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Abstract
This paper introduces reachability logic, a language-independent
seven-rule proof system for deriving reachability properties of sys-
tems. The key ingredients of reachability logic are its sentences,
which are called reachability rules and generalize the transitions of
operational semantics and the Hoare triples of axiomatic semantics,
and the Circularity proof rule, which generalizes invariant proof
rules for iterative and recursive constructs in axiomatic semantics.
The target transition system is described as a set of reachability rules,
which are taken as axioms in a reachability logic proof. Typical defi-
nition styles which can be read as collections of reachability rules
include conventional small-step and big-step operational semantics.
The reachability logic proof system is shown sound (in the sense of
partial correctness) and relatively complete. The soundness result
has also been formalized in Coq, allowing to convert reachability
logic proofs into proof certificates depending only on the operational
semantics and the unavoidable domain reasoning. Reachability logic
thus eliminates the need to independently define an axiomatic and
an operational semantics for each language, and the non-negligible
effort to prove the former sound and complete w.r.t the latter.

1. Introduction
Operational semantics are easier to define and understand than other
semantics, because they can be thought of as formal implementations
of the languages they define. For example, a big-step semantics can
be thought of as a recursive interpreter, while a small-step semantics
as an execution engine describing each computational step that can
be performed at each moment. Operational semantics typically re-
quire little mathematical knowledge or formal training, which make
them common introductory topics in programming language courses.
Moreover, operational semantics scale and, being executable and
thus testable, yield trusted reference models/implementations for the
defined languages. For example, in the case of the C language, the
operational semantics in [3] is used to develop certifying compilers,
the one in [1] to show axiomatic semantics sound, the one in [8] to
check undefinedness and to formally analyze programs, etc.

In spite of all the advantages above, operational semantics are
typically considered inappropriate for formal program reasoning.
The main reason is that proofs based on operational semantics tend
to be rather low-level and tedious, having to formalize and then
work directly with the corresponding transition system. Existing
program reasoning approaches, such as Hoare logic or dynamic
logic, require (re)defining the target language as a set of abstract
proof rules, which often require non-trivial program transformations
(e.g., to eliminate the side effects from expressions) and are therefore
often hard to understand and trust. Indeed, the state-of-the-art in
mechanical verification is to develop and prove such language-
specific proof systems sound with respect to more trusted semantics
[1, 12, 17, 19, 26, 36]. While defining a language twice or more
using different semantic approaches and then formally proving the
relationships between them can in theory help with finding errors
in each semantics, in practice this is quite uneconomical, because

languages evolve and some require hundreds or even thousands of
semantic rules, and manuals are not always rigorous (so the same
mistake is possible in all semantics). In our experience defining
operational semantics for real languages like C [8], Java (1.4) [9],
Verilog [22], etc., the capability to execute semantics on thousands
of programs (e.g., benchmarks used to test compilers) is a quite
effective means to catch semantic errors. Ideally, we would like an
effective way to use operational semantics for program reasoning
and verification, so that defining alternative semantics for the same
programming language becomes an option instead of a necessity.

Recent work, although limited to operational semantics defined
with rules without premises, suggests that effective program verifi-
cation directly based on formal operational semantics is possible.
A proof system for reachability specifications was introduced and
shown sound (i.e., partially correct) in [33], derivations use the
unconditional operational semantics rules unchanged, as axioms;
then [32] shows that, for a simple imperative language, any Hoare
logic proof can be mechanically translated into a reachability proof
of similar size, thus (1) showing that nothing is lost in terms of
expressiveness or compactness, and (2) indirectly proving the (rela-
tive) completeness of the reachability proof system for a simple but
standard language. A slightly modified reachability proof system is
given in [34] and proved both sound and complete, together with
an implementation of it into a practical program verifier based on a
fragment of C, called MatchC. As already mentioned, unfortunately
all the above require that the operational semantics be defined using
unconditional rules. While this requirement is acceptable for some
operational semantics styles, such as reduction semantics with evalu-
ation contexts [38], it unfortunately excludes the two most standard
operational semantics approaches, namely Plotkin’s small-step [29]
and Kahn’s big-step [5] semantics, as well as combinations.

Inspired by the recent work described above and challenged
by its limitations, in this paper we propose a novel proof system
for reachability, referred to as reachability logic. The proof system
can also take as axioms operational semantics that make use of
conditional rules, and can derive any reachability property of the
language expressible as an unconditional reachability rule. Typically,
Hoare triples are instances of unconditional reachability rules. By
supporting conditional rules as axioms, our new proof system works
with virtually all the operational semantics approaches (details
are given in Section 2). A conditional reachability rule (formally
introduced in Section 4), is a sentence of the form

ϕ⇒ ϕ′ if ϕ1 ⇒ ϕ′1
∧
. . .
∧
ϕn ⇒ ϕ′n

where ϕ, ϕ′, ϕ1, ϕ
′
1, ..., ϕn, ϕ

′
n are matching logic patterns. A match-

ing logic pattern specifies structural properties of the program con-
figuration by means of special predicates, namely configuration
terms with variables, whose satisfaction is given by “matching”.
In the case of a simple C-like imperative language defined using a
big-step semantics with configurations 〈code,σ〉, 〈i〉 and 〈σ〉, where
code ranges over program syntax, i over integers and σ over states,
the following conditional reachability rule defines the semantics of



the positive case of the conditional statement:

〈if e s1 s2, σ〉 ∧ i , 0⇒ 〈σ′〉 if 〈e, σ〉 ⇒ 〈i〉
∧
〈s1, σ〉 ⇒ 〈σ

′〉

It says that concrete program configuration γ matching pattern
〈if e s1 s2,σ〉∧i,0 with witness valuation ρ, i.e., ρ(〈if e s1 s2,σ〉)=
γ and ρ(i),0, reduces to configuration 〈ρ(σ′)〉, provided 〈ρ(e), ρ(σ)〉
reduces to 〈ρ(i)〉 and 〈ρ(s1), ρ(σ)〉 reduces to 〈ρ(σ′)〉.

On the other hand, if SUM is the program summing up in s all
the numbers up to n, then the unconditional reachability rule

〈SUM,(s 7→ s, n 7→n)〉 ∧ n ≥ 0 ⇒ 〈(s 7→n ∗ (n + 1)/2, n 7→0)〉

states the desired property of SUM. In words, if we execute the
configuration holding the program SUM and a state binding program
variables s and n to integers s and n ≥ 0 using the big-step semantics,
then we reach a configuration holding a state that binds program
variable s to the sum of numbers up to n and n to 0, respectively.

Our new language-independent seven-rule proof system (shown
in Figure 3) can formally derive unconditional reachability rules
like the one for SUM above using, as axioms, operational semantics
given as sets of conditional reachability rules like the one for the
if statement above. Five of the proof rules provide the formal ma-
chinery needed to perform symbolic execution using the operational
semantics rules, including means to perform domain reasoning in
order to make rules match and to split into cases when multiple rules
match. The two special rules are Abstraction and Circularity. Ab-
straction allows to abstract away irrelevant details, using existential
quantifiers. Circularity is a language-independent generalization of
the typical language-specific invariant proof rules associated to lan-
guage constructs with repetitive behaviors, such as loops, recursive
functions, jumps, etc.

By generalizing the basic elements of both operational and ax-
iomatic semantics, reachability logic smoothly unifies the two in a
more general framework. Indeed, one can use conditional reachabil-
ity rules to define operational semantics which do not necessarily
correspond to any particular operational style (for example, big-step
for expressions, reduction semantics with evaluation contexts for
statements, etc.), and then derive reachability rules which do not
necessarily correspond to any particular Hoare triple.

Contributions. This paper makes the following contributions:
1. It introduces the conditional reachability rule, which generalizes

the previous unconditional reachability rule to allow capturing
the various small-step and big-step operational semantic rules.

2. It introduces reachability logic, a seven-rule proof system that
takes a set of conditional reachability rules (e.g., an operational
semantics) as axioms and derives unconditional reachability
rules (e.g., ones corresponding to Hoare triples).

3. It proves the proof system sound, that is, partially correct. Due to
its practical relevance in producing proof objects, the soundness
result has also been formalized and proved in Coq.

4. It proves the proof system relatively complete. This result is
significantly more powerful than the relative completeness of
Hoare logic, because it is proved once for all languages, rather
than separately for each language.

The supporting code and Coq mechanical proofs can be found
at http://fsl.cs.uiuc.edu/RL.

Related work. We fully adhere to the fundamental philosophy
of the unified theory of programming initiative [16] and of the
mechanical verification community to reduce the correctness of
program verification to a trusted formal semantics of the target
language [1, 12, 17, 19, 26, 36], although our methods are somewhat
different. Instead of developing a framework where various semantic
approaches coexists with systematic relationships between them,
which requires us to still provide two or more semantics of the same

language, we advocate for a framework where we need only one
semantics of the language, which is operational, with the underlying
theory providing the necessary machinery to achieve the benefits of
other individual semantics without the additional costs.

To regard a program as a specification transformer to analyze
programs in a forwards-style goes back to Floyd [11]. However, his
rules are not concerned with structural configurations, are not meant
to be operational, and introduce quantifiers. Similar ideas have
been used in equational algebraic specifications of programming
languages [14] and in evolving specifications [28]. Conceptually,
what distinguishes our approach from these is the use of matching
logic to specify configurations of interests by means of patterns,
which give access to all the structural details. The use of variables
in patterns offers a comfortable level of abstraction by mentioning
in each rule only the necessary configuration components.

Dynamic logic [15] adds modal operators to FOL to embed
program fragments within specifications. For example, ψ→ [s]ψ′
means “after executing s in a state satisfying ψ, a state may
be reached which satisfies ψ′”. In matching logic, programs and
specifications also coexits in the same logic, but we use it only
for expressing static properties. We express the dynamic properties
using reachability logic which, unlike dynamic logic which still
requires language-specific proof rules, consists of only language-
independent proof rules and works with any operational semantics.

Separation logic [27, 30] has been proposed as a state specifi-
cation formalism to enhance Hoare logic in the presence of heaps.
While reachability logic is an alternative to, rather than an extension
of Hoare logic, one could use separation logic as a pattern specifica-
tion formalism. This is not precluded by presenting our results in
terms of matching logic, as separation logic has been shown to be a
matching logic instance when the configuration model is chosen to
be that of heaps [34]. However, operational semantics of complex
language require many more other configuration components be-
sides the heap, and matching logic has been designed to work with
arbitrarily complex configurations.

Our own related work. Devising a sound, relatively complete and
language-independent proof system that works with conditional
rules as axioms was the holy-grail of our research over the last
several years. We have thus made several prior attempts in this
direction. First-order matching logic and a first proof system based
on it was presented in [35]. However, that proof system was
language-specific and not parametric in an operational semantics like
the one in this paper. An early implementation of MatchC, based
on that proof system, was presented in [31]. Our first language-
independent proof system can be found in [33], and consists of
nine proof rules. In [32] we showed its relative completeness for a
particular simple imperative language, by providing a mechanical
translation of Hoare logic proof derivations into derivations using
that proof system. Finally, [34] presents a more elegant, eight-rule
proof system for reachability, which we use as a basis here, together
with language-independent proofs of its soundness and relative
completeness, and together with a reimplementation of MatchC
based on it. However, until now we were only able to support
very particular operational semantic definitions, namely ones with
unconditional rules. While all the above are clearly inferior to our
new proof system and its language-independent proofs of soundness
and completeness, they were nevertheless crucial milestones.

2. Operational Semantics using Rewriting
There are many operational semantics approaches. Since our goal
is to develop a reachability reasoning framework that works for
all operational semantics, a first challenge is to find a framework
that uniformly and formally supports the variety of operational
semantics. One possibility is to pick a rich framework, e.g., higher-
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order logic [18], the calculus of constructions [6], or rewriting logic
[23], which provides all the needed mathematical infrastructure
(and much more). 1 However, we prefer to present our results
following a different approach here, which we believe makes them
more widely accessible. Specifically, we pick a weak framework
capable of expressing operational semantics, namely (a fragment
of conditional) term rewriting. Rewriting is so basic that any rich
framework can express it; some frameworks have builtin support for
rewriting, others can express it by means of proof strategies, others
can define it as a transitive binary relation, etc.

In this paper we assume that operational semantics can be defined
with particular conditional rewrite rules of the form

cfg⇒ cfg′ if b
∧

cfg1 ⇒ cfg′1
∧

b1
∧
. . .
∧

cfgn ⇒ cfg′n
∧

bn

where cfg, cfg′, cfg1, cfg′1, ..., cfgn, cfg′n are configuration terms
and b, b1, ..., bn are Boolean terms (incrementally) constraining the
variables that appear in the configuration terms. For example,

〈if e s1 s2, σ〉 ⇒ 〈σ
′〉 if 〈e, σ〉 ⇒ 〈i〉

∧
i , 0

∧
〈s1, σ〉 ⇒ 〈σ

′〉

defines the big-step operational semantics of the positive case of
if in a simple C-like language, whose configurations are pairs
〈code,σ〉 of a fragment of program and a state mapping program
variables to integers, with result configurations 〈σ〉 for statements
and 〈i〉 for expressions (i is an integer). In this particular rule, n = 2
and b and b2 are true, so not written. The e, s1 and s2, σ and σ′, and
i, are variables of sorts expression, statement, state, and resp. integer.

The meaning of⇒ is reachability, i.e., zero, one or more steps.
The rewrites cfgi ⇒ cfg′i in the condition of a rewrite rule are called
“premises”, while the Boolean conditions b and bi are called “side
conditions”. Theoretically, the order of premises and side conditions
is irrelevant, and thus the side conditions could all be merged into
one. However, for performance, rewrite engines check the premises
and side conditions from left-to-right and users often rely on it.

Our rewrite rules are purposely simple; e.g., since they contain
only configuration and Boolean terms, we implicitly consider only
top-most rewriting. Like in other rewrite frameworks (e.g., rewriting
logic [23]), ⇒ is inherently transitively-closed. However, some
operational semantics need to express precisely one step, written
⇒1. This can be expressed using the general rewrite relation ⇒
[7, 24]. In [24] the one-step transition is eliminated by replacing
〈code, σ〉 ⇒1 〈code′, σ′〉 with [code, σ] ⇒ {code′, σ′} in the
conclusion and conditions of rules, where [_, _] and {_, _} are
new configuration constructs, and adding one new conditional rule
〈code,σ〉 ⇒ 〈code′,σ′〉 if [code,σ]⇒ {code′,σ′} to embed⇒1

into the general reflexively, transitively closed ⇒. Hence, ⇒1 is
technically unnecessary; conditional rules using just⇒ suffice.

Figure 1 shows a small-step and a big-step operational semantics
of a simple imperative language, called IMP, using rewrite rules. In
the reminder of the paper, we will refer to three IMP programs:
SUM ≡ s := 0; while (n > 0) (s := s+n; n := n-1)
SUM’ ≡ s := 0; while (n > 0) s := s+n
SUM∞ ≡ n := 1; while (n > 0) s := s+n

SUM always terminates, SUM’ only terminates when n ≤ 0, and SUM∞
never terminates. In the small-step semantics, nontermination is rep-
resented by infinite “horizontal” computation: each rule application
terminates, but there are infinitely many rule applications. In the big-
step semantics, nontermination is represented by infinite “vertical”
computation: a rule application does not terminate since it requires

1 We are currently using such a framework, Coq [21], to formalize operational
semantics as transition systems and collections of reachability rules, to prove
equivalences between such semantics for the same language, to mechanize
the soundness of our reachability logic proof system, and to produce proof
certificates for verified programs. We are also using the rewriting logic
engine Maude [4] to efficiently execute operational semantics defined using
rewriting. See http://fsl.cs.uiuc.edu/RL for details and links to code.

IMP syntax
PVar F identifiers to be used as program variables
Exp F PVar | Int | Exp + Exp | ...
Stmt F skip | PVar := Exp | Stmt ; Stmt

| if Exp Stmt Stmt | while Exp Stmt

IMP small-step semantics
+1 〈e1 + e2, σ〉 ⇒

1 〈e′1 + e2, σ〉 if 〈e1, σ〉 ⇒
1 〈e′1, σ〉

+2 〈i1 + e2, σ〉 ⇒
1 〈i1 + e′2, σ〉 if 〈e2, σ〉 ⇒

1 〈e′2, σ〉
+3 〈i1 + i2, σ〉 ⇒

1 〈i1 +Int i2, σ〉
lookup 〈x, σ〉 ⇒1 〈σ(x), σ〉 if x ∈ Dom(σ)
asgn1 〈x := e, σ〉 ⇒1 〈x := e′, σ〉 if 〈e, σ〉 ⇒1 〈e′, σ〉
asgn2 〈x := i, σ〉 ⇒1 〈skip, σ[x← i]〉 if x ∈ Dom(σ)
seq1 〈s1;s2, σ〉 ⇒

1 〈s′1;s2, σ
′〉 if 〈s1, σ〉 ⇒

1 〈s′1, σ
′〉

seq2 〈skip;s2, σ〉 ⇒
1 〈s2, σ〉

cond1 〈if e s1 s2, σ〉 ⇒
1 〈if e′ s1 s2, σ〉 if 〈e, σ〉 ⇒1 〈e′, σ〉

cond2 〈if i s1 s2, σ〉 ⇒
1 〈s1, σ〉 if i , 0

cond3 〈if 0 s1 s2, σ〉 ⇒
1 〈s2, σ〉

while 〈while e s, σ〉 ⇒1 〈if e (s;while e s) skip, σ〉

IMP big-step semantics
+ 〈e1+ e2,σ〉 ⇒ 〈i1 +Int i2〉 if 〈e1,σ〉 ⇒ 〈i1〉

∧
〈e2,σ〉 ⇒ 〈i2〉

int 〈i, σ〉 ⇒ 〈i〉
lookup 〈x, σ〉 ⇒ 〈σ(x)〉 if x ∈ Dom(σ)
skip 〈skip, σ〉 ⇒ 〈σ〉
asgn 〈x := e, σ〉 ⇒ 〈σ[x← i]〉 if x ∈ Dom(σ)

∧
〈e, σ〉 ⇒ 〈i〉

seq 〈s1;s2, σ〉 ⇒ 〈σ2〉 if 〈s1, σ〉 ⇒ 〈σ1〉
∧
〈s2, σ1〉 ⇒ 〈σ2〉

cond1 〈if e s1 s2, σ〉⇒〈σ
′〉 if 〈e,σ〉⇒〈i〉

∧
i,0
∧
〈s1,σ〉⇒〈σ

′〉

cond2 〈if e s1 s2, σ〉⇒〈σ
′〉 if 〈e, σ〉 ⇒ 〈0〉

∧
〈s2, σ〉 ⇒ 〈σ

′〉

while1 〈while e s, σ〉 ⇒ 〈σ〉 if 〈e, σ〉 ⇒ 〈0〉
while2 〈while e s, σ〉 ⇒ 〈σ′〉

if 〈e,σ〉 ⇒ 〈i〉
∧

i,0
∧
〈s; while e s, σ〉 ⇒ 〈σ′〉

Figure 1. The IMP language: syntax, a small-step and a big-step
operational semantics. The operational semantics contain rewrite
rules making use of ordinary first-order variables: e, e′, e1, e′1, e2, e′2
are variables of sort Exp; σ,σ′ are variables of sort State; i, i1, i2
are variables of sort Int; x is a variable of sort PVar; s, s1, s′1, s2 are
variables of sort Stmt; code, code’ are variables of sort Exp or Stmt.
The underlying mathematical domain is assumed to provide all the
needed operations, for example +Int, ∗Int, <Int, etc., for integers, and
σ(x), σ[x← i], x ∈ Dom(σ), etc., for maps.

another rule application to solve one of its premises, which requires
another rule application to solve one of its premises, and so on.

