrete non-nil and the symbolic
nodes affected by the call. Let nret loc be the node returned by f . Let
N′ be the set of nodes generated by the call: N′ = {nret loc, pv(v)}
if ϕpost does not havoc old w, and N′ = {nret loc} otherwise. The
resulting symbolic heap is (C′, S ′, I′, cnil, pf′, df′, pv′), where:

• C′ = C \ NC

• S ′ = (S \ NS) ∪ N′

• I′ = I
• pf′ |D= pf |D, and pf′(n, dir) is undefined for all the pairs

(n, dir) ∈ (C′ \ {nil} × Dir) \ D, where D ⊆ (C′ \ {nil}) × Dir is
the set of pairs (n′, dir′) such that pf(n′, dir′) ∈ C′ ∪ S ′

• df′ = df |C′\{cnil}×DF

• pv′ = pv[u← nret loc]

Intuitively, the concrete and symbolic nodes affected by the call
are removed from the footprint (and get quantified in the Dryad
formula), with the possible exception of pv(v) (if ϕpost does not
havoc old w, pv(v) becomes a symbolic node). The returned node
is added to S . The pf and df functions are restricted to the new
set of concrete nodes, and all the directions and program variables
pointing to quantified nodes become undefined.

Let ψpost be the post-annotating formula in ϕpost, we define the
following formulas

ϕ1 ≡ ϕ[pre call rn/r∗(n)]
∧

∧
n∈NC ,r∗

(
pre call rn = r̂ind(n)

)
ϕ2 ≡ ψpost[pv(v)/old w][pv(j)/old k][nret loc/ret loc]

[pre call rpv(v)/old r∗(pv(v))]

where n ranges over NC ∪ NS , r∗ ranges over all the recursive
predicates and functions; pre call rn are fresh logical variables;
r̂ind(n) is obtained from rind(n) by replacing n.dir with pf(n, dir) and
n. f with df(n, f) for all dir ∈ Dir, f ∈ DF, and then by replacing
r∗(n′) with pre call rn′ for all n′ ∈ NC ∪ NS ; r∗(n) is the vector
of all the recursive predicates and functions on all n ∈ NC ∪ NS .
Intuitively, in ϕ1 we add logical variables that capture the values
of the recursive predicates and functions for the nodes affected by
the call. In ϕ2 we replace the program variables in the ψpost with the
actual nodes and integer variables, and we replace the old version of
the predicates and functions on old w with the variables capturing
those values. Then the resulting formula is

ϕ′ ≡ ϕ1 ∧ ϕ2

The case of j := g(v, k̄) is similar.

Example: Search in AVL trees To illustrate the above procedure
expands the symbolic heap and generates formulas, we present it
working on the search routine of an AVL tree. Figure 2 shows the
find routine, which searches in an AVL tree t and returns true
if a key v is found. The pre-condition ϕpre, post-condition ϕpost,
and user-defined recursive sets and predicates are also shown in
Figure 2. In Figure 3, we present graphically how the symbolic
heap evolves for a particular execution path of the routine. At
each point of the basic block, we also formally show the updated
symbolic heap SH and the corresponding formula ϕ.

Incorporating the post-condition
Finally, after capturing the program state after execution bb by a
pair (SH;ϕ), we incorporate the post-condition ϕpost, which con-
tains the annotating formula ψ, and generate a verification con-
dition. We compute the set of tree-nodes in the footprint SH and
compute the recursively defined predicates and functions on them.
Let

SH = (C, S , I, cnil, pf, df, pv)
N = (tree nodes(SH) ∩C) \ {cnil}

ϕvc ≡ ϕ ∧
∧

n∈N,r∗

(
vc rn = r̂ind(n)

)
where vc rn is fresh logical variables; and r̂ind(n) are obtained from
rind(n) by replacing n.dir with pf(n, dir) and n. f with df(n, f) for all
dir ∈ Dir, f ∈ DF, and then by replacing r∗(n′) with vc rn′ for all
n′ ∈ N. Intuitively, N are the non-nil concrete nodes that are tree
roots, while ϕvc introduces variables that capture the values of the
recursive predicates and functions on non-nil concrete nodes.

Let u and k̄ be the original program variables of bb. Let v and j̄
be the new program variables appearing in ψ (only when bb ends
before a function call). Let N′ be the set of nodes that should be
the roots of disjoint trees, as required by ϕpost: N′ = {pv(v)} if
ϕpost mentions tree(v); N′ = {n0, pv(ret loc)} if ϕpost mentions
old u#ret loc; N′ = {n0} if ϕpost mentions tree(old u); if ϕpost
mentions havoc(old u), N′ = {pv(ret loc)} or N′ = ∅ depending
on the basic block is within a function returning a location or an
integer. Let

ψvc ≡ ψ[pv(v)/v][pv(j̄)/ j̄][pv(ret loc)/ret loc][pv(ret int)/ret int]
[vc rpv(v)/r∗(pv(v))][vc rpv(ret loc)/r∗(pv(ret loc))]
[n0/old u][ī/old k][oldest rn0/old r∗(n0)][vc rn0/r∗(n0)]

where r∗ ranges over all the recursive predicates and functions,
n0 and ī are the initial node and integer variables, and oldest rn0
is the variable capturing the value of r∗(n0) in the pre-heap. The
substitution of r∗(n) with vc rn is only performed for nodes in N.

We should verify that:

(1) N′ ⊆ N∪S ∪{cnil}, that is, the nodes required by ϕpost to be tree
roots are indeed tree roots;

(2) reach nodes(SH, n1) ∩ reach nodes(SH, n2) ⊆ {cnil}, for all
n1, n2 ∈ N′, such that n1 , n2;

(3) (SH;ϕvc) → ψvc, that is, the constraints on the current states
imply the constraints required by ψ.

The first two are readily checkable. The last one asserts that
any concrete heap that corresponds to the symbolic heap SH and
satisfies ϕvc must also satisfy ψvc. Checking the validity of this
claim is non-trivial (undecidable) and we examine procedures that
can soundly establish this in the next section.

4. Proving the Verification Condition
In this section we consider the problem of checking the verifica-
tion condition (SH;ϕvc) → ψvc generated in Section 3. We first
show a small syntactic fragment of Dryad that is entirely decid-
able (without formula abstraction) by a reduction to the powerful
decidable logic Stranddec. We then turn to the abstraction schemes
for unrestricted verification conditions, and show how to soundly
reduce verification conditions to a validity problem of quantifier-
free theories of sets/multisets of integers, which is decidable using
state-of-the-art SMT solvers.

4.1 A Decidable Fragment of Dryad

Given verification conditions of the form (SH;ϕvc) → ψvc, where
SH is a symbolic heap and ϕvc and ψvc are Dryad formulas, the
validity problem is in general undecidable. However, decision pro-
cedures for fragments are desirable, as when a program does not
satisfy its specification, the decision procedure would disprove the
program, and confirm it with a counterexample, which helps pro-
grammers debug the code. In this subsection, we identify a small
decidable fragment, that is very restricted and practically useful for
only a small class of specifications, called Dryaddec. We omit the
proof of decidability, in interest of space.

Let us fix a set of directions Dir and a set of data-fields DF.
Dryaddec does not only restrict the syntax of Dryad, but also re-
stricts the recursive integers/sets/multisets/predicates that can be
defined. We first describe the ways allowed in Dryaddec to define
recursions as follows:

• Recursive integers are disallowed;
• For each data field f ∈ DF, a recursive set of integers fs∗ can be

defined as

fs∗(x) = ite
(
x = nil, ∅, {x. f } ∪

⋃
dir∈Dir

fs∗(x.dir)
)

• For each data field f ∈ DF, a recursive multiset of integers fms∗

can be defined as

fms∗(x) = ite
(
x = nil, ∅m, {x. f }m ∪

⋃
dir∈Dir

fms∗(x.dir)
)

• Recursive predicates can be defined in the form of

p∗(x) = ite
(
x = nil, true, ϕp(x) ∧

∧
dir∈Dir

p∗(x.dir)
)

where ϕp(x) is a local formula with x as the only free variable.
Local formulas are Dryad formulas disallowing set/multiset mi-
nus, ite, subset, equality between locations, positive appearance
of belongs-to and and negative appearance of ≤ between sets/mul-
tisets. Intuitively, p∗(x) is evaluated to true if and only if every node
y in the subtree of x satisfies the local formula ϕp(y), which can be
determined by simply accessing the data fields of y and evaluating
the recursive sets/multisets for the children of y.

The exclusion of recursive integers prevents us from expressing
heights/cardinalities (which are required in many specifications).

There are however interesting algorithms on inductive data struc-
tures, like binary heaps, binary search trees and treaps, whose ver-
ification can be expressed in Dryaddec.