We can easily obtain variations of the two semantics in Fig-
ure 1, e.g., ones using big-step for expressions and small-step for
statements. In fact, as shown in [7], rewrite rules can support virtu-
ally all operational semantics styles, including reduction semantics
with evaluation contexts [38], the chemical abstract machine [2],
continuation-based semantics [10], etc. For reduction semantics
with evaluation contexts, the idea in [7] is to add a new configu-
ration construct, _[_], taking a context term and a code fragment
term, and define the split and plug operations by means of rewrite
rules. In the case of IMP, we would add rules like C[e1 + e2] ⇒
C[� + e2][e1] if e1 < Int and C[� + e2][i1]⇒ C[i1 + e2] in addition
to actual semantic rules like C[i1+i2] ⇒1 C[i1 +Int i2]. Additional
machinery to compose/decompose contexts is needed, but can also
be defined using rules. The reader interested in how our reachability
reasoning results apply to operational semantics using evaluation
contexts is referred to [32–34] for more details.

Besides theoretical simplicity and uniformity, an additional
advantage of using rewriting to define operational semantics is that
they can be executed and tested with off-the-shelf rewrite engines. In
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our experience with Maude [4], rewrite-based operational semantics
can stay within an order of magnitude slower than custom, compiled
interpreters for the defined languages. This is in our view acceptable,
because the interpreters obtained by executing the rewrite-based
operational semantics are free and correct-by-construction.

In conclusion, rewrite rules can be used to formally and uni-
formly define operational semantics. Moreover, they also yield rel-
atively efficient reference models/implementations for the defined
languages at no additional cost. The rest of the paper is dedicated to
showing that rewrite-based operational semantics are also sufficient
for program reasoning; no other (axiomatic) semantics is needed.

3. Matching Logic
Matching logic is a logic for defining and reasoning about structure,
especially program configurations, which can include code stacks,
heaps, I/O buffers, etc. Matching logic is parametric in a model of
configurations. Configurations can be as simple as pairs 〈code,σ〉
with code a program fragment and σ a state mapping program vari-
ables to integers if one wants to reason about simple imperative lan-
guages like IMP (see Section 2), or even as simple as “heap” single-
tons holding a map from locations to integers if one wants to reason
only about heap structures (see [34] for how to capture separation
logic as a matching logic instance). Other configurations can be as
complex as that of C [8], which has about 70 semantic components.

A matching logic instance defines configurations, the concrete
structures of interest, patterns, which serve as structure abstractions
or specifications, and pattern matching, a satisfaction relation
between configurations and patterns. Until now, matching logic
has only been defined in a first-order logic setting. In this paper we
generalize matching logic by parameterizing it also in its patterns
and in its pattern matching relation. These parameters must respect
some mild restrictions and relationships, which will suffice to prove
the soundness of our proof system in Section 5.

Using this generalization of matching logic in the proof system
for reachability has two benefits, one practical and one theoreti-
cal. Practically, it allows our proof system to be used in settings
where program properties are stated and reasoned about in other for-
malisms than first-order matching logic, for example in variants of
separation logic, monadic second-order logic, etc. Theoretically, it
shows the weakest conditions on a program state logic under which
we could show our proof system sound.

3.1 First-Order Matching Logic
Here we recall basic notions of first-order matching logic from [32–
35] (there called just “matching logic”), which can be framed as a
methodological fragment of first-order logic (FOL) in a given model
of configurations (see Section 6.1).

The reader is assumed familiar with basic concepts of algebraic
specification and first-order logic (see, e.g., the CASL and Maude
systems and their manuals [4, 25], which also provide many exam-
ples). Given an algebraic signature Σ, we let TΣ denote the initial
Σ-algebra of ground terms (i.e., terms without variables) and let
TΣ(Var) denote the free Σ-algebra of terms with variables in Var.
TΣ,s(Var) is the set of Σ-terms of sort s. Maps ρ :Var→ T with T a
Σ-algebra extend uniquely to (homonymous) Σ-algebra morphisms
ρ : TΣ(Var) → T . These notions extend to algebraic specifications.
Many common mathematical structures have been defined as Σ-
algebras: boolean algebras, natural/integer/rational numbers, lists,
sets, bags (or multisets), maps (e.g., for states, heaps), trees, queues,
stacks, etc. [4, 25]. Here we only need maps, to represent program
states, written with an infix “7→” operation symbol for map entries
(binary operation taking a program variable and an integer) and an
associative and commutative comma “,” symbol to separate them.

Let us fix the following: (1) an algebraic signature Σ, specifying
some desired configuration syntax, with a distinguished sort Cfg, (2)

a sort-wise infinite set of variables Var, and (3) a Σ-algebra T , the
configuration model, which may but need not be the initial Σ-algebra.
The elements of T of sort Cfg are called configurations.

Definition 1. [35] A matching logic formula, or a pattern, is a first-
order logic (FOL) formula which allows terms in TΣ,Cfg(Var), called
basic patterns, as predicates. We define the satisfaction (γ, ρ) |= ϕ
over configurations γ ∈ TCfg, valuations ρ : Var→ T and patterns
ϕ as follows (among the FOL constructs, we only show ∃):

(γ, ρ) |= ∃X ϕ iff (γ, ρ′) |= ϕ for some ρ′ : Var→ T with
ρ′(y) = ρ(y) for all y ∈ Var\X

(γ, ρ) |= π iff γ = ρ(π) , where π ∈ TΣ,Cfg(Var)

A basic pattern π is satisfied by all the configurations γ that
match it; the ρ in (γ, ρ) |= π can be thought of as the “wit-
ness” of the matching, and can be further constrained in a pat-
tern. In the case of IMP, whose configurations have the form
〈code, σ〉, the pattern ∃s (〈 SUM, (s 7→ s, n 7→n) 〉 ∧ n ≥Int 0)
matches the configurations with code SUM (from Section 2) and
state binding program variables s and n respectively to integers
s and n ≥Int 0. We typically use typewriter for program vari-
ables and italic for mathematical variables in Var. Similarly, pattern
〈skip, (s 7→ n ∗Int (n +Int 1)/Int2, n 7→ 0)〉 matches (with the same
witness ρ, i.e., the same n) all the final configurations reachable (in
IMP’s transition system corresponding to its small-step semantics)
from the configurations specified by the previous pattern (Section 5
shows how to formally prove it).

3.2 Abstract Matching Logic
Based on intuitions from first-order matching logic, we propose
abstract matching logic, an abstract formalism for configuration
properties. The abstraction consists of specifying properties of
patterns and matching, rather fixing a concrete definition.

Definition 2. An abstract matching logic, called simply a match-
ing logic from here on, is a tuple L = (Σ,Var,T ,P, |=) where:

• Σ is a multisorted signature containing a distinguished sort Cfg;
• Var is a sortwise infinite set of variables over the sorts of Σ.
• T is a Σ-algebra; its elements in TCfg are called configurations;
• P is a set of patterns ϕ, closed under the logical constructs
ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, ϕ1 → ϕ2, and ∃xϕ, where x ∈ Var;
• |= ⊆ (TCfg × [Var → T ]) × P is a pattern matching relation,

written (γ, ρ) |= ϕ and read “configuration γ ∈ TCfg matches
pattern ϕ ∈ P with valuation ρ : Var → T as witness”. The
pattern matching relation satisfies the following constraints:
(γ, ρ) |= ∃xϕ iff there exists a ρ′ such that ρ′(y) = ρ(y) for all
y ∈ Var \ {x} and such that (γ, ρ′) |= ϕ; and (γ, ρ) |= ϕ1 ∧ ϕ2 iff
(γ, ρ) |= ϕ1 and (γ, ρ) |= ϕ2, and similarly for ∨ and→.

We also assume a “free-variable” function FV : P → 2Var on
patterns with the expected properties: FV(∃xϕ) = FV(ϕ) \ {x} and
FV(ϕ1 ∧ ϕ2) = FV(ϕ1) ∪ FV(ϕ2), and similarly for ∨ and→. Also,
if ρ and ρ′ agree on FV(ϕ), then for all γ, (γ, ρ) |= ϕ iff (γ, ρ′) |= ϕ.

Thus, a matching logic essentially consists of a pattern matching
relation that obeys some reasonable constraints. Note that the precise
syntax and semantics of patterns are purposely left open: all we
require is that certain reasonable syntactic constructs are available
and have their expected compositional semantics. This allows us
to instantiate our framework and the subsequent results not only to
first-order, but also to higher-order, separation, or other logics.

Definition 3. Pattern ϕ is valid, written |= ϕ, iff (γ, ρ) |= ϕ for
all γ ∈ TCfg and ρ : Var → T . Pattern ϕ is structureless iff for
all ρ : Var → T and γ, γ′ ∈ TCfg, (γ, ρ) |= ϕ iff (γ′, ρ) |= ϕ.
Pattern ϕ is weakly well-defined (resp. well-defined) iff for any



valuation ρ : Var→ T there exists at least one (resp. precisely one)
configuration γ ∈ TCfg such that (γ, ρ) |= ϕ.

The intuition is that a valid pattern contains no structural and no
logical constraints, while a structureless pattern contains only logical
but no structural constraints. Well-defined patterns have enough
structural constraints to uniquely identify the matching configuration.
In first-order matching logic all basic patterns π are well-defined,
while patterns of the form π1 ∨ π2 are weakly well-defined.

4. Reachability Rules
Unconditional reachability rules over first-order matching logic
patterns were introduced in [33], which showed they can express
certain operational semantics that do not require rule premises, such
as reduction semantics with evaluation contexts [38]. They were also
studied in [32], which showed they can express the Hoare triples
of axiomatic semantics. In this section we introduce conditional
reachability rules, a generalization which can naturally deal with
any rewrite-based operational semantics.

Unless otherwise specified, from here on in this paper we assume
an arbitrary but fixed matching logic L = (Σ,Var,T ,P, |=) and give
our definitions and proofs for this general framework, including the
soudness of our proof system in Section 5.

Definition 4. A (conditional) reachability rule is a sentence

ϕ⇒ ϕ′ if ϕ1 ⇒ ϕ′1
∧
. . .
∧
ϕn ⇒ ϕ′n

where n ≥ 0 and where ϕ, ϕ′, ϕ1, ϕ′1, ..., ϕn, ϕ′n are matching logic
patterns. We call ϕ the left-hand side (LHS) and ϕ′ the right-hand
side (RHS) of the rule. A rule is unconditional when n = 0, and is
written ϕ⇒ ϕ′. A reachability system is a set of reachability rules.

4.1 Operational Semantics using Reachability Rules
As discussed in Section 2, in this paper we assume that operational
semantics can be defined with particular rewrite rules of the form

cfg⇒ cfg′ if b
∧

cfg1 ⇒ cfg′1
∧

b1
∧
. . .
∧

cfgn ⇒ cfg′n
∧

bn,

which can be now seen as sugar for particular reachability rules

cfg ∧ b ∧ b1 ∧ . . . ∧ bn ⇒ cfg′ if cfg1 ⇒ cfg′1
∧
. . .
∧

cfgn ⇒ cfg′n
Here the Boolean side conditions have been all conjuncted with the
LHS pattern. Recall from Definition 2 that matching logic includes
configuration terms as patterns and allows the use of FOL constructs,
in particular conjunction, to build new patterns, so the above is a
correct reachability rule, where ϕ is cfg ∧ b ∧ b1 ∧ . . . ∧ bn, etc. For
example, the rule cond1 in the big-step semantics of IMP in Figure 1
is syntactic sugar for the reachability rule

〈if e s1 s2, σ〉 ∧ i , 0⇒ 〈σ′〉 if 〈e, σ〉 ⇒ 〈i〉
∧
〈s1, σ〉 ⇒ 〈σ

′〉

From here on we assume that a language/calculus/system is
semantically defined as a reachability system and, unless otherwise
specified, fix an arbitrary reachability system S (with patterns in
L). It is irrelevant for the subsequent developments whether such
rules represent a small-step, a big-step, or any other particular kind
of operational semantics.

An operational semantics typically describes program behaviors
by generating a transition system over program configurations,
which can be used to associate a behavior to any given program
in any given state. In some cases, e.g., small-step semantics, the
transition system comprises all the atomic computational steps; in
other cases, e.g., big-step semantics, the transition system consists
of a binary relationship mapping configurations holding (fragments
of) programs to their resulting configurations after evaluation.

We next show how S yields a transition system (TCfg,�S) over
the configurations of T .

Definition 5. We inductively construct the relationsRk ⊆ TCfg×TCfg
for all k ∈ N as follows:

• R0 = ∅
• Rk+1 = { (γ, γ′) | there exists some reachability rule

ϕ⇒ ϕ′ if ϕ1 ⇒ ϕ′1
∧
. . .
∧
ϕn ⇒ ϕ′n

in S and some valuation ρ :Var→ T such that:
1. (γ, ρ) |= ϕ and (γ′, ρ) |= ϕ′; and
2. for all γ1, . . . γn ∈ TCfg with (γi , ρ) |= ϕi for all 1 ≤ i ≤ n

there exist γ′1, . . . , γ
′
n with (γ′i , ρ) |= ϕ′i for all 1 ≤ i ≤ n such

that (γi, γ
′
i ) ∈ R

∗
k , the transitive and reflexive closure of Rk

}
Then �S

def
=
⋃

k≥0 Rk, written infix, is the transition relation induced
by S, and (TCfg,�S) is the transition system induced by S.

Intuitively, R1 is the transition relation generated by using only
unconditional rules or degenerate conditional rules whose conditions
ϕi ⇒ ϕ′i specify pairs of identical configurations (because R∗0 =
{(γ, γ) | γ ∈ TCfg}) which therefore need no other reachability rule to
be solved, R2 is generated using unconditional or conditional rules,
but solving the conditions only with unconditional or degenerate
conditional rules, and so on. In general, Rk is obtained by applying at
most k−1 “nested” conditional rules. It is easy to see that Rk ⊆ Rk+1.
In fact, the above explicitly defines the transition relation as the least
fixed point relation �S that is compatible with all the rules in S,
where all rule conditions are interpreted as �S-reachability.

If L is a first-order matching logic and S contains only rewrite
rules, that is, rules whose patterns are all basic, then all the con-
figurations γ, γ′, γ1, γ′1, . . . , γn, γ′n in Definition 5 are uniquely
determined by ρ, since (γ, ρ) |= π iff γ = ρ(π) for any basic pattern
π (by Definition 1). In this case, �S becomes the usual transition
relation induced by a (top-most) term rewrite system on a Σ-algebra.
More specifically, if S is IMP’s small-step semantics in Figure 1,
then the following are valid transitions (SUM is the sum program in
Section 2 and LOOP is its loop; for notational simplicity, we make
no distinction between ground terms and their interpretation in T ):

〈SUM, (s 7→ 7, n 7→10)〉 �S 〈LOOP, (s 7→ 0, n 7→10)〉 �S
〈if (n>0) (s:=s+n;n:=n-1;LOOP) skip, (s 7→ 0, n 7→10)〉 �S
〈if(10>0) (s:=s+n;n:=n-1;LOOP) skip, (s 7→ 0, n 7→10)〉 �S

. . . �S 〈LOOP, (s 7→ 10, n 7→9)〉 �S . . . �S
〈LOOP, (s 7→ 55, n 7→0)〉 �S . . . �S 〈skip, (s 7→ 55, n 7→0)〉

In computing the transitions above, we need to go up to 3 nested
conditional rules in Definition 5, i.e., k = 4. On the other hand, if S
is the IMP’s big-step semantics in Figure 1, then we have

〈SUM, (s 7→ 7, n 7→10)〉 �S 〈s 7→ 55, n 7→0〉
in one transition step, but in order to compute that we need to apply
more than 40 nested conditional rules.

We next define a strong notion of validity, based entirely on the
transition relation above. Definition 10 introduces our actual notion
of validity, partial correctness in the sense of Hoare-style validity,
which also takes into account termination; as seen in Definition 7,
defining termination requires strong validity.