On the syntax of Dryad, Dryaddec does not allow to refer to any
child or any data field, for any location, i.e., terms of the form lt.dir
or lt. f are disallowed. Difference operations and subset relations
between sets/multisets are also disallowed.

Overall, Dryaddec is the most powerful fragment of Dryad that
we could find that embeds into a known decidable logic, like
Stranddec. However, it is not powerful enough for the heap verifica-

tion questions that we would like to solve. This motivates formula
abstractions that we describe in the next section.

4.2 Proving Dryad using formula abstractions
In typical data-structure algorithms, a recursive algorithm manip-
ulates the data-structure for a few bounded number of steps, and
then recursively calls itself to process the rest of the inductive data-
structure, and finally fixes the structure before returning.

As argued in Section 1, in recursive proofs of such algorithms, it
is very often sufficient to assume that the recursively defined pred-
icates, integers, sets of keys, etc. are arbitrary, or uninterpreted,

int find(node t, int v)
{
if (t = NULL) return false;
tv := t.value;
if (v = tv) return true;
else if (v < tv) { w := t.left;
r := find(w, v); }

else { w := t.right;
r := find(w, v); }

return r;
}

ϕpre ≡ avl∗(t)
ϕpost ≡ avl∗(t) ∧ keys∗(t) = keys∗(old_t) ∧ h∗(t) = h∗(old_t)∧

ret loc , 0↔ v ∈ keys∗(t)

avl∗(x)
def
= ite(x = nil, true, avlind(x))

avlind(x)
def
= avl∗(x.left) ∧ avl∗(x.right) ∧ keys∗(x.left) ≤ {v.value} ∧ {v.value} ≤ keys∗(x.right)∧

x.hight = h∗(x) ∧ −1 ≤ h∗(x.left) − h∗(x.right) ∧ h∗(x.left) − h∗(x.right) ≤ 1

keys∗(x)
def
= ite(x = nil, ∅, keysind(x))

keysind(x)
def
= keys∗(x.left) ∪ {x.value} ∪ keys∗(x.right)

h∗(x)
def
= ite(x = nil, 0, hind(x))

hind(x)
def
= 1 + max(h∗(x.left), h∗(x.right))

Figure 2. AVL find routine (left); pre/post conditions and recursive definition of avl∗, keys∗, and h∗ (right).

Graphical representation of SH Formal representation of SH Formula ϕ

n0	

C = {cnil}, S = {n0}, I = {i1}
dir = ∅, df = ∅
pv = {t 7→ n0, v 7→ i1}

avl∗(n0)

assume (t , nil)

n0	

C = {cnil}, S = {n0}, I = {i1}
dir = ∅, df = ∅
pv = {t 7→ n0, v 7→ i1}

avl∗(n0) ∧ n0 , cnil

tv := t.value;

n0	

n2	
 n1	

t	
 C = {cnil, n0}, S = {n1, n2}, I = {i1, i2, i3, i4}
dir = {(n0, left) 7→ n1, (n0, right) 7→ n2}
df = {(n0, value) 7→ i2, (n0, height) 7→ i3}
pv = {t 7→ n0, v 7→ i1, tv 7→ i4}

avln0 ∧ n0 , cnil ∧

avln0 ↔
(
avl∗(n1) ∧ avl∗(n2) ∧ i3 = hn0 ∧ keys∗(n1) ≤ {i2}∧

{i2} ≤ keys∗(n2) ∧ −1 ≤ h∗(n1) − h∗(n2) ∧ h∗(n1) − h∗(n2) ≤ 1
)
∧

keysn0
= keys∗(n1) ∪ {v} ∪ keys∗(n2) ∧

hn0 = 1 + max(h∗(n1), h∗(n2)) ∧
n0 , cnil ∧ n0 , n1 ∧ n0 , n2 ∧ (n1 = n2 → n1 = cnil) ∧ i4 = i2

assume (tv , v)
assume (tv < v)
w := t.left;

n0	

n2	
 n1	

t	
 C = {cnil, n0}, S = {n1, n2}, I = {i1, i2, i3, i4}
dir = {(n0, left) 7→ n1, (n0, right) 7→ n2}
df = {(n0, value) 7→ i2, (n0, height) 7→ i3}
pv = {t 7→ n0, v 7→ i1, tv 7→ i4,

w 7→ n1}

avln0 ∧ n0 , cnil ∧

avln0 ↔
(
avl∗(n1) ∧ avl∗(n2) ∧ i3 = hn0 ∧ keys∗(n1) ≤ {i2}∧

{i2} ≤ keys∗(n2) ∧ −1 ≤ h∗(n1) − h∗(n2) ∧ h∗(n1) − h∗(n2) ≤ 1
)
∧

keysn0
= keys∗(n1) ∪ {v} ∪ keys∗(n2) ∧

hn0 = 1 + max(h∗(n1), h∗(n2)) ∧
n0 , cnil ∧ n0 , n1 ∧ n0 , n2 ∧ (n1 = n2 → n1 = cnil) ∧ i4 = i2
∧ i4 , i1 ∧ i4 < i1

r := find(w, v);
return r;

n0	

n2	
 n1	

t	

C = {cnil, n0}, S = {n1, n2}
I = {i1, i2, i3, i4, i5, i6}
dir = {(n0, left) 7→ n1, (n0, right) 7→ n2}
df = {(n0, value) 7→ i2, (n0, height) 7→ i3}
pv = {t 7→ n0, v 7→ i1, tv 7→ i4,

w 7→ n1, r 7→ i5, ret_loc 7→ i6}

avln0 ∧ n0 , cnil ∧

avln0 ↔
(
pre call avln1 ∧ avl∗(n2) ∧ i3 = hn0∧

pre call keysn1
≤ {i2} ∧ {i2} ≤ keys∗(n2)∧

−1 ≤ pre call hn1 − h∗(n2) ∧ pre call hn1 − h∗(n2) ≤ 1
)
∧

keysn0
= pre call keysn1

∪ {v} ∪ keys∗(n2) ∧
hn0 = 1 + max(pre call hn1 , h∗(n2)) ∧
n0 , cnil ∧ n0 , n1 ∧ n0 , n2 ∧ (n1 = n2 → n1 = cnil) ∧ i4 = i2
i4 , i1 ∧ i4 < i1 ∧ avl∗(n1) ∧ keys∗(n1) = pre call keysn1

∧

h∗(n1) = pre call hn1 ∧ i5 , 0↔ i1 ∈ keys∗(n1) ∧ i6 = i5

Figure 3. Expanding the symbolic heap and generating the formulas

when applied to the inductive hypothesis that the algorithm works
correctly on the smaller tree that it calls itself on. This is very com-
mon in manual verification of these algorithms, and the footprint
formula obtained in Section 3 rewords the recursive properties ex-
pressed directly in terms of recursive properties on the locations
that the program makes recursive calls. Hence, in order to find
a simple proof, we can replace recursive definitions on symbolic
nodes as uninterpreted functions that map the symbolic trees to ar-
bitrary integers, sets of integers, multisets of integers, etc., which
we call formula abstraction (see [25–27] where such abstractions
have been used).

To prove a verification condition (SH;ϕ) → ψ using formula
abstraction, we drop SH, and we replace recursive predicates on
symbolic nodes by uninterpreted Boolean functions, replace recur-
sive integer functions as uninterpreted functions that map nodes to
integers, and replace recursive set/multiset functions with functions
that map nodes to arbitrary sets and multisets. Notice that the con-
straints regarding the concrete and symbolic nodes in SH were al-
ready added to ϕ, during the construction of the verification condi-
tion. The formula resulting via abstraction is a formula ϕabs → ψabs
such that: (1) if ϕabs → ψabs is valid, then so is (SH;ϕ) → ψ (the
converse may not necessarily be true); (2) checking ϕabs → ψabs is
decidable, and in fact can be reduced to QF UFLIA, the quantifier-
free theory of uninterpreted functions and arithmetic.

The validity of the abstracted formula ϕabs → ψabs over the
theory of uninterpreted function, linear arithmetic, and sets and
multisets of integers, is decidable. The fact that the quantifier free
theory of ordered sets is decidable is well known. In fact, Kun-
cak et al. [13] showed that the quantifier-free theory of sets with
cardinality constraints is NP-complete. Since we do not need car-
dinality constraints, we use a slightly simplified decision procedure
that reduces formulas with sets/multisets using uninterpreted func-
tions that capture the characteristic functions associated with these
sets/multisets. We omit these details in the interest of space.

5. Experimental Evaluation
In this section, we demonstrate the effectiveness and practicality
of the Dryad logic and the verification procedures developed in
this paper by verifying standard operations on several inductive
data structures. Each routine was written using recursive functions
and annotated with a pre-condition and a post-condition, specifying
a set of partial correctness properties including both structural
and data requirements. For each basic block of each routine, we
manually generated the verification condition (SH;ϕ) following the
procedure described in Section 3. Then we examined the validity of
ϕ using the procedure described in Section 4.2. We employ Z3 [11],
a state-of-the-art SMT solver, to check validity of the generated
formula ϕD formula in the quantifier-free theory of integers and
uninterpreted functions QF UFLIA. The experimental results are
tabulated in Figure 4.