Definition 6. Given a valuation ρ : Var → T , an unconditional
reachability rule ϕ⇒ ϕ′ is ρ-strongly-valid, written S, ρ |=∗ ϕ⇒ ϕ′,
iff for any γ ∈ TCfg with (γ, ρ) |= ϕ there is some γ′ ∈ TCfg such that
(γ′, ρ) |= ϕ′ and γ �?

S
γ′. Rule ϕ ⇒ ϕ′ is strongly valid, written

S |=∗ ϕ⇒ ϕ′, iff it is ρ-strongly-valid for each ρ :Var→ T .

In the case of IMP, if ρ(σ) = (s 7→ 7, n 7→10) and ρ(σ′) = (s 7→
55, n 7→0) then, as seen above, S, ρ |=∗ 〈SUM, σ〉 ⇒ 〈skip, σ′〉when
S is the small-step semantics of IMP, and S, ρ |=∗ 〈SUM, σ〉 ⇒ 〈σ′〉
when S is the big-step semantics of IMP in Figure 1, respectively.
More interestingly, we can show that S |=∗ 〈SUM, (s 7→ s, n 7→n)〉 ∧
n ≥Int 0⇒ 〈skip, (s 7→ n ∗Int (n +Int 1)/Int2, n 7→0)〉 with the small-
step semantics, and a similar property with the big-step semantics,



but the proof would be tedious and low level at this moment, as
it would need to directly involve the transition system (TCfg,�S).
Section 5 shows how such properties can be derived more abstractly,
using the reachability logic proof system.

An operational semantics should also formally say when a
program terminates, or when it diverges. In some cases, e.g., small-
step semantics, nontermination is captured by the existence of an
infinite number of transitions starting with the given configuration;
in other cases, e.g., big-step semantics, nontermination is captured
by the inability to perform a step in the transition system due to an
infinite sequence of nested attempts to fulfill the rule premises.

We next define termination of configurations with respect to
S, capturing both cases above. Our definition is based on a partial
order on configurations which is inspired from quasi-decreasing
orders for conditional term rewriting systems [13]. Our definition
is also somewhat related to operational termination of conditional
term rewrite systems [20], although the latter is a property of a
rewrite theory while our notion of termination refers to a particular
configuration in a particular model.

Definition 7. Let (TCfg,�) be the termination dependence relation:

• γ � γ′ if γ �S γ′; and
• γ � γ′ if there exists a rule ϕ⇒ ϕ′ if ϕ1 ⇒ ϕ′1

∧
. . .
∧
ϕn ⇒ ϕ′n

in S, valuation ρ :Var→ T , and index 1 ≤ i ≤ n such that:
1. (γ, ρ) |= ϕ;
2. S, ρ |=∗ ϕ j ⇒ ϕ′j for each 1 ≤ j < i; and
3. (γ′, ρ) |= ϕi.

Then γ ∈ TCfg terminates iff there are no infinite decreasing � chains
starting at γ, and γ diverges otherwise. We also let � denote the
partial order associated to �, i.e., its reflexive and transitive closure.

Our definition of termination above mimics the application of
conditional rules in the configuration model, in that conditions are
solved in order and a condition is considered only if all the previous
conditions are successfully solved.

Let us consider our particular IMP language again. In Section 2
we informally claimed that SUM always terminates, SUM’ only
terminates when n ≤ 0, and SUM∞ never terminates. We can
now make these claims formal. For SUM, we can show that any
configuration γ of the form 〈SUM, σ〉 terminates with any of the two
semantics in Figure 1, for any state σ (including σ’s which lack s
or n). For SUM’, any configuration of the form 〈SUM’, (n 7→n, σ)〉
with n ≤ 0 terminates in both semantics, whether or not σ binds
s. However, note that our informal claim in Section 2 that “SUM’
only terminates when n ≤ 0” was (purposely) imprecise. Indeed,
configurations 〈SUM’, σ〉 with n or s undefined in σ also terminate.
Finally, our informal claim that “SUM∞ never terminates” was also
imprecise for similar reasons. Stated precisely, configurations of
the form 〈SUM, (n 7→n, s 7→ s, σ)〉 diverge. It is interesting to note
that such configurations diverge for different reasons in the two
semantics, descending by the first bullet of Definition 7 in small-
step semantics, and by the second bullet in big-step semantics.

Definition 8. A pattern ϕ terminates (resp. diverges), written
S |= ϕ↓ (resp. S |= ϕ↑), iff for all γ ∈ TCfg and for all ρ :Var→ T , if
(γ, ρ) |= ϕ then γ terminates (resp. diverges).

In the case of IMP with S either its small-step or its big-step
semantics, from the discussion above we can conclude
S |= 〈SUM,σ〉↓
S |= (〈SUM’,(n 7→n, σ)〉 ∧ n≤Int 0 ∨ 〈SUM’,σ〉 ∧ (n<Dom(σ) ∨ s<Dom(σ))↓
S |= (〈SUM’,(n 7→n, s 7→ s, σ)〉 ∧ n >Int 0)↑
S |= 〈SUM∞,(n 7→n, s 7→ s, σ)〉↑

Section 5 shows how to prove divergence using our proof system
for reachability. Proving termination is left for future work.

Recall that S is an arbitrary reachability system, thought of as a
“semantics”. However, not all reachability systems are meaningful as
semantics in all situations. Consider a reachability system contain-
ing a rule of the form ϕ⇒ false. Such a rule is not just semantically
useles (because it generates no transitions), but also makes reach-
ability reasoning unsound, because even S’s own rules are not all
valid (S |=∗ ϕ ⇒ false does not hold, though we expect S |=∗ µ for
any unconditional µ ∈ S). It is therefore not surprising that some of
the subsequent results need to impose additional constraints on the
rules of S, such as the following:

Definition 9. Rule ϕ⇒ ϕ′ if ϕ1 ⇒ ϕ′1
∧
. . .
∧
ϕn ⇒ ϕ′n is (weakly)

well-defined iff ϕ′, ϕ1, ..., ϕn are (weakly) well-defined. Reachability
system S is (weakly) well-defined iff all its rules are.

Since operational semantics rules contain only configuration
terms except possibly for their LHS patterns (see discussion at
beginning of Section 4.1), and since configuration terms are basic
patterns, which are always well-defined, we believe that it is safe
to say that all reachability systems of interest are expected to
be well-defined. Nevertheless, weak well-definedness suffices for
the soundness of reachability logic, although we need full well-
definedness for completeness.

4.2 Specifying Program Properties using Reachability Rules
Reachability rules can specify not only operational semantics, but
also program properties. In fact, each Hoare triple can be translated
into a particular reachability rule [32], although the translation needs
to be mechanized separately for each language. However, it is not
recommend to follow this route when specifying program properties,
because Hoare triples can be more complex than reachability
rules expressing the same property, even without the additional
complexity added by the mechanical translation. Consider, for
example, the following Hoare triple expressing SUM’s property:

{n = oldn ∧ n ≥ 0} SUM {s = oldn * (oldn + 1) / 2 ∧ n = 0}

The introduction of the additional oldn variable follows a common
Hoare logic “trick” to save the initial value of n. Following [32], the
above Hoare triple translates mechanically into the reachability rule

∃s, n (〈SUM, (s 7→ s, n 7→n)〉 ∧ n = oldn ∧ n ≥Int 0) ⇒
∃s, n (〈skip, (s 7→ s, n 7→n)〉 ∧ s=oldn∗Int (oldn+Int 1)/Int2 ∧ n=0)

On the other hand, with the configurations of IMP’s big-step
semantics in Figure 1, we can express the same property as follows:

〈SUM,(s 7→ s, n 7→n)〉∧n≥Int 0 ⇒ 〈(s 7→n ∗Int (n +Int 1)/Int2, n 7→0)〉

In words, if we execute the configuration holding the program SUM
and a state binding program variables s and n to integers s and
n ≥ 0 using IMP’s big-step semantics, then we reach a configuration
holding a state that binds program variables s and n to the sum
of numbers up to n and to 0, respectively. Technically, s and n
are variables of sort Int; one can also think of them as “symbolic”
integers. On the other hand, s and n are constants of sort PVar.

One could argue that the Hoare triple above is more natural
because it is more compact and the FOL specifications make direct
use of program’s variables. However, one should note that the
reachability rule is more informative, since it also states that s
and n must be available in the state before SUM is executed. To state
these properties using Hoare logic we need additional specification
contents, e.g. definedness predicates. Also, Hoare logic conflating
program variables (like s, n) and specification variables (like oldn)
is often a source of complexity and confusion, particularly in
combination with substitution and pointers. Unlike Hoare triples,
which only specify properties about final program states, reachability
rules can also specify properties of intermediate states as reachability
rules where the right hand side has some intermediate code. Hoare



triples correspond to reachability rules whose RHS holds the empty
code, like the one above. We refer the reader to [32] for more details
on the expressiveness of unconditional reachability rules.

4.3 Validity and ω-Closure
In Hoare logic, a triple {pre} code {post} is (semantically) valid, in
the sense of partial correctness, iff for any state that satisfies pre, if
code terminates then the resulting state satisfies post. This elegant
definition has the luxury of relying on another formal semantics of
the target language which provides the language-specific notions
of “state”, “satisfaction”, and “termination”. Since here everything
happens in a single language-independent framework, we generalize
the notion of validity as follows:

Definition 10. Given a valuation ρ : Var → T , an unconditional
reachability rule ϕ ⇒ ϕ′ is ρ-valid, written S, ρ |= ϕ ⇒ ϕ′, iff for
any γ ∈ TCfg with (γ, ρ) |= ϕ, if γ terminates then there is some
γ′ ∈ TCfg such that (γ′, ρ) |= ϕ′ and γ �?

S
γ′. Rule ϕ ⇒ ϕ′ is valid,

written S |= ϕ⇒ ϕ′, iff it is ρ-valid for each ρ :Var→ T .

The major difference between our validity and Hoare validity is
that the language-specific notions of “state” and “code” have been
replaced by the language-independent notion of “configurations”.
It is not hard to see that in the case of IMP, with S either of the
semantics in Figure 1, this notion of validity becomes the usual
Hoare logic validity when the reachability rule ϕ⇒ ϕ′ corresponds
to a Hoare triple as shown in Section 4.2.

If the rule LHS terminates, strong validity and validity coincide:

Proposition 1. The following hold:

1. If S |=∗ ϕ⇒ ϕ′ then S |= ϕ⇒ ϕ′;
2. If S |= ϕ↓ then S |=∗ ϕ⇒ ϕ′ iff S |= ϕ⇒ ϕ′.

In Hoare logic divergence can be indirectly specified using
Hoare triples with postcondition false. We can similarly reduce
proving divergence to proving a reachability rule whose RHS is
false, provided our arbitrary matching logic L has a pattern false
matched by no configurations (in first-order matching logic we have
the FOL false formula): S |= ϕ↑ iff S |= ϕ⇒ false. Therefore, any
complete proof system for reachability can also prove divergence.
It turns out, however, that it is necessary (for the completeness
theorem) and convenient to refer to divergence directly.

Definition 11. We let Sω, called the ω-closure of S, be the reacha-
bility system extending S as follows:

• Add to Σ a new constant ω of sort Cfg;
• Add to TCfg a new element Tω;
• Add to S a new rule, ω⇒ ω;
• For each rule ϕ ⇒ ϕ′ if ϕ1 ⇒ ϕ′1

∧
. . .
∧
ϕn ⇒ ϕ′n in S and

each 1 ≤ i ≤ n, add to S a conditional reachability rule

ϕ⇒ ω if ϕ1 ⇒ ϕ′1
∧
. . .
∧
ϕi−1 ⇒ ϕ′i−1

∧
ϕi ⇒ ω.

By convention (Sω)ω = Sω and we call S ω-closed iff S = Sω.

The ω -closure operation is algorithmic and easy to implement.
Since Tω is the only configuration that matches ω, we conclude that
ω is well-defined. In fact, the ω-closure operation does not affect
well-definedness: S is (weakly) well-defined iff Sω is (weakly) well-
defined. Moreover, the additional rules are semantically irrelevant:

Proposition 2. The following equivalences hold for all configura-
tions γ, γ′ ∈ TCfg and for all patterns ϕ, ϕ′ ∈ P:

• γ �S γ′ iff γ �Sω γ′;
• γ terminates for S iff γ terminates for Sω;
• S |= ϕ⇒ ϕ′ iff Sω |= ϕ⇒ ϕ′.

Therefore, theω-closure has no semantic effect. It only has proof-
theoretical merit, ensuring we can prove divergence as follows:

Axiom :

ϕ⇒ ϕ′ if ϕ1 ⇒ ϕ′1
∧
· · ·
∧
ϕn ⇒ ϕ′n ∈ A

ψ is a structureless pattern

A∪ C ` ϕ1 ∧ ψ⇒ ϕ′1 · · · A ∪ C ` ϕn ∧ ψ⇒ ϕ′n

A `C ϕ ∧ ψ⇒ ϕ′ ∧ ψ

Reflexivity : A ` ϕ⇒ ϕ

Transitivity :
A `C ϕ1 ⇒ ϕ2 A∪ C ` ϕ2 ⇒ ϕ3

A `C ϕ1 ⇒ ϕ3

Consequence :
|= ϕ1 → ϕ′1 A `C ϕ

′
1 ⇒ ϕ′2 |= ϕ′2 → ϕ2

A `C ϕ1 ⇒ ϕ2

Case Analysis :
A `C ϕ1 ⇒ ϕ A `C ϕ2 ⇒ ϕ

A `C ϕ1 ∨ ϕ2 ⇒ ϕ

Abstraction :
A `C ϕ⇒ ϕ′ where X ∩ FV(ϕ′) = ∅

A `C ∃X ϕ⇒ ϕ′

Circularity :
A `C∪{ϕ⇒ϕ′} ϕ⇒ ϕ′

A `C ϕ⇒ ϕ′

Figure 3. Reachability logic proof system.

Proposition 3. If S is ω-closed, then S |= ϕ↑ iff S |= ϕ⇒ ω.

5. Proof System and Soundness
Figure 3 shows the reachability logic proof system. The target
language is given as a weakly well-defined reachability system
S. The soundness result (Theorem 1) guarantees that S |= ϕ⇒ ϕ′ if
S ` ϕ⇒ ϕ′ is derivable. Note that the proof system derives more
general sequents of the formA `C ϕ⇒ ϕ′, whereA and C are sets
of reachability rules. The rules inA are called axioms and rules in
C are called circularities. If C does not appear in a sequent, then it
means it is empty: A ` ϕ ⇒ ϕ′ is a shorthand for A `∅ ϕ ⇒ ϕ′.
Initially, C is empty andA is S. During the proof, circularities can
be added to C via the Circularity rule and flushed into A by the
Transitivity or Axiom rules.

The intuition is that the rules inA can be assumed valid, while
the rules in C have been postulated but not yet justified. After making
concrete progress it becomes (coinductively) valid to rely on them.
The intuition for a sequentA `C ϕ⇒ ϕ′, read “A with circularities
C proves ϕ ⇒ ϕ′”, is that ϕ ⇒ ϕ′ is true if the rules in A are true
and the rules in C are true after making progress, and that if C is
nonempty then ϕ reaches ϕ′ (or diverges) after at least one transition.

With this in mind, let us discuss the proof rules.
Axiom states that a trusted rule can be used in any logical context,

or frame. The logical frame is formalized as a structureless pattern
ψ, as it is meant to only add logical but no structural constraints. In-
corporating framing into the axiom rule is necessary to make logical
constraints available while proving the conditions of the axiom hold.
Since reachability logic keeps a clear separation between program
variables and logical variables the logical constraints are persistent,
that is, they do not interfere with the dynamic nature of the opera-
tional rules and can therefore be safely used for framing. This is not
the case for structural constraints. Consider, for example, a structural
constraint given as pattern 〈skip, σ〉. We cannot use this pattern
as a frame ψ for the rule skip of the big-step semantics of IMP,
because 〈skip, σ〉 ∧ 〈σ〉 is matched by no pattern, same as false,
so the proof system would unsoundly derive 〈skip, σ〉 ⇒ false.
Additionally, note that the circularities are released as trusted axioms
when deriving the rule’s conditions, which is consistent with the
intuition above for sequents.