The data-structures, routines, and verified properties: Lists are
trees with a singleton direction set. Sorted lists can be expressed in
Dryad. The routines insert and delete insert and delete a node
with key k in a sorted list, respectively, in a recursive fashion. The
routine insertion-sort takes a singly-linked list and sorts it by
recursively sorting the tail of the list, and inserting the key of the
head into the sorted list by calling insert. We check if all these
routines return a sorted list with the multiset of keys as expected.

A binary heap is recursively defined as either an empty tree, or
a binary tree such that the root is of the greatest key and both its
left and right subtrees are binary heaps. The routine max-heapify
is given a binary tree with both its left and right trees are binary
heaps. If the binary-heap property is violated by the root, it swaps
the root with its greater child, and then recursively max-heapifies

that subtree. We check if the routine returns a binary heap with
same keys as that of the input tree.

The treap data-structure is a class of binary trees with two data
fields for each node: key and priority. We assume that all priorities
are distinct and all keys are distinct. Treaps can also be recursively
defined in Dryad. The remove-root routine deletes the root of the
input treap, and joins the two subtrees descending from the left and
right children of the deleted node into a single treap. If the left or
right subtree of the node to be deleted is empty, the join operation
is trivial; otherwise, the left or right child of the deleted node is se-
lected as the new root, and the deletion proceeds recursively. The
delete routine simply searches the node to be deleted recursively,
and deletes it by calling remove-root. The insert routine recur-
sively inserts the new node into an appropriate subtree to keep the
binary-search-tree property, then performs rotations to restore the
min-heap order property, if necessary. We check if all these rou-
tines return a treap with the set of keys and the set of priorities as
expected.

An AVL tree is a binary search tree that is balanced: for each
node, the absolute difference between the height of the left subtree
and the height of the right subtree is at most 1. The main routines
for AVL are insert and delete. The insert routine recursively
inserts a key into an AVL tree (similar to a binary search tree),
and as it returns from recursion it checks the balancedness and
performs one or two rotations to restore balance. The delete
routine recursively deletes a key from an AVL tree (again, similar
to a binary search tree), and as it returns from the recursion ensures
that the tree is indeed balanced. For both routines, we prove that
they return an AVL tree, that the multiset of keys is as expected, and
that the height increases by at most 1 (for insert), can decrease
by at most 1 (for delete), or stays the same.

Red-black trees are binary search trees that are more loosely
balanced than the AVL trees, and were described in Section 3. We
consider the insert and delete routines. The insert routine
recursively inserts a key into a red-black subtree, and colors the
new node red, possibly violating the red-black tree property. As
it returns from recursion, it performs several rotations to fix the
property. If the root of the whole tree is red, it is recolored black,
and all the properties are restored. The delete routine recursively
deletes a key from a red-black tree, possibly violating the red-black
tree property. As it returns from recursion, it again performs several
rotations to fix it. For both routines, we prove that they return a red-
black tree, that the multiset of keys is as expected, and the black
height increases by at most 1 (for insert), decreases by at most 1
(for delete), or does not change.

The B-tree is a data structure that generalizes the binary search
tree in that for each non-leaf node the number of children is one
more than the number of keys stored in that node. The keys are
stored in increasing order, and if the node is not a leaf, the key with
index i is no less than any key stored in the child with index i and
no more then all the keys stored in the child with index i + 1. For
each node except the root, the number of keys is in some range
(typically between T − 1 and 2T − 1). A B-tree is balanced in
that for each node, the heights of all the children are equal. To
describe the B-tree in our logic, we need three mutually recursive
predicates: one that describes a B-subtree, and two that describe a
list of keys and children. The b-subtree∗(t) states that the number
of keys stored in the node is in the required range, and that keys
and children list satisfies either the key-child-list∗(l) predicate (if
the node is not a leaf) or the key-list∗(l) predicate (if the node is
a leaf). The key-child-list∗(l) states that either the list has only one
element, and the child satisfies the b-subtree∗(t) predicate, or the
list has at least two elements, the key in the head of the list is no
less than all the keys stored in the child and no greater than the
keys stored in the tail of the list, the child satisfies b-subtree∗(t),

Data Structure #Ints #Sets #MSets #Preds Routine #BB Max. #Nodes Total Time Avg. Time (s) VC proved
in Footprint (s) per VC valid?

Sorted List 0 0 1 1
insert 4 3 0.24 0.06 Yes
delete 3 3 0.17 0.06 Yes

insertion-sort 3 4 0.11 0.04 Yes
Binary Heap 0 0 1 1 max-heapify 5 8 1.89 0.38 Yes

Treap 0 2 0 1
insert 7 6 4.06 0.58 Yes
delete 6 4 0.81 0.14 Yes

remove-root 7 8 2.96 0.42 Yes

AVL Tree 1 0 1 1 insert 11 8 1.45 0.13 Yes
delete 18 7 2.13 0.19 Yes

Red-Black Tree 1 0 1 1 insert 19 8 1.93 0.11 Yes
delete 24 7 3.22 0.14 Yes

B-Tree 2 0 1 2 insert 12 6 0.40 0.03 Yes
find 8 3 0.12 0.02 Yes

Binomial Heap 1 0 1 3
delete-minimum 3 7 0.29 0.10 Yes
find-minimum 4 6 1.81 0.45 Yes
merge 13 7 17.38 1.37 Yes

Total 147

Figure 4. Results of program verification (see details at http://www.cs.illinois.edu/∼madhu/dryad)

and the height of the child is equal to the height of the tail (the
height of a list is defined as the maximum height of a child). The
predicate key-list∗(l) is similarly defined. We consider the find and
insert routines. The find routine iterates over the list of keys, and
recurses into the appropriate child, until it finds the key or it arrives
to a leaf. The insert procedure is more complex, as it assumes
that the node it is inserting into is non-full, and prior to recursion
it might need to split the child. For both routines, we check that
the tree after the call is a B-tree, that the multiset of keys has the
expected value, and that the height of the tree stays the same, or
increases by at most 1 (for insert).

As an advanced data structure, the binomial heap is described
by a set of predicates defined mutually recursively: binomial-tree∗,
binomial-heap∗ and full-list∗. Briefly, a binomial-heap of order
k consists of a binary-tree of order k and a binary-heap of order
less than k. A binomial-tree of order k is an ordered tree defined
recursively: the root contains the minimum key, and its children
compose a binomial-heap of order k − 1, satisfying the full-list
property. A full-list of order k consists of a tree of order k and a full-
list of order k − 1. The left-child, right-sibling scheme represents
each binomial tree within a binomial heap. Each node contains its
key; pointers to its leftmost child and to the sibling immediately to
its right; and its degree. The roots of a binomial heap form a singly-
linked list (also connected by the sibling pointer). We access the
binomial heap by a pointer to the first node on the root list.

The find-minimum routine expects a nonempty binomial heap,
and moves the tree containing the minimum key to the head of the
list. It returns the original heap if it is a single tree. Otherwise, it
calls find-minimum on its tail list, and appends the returned list
to the head tree; then if keys of the roots of the first two trees
are unordered, swaps the two trees. We check that find-minimum
returns a binomial tree followed by a binomial heap, such that the
root of the tree contains the minimum key, and the head of the
binomial heap is either the first or the second root of the original
heap. The merge routine merges two binomial heaps x and y into
one. If one of the two heaps is empty, it simply returns the other
one. Otherwise, if the heads of the two heaps are of the same order,
it merges the two head trees into one, merges the two tail lists
recursively, and returns the new tree followed by the new heap; if
not, say, x.order > y.order, then it merges x.sibling and y,
concatenates the head tree of x and the new heap in an appropriate
way satisfying the binomial-heap property. We check that merge
returns a binomial heap such that the keys are the union of the
two input binomial heaps, and the order increases up to 1. The

delete-minimum routine is non-recursive. It simply moves the
minimum tree m to the head by calling find-minimum, and obtains
two binomial heaps: a list of the siblings of m, and a list of the
children of m. Finally it merges the two heaps by merge. We check
that delete-minimum returns a binomial heap with the multiset of
keys as expected.

Figure 4 summarizes our experiments, showing the results of
verifying 147 basic blocks across these algorithms. For each data
structure, we report the number of integers, sets, multisets and pred-
icates defined recursively. For each routine, we report the number
of basic blocks, the number of nodes in the footprint, the time taken
by Z3 to determine validity of all generated formulas, and the va-
lidity result proved by Z3.