General macros
SUM ≡ s := 0; while (n>0) (s := s+n; n := n-1)
S1 ≡ s := s + n; n := n - 1; LOOP
IF ≡ if (n > 0) then S1 else skip

ϕSUM ≡ 〈SUM, (s 7→ s, n 7→ n)〉 ∧ n ≥Int 0
ϕINV ≡ 〈LOOP, (s 7→ suminv(n, n′), n 7→ n′)〉 ∧ n′≥Int 0
ϕS1 ≡ 〈S1, (s 7→ suminv(n, n′), n 7→ n′)〉

LOOP ≡ while (n>0) (s := s+n; n := n-1)
S2 ≡ n := n - 1; LOOP

suminv(n, n′) ≡ (n −Int n′) ∗Int (n +Int n′ +Int 1)/Int 2
ϕIF ≡ 〈IF, (s 7→ suminv(n, n′), n 7→ n′)〉

ϕ
after
LOOP ≡ 〈LOOP, (s 7→ suminv(n, n′ −Int 1), n 7→ n′ −Int 1)〉
ϕS2 ≡ 〈S2, (s 7→ suminv(n, n′ −Int 1), n 7→ n′)〉

Small-step macros
ϕ ≡ 〈skip, (s 7→ n ∗Int (n +Int 1)/Int 2, n 7→ 0)〉
µ ≡ ∃n′ ϕINV ⇒ ϕ

Big-step macros
ϕ ≡ 〈(s 7→ n ∗Int (n +Int 1)/Int 2, n 7→ 0)〉
µ ≡ ∃n′ ϕINV ⇒ ϕ

Small-step proof derivation (S is IMP’s small-step semantics)
1.S ` ϕSUM ⇒ ϕINV ∧ n′=Int n [asgn2, seq1, seq2]
2.S ` ϕINV ⇒ ϕIF ∧ n′ ≥Int 0 [while]
3.S `{µ} ϕIF∧n′>Int 0⇒ ϕS1∧n′>Int 0 [lookup,>1,>3, cond1, cond2]
4.S `{µ} ϕS1∧n′>Int 0⇒ ϕS2∧n′>Int 0 [lookup,+1,+2,+3,asgn1,asgn2,seq1,seq2]
5.S `{µ} ϕS2∧n′>Int 0⇒ ϕ

after
LOOP∧n′>Int 0 [lookup,-1,-3,asgn1,asgn2,seq1,seq2]

6.S `{µ} ϕS2∧n′ >Int 0⇒ ∃n′ ϕINV [Consequence(5)]
7.S ∪ {µ} ` ∃n′ ϕINV ⇒ ϕ [µ]
8.S `{µ} ϕIF ∧ n′ >Int 0⇒ ϕ [Transitivity(3, 4, 6, 7)]
9.S `{µ} ϕIF ∧ n′ =Int 0⇒ ϕ [lookup,>1,>3, cond1, cond3]

10.S `{µ} ϕIF ∧ n′ ≥Int 0⇒ ϕ [Case Analysis(8, 9)]
11.S `{µ} ∃n′ ϕINV ⇒ ϕ [Transitivity(2, 10); Abstraction]
12.S ` ∃n′ ϕINV ⇒ ϕ [Circularity(11)]
13.S ` ϕSUM ⇒ ∃n′ ϕINV [Consequence(1)]
14.S ` ϕSUM ⇒ ϕ [Transitivity(13, 12)]

Big-step proof derivation (S is IMP’s big-step semantics)
1.S ∪ {µ} ` ∃n′ ϕINV ⇒ ϕ [µ]
2.S ∪ {µ} ` ϕafter

LOOP ∧ n′>Int 0⇒ ϕ [Consequence(1)]
3.S `{µ} ϕS2∧n′>Int 0⇒ ϕ [lookup, int, -, asgn, seq(2)]
4.S `{µ} ϕS1∧n′>Int 0⇒ ϕ [lookup, int,+, asgn, seq(3)]
5.S `{µ} ϕINV ∧ n′ >Int 0⇒ ϕ [lookup, int,>,while2(4)]
6.S `{µ} ϕINV ∧ n′ =Int 0⇒ ϕ [lookup, int,>,while1]
7.S `{µ} ϕINV ⇒ ϕ [Case Analysis(5, 6)]
8.S `{µ} ∃n′ ϕINV ⇒ ϕ [Abstraction(7)]
9.S ` ∃n′ ϕINV ⇒ ϕ [Circularity(8)]

10.S ` ϕINV ∧ n′ =Int n⇒ ϕ [Consequence(9)]
11.S ` ϕSUM ⇒ ϕ [int, asgn, skip, seq(10)]

Figure 2. Formal reachability logic proofs for SUM. Simple Consequence rules used to perform domain reasoning are elided for readability.

Reflexivity and transitivity correspond to corresponding closure
properties of the reachability relation. Reflexivity requires C to be
empty to meet the requirement above, that a reachability property
derived with nonemtpy C takes one or more steps. Transitivity
releases the circularities as axioms for the second premise, because
if there are any circularities to release the first premise is guaranteed
to make progress.

Consequence and Case Analysis are adapted from Hoare logic.
In Hoare logic Case Analysis is typically a derived rule, and we
could probably derive it for particular languages, but there is no way
to prove it language-independently. Ignoring circularities, we can
think simplistically of these five rules as a rigorous infrastructure
for symbolic execution.

Abstraction allows us to hide irrelevant details of ϕ behind an
existential quantifier, which is particularly useful in combination
with the next proof rule.

Circularity allows to make a new circularity claim at any moment
during a proof. We typically make such claims for code with
repetitive behaviors, such as loops, recursive functions, jumps, etc. If
we succeed in proving the claim using itself as a circularity, then the
claim holds. This circular reasoning would obviously be unsound
if circularities were unrestricted, but requiring progress before
circularities can be used ensures that only diverging executions
can correspond to endless invocation of a circularity.

Figure 2 shows detailed formal proofs that the SUM program
(Section 2) indeed calculates the sum of the first n natural numbers
in s, for the small-step and big-step semantics of IMP from Figure 1.
In the small-step case (left column) the circularity corresponding to
the loop is used via the Transitivity rule, while in the big-step case
(right column) the circularity is used via the Axiom rule. Below we
discuss these proofs informally (LOOP is the while loop of SUM).

In the small-step case, the specification ϕSUM ⇒ ϕ is

〈SUM,(s 7→s, n 7→n)〉∧n≥Int0⇒〈skip,(s 7→n ∗Int (n +Int 1)/Int2, n 7→0)〉.

We begin by transitivity through ∃n′ ϕINV, where ϕINV is the pattern

〈LOOP, (s 7→ (n −Int n′) ∗Int (n +Int n′ +Int 1)/Int2, n 7→n′)〉∧n′ ≥Int 0.

ϕSUM ⇒ ∃n′ ϕINV holds by running the operational semantics on
SUM until the pattern 〈LOOP, (s 7→0, n 7→n)〉 ∧ n ≥Int 0 is reached,
and abstracting this as ∃n′ ϕINV by Consequence. The property
µ ≡ ∃n′ ϕINV ⇒ ϕ is proved by Circularity. Abstraction removes
the quantifier and fixes an arbitrary n′, allowing us to unroll the
loop into a conditional by the while rule. This progress releases the
circularity. We continue by Case Analysis on n′ =Int 0 ∨ n′ >Int 0,
running the operational semantics in each case. When n′ =Int 0 the
goal is reached directly, and when n′ >Int 0 we reach a configuration
implying ∃n′ ϕINV and finish by applying the recently-added axiom.

In the big-step case the specification ϕSUM ⇒ ϕ is now

〈SUM, (s 7→ s, n 7→n)〉∧n≥Int 0⇒ 〈(s 7→n ∗Int (n +Int 1)/Int2, n 7→0)〉

As before, we prove µ ≡ ∃n′ ϕINV ⇒ ϕ, with the same ϕINV as before.
We reach ∃n′ ϕINV from ϕSUM by applying the big-step semantics of
assignment and sequential composition. The difference is that this
is reached in a premise of applications of conditional axioms, rather
than a premise of Transitivity. Property ∃n′ ϕINV ⇒ ϕ is also proved
by Circularity, but this time the circularity is released by applying
the conditional while2 axiom, and used in one of its conditions.

5.1 Soundness
The next result establishes the soundness of our proof system, in the
sense of partial correctness. Note that, unlike the soundness of Hoare
logic which is shown for each language separately, the soundness of
reachability logic is proved only once, for all languages.

In order to prove soundness of the proof system, we need the
following helper definition, which will allow us to make the proof
by induction on the termination proof of g.

Definition 12. Let g ∈ TCfg be an arbitrary configuration. We say
that the unconditional reachability rule ϕ ⇒ ϕ′ is (g,�)-strongly-
valid (resp. (g,�)-strictly-strongly-valid) if for all γ such that g � γ
and for all valuations ρ such that (γ, ρ) |= ϕ, there exists γ′ such
that γ �?

S
γ′ (resp. γ �+

S
γ′) and (γ′, ρ) |= ϕ′.

We write S |=∗g� ϕ ⇒ ϕ′ when ϕ ⇒ ϕ′ is (g,�)-strongly-valid
and S |=+g� ϕ⇒ ϕ′ if ϕ⇒ ϕ′ is (g,�)-strictly-strongly-valid.



Intuitively, “(g,�)-strongly-valid" is similar to “strongly valid”,
but only concerns configurations less than g, according to the termi-
nation dependence relation. If g terminates, then “(g,�)-strongly-
valid” is similar to “valid”. The following lemma captures the link
between the two notions:

Proposition 4. S |= ϕ ⇒ ϕ′ if and only if, for all terminating
configurations g ∈ TCfg, S |=∗g� ϕ⇒ ϕ′.

Proof. We prove each implication separately.

“→” Assume S |= ϕ ⇒ ϕ′. We show that for all terminating
g ∈ TCfg, ϕ ⇒ ϕ′ is (g,�)-strongly-valid. Let g be an arbitrary
terminating configuration, let γ be an arbitrary configuration smaller
or equal according to � than g (i.e. g � γ) and let ρ be a valuation
such that (γ, ρ) |= ϕ. As g terminates, it follows that γ also terminates.
As S |= ϕ⇒ ϕ′, we have that there exists γ′ such that γ �?

S
γ′ and

(γ′, ρ) |= ϕ′. As γ was chosen arbitrarily such that g � γ, it follows
that ϕ⇒ ϕ′ is (g,�)-strongly-valid. As g was chosen arbitrarily such
that it is terminating, it follows that for all terminating g, ϕ⇒ ϕ′ is
(g,�)-strongly-valid, which is what we had to show.

“←” Assume that for all terminating g ∈ TCfg, ϕ ⇒ ϕ′ is (g,�)-
strongly-valid. We show that S |= ϕ ⇒ ϕ′. Let γ be an arbitrary
terminating configuration and let ρ be an arbitrary valuation such
that (γ, ρ) |= ϕ. Let g = γ. We have that g � γ and that g is
terminating. Therefore, by the assumption that for all terminating g,
ϕ⇒ ϕ′ is (g,�)-strongly-valid, we obtain that there exists γ′ such
that γ �?

S
γ′ and (γ′, ρ) |= ϕ′. As the terminating configuration γ and

the valuation ρ were chosen arbitrarily, it follows that S |= ϕ⇒ ϕ′.
�

The following helper lemma is the core of the soundness proof.
It shows that each proof in our proof system is (g,�)-strongly-valid
by induction on the proof tree and on g.

Lemma 1. For any proof tree concluding A `C ϕ⇒ ϕ′, for all
terminating configurations g ∈ TCfg, if the conditional rules in A
are weakly well-defined, if the unconditional rules inA are (g,�)-
strictly-strongly-valid and if C is (g0,�)-strictly-strongly-valid for
all g0 such that g � g0, we have that:

1. if C is empty, then ϕ⇒ ϕ′ is (g,�)-strongly-valid and
2. if C is not empty, then ϕ⇒ ϕ′ is (g,�)-strictly-strongly-valid.

Proof. By induction on the proof tree and case analysis on the last
rule in the proof tree:

1. If the last rule is Axiom, let g be an arbitrary configuration and
assume that the conditional rules inA are weakly well-defined,
that the unconditial rules inA are (g,�)-strictly-strongly-valid
and that C is (g0,�)-strictly-strongly-valid for all configurations
g � g0. We show that ϕ ∧ ψ⇒ ϕ′ ∧ ψ is (g,�)-strictly-strongly-
valid (this is the stronger conclusion of the two cases; (g,�)-
strictly-strongly-valid implies (g,�)-strongly-valid for the case
where C is empty). We distinguish two cases:

(a) If n > 0, let γ be an arbitrary configuration such that g � γ
and let ρ be an arbitrary valuation such that (γ, ρ) |= ϕ ∧ ψ.
We show that there exists γ′ such that γ �+

S
γ′ and (γ′, ρ) |=

ϕ′ ∧ ψ. We first show that ϕi ⇒ ϕ′i is ρ-strongly-valid for all
1 ≤ i ≤ n.

Let γ1, . . . , γn be arbitrary configurations such that (γi, ρ) |=
ϕi for all 1 ≤ i ≤ n. As the rule is weakly well-defined,

γ1, . . . , γn exist. As ψ is stateless, it follows that (γi, ρ) |=
ϕi ∧ ψ for all 1 ≤ i ≤ n.

By induction on 1 ≤ i ≤ n, we show that γ � γi and that
ϕ j ⇒ ϕ′j is ρ-strongly-valid for all 1 ≤ j < i.

Let 1 ≤ i ≤ n be fixed. By choice of γi, we have that
(γi, ρ) |= ϕi ∧ ψ. By the induction hypothesis, we have that
ϕ j ⇒ ϕ′j is ρ-strongly-valid for all 1 ≤ j < i. Therefore, by
the o.t. hypothesis, we have that γ � γi.

As the unconditional rules inA are (g,�)-strictly-strongly-
valid and C is (g0,�)-strictly-strongly-valid for any config-
uration g � g0, it follows that the unconditional rules in
A ∪ C are (g0,�)-strictly-strongly-valid for any configura-
tion γ � g0. In particular, the unconditional rules inA∪C are
(γi,�)-strictly-strongly-valid. By the (outer) induction hy-
pothesis, we obtain that ϕi ∧ψ⇒ ϕ′i is (γi,�)-strongly-valid;
therefore there exists γ′i such that γi �?

S
γ′i and (γ′i , ρ) |= ϕ′i .

As γi was chosen arbitrarily, it follows that ϕi ⇒ ϕ′i is ρ-
strongly-valid, which is what we had to prove.

We have shown by induction on i that ϕi ⇒ ϕ′i is ρ-strongly-
valid for all 1 ≤ i ≤ n. Therefore, by the well-definedness of
the conditional rule, we obtain that there exists γ′ such that
γ �+

S
γ′ and (γ′, ρ) |= ϕ′. As (γ, ρ) |= ϕ ∧ ψ, it follows that

(γ, ρ) |= ψ; as ψ is stateless, it follows that (γ′, ρ) |= ψ. As
(γ′, ρ) |= ϕ′ and (γ′, ρ) |= ψ, it follows that (γ′, ρ) |= ϕ′ ∧ ψ.
We have shown that there exists γ′ such that γ �+

S
γ′ and

(γ′, ρ) |= ϕ′ ∧ ψ, which is what we had to show.

(b) If n = 0, let γ be an arbitrary configuration such that g � γ
and let ρ be an arbitrary valuation such that (γ, ρ) |= ϕ ∧ ψ.
We show that there exists γ′ such that γ �+

S
γ′ and (γ′, ρ) |=

ϕ′ ∧ ψ.

From (γ, ρ) |= ϕ ∧ ψ we immediately obtain (γ, ρ) |= ϕ. As
ϕ ⇒ ϕ′ is in A, it must be, by hypothesis, (g,�)-strictly-
strongly-valid. Therefore there exists γ′ such that γ �+

S
γ′

and (γ′, ρ) |= ϕ′. As (γ′, ρ) |= ϕ′ ∧ ψ, we have (γ, ρ) |= ψ; as
ψ is stateless, it follows that (γ′, ρ) |= ψ. We already have that
(γ′, ρ) |= ϕ′ and therefore (γ′, ρ) |= ϕ′ ∧ ψ, which is what we
had to show.

2. If the last rule is Reflexivity, let g be an arbitrary configuration.
We show that ϕ ⇒ ϕ is (g,�)-strongly-valid. Let g � γ be an
arbitrary configuration and let ρ be an arbitrary valuation such
that (γ, ρ) |= ϕ. We show that there exists γ′ such that γ �?

S
γ′

and (γ′, ρ) |= ϕ. Indeed, it is sufficient to choose γ′ = γ and the
conclusion trivially follows. As C is empty, this is the only case
to consider.

3. If the last rule is Transitivity, we distinguish two cases:

(a) If C is empty, let g be an arbitrary configuration. We show
that ϕ1 ⇒ ϕ3 is (g,�)-strongly-valid. By the induction
hypothesis we have that ϕ1 ⇒ ϕ2 and ϕ2 ⇒ ϕ3 are (g,�)-
strongly-valid.

Let g � γ1 be an arbitrary configuration and let ρ be an
arbitrary valuation such that (γ1, ρ) |= ϕ1. We show that there
exists γ3 such that γ1 �?

S
γ3 and (γ3, ρ) |= ϕ3.

As ϕ1 ⇒ ϕ2 is (g,�)-strongly-valid, it follows that there
exists γ2 such that γ1 �?

S
γ2 and (γ2, ρ) |= ϕ2. As ϕ2 ⇒ ϕ3

is (g,�)-strongly-valid, it follows that there exists γ3 such
that γ2 �?

S
γ3 and (γ3, ρ) |= ϕ3. In conclusion γ1 �?

S
γ3 and

(γ3, ρ) |= ϕ3, which is what we had to show.



(b) If C is not empty, let g be an arbitrary configuration. We
show that ϕ1 ⇒ ϕ3 is (g,�)-strictly-strongly-valid.

Let g � γ1 be an arbitrary configuration and let ρ be an
arbitrary valuation such that (γ1, ρ) |= ϕ1. We show that there
exists γ3 such that γ1 �+

S
γ3 and (γ3, ρ) |= ϕ3.

By the induction hypothesis, we have that ϕ1 ⇒ ϕ2 is (g,�)-
strictly-strongly-valid. Therefore, there exists γ2 such that
γ1 �+

S
γ2 and (γ2, ρ) |= ϕ2.

Also by the induction hypothesis, as the unconditional rules
inA∪ C are (g0,�)-strictly-strongly-valid for any g � g0, it
follows that ϕ2 ⇒ ϕ3 is (g0,�)-strongly-valid for any g � g0.
In particular ϕ2 ⇒ ϕ3 is (γ2,�)-strongly-valid. Therefore,
there exists γ3 such that γ2 �?

S
γ3 and (γ3, ρ) |= ϕ3. In

conclusion, γ1 �+
S
γ2 �?

S
γ3 and (γ3, ρ) |= ϕ3, which is

what we had to show.

4. If the last rule is Consequence, let g be an arbitrary configuration.
We show that ϕ1 ⇒ ϕ2 is (g,�)-strongly-valid (resp. (g,�)-
strictly-strongly-valid).

Let g � γ1 be an arbitrary configuration and let ρ be an arbitrary
valuation such that (γ1, ρ) |= ϕ1. We show that there exists γ2
such that γ1 �?