Note that only the first three data-structures (sorted list, binary
heap and treap) fit in the decidable fragment described in Sec-
tion 4.1 as they do not require recursively defined integers. Fur-
thermore, since the difference operations between sets/multisets are
disallowed, we can check all functional properties for these data-
structures except checking that the set of keys/priorities at the end
of the each routine is as expected.

We are encouraged by the fact that all these verification con-
ditions that were deterministically generated by the methodology
set forth in this paper were proved by Z3 efficiently; this proved
all these algorithms correct. To the best of our knowledge, this is
the first terminating automatic mechanism that can prove such a
wide variety of data-structure algorithms written using imperative
programming correct (in particular, binomial heaps and the B-trees
presented here have not been proven automatically correct).

The experimental results show that Dryad is a very expressive
logic that allows us to express natural and recursive properties of
several complex inductive tree data structures. Moreover, our sound
procedure tends to be able to prove many complex verification
conditions.

6. Related Work
There is a rich literature on program logics for heaps. We discuss
the work that is closest to ours. In particular, we omit the rich
literature on general interactive theorem provers (like Coq [12]) as
well as general software verification tools (like Boogie [2]) that are
not particularly adapted for heap verification.

Separation logic [4, 19, 23] is one of the most popular logics for
verification of heap structures. Many dialects of separation logic
combine separation logic with inductively defined data-structures.
While separation logic gives mechanisms to compositionally rea-

son with the footprint and the frame it resides in, proof assistants
for separation logic are often heuristic and incomplete [4], though a
couple of small decidable fragments are known [3, 17]. A work that
comes very close to ours is a paper by Chin et al. [8], where the au-
thors allow user-defined recursive predicates (similar to ours) and
build a terminating procedure that reduces the verification condi-
tion to standard logical theories. While their procedure is more gen-
eral than ours (they can handle structures beyond trees), the result-
ing formulas are quantified, and result in less efficient procedures.
Bedrock [9] is a Coq library that aims at mostly automated (but not
completely automated) procedures that requires some proof tactics
to be given by the user to prove verification conditions.

In manual and semi-automatic approaches to verification of
heap manipulating programs [4, 23, 24], the inductive definitions of
algebraic data-types is extremely common, and proof tactics unroll
these inductive definitions, do extensive unification to try to match
terms, and find simple proofs. Our work in this paper is very much
inspired by the kinds of manual heap reasoning that we have seen
in the literature.

The work by Zee et al. [26, 27] is one of the first attempts at
full functional verification of linked data structures, which includes
the development of the Jahob system that uses higher-order logics
to specify correctness properties, and puts together several theorem
provers ranging from first-order provers, SMT solvers, and interac-
tive theorem provers to prove properties of algorithms manipulating
data-structures. While many proofs required manual guidance, this
work showed that proofs can often be derived using simple tactics
like unrolling of inductive definitions, unification, abstraction, and
employing decision procedures for decidable theories. This work
was also an inspiration for our work, but we chose to concentrate on
deriving proofs using completely automatic and terminating proce-
dures, where unification, unrolling, abstraction, and decidable the-
ories are systematically exploited.

One work that is very close to ours is that of Suter et al. [25]
where decision procedures for algebraic data-types are presented
with abstraction as the key to obtaining proofs. However, this work
focuses on sound and complete decision procedures, and is limited
in its ability to prove several complex data structures correct. More-
over, the work limits itself to functional program correctness; in our
opinion, functional programs are very similar to algebraic inductive
specifications, leading to much simpler proof procedures.

There is a rich and growing literature on completely automatic
sound, complete, and terminating decision procedures for restricted
heap logics. The logic Lisbq [14] offers such reasoning with re-
stricted reachability predicates and quantification. While the logic
has extremely efficient decision procedures, its expressivity in stat-
ing properties of inductive data-structures (even trees) is very lim-
ited. There are several other logics in this genre, being less expres-
sive but decidable [1, 5, 6, 18, 20–22]. Strand is a recent logic that
can handle some data-structure properties (at least binary search
trees) and admits decidable fragments [15, 16] by combining de-
cidable theories of trees with the theory of arithmetic, but is again
extremely restricted in expressiveness. None of these logics can ex-
press the verification conditions for full functional verification of
the data-structures explored in this paper.

Acknowledgements This work is partially funded by NSF CA-
REER award #0747041 and NSA contract H98230-10-C-0294.

References
[1] I. Balaban, A. Pnueli, and L. D. Zuck. Shape analysis by predicate

abstraction. In VMCAI’05, volume 3385 of LNCS, pages 164–180.
Springer, 2005.

[2] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino.
Boogie: A modular reusable verifier for object-oriented programs. In
FMCO’05, volume 4111 of LNCS, pages 364–387. Springer, 2005.

[3] J. Berdine, C. Calcagno, and P. W. O’Hearn. A decidable fragment
of separation logic. In FSTTCS’04, volume 3328 of LNCS, pages 97–
109. Springer, 2004.

[4] J. Berdine, C. Calcagno, and P. W. O’Hearn. Symbolic execution with
separation logic. In APLAS’05, volume 3780 of LNCS, pages 52–68.
Springer, 2005.

[5] N. Bjørner and J. Hendrix. Linear functional fixed-points. In CAV’09,
volume 5643 of LNCS, pages 124–139. Springer, 2009.

[6] A. Bouajjani, C. Dragoi, C. Enea, and M. Sighireanu. A logic-
based framework for reasoning about composite data structures. In
CONCUR’09, volume 5710 of LNCS, pages 178–195. Springer, 2009.

[7] A. R. Bradley and Z. Manna. The Calculus of Computation. Springer,
2007.

[8] W.-N. Chin, C. David, H. H. Nguyen, and S. Qin. Automated verifi-
cation of shape, size and bag properties via user-defined predicates in
separation logic. Science of Computer Programming, in press, 2010.

[9] A. Chlipala. Mostly-automated verification of low-level programs in
computational separation logic. In PLDI’11, pages 234–245. ACM,
2011.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. MIT Press, third edition, 2009.

[11] L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In
TACAS’08, volume 4963 of LNCS, pages 337–340. Springer, 2008.

[12] INRIA. The coq proof assistant. URL http://coq.inria.fr/.
[13] V. Kuncak, R. Piskac, and P. Suter. Ordered sets in the calculus of data

structures. In CSL’10, volume 6247 of LNCS, pages 34–48. Springer,
2010.

[14] S. Lahiri and S. Qadeer. Back to the future: revisiting precise program
verification using SMT solvers. In POPL’08, pages 171–182. ACM,
2008.

[15] P. Madhusudan and X. Qiu. Efficient decision procedures for heaps
using STRAND. In SAS’11, volume 6887 of LNCS, pages 43–59.
Springer, 2011.

[16] P. Madhusudan, G. Parlato, and X. Qiu. Decidable logics combining
heap structures and data. In POPL’11, pages 611–622. ACM, 2011.

[17] S. Magill, M.-H. Tsai, P. Lee, and Y.-K. Tsay. THOR: A tool for
reasoning about shape and arithmetic. In CAV’08, volume 5123 of
LNCS, pages 428–432. Springer, 2008.

[18] G. Nelson. Verifying reachability invariants of linked structures. In
POPL’83, pages 38–47. ACM, 1983.

[19] P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local reasoning about
programs that alter data structures. In CSL’01, volume 2142 of LNCS,
pages 1–19. Springer, 2001.

[20] Z. Rakamarić, J. D. Bingham, and A. J. Hu. An inference-rule-based
decision procedure for verification of heap-manipulating programs
with mutable data and cyclic data structures. In VMCAI’07, volume
4349 of LNCS, pages 106–121. Springer, 2007.

[21] Z. Rakamarić, R. Bruttomesso, A. J. Hu, and A. Cimatti. Verifying
heap-manipulating programs in an SMT framework. In ATVA’07,
volume 4762 of LNCS, pages 237–252. Springer, 2007.

[22] S. Ranise and C. Zarba. A theory of singly-linked lists and its ex-
tensible decision procedure. In SEFM’06, pages 206–215. IEEE-CS,
2006.

[23] J. Reynolds. Separation logic: a logic for shared mutable data struc-
tures. In LICS’02, pages 55–74. IEEE-CS, 2002.

[24] G. Rosu, C. Ellison, and W. Schulte. Matching logic: An alternative
to Hoare/Floyd logic. In AMAST’10, volume 6486 of LNCS, pages
142–162. Springer, 2010.

[25] P. Suter, M. Dotta, and V. Kuncak. Decision procedures for algebraic
data types with abstractions. In POPL’10, pages 199–210. ACM,
2010.

[26] K. Zee, V. Kuncak, and M. C. Rinard. Full functional verification of
linked data structures. In PLDI’08, pages 349–361. ACM, 2008.

[27] K. Zee, V. Kuncak, and M. C. Rinard. An integrated proof language
for imperative programs. In PLDI’09, pages 338–351. ACM, 2009.