S
γ2 (resp. γ1 �+

S
γ2) and (γ2, ρ) |= ϕ2.

As |= ϕ1 → ϕ2, we have that (γ1, ρ) |= ϕ′1. By the induction
hypothesis, ϕ′1 ⇒ ϕ′2 is (g,�)-strongly-valid (resp. (g,�)-strictly-
strongly-valid) and therefore there exists γ2 such that γ1 �?

S
γ2

(resp. γ1 �+
S
γ2) and (γ2, ρ) |= ϕ′2. As |= ϕ′2 → ϕ2, it follows that

(γ2, ρ) |= ϕ2, which is what we had to show.

5. If the last rule is Case analysis, let g be an arbitrary configuration.
We show that ϕ1 ∨ ϕ2 ⇒ ϕ is (g,�)-strongly-valid (resp. (g,�)-
strictly-strongly-valid).

Let g � γ1 be an arbitrary configuration and let ρ be an arbitrary
valuation such that (γ1, ρ) |= ϕ1 ∨ ϕ2. We show that there exists
γ2 such that γ1 �?

S
γ2 (resp. γ1 �+

S
γ2) and (γ2, ρ) |= ϕ.

As (γ1, ρ) |= ϕ1 ∨ ϕ2 it follows that there exists i ∈ {1, 2} such
that (γ1, ρ) |= ϕi. By the induction hypothesis, we have that
ϕi ⇒ ϕ is (g,�)-strongly-valid (resp. (g,�)-strictly-strongly-
valid). Therefore, there exists γ2 such that γ1 �?

S
γ2 (resp.

γ1 �+
S
γ2) and (γ2, ρ) |= ϕ. But this is exactly what we had

to show.

6. If the last rule is Abstraction, let g be an arbitrary configuration.
We show that ∃X.ϕ ⇒ ϕ′ is (g,�)-strongly-valid (resp. (g,�)-
strictly-strongly-valid).

Let g � γ be an arbitrary configuration and let ρ be an arbitrary
configuration such that (γ, ρ) |= ∃X.ϕ. We show that there exists
γ′ such that γ �?

S
γ′ (resp. γ �+

S
γ′) and (γ′, ρ) |= ϕ′.

As (γ, ρ) |= ∃X.ϕ, it follows that there exists a valuation ρ′ which
differs from ρ only in X such that (γ, ρ′) |= ϕ. By the induction
hypothesis (ϕ⇒ ϕ′ is (g,�)-strongly-valid (resp. (g,�)-strictly-
strongly-valid)), it follows that there exists γ′ such that γ �?

S
γ′

(resp. γ �+
S
γ′) and (γ′, ρ′) |= ϕ′. As X contains no free variable

of ϕ′ and ρ differs from ρ′ only in X, it follows that (γ′, ρ) |= ϕ′,
which is what we had to show.

7. If the last rule is Circularity, we show by (an inner) induction
on g that:

If the unconditional rules inA are (g,�)-strictly-strongly-
valid and if C is strictly (g0,�)-strictly-strongly-validfor
all g � g0, then ϕ⇒ ϕ′ is (g,�)-strictly-strongly-valid.

Assume that the unconditional rules in A are (g,�)-strongly-
valid and that C is (g0,�)-strictly-strongly-validfor any g � g0.

By the (inner) induction hypothesis, we know that ϕ ⇒ ϕ′

is (g0,�)-strictly-strongly-valid for any g � g0. Therefore
C ∪ {ϕ ⇒ ϕ′} is (g0,�)-strictly-strongly-validfor any g � g0.
Therefore, by the (outer) induction hypothesis, we obtain that
ϕ⇒ ϕ′ is (g,�)-strictly-strongly-valid, which is what we had to
show. �

Using the helper lemma that we have proved above, we are ready
to show that the proof system is sound:

Theorem 1 (Soundness). If S is a weakly well-defined reachability
system, then S ` ϕ⇒ ϕ′ implies S |= ϕ⇒ ϕ′.

Proof. By Proposition 4 and Lemma 1. �

Because of the utmost importance of the result above, we have
also mechanized its proof. Our complete Coq formalization can be
found at http://fsl.cs.uiuc.edu/RL. The proof is parametric
in the operational semantics S and thus can be used to produce
formal correctness certificates for program verification tasks. The
URL above also includes a human readable proof of this result, as
well as several derived proof rules which are useful for verifying
programs, together with their soundness proofs, such as weakening,
logic framing, set circularity, and substitution. Set circularity allows
introducing several circularities in advance, rather than just one
when that situation occurs as a subgoal of a proof. This rule is at the
core of the reachability logic MatchC prover [34], where is useful
for proving properties about mutually recursive functions.

Our reachability proof system can also prove divergence:

Corollary 1. If S is also ω-closed, then S ` ϕ⇒ ω implies S |= ϕ↑.

5.2 Derived Rules
Now we present several useful proof rules which are consequences
of the system above.

The first derived rule is weakening, which shows that a derivation
can still be carried out with “stronger” assumptions. With separate
sets of axioms and circularities, stronger should include promoting
a hypothesis from the circularities to the axioms. Adding additional
circularities may invalidate a use of the reflexivity rule, so this
can be permitted only if the circularities are non-empty. We also
include logical implication betwen rules, also taking into account
the framing provided by the Axiom rule. This is usually not required
but sometimes indespensible.

For this generalization of inclusion, we use the notation v.
X v X′ when any conditional rules of X also occur in X′ and for
every unconditional rule ϕ ⇒ ϕ′ in X there is some rule ϕ1 ⇒ ϕ′1
in X′ and some structureless ψ such that |= ϕ → ϕ1 ∧ ψ and
|= ϕ′1 ∧ ψ→ ϕ′.

Lemma 2 (Weakening). IfA `C ϕ⇒ ϕ′, thenA′ `C′ ϕ⇒ ϕ′ for
any C′ andA′ withA v A′, C v C′ ∪A′, and C′ = ∅ if C = ∅.

Proof. By structural induction. In the axiom case, if a conditional
rule was used then A′ must have the same rule, and if an uncon-
ditional rule was used then A′ at least has a rule that implies the
conclusion when framed by some additional ψ0. If the original appli-
cation of the axiom rule used a framing condition ψ, the new proof
can frame by ψ ∧ ψ0. If the original proof used reflexivity, then C
is empty and so by assumption C′ is empty as well, and the new
proof can use the reflexivity rule. In the circularity rule, note that
adding a new assumption to C gives a nonempty set and preserves
v. In the transitivity rule the second premise is a proof withA∪ C
as axioms and empty circularities. By simple reasoning about v,
A ∪ C v A′ ∪ C′, so the new proof can proceed by applying the
transitivity rule to the inductive hypotheses. The remaining cases
are similarly straightforward. �

http://fsl.cs.uiuc.edu/RL


Both weakening lemmas of [34] are instances of this rule. It also
allows us to prove the following important result, which justifies
local reasoning in structureless contexts. We call it logical framing,
to emphasize that the frame only contains logical constraints over
the rule’s variables. Logical framing was a proof rule in itself in [32–
34]. To make logical facts available to the proofs for the premises
of a conditional rule it was necessary to allow framing in the Axiom
rule, from which we can derive the general rule.

Lemma 3 (Logical Framing). If A `C ϕ ⇒ ϕ′ and ψ is any
structureless formula,A `C ϕ ∧ ψ⇒ ϕ′ ∧ ψ.

Proof. The proof proceeds in two steps, first showing that ϕ ∧ ψ⇒
ϕ′ ∧ ψ is true under the modified context which also frames ψ
onto all the unconditional rules in theA and C, and then applying
weakening to conclude ϕ ∧ ψ⇒ ϕ′ ∧ ψ is also provable under the
original context.

For the first step, use the notationX∧ψ for the set of assumptions
obtained by framing ψ onto the unconditional rules of X.

X ∧ ψ = {ϕ ∧ ψ⇒ ϕ′ ∧ ψ | ϕ⇒ ϕ′ ∈ X}

∪ {µ | µ ∈ X, µ is a conditional rule}

With this notation, the goal is to proveA∧ ψ `C∧ψ ϕ ∧ ψ⇒ ϕ′ ∧ ψ.
The proof proceeds by induction on the depth of the proof tree
A `C ϕ⇒ ϕ′. Consider the last rule used in the proof.

1. If the rule is an axiom rule, then ϕ and ϕ′ have the form
ϕ0 ∧ ψ0 and ϕ′0 ∧ ψ0 for some ψ0 chosen in the application
of the rule. If a conditional axiom “ϕ ⇒ ϕ′ if ϕi ⇒ ϕ′i was
used,A∧ψ contains the same conditional axiom. Begin the new
proof by using consequence to reassociate the conjuctions in
the goal, and apply the axiom rule chosing the same axiom
and using ψ0 ∧ ψ as the framing condition. The inductive
hypotheses are (A∪ C) ∧ ψ `∅∧ψ (ϕi ∧ ψ0) ∧ ψ ⇒ ϕ′i ∧ ψ
for each i, and the requried premises of the axiom rule are
(A∧ ψ) ∪ (C ∧ ψ) ` ϕi ∧ (∧ψ0ψ)⇒ ϕ′i . By calculation the sets
of assumptions are identical, and the formulas can be aligned by
applying the consequence rule to reassociate conjunctions in the
left formula and drop the extra condition in the right formula.
If the axiom rule applied an unconditional rule ϕ0 ⇒ ϕ′0 with
framing condition ψ0, then the set of assumptions A ∧ ψ will
contain the rule ϕ0 ∧ ψ ⇒ ϕ′0 ∧ ψ. This can be applied with
framing condition ψ0 to prove (ϕ0 ∧ ψ) ∧ ψ0 ⇒ (ϕ′0 ∧ ψ) ∧ ψ.

2. If the last rule was reflexivity, the proof concludes also with
reflexivity, justified by the observation above that ∧ψ is absorbed
by ∅.

3. If the last rule was an application of transitivity the proof
proceeds by applying transitivity to the inductive hypothesis,
using both the observations above that ∧ψ is absorbed by ∅ and
distributes over ∪ to justify using the inductive hypothesis for
the second premise of the transitivity rule.

4. If the last rule was consequence, the proof beings with a single
application of consequence, noting that ϕ∧ψ→ ϕ′∧ψ is a valid
formula whenever ϕ→ ϕ′ is.

5. If the last rule was case, the new proof beings by using conse-
quence to rearrange the goal from (ϕ1 ∧ ϕ2) ∧ ψ⇒ ϕ′ ∧ ψ into
(ϕ1 ∧ ψ) ∧ (ϕ2 ∧ ψ)⇒ ϕ′ ∧ ψ, and can then apply the case rule
using the induction hypotheses.

6. If the last rule was abstraction, then the conclusion has the form
(∃x.ϕ)⇒ ϕ′. By renaming, which does not change the depth of
a proof tree, we can ensure x in not free in ψ, obtain inductive
hypothesis ϕ ∧ ψ⇒ ϕ′ ∧ ψ, and and finish by abstraction.
The renaming lemma we need here applies a permutation π
on variables to the conclusion of rules. A renaming operation
ensures (γ, ρ) |= π(ϕ) ⇒ π(ϕ′) iff (γ, ρ ◦ π) |= ϕ ⇒ ϕ′, and
also that π(∃x.ϕ) = ∃π(x).π(varphi). The second condition may

appear to require a very syntactic formula representation storing
identifiers for bound variables, but note that it holds immediately
for locally nameless syntax. The proof proceeds by induction.
The second clause of the definition handles the abstraction case,
the axiom case depends on the stipluation in section 5 that the
axiom rule can apply an α renaming of any rule µ inA. Other
cases are straightforward, applying the original proof rule to the
inductive hypothesis.

7. If the last rule of the original proof was circularity, the new proof
can also apply circularitiy, and immediately use the inductive
hypothesis.

�

The next lemma is a simple consequence of the abstraction rule.

Lemma 4. IfA `C ϕ⇒ ϕ′ thenA `C ∃X.ϕ⇒ ∃X.ϕ′.

Proof. Apply abstraction (X is not free in ∃X.ϕ′), and then conse-
quence (|= ϕ′ → ∃X.ϕ′). �

The next lemma is Set Circularity , which allows introducing
circularities in advance rather than just once a situation occurs as a
subgoal of a proof, and also allows introducing several assumptions
together. This rule is at the core of the reachability logic MatchC
prover [34], where is useful for proving properties about mutually
recursive functions:

Lemma 5 (Set Circularity). IfA `C µ for each rule µ in a finite
set of unconditional rules C, then alsoA ` µ for each µ in C.

Proof. To prove this lemma we will fix one particular rule to prove,
and use a form of cut rule to eliminate one assumption at a time
from C.

Suppose without loss of generality that none of the rules in C are
already included inA, if some rule was then the other proofs will
still go through even without that rule in C.

Fix a particular proofA `C ϕ⇒ ϕ′, and proceed by induction
on |C|. If C is empty the proof is finished. Otherwise, pick some
ϕ1 ⇒ ϕ2 in C. By applying the cut lemma with each other proof, we
can conclude that each rule in C \ {ϕ1 ⇒ ϕ2} and the distinguished
rule rule ϕ⇒ ϕ′ are provable underA `C\{ϕ1⇒ϕ2}, which has reduced
the size of C by one.

The cut lemma concludes A \ {ϕ1 ⇒ ϕ2} `C\{ϕ1⇒ϕ2} ϕ ⇒ ϕ′

given a proofA `C ϕ⇒ ϕ′ and a proofA \ {ϕ1 ⇒ ϕ2} `C∪{ϕ1⇒ϕ2}

ϕ1 ⇒ ϕ2.
The proof goes by structural induction on the proof of ϕ ⇒ ϕ′.

Note the given subproof for ϕ1 ⇒ ϕ2 can be used under C \ {ϕ1 ⇒

ϕ2} by first applying circularity, but has a manifestly non-empty set
of circular assumptions which makes it easier to apply weakening
over the course of the induction.

If the orginal proof used the axiom rule to prove ϕ1 ⇒ ϕ2 use
the subproof instead. If the original proof used circularity to show
ϕ1 ⇒ ϕ2, also use the given subproof. If the original proof concluded
with reflexivity, note that removing ϕ1 ⇒ ϕ2 from the empty set
leaves the empty set, so reflexivity is still valid. Every other case
neither adds, removes, nor depends on finding {ϕ1 ⇒ ϕ2} in any set
of assumptions so they can proceed by applying the same proof rule,
and weaken the subproof of {ϕ1 ⇒ ϕ2} to match the assumptions of
the inductive hypotheses. �

The next derived rule is substitution, which we only show for
first-order matching logic. Stating this lemma for abstract matching
logic requires an axiomatization of substitution for an abstract
matching logic, which is included in our Coq proofs but not
discussed here.



Lemma 6 (Substitution). IfA `C ϕ⇒ ϕ′ and θ is a substitution,
thenA `C θ(ϕ)⇒ θ(ϕ′).

Proof. Consider the set of free variables X = FV(ϕ) ∪ FV(ϕ′) ∪
FV(θ(ϕ)) ∪ FV(θ(ϕ′)). Let xi for 1 ≤ i ≤ n be an enumeration of this
set. There are an infinite number of variables, so it is possible to find
a set Y of n variables yi which are not in X. Consider the formulas
θ(ϕ) and ϕθ = ∃Y.(

∧
1≤i≤n yi = θ(xi)) ∧ ∃X.(

∧
1≤i≤n xi = yi) ∧ ϕ.

By well-definedness, for any ρ there are unique γi such that
(ρ, γi) |= θ(xi). By properties of pattern matching, (γ, ρ) |= ϕθ iff
(γ, ρ[yi 7→ γi]) |= ∃X.(

∧
1≤i≤n xi = yi) ∧ ϕ iff (γ, ρ[yi 7→ γi, xi 7→

γi]) |= ϕ. By choice of Y , the valuation here agrees with ρ ◦ θ on X,
so by the properties of free variables this holds iff (γ, ρ ◦ θ) |= ϕ. By
the properties of substition, this holds iff (γ, ρ) |= θ(ϕ), so θ(ϕ) and
ϕθ are logically equivalent. By the same argument, θ(ϕ′) is logically
equivalent to a similarly constructed ϕ′θ.

With this observation, A `C θ(ϕ) ⇒ θ(ϕ′) can be proven by
applying the consequence rule to leave the goal A `C ϕθ ⇒ ϕ′θ,
then repeatedly applying abstraction and framing to remove the
quantification and the structureless formulas

∧
1≤i≤n yi = θ(xi) and∧

1≤i≤n xi = yi. This leaves the goal A `C ϕ ⇒ ϕ′ for which we
have a proof. �

6. Relative Completeness
Here we show that the reachability logic proof system is relatively
complete. This means that any valid reachability property of any
programming language (or calculus, system, etc.) is formally deriv-
able with our fixed language-independent proof system in Figure 3
using the operational semantics rules of the language as axioms.
Note that this is a stronger result than the relative completeness of
Hoare logics, since the latter needs to be proved for each language
separately, taking into account its particularities. We prove our rela-
tive completeness result once and for all languages, similarly to our
soundness proof. Relativity here refers to the configuration model:
since a matching logic includes a configuration model and since that
model can comprise arbitrarily complex domains, we assume an
oracle capable of answering FOL validity questions on that model.

While in Section 5 we proved soundness for any abstract match-
ing logic, for completeness we need a precise constructive descrip-
tion of patterns and reachability rules, that is, a concrete matching
logic instance. The obvious choice is first-order matching logic.
Additionally, we assume the following

Framework:
The configuration signature Σ has
— a sort N with constants 0, 1 and binary operations + and ×;
— an operation symbol α : Cfg→ N.
The configuration model T interprets
— N as the natural numbers and 0, 1,+,× correspondingly;
— α as an injective function from TCfg to N.
The reachability system S is
— non-empty, finite, well-defined, and ω-closed;
— its termination dependence relation � is finitely branching:

for each γ ∈ TCfg there are finitely many γ′ ∈ TCfg with γ � γ′.

The assumptions on N and its operations are needed in order
to express Gödel’s β predicate. Those on α are needed in order to
enumerate the configurations. Gödelization and “state” enumeration
are expected assumptions for any relative completeness result.
Moreover, operational semantics are expected to consist of non-
empty finite sets of well-defined rules. S is assumed ω-closed in
order to derive the divergence of configurations with computations
with infinite nesting of conditions (like in the case of a big-step
semantics). As discussed in Section 4.3, it is easy to construct the ω-
closure Sω, which yields the same transition system as S. The finite

branching of the termination dependence relation generalizes finite
branching of the transition relation �S (a completeness requirement
in [34]), for the case where S only contains unconditional rules.

Our proof proceeds as follows: we first show that first-order
matching logic pattern reasoning reduces to FOL reasoning in the
model T ; then we encode transition system operations in FOL,
making use of Gödel’s β predicate to eliminate quantifications over
sequences of configurations (needed for expressing reachability);
then we show that semantic validity of reachability rules can also be
expressed in FOL; finally, we prove our completeness result.

6.1 Embedding First-Order Matching Logic in FOL
Here we recall how pattern reasoning in first-order matching logic
reduces to FOL reasoning in the configuration model T [32–35]:

Definition 13. Let � be a fresh Cfg variable (i.e., not in Var),
and let Var� be the extended set of variables Var ∪ {�}. For a
pattern ϕ, let ϕ� be the FOL formula obtained by replacing basic
patterns π ∈ TΣ,Cfg(Var) with equalities � = π. If γ ∈ TCfg and
ρ : Var→ T , then let ργ : Var� → T extend ρ by mapping � into
γ: ργ(�) = γ and ργ(x) = ρ(x) for all x ∈ Var. To highlight the
semantic indistinguishability between patterns with variables in Var
and the corresponding fragment of FOL with variables in Var�, we
take the freedom to write (γ, ρ) |= ϕ� in the FOL fragment, too,
instead of ργ |= ϕ�. A matching logic (respectively FOL) formula ψ
is structureless (called “patternless” in [32, 33]) iff it contains no
basic pattern (respectively no � variable), that is, iff ψ = ψ�.

The notation in Definition 13 is consistent: if ϕ is a pattern,
γ∈TCfg and ρ :Var→T , then (γ, ρ) |= ϕ iff (γ, ρ) |= ϕ�. Also |= ϕ iff
T |= ϕ�. Therefore, patterns form a methodological fragment of the
FOL theory of T , so we can use conventional theorem provers or
proof assistants for pattern reasoning.

It is often technically convenient to eliminate � from a formula
ϕ� corresponding to a pattern ϕ. This can be done by replacing �
with a configuration variable c ∈ VarCfg (perhaps avoiding the free
variables of ϕ). Indeed, ϕ�[c/�] is structureless. Then we have the
following result:

Lemma 7. (ρ(c), ρ) |= ϕ� iff ρ |= ϕ�[c/�].

Proof. With the notation in Definition 13, (ρ(c), ρ) |= ϕ� iff ρρ(c) |=
ϕ�. Notice that if a valuation agrees on two variables, then it satisfies
a formula iff it satisfies the formula obtained by substituting one of
the two variables for the other. In particular, since ρρ(c)(�) = ρρ(c)(c),
it follows that ρρ(c) |= ϕ� iff ρρ(c) |= ϕ�[c/�]. We notice that � does
not occur in ϕ�[c/�], thus ρρ(c) |= ϕ�[c/�] iff ρ |= ϕ�[c/�], and we
are done. �

Well-defined patterns have the following property, which we use
extensively in Section 6.4:

Lemma 8. If ϕ is well-defined, then |= ϕ� ∧ ϕ�[c/�]→ � = c.

Proof. Let γ ∈ TCfg and ρ : Var → T . It suffices to prove that if
(γ, ρ) |= ϕ� and (γ, ρ) |= ϕ�[c/�] then (γ, ρ) |= � = c. Since ϕ�[c/�]
is structureless, we have that (γ, ρ) |= ϕ�[c/�] iff ρ |= ϕ�[c/�]. By
Lemma 7 that is iff (ρ(c), ρ) |= ϕ�. Further, since ϕ is well-defined,
by Definition 3 there exists precisely one γ such that (γ, ρ) |= ϕ�,
thus γ = ρ(c). Then we can conclude that (γ, ρ) |= � = c, and we
are done. �

6.2 Encoding Transition System Operations in FOL
Recall that one of the assumption of relative completeness is that
S is well-defined (see Definition 9). For the purposes of this proof,
we give an equivalent and finer-grained definition of the transition
relation �S induced by a well-defined reachability system S. Let



k,m ∈ N. Recall from Definition 5 that Rk is the transition relation
obtained by applying at most k − 1 “nested” conditional rules. We
introduce Rk,m with Rk,m ⊆ Rk ⊆ TCfg × TCfg to denote the transition
relation obtained by applying at most k − 1 “nested” conditional
rules, and by taking at most m steps in each condition. Formally,

• R0,m = ∅

• Rk+1,m = { (γ, γ′) | there exists some reachability rule

ϕ⇒ ϕ′ if ϕ1 ⇒ ϕ′1
∧
. . .
∧
ϕn ⇒ ϕ′n

in S and some valuation ρ :Var→ T such that:

1. (γ, ρ) |= ϕ and (γ′, ρ) |= ϕ′; and

2. there exist γ1, . . . γn, γ
′
1, . . . , γ

′
n ∈ TCfg with (γi , ρ) |= ϕi and

(γ′i , ρ) |= ϕ′i and such that (γi, γ
′
i ) ∈

⋃
0≤m′≤m R

m′
k,m for all

1 ≤ i ≤ n, where Rm′
k,m is the transitive composition of Rk,m

with itself m′ times (R0
k,m is the identity)}

Notice that Rk,m existentially quantifies γ1, . . . , γn (“there exist
γ′1, . . . , γ

′
n”), unlike Rk, which universally quantifies γ1, . . . , γn (“for

all γ1, . . . , γn”). However, the well-definedness of S implies that for
a given ρ the said γ1, . . . , γn always exist and are unique. Thus, we
can replace universal with existential quantification. The following
formally states that the relations Rk,m give an equivalent definition
to the relations Rk and �S:

Lemma 9. Rk =
⋃

m≥0 Rk,m and �S=
⋃

k≥0,m≥0 Rk,m.

Proof. First, we prove Rk =
⋃

m≥0 Rk,m by induction on k. The base
case (k = 0) is trivial, as Rk = ∅ and Rk,m = ∅ for each m ≥ 0. For
the induction case, we assume the result for k and prove it for k + 1
by double inclusion.

To show Rk+1 ⊆
⋃

m≥0 Rk+1,m, we assume (γ, γ′) ∈ Rk+1 and we
show (γ, γ′) ∈ Rk+1,m for some m. By Definition 5, it follows that
there exists some rule

ϕ⇒ ϕ′ if ϕ1 ⇒ ϕ′1
∧
. . .
∧
ϕn ⇒ ϕ′n

in S and some ρ such that

1. (γ, ρ) |= ϕ and (γ′, ρ) |= ϕ′; and
2. for all γ1, . . . γn with (γi , ρ) |= ϕi for each 1 ≤ i ≤ n there exist
γ′1, . . . , γ

′
n with (γ′i , ρ) |= ϕ′i such that (γi, γ

′
i ) ∈ R

∗
k for each

1 ≤ i ≤ n.

Since S is well-defined, it follows that there exist and are unique
γ1, . . . γn with (γi , ρ) |= ϕi for each 1 ≤ i ≤ n, thus condition 2.
above becomes: there exist γ1, . . . γn, γ

′
1, . . . , γ

′
n with (γi , ρ) |= ϕi

and (γ′i , ρ) |= ϕ′i and such that (γi, γ
′
i ) ∈ R

∗
k for all 1 ≤ i ≤ n. Hence,

there exist mi and γi,0, . . . , γi,mi with γi,0 = γi and γi,mi = γ′i such that
(γi, j, γi, j+1) ∈ Rk for each 1 ≤ i ≤ n and 0 ≤ j < mi. By the induction
hypothesis, Rk =

⋃
m≥0 Rk,m. Thus, there exist some mi,0, . . . ,mi,mi−1

such that (γi, j, γi, j+1) ∈ Rk,mi, j for each 1 ≤ i ≤ n and 0 ≤ j < mi. It is
easy to prove by induction on k that Rk,m′ ⊆ Rk,m′′ if m′ ≤ m′′. Let m
be the maximum of {mi | 1 ≤ i ≤ n} ∪ {mi, j | 1 ≤ i ≤ n, 0 ≤ j ≤ mi}.
Then, it follows that (γi, j, γi, j+1) ∈ Rk,m for each 1 ≤ i ≤ n and
0 ≤ j < mi, and consequently, that (γi, γ

′
i ) ∈

⋃
0≤m′≤m R

m′
k,m. We

can conclude that both conditions 1. and 2. in the definition of
Rk+1,m are satisfied, that is, (γ, γ′) ∈ Rk+1,m for some m. Therefore,
Rk+1 ⊆

⋃
m≥0 Rk+1,m.

To show
⋃

m≥0 Rk+1,m ⊆ Rk+1, we assume (γ, γ′) ∈ Rk+1,m for
some m and we show (γ, γ′) ∈ Rk+1. By the definition of Rk+1,m, it
follows that there exists some rule

ϕ⇒ ϕ′ if ϕ1 ⇒ ϕ′1
∧
. . .
∧
ϕn ⇒ ϕ′n

in S and some ρ such that:

1. (γ, ρ) |= ϕ and (γ′, ρ) |= ϕ′; and

2. there exist γ1, . . . γn, γ
′
1, . . . , γ

′
n with (γi, ρ) |= ϕi and (γ′i , ρ) |= ϕ′i

and such that (γi, γ
′
i ) ∈
⋃

0≤m′≤m R
m′
k,m for all 1 ≤ i ≤ n.

Since S is well-defined, it follows that there are unique γ1, . . . γn
with (γi , ρ) |= ϕi for each 1 ≤ i ≤ n, thus condition 2. above
becomes: for all γ1, . . . γn with (γi , ρ) |= ϕi for each 1 ≤ i ≤ n there
exist γ′1, . . . , γ

′
n with (γ′i , ρ) |= ϕ′i such that (γi, γ

′
i ) ∈
⋃

0≤m′≤m R
m′
k,m

for each 1 ≤ i ≤ n. By the induction hypothesis, Rk =
⋃

m≥0 Rk,m.
Thus, Rk,m ⊆ Rk, and consequently,

⋃
0≤m′≤m R

m′
k,m ⊆ R

∗
k . We can

conclude that both conditions 1. and 2. in Definition 5 are satisfied,
that is, (γ, γ′) ∈ Rk+1. Therefore,

⋃
m≥0 Rk+1,m ⊆ Rk+1.

The second part of the lemma follows from the first part, as �S
is defined to be

⋃
k≥0 Rk. �

Since our objective is to encode properties of the transition
system (TCfg,�S) in FOL making use of the relations Rk,m, we
next discuss these relations in a bit more detail. Unless otherwise
specified, we fix some arbitrary k,m ∈ N and assume that each
rule in S has at most nc conditions. Then (γ, γ′) ∈

⋃
0≤m′≤m R

m′
k,m

iff there exist some γ0, . . . , γm′ ∈ TCfg with 0 ≤ m′ ≤ m, γ0 = γ
and γm′ = γ′ such that (γi1 , γi1+1) ∈ Rk,m for each 0 ≤ i1 < m′.
We can reformulate it as there exist some γ0, . . . , γm ∈ TCfg with
γ0 = γ and γm = γ′ such that (γi1 , γi1+1) ∈ Rk,m or γi1 = γi1+1 for
each 0 ≤ i1 < m. A pair (γi1 , γi1+1) belongs to Rk,m iff there exist
some rule µ ≡ (ϕ ⇒ ϕ′ if ϕ1 ⇒ ϕ′1

∧
. . .
∧
ϕn ⇒ ϕ′n) in S and

valuation ρi1 such that for each 1 ≤ i2 ≤ n there exist some γi1 ,i2 ,0
and γi1 ,i2 ,m with (γi1 ,i2 ,0, ρi1 ) |= ϕi2 and (γi1 ,i2 ,m, ρi1 ) |= ϕ′i2 such that
(γi1 ,i2 ,0, γi1 ,i2 ,m) ∈

⋃
0≤m′≤m R

m′
k−1,m. As before, that happens iff there

exist some γi1 ,i2 ,1, . . . , γi1 ,i2 ,m−1 ∈ TCfg (we already introduced γi1 ,i2 ,0
and γi1 ,i2 ,m) such that (γi1 ,i2 ,i3 , γi1 ,i2 ,i3+1) ∈ Rk−1,m or γi1 ,i2 ,i3 = γi1 ,i2 ,i3+1
for each 0 ≤ i3 < m. This procedure continues until k reaches 0,
when no rules can be used, and thus only identical configuration
pairs belong to

⋃
0≤m′≤m R

m′
0,m (as R0

0,m is the identity).
During this process, the occurring configurations have indexes

of the form γi1 ,i2 ,...,i2 j+1 for some 0 ≤ j ≤ k, with i1, i3, . . . , i2 j−1
between 0 and m − 1, with i2, i4, . . . , i2 j between 1 and nc, and with
0 ≤ i2 j+1 ≤ m. The intuition for such a configuration γi1 ,...,i2 j+1 is that
it occurs when establishing a transition from position i1 to i1 + 1
on the path from γ to γ′, and then when establishing a path for the
ith
2 condition of the used rule for the said transition, and then when

establishing a transition from position i3 to position i3 + 1 on the
said path, and so on. Only the last index, i2 j+1 can be m, as it can be
either the source of a transition or the final configuration on a path.
It is always the case that (γi1 ,...,i2 j ,0, γi1 ,...,i2 j ,m) ∈

⋃
0≤m′≤m R

m′
k− j,m.

With the above in mind, we introduce an indexing schema for
configuration variables. For some 0 ≤ j ≤ k, we use s to denote a
sequence of indices i1, i2, . . . , i2 j−1, i2 j with each index i on an odd
position in s ranging from 0 to m − 1 and each i on an even position
ranging from 1 to nc. Let 0 ≤ i ≤ m. Then we use cs,i to denote a
(fresh) variable of sort Cfg indexed by the sequence s, i. Intuitively,
cs,i is interpreted as the configuration γi1 ,...,i2 j ,i2 j+1 mentioned above
(with i2 j+1 = i). Notice that c0 and cm (indexed by the sequences 0
and m, as s is empty) stand for γ and γ′, the given configurations.
Let I j be the set of all such sequences s of length 2 j. Then we define
the set of configuration variables associated with k and m as follows:
Ck,m = {cs,i | s ∈ I j for some 0 ≤ j ≤ k and 0 ≤ i ≤ m}. Note that
Ck,m is finite. We quantify over finite sets of variables, like ∃Ck,m, as
shorthand for quantifying over each variable in the set.

Let x̄ = x1, . . . , xnx be the free variables occurring in the rules
in S. Let µ ≡ (ϕ⇒ ϕ′ if ϕ1 ⇒ ϕ′1

∧
. . .
∧
ϕn ⇒ ϕ′n) be a rule in S

and let s be a sequence of indices (as above) and 0 ≤ i ≤ nc be an
index. Then we define the following FOL formula:

ruleµs,i ≡ ∃x̄ (ϕ[cs,i/�]∧ϕ′[cs,i+1/�]∧
∧

1≤i′≤n

(ϕi′ [cs,i,i′ ,0/�]∧ϕ′i′ [cs,i,i′ ,m/�])



Intuitively, ruleµs,i encodes the matching part of the definition of the
transition relation �S. It states that there exists some valuation of
the free variables x1, . . . , xnx for which cs,i and cs,i+1 match the LHS
and RHS of µ, and cs,i,i′ ,0 and cs,i,i′ ,m match the LHS and RHS of i′th
condition of µ. Configuration variables are indexed by sequence
s, i to avoid name conflicts. If µ is unconditional, then the big
conjunction is empty. Now we can encode the existence of a path

pathk,m ≡
∧
s ∈ Ik

0 ≤ i < m

cs,i = cs,i+1 ∧
∧

0 ≤ j < k
s ∈ I j

0 ≤ i < m

(
∨
µ ∈ S

ruleµs,i ∨ cs,i = cs,i+1)

path(c, c′) ≡ ∃k∃m∃Ck,m (pathk,m ∧ c0 = c ∧ cm = c′)
The definition of path(c, c′) encodes �?

S
by encoding

⋃
0≤m′≤m R

m′
k,m,

and thus resembles the informal process above of establishing that
(γ, γ′) ∈

⋃
0≤m′≤m R

m′
k,m. The variables cs,i stand for the configurations

γs,i. For each appropriate s and i, there is either a transition from cs,i
to cs,i+1 or cs,i is equal to cs,i+1, unless s has length 2k when cs,i must
be equal to cs,i+1. Thus, there is some path from cs,0 to cs,m of length
at most m.

Using path(c, c′) we can encode the following: (1) the one step
transition relation (�S), (2) the termination dependence relation (�),
(3) the divergence predicate (↑), and (4) the configurations reaching
some formula ϕ. For the definitions below, a rule µ is assumed of
the form ϕ⇒ ϕ′ if ϕ1 ⇒ ϕ′1

∧
. . .
∧
ϕn ⇒ ϕ′n

step(c, c′) ≡ ∃c1 . . . cnc ∃c′1 . . . c
′
nc∃x̄ (

∨
µ∈S

(ϕ[c/�] ∧ ϕ′[c′/�]

∧
∧

1≤i≤n

(ϕi[ci/�] ∧ ϕ′i [c
′
i/�] ∧ path(ci, c′i ))))

succ(c, c′) ≡ step(c, c′)
∨ ∃c1 . . . cnc ∃c′1 . . . c

′
nc∃x̄ (

∨
µ∈S

(ϕ[c/�] ∧
∨

1≤i≤n

(ϕi[c′/�]

∧
∧

1≤ j<i

(ϕ j[c j/�] ∧ ϕ′j[c
′
j/�] ∧ path(c j, c′j)))))

diverge(c) ≡ ∀m∃c0 . . . cm(
∧

0≤i<m

succ(ci, ci+1) ∧ c0 = c)

coreach(ϕ) ≡ ∃c∃c′ (c = � ∧ ϕ[c′/�] ∧ path(c, c′))

These definitions are not (yet) proper FOL formulae: they quantify
over sets and sequences of variables. The definitions of path(c, c′)
and diverge(c) in Figure 6.2 are proper FOL formulae equivalent
to path(c, c) and diverge(c) (Lemma 22). Then the remaining
predicates can also be expressed in FOL.

The following lemmas state various properties of the transition
system, leading to the conclusion that the above definitions have the
semantic properties their names suggest. First, we establish a FOL
relation between Rk+1,m and

⋃
0≤m′≤m R

m′
k,m:

Lemma 10. Let k,m ∈ N and c, c′, c1, c′1, . . . , cnc, c′nc ∈ VarCfg and
γ, γ′ ∈ TCfg. Then (γ, γ′) ∈ Rk+1,m iff there exists some ρ : Var→ T
such that (µ ≡ ϕ⇒ ϕ′ if ϕ1 ⇒ ϕ′1

∧
. . .
∧
ϕn ⇒ ϕ′n)

ρ |=
∨
µ∈S

(ϕ[c/�] ∧ ϕ′[c′/�] ∧
∧

1≤i≤n

(ϕi[ci/�] ∧ ϕ′i [c
′
i/�]))

and (ρ(ci), ρ(c′i)) ∈
⋃

0≤m′≤m R
m′
k,m for each 1 ≤ i ≤ nc and ρ(c) = γ

and ρ(c′) = γ′. Moreover, γ �S γ′ iff ρ(ci) �?
S
ρ(c′i ) for each i.

Proof. For the direct implication, assume that (γ, γ′) ∈ Rk+1,m. Then
there must be some rule µ ∈ S and some ρ such that (γ, ρ) |= ϕ
and (γ′, ρ) |= ϕ′ and for each 1 ≤ i ≤ n there exist γi, γ

′
i with

(γi, ρ) |= ϕi and (γ′i , ρ) |= ϕ′i such that (γi, γ
′
i ) ∈
⋃

0≤m′≤m R
m′
k,m. Since

c, c′, c1, c′1, . . . , cnc, c′nc do not occur in µ, we can assume that ρ is
such that: ρ(c) = γ and ρ(c′) = γ′; and ρ(ci) = γi and ρ(c′i) = γ′i
for each 1 ≤ i ≤ n; and ρ(ci) = ρ(c′i) for each n + 1 ≤ i ≤ nc.
Then we can conclude that (ρ(ci), ρ(c′i)) ∈

⋃
0≤m′≤m R

m′
k,m for each

1 ≤ i ≤ nc. By Lemma 7 we have that (ρ(c), ρ) |= ϕ iff ρ |= ϕ[c/�]

and (ρ(c′), ρ) |= ϕ′ iff ρ |= ϕ′[c′/�] and for each 1 ≤ i ≤ n,
(ρ(ci), ρ) |= ϕi iff ρ |= ϕi[ci/�] and (ρ(c′i ), ρ) |= ϕ′i iff ρ |= ϕ′i[c

′
i/�].

We can conclude that

ρ |= ϕ[c/�] ∧ ϕ′[c′/�] ∧
∧

1≤i≤n

(ϕi[ci/�] ∧ ϕ′i [c
′
i/�])

and we are done.
For the reverse implication, we have that there must be some rule

µ ∈ S such that

ρ |= ϕ[c/�] ∧ ϕ′[c′/�] ∧
∧

1≤i≤n

(ϕi[ci/�] ∧ ϕ′i [c
′
i/�])

Again, by Lemma 7 we have that (ρ(c), ρ) |= ϕ iff ρ |= ϕ[c/�]
and (ρ(c′), ρ) |= ϕ′ iff ρ |= ϕ′[c′/�] and for each 1 ≤ i ≤ n,
(ρ(ci), ρ) |= ϕi iff ρ |= ϕi[ci/�] and (ρ(c′i ), ρ) |= ϕ′i . Thus, it follows
that (γ, ρ) |= ϕ and (γ′, ρ) |= ϕ′ and for each 1 ≤ i ≤ n, (ρ(ci), ρ) |= ϕi
and (ρ(ci′ ), ρ) |= ϕ′i . Therefore, (γ, γ′) ∈ Rk+1,m, and we are done.

We reduce the second part of the lemma to the first. For the direct
implication, by Lemma 9, we have that γ �S γ′ implies that there ex-
ist some k,m such that (γ, γ′) ∈ Rk+1,m. By the first part of the lemma,
for each 1 ≤ i ≤ nc, we have that (ρ(ci), ρ(c′i )) ∈

⋃
0≤m′≤m R

m′
k,m. Then,

for each 1 ≤ i ≤ nc, by Lemma 9, (ρ(ci), ρ(c′i)) ∈
⋃

0≤m′≤m R
m′
k,m im-

plies that ρ(ci) �?
S
ρ(c′i). For the converse implication, for each

1 ≤ i ≤ nc, by Lemma 9, ρ(ci) �?
S
ρ(c′i) implies that there exist

some ki,mi such that (ρ(ci), ρ(c′i)) ∈
⋃

0≤mi′≤mi
R

mi
′

ki ,mi
. Let k be the

maximum of ki and m the maximum of mi. By the first part of the
lemma, we have that that (γ, γ′) ∈ Rk+1,m. By Lemma 9, we have
that (γ, γ′) ∈ Rk+1,m implies γ �S γ′, and we are done. �

The following formally states the property encoded by pathk,m:

Lemma 11. Let k,m ∈ N. Then (γ, γ′) ∈
⋃

0≤m′≤m R
m′
k,m iff there

exists a ρ :Var→ T such that ρ |= pathk,m and ρ(c0) = γ, ρ(cm) = γ′.

Proof. We proceed by induction on k.

Base case If k = 0, then Ik only contains the empty sequence
and path0,m becomes

∧
0≤i<m ci = ci+1. Thus, ρ |= path0,m iff

ρ(c0) = . . . = ρ(cm). Such a ρ exists iff γ = γ′. On the other hand,
since R0,m = ∅, it follows that

⋃
0≤m′≤m R

m′
0,m = R0

0,m, the reflexive
closure of R0,m. Hence, we can conclude that (γ, γ′) ∈

⋃
0≤m′≤m R

m′
0,m

iff γ = γ′, and we are done.

Induction case We assume the lemma for k and we prove it for
k + 1. For 0 ≤ i1 < m and 1 ≤ i2 ≤ nc we define

pathi1 ,i2
k,m ≡

∧
s ∈ ik

0 ≤ i < m

ci1 ,i2 ,s,i = ci1 ,i2 ,s,i+1

∧
∧

0 ≤ j < k
s ∈ I j

0 ≤ i < m

(
∨
µ ∈ S

ruleµi1 ,i2 ,s,i ∨ ci1 ,i2 ,s,i = ci1 ,i2 ,s,i+1)

Intuitively, pathi1 ,i2
k,m is pathk,m with all the indexing sequences pre-

fixed with i1 and i2. Then we can rearrange pathk+1,m as follows

pathk+1,m ↔
∧

0≤i<m

(
∨
µ∈S

ruleµi ∨ ci = ci+1)

∧
∧

0 ≤ i1 < m
1 ≤ i2 ≤ nc

(
∧
s ∈ ik

0 ≤ i < m

ci1 ,i2 ,s,i = ci1 ,i2 ,s,i+1

∧
∧

0 ≤ j < k
s ∈ I j

0 ≤ i < m

(
∨
µ ∈ S

ruleµi1 ,i2 ,s,i ∨ ci1 ,i2 ,s,i = ci1 ,i2 ,s,i+1))

Essentially, we split the conjuncts over s from pathk+1,m based on
whether s is empty (first line) or the first two elements are some i1



and i2 (second and third lines). Notice that for some fixed i1 and i2,
the last two lines are in fact pathi1 ,i2

k,m . Thus we can write pathk+1,m as

pathk+1,m ↔
∧

0≤i<m

(
∨
µ∈S

ruleµi ∨ ci = ci+1) ∧
∧

0 ≤ i1 < m
1 ≤ i2 ≤ nc

pathi1 ,i2
k,m

Notice that, for given i1 and i2, the only variables (possibly)
shared by pathi1 ,i2

k,m with the rest of the formula are ci1 ,i2 ,0 and ci1 ,i2 ,m.
Thus, the existence of ρ with ρ |= pathk+1,m becomes equivalent to
the existence of ρ′ and ρi1 ,i2 for each 0 ≤ i1 < m and 1 ≤ i2 ≤ nc
with the following properties:

(1) ρ′ |=
∧

0≤i<m(
∨

µ∈S ruleµi ∨ ci = ci+1) and ρ′(c0) = γ and
ρ′(cm) = γ′; and

(2) ρi1 ,i2 |= pathk,m and ρi1 ,i2 (c0) = ρ′(ci1 ,i2 ,0) and ρi1 ,i2 (cm) =
ρ′(ci1 ,i2 ,m) for each 0 ≤ i1 < m and 1 ≤ i2 ≤ nc.

By the induction hypothesis, the existence of ρi1 ,i2 satisfying con-
dition (2) is equivalent to (ρ′(ci1 ,i2 ,0), ρ′(ci1 ,i2 ,m)) ∈

⋃
0≤m′≤m R

m′
k,m.

Thus, it suffices to prove that (γ, γ′) ∈
⋃

0≤m′≤m R
m′
k+1,m iff there ex-

ists some ρ′ with ρ′ |=
∧

0≤i<m(
∨

µ∈S ruleµi ∨ ci = ci+1) such that
(ρ′(ci1 ,i2 ,0), ρ′(ci1 ,i2 ,m)) ∈

⋃
0≤m′≤m R

m′
k,m for each 0 ≤ i1 < m and

1 ≤ i2 ≤ nc.
Further, notice that for a given 0 ≤ i < m, the only variables

shared by
∨

µ∈S ruleµi ∨ ci = ci+1 with the rest of the formula are
ci and ci+1. Thus, there existence of ρ′ with the above properties is
equivalent to the existence of some γ0, . . . , γm ∈ TCfg and some
ρ0, . . . , ρm−1 such that for each 0 ≤ i < m it is the case that:
ρi(ci) = γi and ρi(ci+1) = γi+1; (ρi(ci,i′ ,0), ρi(ci,i′ ,m)) ∈

⋃
0≤m′≤m R

m′
k,m,

for each 1 ≤ i′ ≤ nc; and ρi |=
∨

µ∈S ruleµi ∨ ci = ci+1. By
Lemma 10, we have that there exist some ρi with the first two
properties such that ρi |=

∨
µ∈S ruleµi iff (γi, γi+1) ∈ Rk+1,m. Thus, ρi

exists iff (γi, γi+1) ∈ Rk+1,m or γi = γi+1. Therefore, it suffices to
prove that (γ, γ′) ∈

⋃
0≤m′≤m R

m′
k+1,m iff there exist γ0, . . . , γm such

that for each 0 ≤ i < m, either (γi, γi+1) ∈ Rk+1,m or γi = γi+1, which
is trivial, and we are done. �

The following states that path(c, c′) encodes �?
S
, the reflexive

and transitive closure of the transition relation �S:

Lemma 12. Let ρ :Var→ T . Then ρ(c) �?
S
ρ(c′) iff ρ |= path(c, c′).

Proof. We have that ρ(c) �?
S
ρ(c′) iff there exist some m′ ∈ N and

some sequence γ0, . . . , γm′ ∈ TCfg with γ0 = ρ(c) and γm′ = ρ(c′)
and γi �S γi+1 for each 0 ≤ i < m′. By Definition 5, γi �S γi+1 iff
for each 0 ≤ i ≤ m′, there exists some ki such that (γi, γi+1) ∈ Rki .
Further, by Lemma 9, that is iff for each 0 ≤ i ≤ m′, there also exists
some mi such that (γi, γi+1) ∈ Rki ,mi . Let k denote the maximum
of k0, . . . , km−1 and m the maximum of m′,m1, . . . ,mm′−1. Since
Rki ,mi ⊆ Rk,m, we can conclude that ρ(c) �?

S
ρ(c′) iff there exist

some k and m such that (ρ(c), ρ(c′)) ∈
⋃

0≤m′≤m R
m′
k,m. By Lemma 11,

that is iff there exists some ρ′ with ρ′(c0) = ρ(c) and ρ′(cm) = ρ(c′)
such that ρ′ |= pathk,m. Since c, c′ do not occur in pathk,m, that is
iff there exists some ρ′ with ρ′(c) = ρ(c) and ρ′(c′) = ρ(c′) such
that ρ′ |= pathk,m ∧ c0 = c ∧ cm = c′. But since c, c′ are the only
free variables in path(c, c′), that holds iff ρ |= path(c, c′), and we
are done. �

The following states that step(c, c′) encodes the transition rela-
tion �S:

Lemma 13. Let ρ : Var→ T . Then ρ(c) �S ρ(c′) iff ρ |= step(c, c′).

Proof. By Lemma 10, second part, we have that ρ(c) �S ρ(c′)
iff there exists some ρ′ with ρ′(c) = ρ(c) and ρ′(c′) = ρ(c′) and

ρ′(ci) �?
S
ρ′(c′i ) for each 1 ≤ i ≤ nc such that

ρ′ |=
∨
µ∈S

(ϕ[c/�] ∧ ϕ′[c′/�] ∧
∧

1≤i≤n

(ϕi[ci/�] ∧ ϕ′i [c
′
i/�]))

By Lemma 12, we have that ρ′(ci) �?
S
ρ′(c′i ) iff ρ′ |= path(ci, c′i ), for

each 1 ≤ i ≤ nc. Hence, we can combine the properties of ρ′ into

ρ′ |=
∨
µ∈S

(ϕ[c/�] ∧ ϕ′[c′/�] ∧
∧

1≤i≤n

(ϕi[ci/�] ∧ ϕ′i [c
′
i/�]))

∧
∧

1≤i≤nc

path(ci, c′i )

Then, by rearranging the above, we can conclude that ρ(c) �S ρ(c′)
iff there exist some ρ′ with ρ′(c) = ρ(c) and ρ′(c′) = ρ(c′) such that

ρ′ |=
∨
µ∈S

(ϕ[c/�] ∧ ϕ′[c′/�] ∧
∧

1≤i≤n

(ϕi[ci/�] ∧ ϕ′i [c
′
i/�] ∧ path(ci, c′i ))

∧
∧

n+1≤i≤nc

path(ci, c′i )) (1)

Therefore, to prove the Lemma, it suffices to prove that there exists
some ρ′ with ρ′(c) = ρ(c) and ρ′(c′) = ρ(c′) satisfying (1) iff
ρ |= step(c, c′).

For the direct implication, assume ρ′ satisfy (1). Then, it follows
that ρ′ satisfies the first line in (1)

ρ′ |=
∨
µ∈S

(ϕ[c/�]∧ϕ′[c′/�]∧
∧

1≤i≤n

(ϕi[ci/�]∧ϕ′i [c
′
i/�]∧ path(ci, c′i )))

Since the free variables occurring in the formula above are among
c, c′, c1, c′1, . . . , cnc, c′nc, then the existence of such a ρ′ implies that

ρ |= ∃c1 . . . cnc ∃c′1 . . . c
′
nc∃x̄ (

∨
µ∈S

(ϕ[c/�] ∧ ϕ′[c′/�]

∧
∧

1≤i≤n

(ϕi[ci/�] ∧ ϕ′i [c
′
i/�] ∧ path(ci, c′i ))))

which is exactly the definition of step(c, c′). Thus ρ |= step(c, c′),
and we are done.

For the reverse implication, assume ρ |= step(c, c′). Then, by the
definition of step(c, c′) and since c, c′ are the only free variables
step(c, c′), we have that there exists some ρ′ with ρ′(c) = ρ(c) and
ρ′(c) = ρ(c) such that

ρ′ |=
∨
µ∈S

(ϕ[c/�]∧ϕ′[c′/�]∧
∧

1≤i≤n

(ϕi[ci/�]∧ϕ′i [c
′
i/�]∧ path(ci, c′i )))

Then, there must be some µ ≡ ϕ⇒ ϕ′ if ϕ1 ⇒ ϕ′1
∧
. . .
∧
ϕn ⇒ ϕ′n

such that

ρ′ |= ϕ[c/�] ∧ ϕ′[c′/�] ∧
∧

1≤i≤n

(ϕi[ci/�] ∧ ϕ′i [c
′
i/�] ∧ path(ci, c′i ))

Since the variables cn+1, c′n+1, . . . , cnc, c′nc do not occur in the formula
above, we can assume that ρ′(cn+1) = ρ′(c′n+1), . . . , ρ′(cnc) = ρ′(c′nc).
Trivially, ρ′(cn+1) �?

S
ρ′(c′n+1), . . . , ρ′(cnc) �?

S
ρ′(c′nc). By Lemma 12,

it follows that ρ′ |= path(cn+1, c′n+1), . . . , ρ′ |= path(cnc, c′nc). Thus,
we can conclude that

ρ′ |= ϕ[c/�] ∧ ϕ′[c′/�] ∧
∧

1≤i≤n

(ϕi[ci/�] ∧ ϕ′i [c
′
i/�] ∧ path(ci, c′i ))

∧
∧

n+1≤i≤nc

path(ci, c′i )

and therefore that ρ′ satisfies (1), and we are done. �

The following establishes a relation between path(c, c′) and
step(c, c′) which we use later on in Section 6.4:

Lemma 14. |= path(c, c′)↔ c =c′∨∃c′′ (step(c, c′′)∧path(c′′, c′)).



Proof. We prove that ρ |= c = c′ ∨ ∃c′′ (step(c, c′′) ∧ path(c′′, c′))
iff ρ |= path(c, c′). By Lemma 12, ρ |= path(c, c′) iff ρ(c) �?

S
ρ(c′),

that is, iff there exist some γ0, . . . , γn with ρ(c) = γ0 and ρ(c) = γn
and γi �S γi+1 for each 0 ≤ i < n. Equivalently, we can state it
as either ρ(c) = ρ(c′) or there exist some γ0, γ1, γn with ρ(c) = γ0
and ρ(c) = γn such that γ0 �S γ1 and γ1 �?

S
γn. Further, that is iff

there exists some ρ′ with ρ′(c) = ρ(c) and ρ′(c′) = ρ(c′) such that
ρ′(c) �S ρ′(c′′) and ρ′(c′′) �?

S
ρ′(c′). By Lemma 13 and Lemma 12,

that is iff ρ′ |= step(c, c′′) ∧ path(c′′, c′), and we are done. �

The following states that succ(c, c′) encodes the termination
dependence relation �:

Lemma 15. Let ρ : Var→ T . Then ρ(c′) ≺ ρ(c) iff ρ |= succ(c, c′).

Proof. Recall from Definition 7 that γ � γ′ iff

• γ �S γ′; or
• there exists some rule

ϕ⇒ ϕ′ if ϕ1 ⇒ ϕ′1
∧
. . .
∧
ϕn ⇒ ϕ′n

in S, valuation ρ′ :Var→ T , and index 1 ≤ i ≤ n such that:
(1) (γ, ρ′) |= ϕ;
(2) for each 1 ≤ j < i and each γ j ∈ TCfg with (γ j, ρ

′) |= ϕ j, there
is some γ′j ∈ TCfg such that (γ′j, ρ

′) |= ϕ′j and γ j �?
S
γ′j; and

(3) (γ′, ρ′) |= ϕi.

For each 1 ≤ j < i, since ϕ j is well-defined (see Definition 9),
there exists a unique γ j with (γ j, ρ

′) |= ϕ j. Hence, condition (2)
is equivalent to: “for each 1 ≤ j < i there exist some γ j ∈ TCfg
with (γ j, ρ

′) |= ϕ j and some γ′j ∈ TCfg such that (γ′j, ρ
′) |= ϕ′j and

γ j �?
S
γ′j”. By Lemma 13, ρ(c) �S ρ(c′) iff step(c, c′). Thus, the

first line in the definition of succ(c, c′) captures the first bullet in
the definition of �. Therefore, it suffice to show that the second and
third lines of the definition of succ(c, c′), namely

ρ |= ∃c1 . . . cnc ∃c′1 . . . c
′
nc∃x̄ (

∨
µ∈S

(ϕ[c/�] ∧
∨

1≤i≤n

(ϕi[c′/�]

∧
∧

1≤ j<i

(ϕ j[c j/�] ∧ ϕ′j[c
′
j/�] ∧ path(c j, c′j)))))

capture the second bullet. Since c, c′ are the only free variables in
the formula above, it follows that ρ satisfies it iff there exists some
ρ′ with ρ′(c) = ρ(c) and ρ′(c′) = ρ(c′) such that

ρ′ |=
∨
µ∈S

(ϕ[c/�] ∧
∨

1≤i≤n

(ϕi[c′/�]

∧
∧

1≤ j<i

(ϕ j[c j/�] ∧ ϕ′j[c
′
j/�] ∧ path(c j, c′j))))

or, equivalently, iff there exist some rule µ and 1 ≤ i ≤ n such that

ρ′ |= ϕ[c/�] ∧ ϕi[c′/�]
∧

1≤ j<i

(ϕ j[c j/�] ∧ ϕ′j[c
′
j/�] ∧ path(c j, c′j))

By Lemma 7, we have that ρ′ |= ϕ[c/�] iff (ρ′(c), ρ′) |= ϕ and
ρ′ |= ϕi[c′/�] iff (ρ′(c′), ρ′) |= ϕi, which are condition (1) and (3).
Also by Lemma 7, for each 1 ≤ j < i, we have that ρ′ |= ϕ j[c j/�]
iff (ρ′(c j), ρ′) |= ϕ j and ρ′ |= ϕ′j[c

′
j/�] iff (ρ′(c′j), ρ

′) |= ϕ′j, and,
by Lemma 12, that ρ′ |= path(c j, c′j) iff ρ′(c j) �?

S
ρ′(c′j), which

is condition (2). We can conclude that the existence of some ρ′
satisfying the formula above is equivalent to the existence of some
ρ′ satisfying the second bullet, and we are done. �

The following states that diverge(c) encodes the divergence
predicate ↑:

Lemma 16. Let ρ : Var→ T . Then ρ |= diverge(c) iff ρ(c) does not
terminate.

Proof. For an arbitrary γ, we let Prop(γ) be the property stating that
there exists an infinite set Pγ of finite �-sequences starting at γ. First
we prove that Prop(γ) holds iff γ does not terminate. For the direct
implication, we inductively construct an infinite �-sequence γ0, . . . ,
γn, . . . such that γ0 = γ and Prop(γn) holds for all n. Prop(γ0) holds
because γ0 = γ. Now, let us inductively assume Prop(γn) holds and
let �(γn) = {γ | γn � γ} be the set of successors of γn. For each
γ ∈� (γn), let P′γ be the set {τ | τ ∈ Pγn and γnγ is a prefix of τ}.
Clearly, the sets P′γ form a partition of Pγn . One of the assumption of
relative completeness is that each configuration has a finite number
of �-successors, that is, �(γn) is finite. Since Pγn is infinite (because
we assumed Prop(γn)), there is at least one γ ∈� (γn) with P′γ
infinite. Then we choose γn+1 to be γ. Note that γn � γn+1 and
Pγn+1 = {τ | γnτ ∈ P′γn+1

} is infinite, thus Prop(γn+1) holds. We can
conclude that γ does not terminate. For the converse implication, it
suffices to notice that if there is an infinite �-sequence starting at γ,
then the set of finite prefixes of that sequence is infinite. A direct
consequence of this result is that γ does not terminate iff for each n,
there exists a �-sequence of length n starting at γ. Indeed, if γ does
not terminate, then for each n we can take the prefix of length n of
the infinite sequence starting at γ. Conversely, if there exists some
�-sequence starting at γ for each n, then the set of such sequences
if infinite, and thus γ does not terminate.

Using the result above, it suffices to prove that ρ |= diverge(c)
iff for each m there exists some �-sequence starting at ρ(c). By
Lemma 15, we have that for each m there exists some ρ′ with
ρ′(c) = ρ(c) such that ρ′ |=

∧
0≤i<m succ(ci, ci+1) ∧ c0 = c iff

ρ′(c0) = ρ′(c) = ρ(c) and ρ′(c0) � . . . � ρ′(cm), that is, iff there is
some �-sequence of length m starting at ρ(c), and we are done. �

The following establishes a relation between diverge(c) and
succ(c, c′) which we use later on in Section 6.4:

Lemma 17. |= diverge(c)↔ ∃c′ (succ(c, c′) ∧ diverge(c′)).
Proof. We prove that ρ |= diverge(c) iff ρ |= ∃c′ (succ(c, c′) ∧
diverge(c′)). By Lemma 16, ρ |= diverge(c) iff ρ(c) does not
terminate, that is, iff there exist some γ0, . . . , γn, . . . with ρ(c) = γ0
and γi � γi+1 for each i ≥ 0. Equivalently, we can state it as there
exist some γ0, γ1 with ρ(c) = γ0 such that γ0 � γ1 and γ1 does not
terminate. Further, that is iff there exists some ρ′ with ρ′(c) = ρ(c)
such that ρ′(c) � ρ′(c′) and ρ′(c′) does not terminate. By Lemma 16,
that is iff ρ′ |= succ(c, c′) ∧ diverge(c), and we are done. �

The following summarises the main properties of step(c, c′),
path(c, c′), succ(c, c′), and diverge(c):

Lemma 18. Let ρ :Var→ T . Then ρ(c) �S ρ(c′) iff ρ |= step(c, c′);
ρ(c) �?

S
ρ(c′) iff ρ |= path(c, c′); ρ(c′) ≺ ρ(c) iff ρ |= succ(c, c′); and

ρ(c) does not terminate iff ρ |= diverge(c).
Proof. Follows by Lemmas 13 , 12 , 15 and 16. �

Finally, the following establishes the property of coreach(ϕ):

Lemma 19. Let γ ∈ TCfg and ρ :Var→ T . Then (γ, ρ) |= coreach(ϕ)
iff there exists some γ′ ∈ TCfg with (γ′, ρ) |= ϕ and γ �?

S
γ′.

Proof. We have that (γ, ρ) |= coreach(ϕ) iff there exists some ρ′
which agrees with ρ on Var \ {c, c′} with ρ′(c) = γ such that
ρ′ |= ϕ[c′/�] ∧ path(c, c′). By Lemma 12, that is iff there exists
some ρ′ which agrees with ρ on Var \ {c, c′} with ρ′(c) = γ such that
ρ′ |= ϕ[c′/�] and γ �?

S
ρ′(c′). Let us denote ρ(c′) by γ′. Then

(γ, ρ) |= coreach(ϕ) iff there exist some γ′ and some ρ′ which
agrees with ρ on Var \ {c, c′} with ρ′(c) = γ and ρ′(c′) = γ′ such
that ρ′ |= ϕ[c′/�] and γ �?

S
γ′. We have that (ρ′(c′), ρ′) |= ϕ iff

ρ′ |= ϕ[c′/�]. Since c, c′ do not occur in ϕ, and ρ and ρ′ agree on
Var \ {c′ , c′}, it follows that ρ′ |= ϕ[c′/�] iff (γ′, ρ) |= ϕ. Thus, we
can conclude that (γ, ρ) |= coreach(ϕ) iff there exists some γ′ with
(γ′, ρ) |= ϕ and γ �?

S
γ′, and we are done. �



ruleµ(s̄, j, i) ≡ ∃c∃c′∃c1 . . . cn∃c′1 . . . c
′
n (∃x̄ (ϕ[c/�] ∧ ϕ′[c′/�] ∧

∧
1≤i′≤n

ϕi′ [ci′/�] ∧ ϕ′i′ [c
′
i′/�]) ∧ β(a, b, add(s̄, j, i), α(c))

∧ β(a, b, add(s̄, j, i + 1), α(c′)) ∧
∧

1≤i′≤n

(β(a, b, add(s̄, j, i, i′, 0), α(ci′ )) ∧ β(a, b, add(s̄, j, i, i′,m), α(c′i′ ))))

id(s̄, j, i) ≡ ∃c∃c′ (β(a, b, add(s̄, j, i), α(c)) ∧ β(a, b, add(s̄, j, i + 1), α(c′)) ∧ c = c′)
path(c, c′) ≡ ∃k∃m (k ≥ 0 ∧ m ≥ 0 ∧ ∃a∃b (∃c0 (β(a, b, 0, α(c0)) ∧ c = c0) ∧ ∃cm (β(a, b,m, α(cm)) ∧ c′ = cm)

∧∀s̄∀ j∀i (seq(s̄, j) ∧ j = k ∧ 0 ≤ i < m→ id(s̄, j, i)) ∧ ∀s̄∀ j∀i (seq(s̄, j) ∧ j < k ∧ 0 ≤ i < m→
∨
µ∈S

ruleµ(s̄, j, i) ∨ id(s̄, j, i))))

diverge(c) ≡ ∀m∃a∃b (∃c0 (β(a, b, 0, α(c0)) ∧ c = c0) ∧ ∀i (0 ≤ i < m→ ∃ci∃ci+1 (β(a, b, i, α(ci)) ∧ β(a, b, i + 1, α(ci+1)) ∧ succ(ci, ci+1))))

Figure 4. FOL definitions of a finite �S-sequence (path) and an infinite �-sequence (diverge)

6.3 Formulae Gödelization
We use Gödel’s β predicate to encode quantification over sequences
of configurations in FOL (see [37] for an accessible introduction
to Gödelization and the β predicate). The predicate β relies on the
reminder of a when divided by b, written a mod b and defined as

r = a mod b ≡ ∃d (b × d ≤ a ∧ b × (d + 1) > a ∧ a = b × d + r)

Gödel’s β(a, b, i, x) predicate over natural numbers is defined as

β(a, b, i, x) ≡ x = a mod (1 + (1 + i) × b)

The assumptions on the model T allow us to express β. If u0, . . . , un
is a sequence of natural numbers, then there exist natural numbers a
and b such that β(a, b, i, x) holds iff x = ui, for each 0 ≤ i ≤ n and x.
Thus, for any given n, we can systematically translate sentences
∃u0, . . . , un ϕ into equivalent sentences ∃a, bϕ. As part of this
translation, each atomic formula pred of ϕ is translated into

∃ui1 , . . . , uik (β(a, b, i1, ui1 ) ∧ · · · ∧ β(a, b, ik, uik ) ∧ pred)

where ui1 , . . . , uik are all the variables among u0, . . . , un occurring
in pred. Even if n itself is quantified, only a fixed (independent of
n) subset of the variables u0, . . . , un can occur in pred, making ϕ a
proper FOL formula. Thus, β enables quantification over sequences.

Using the injective function α : TCfg → N we can extend
the result above to sequences of configurations. Sentences of the
form ∃c0, . . . , cn ϕ can be systematically translated into equivalent
sentences of the form ∃a, bϕ, where ϕ is a FOL formula replacing
each atomic formula pred of ϕ containing variables ci1 , . . . , cik with

∃ci1 , . . . , cik (β(a, b, i1, α(ci1 )) ∧ · · · ∧ β(a, b, ik, α(cik )) ∧ pred)

The injectivity of α guarantees that different free occurrences of the
same variable ci in ϕ are correctly related in ϕ.

Thus far, we can encode quantification over finite sequences
of configurations. A finite sequences is (syntactically) represented
as a finite set of variables indexed by natural numbers. However,
path(c, c′) quantifies over the set Ck,m, which contain variables
indexed by sequences s, i. To encode a such a sequence s, i into
a natural number, we need division (a ÷ b) and power (ab), which
can be defined as follows.

a÷b=d ≡ b × d ≤ a ∧ b × (d + 1) > a
ab =d ≡ ∃x0 . . . xb (x0 =1 ∧ xb =d ∧ ∀i (1≤ i≤ b→ xi = xi−1×a))

Equivalently, we can define ab using β and only four quantifiers.

ab =d ≡ b≥0 ∧ ∃a′∃b′ (β(a′, b′, 0, 1) ∧ β(a′, b′, b, d) ∧ ∀i (1≤ i≤b
→ ∃x∃x′ (β(a′,b′,i, x)) ∧ β(a′,b′,i−1, x′) ∧ x= x′×a)))

For notational simplicity, we write division, reminder, and power
as functions rather than as relations. Also, to save space, we write
a≤b≤d instead of a≤b ∧ b≤d. Let p be the maximum of m and
nc + 1, and let s = i1, . . . , i2 j be a sequence of indices. Recall that
i1, i3, . . . i2 j−1 are between 0 and m − 1, and i2, i4, . . . , i2 j between
1 and nc. Then, we can view s as a number s̄ in base p, namely
s̄ = Σ

2 j
t=1it × pt−1. Conversely, we encode the fact that s̄ is indeed

representing some sequence s as follows

seq(s̄, j) ≡ s̄ = 0 ∧ j = 0
∨ j > 0 ∧ p2× j−1 ≤ s̄ < p2× j

∧ ∀t (1≤ t≤ j→ ∃d (d = (s̄÷p2×t−2) mod p ∧ 0≤d<m))
∧ ∀t (1≤ t≤ j→ ∃d (d = (s̄÷p2×t−1) mod p ∧ 1≤d≤nc))

Intuitively, the first line covers the case of the empty sequence
( j = 0). For the case of non-empty sequences, the second line states
that s̄ has exactly 2 j digits, the third that the digits on even positions
(corresponding to i1, . . . , i2 j−1) are between 0 and m − 1, and the
fourth that the digits on odd positions (corresponding to i2, . . . , i2 j)
are between 1 and nc. Similarly, to the sequence s, i we associate
the number Σ

2 j
t=1it × pt−1 + i × p2× j. For convenience, we define

add(s̄, j, a) ≡ s̄ + a × p2× j

add(s̄, j, a, b, d) ≡ s̄ + a × p2× j + b × p2× j+1 + d × p2× j+2

For some s̄ associated to some s of length 2 j, these functions give
the numbers associated to the sequences s, a and s, a, b, d.

Figure 6.2 presents the encoding of a finite �S-sequence
(path(c, c′)) and an infinite �-sequence (diverge(c)) using only
a fixed number of quantifiers. Recall that path(c, c′) existentially
quantifies over the finite set of variables Ck,m. Using the encoding
of sequences s, i into numbers in base p with at most 2k + 1 dig-
its, we can instead quantify over a sequence of configurations of
length at most p2k+1. Further, using the β predicate and the injective
function α : TCfg → N, we can instead quantify over two natural
numbers, namely a, b. Then, we can replace the big conjunctions
in path(c, c′) with universal quantification over s̄, j, i and the ap-
propriate restrictions like seq(s̄, j), 0 ≤ i < m, etc. We introduce
ruleµ(s̄, j, i) as the encoding of ruleµs,i. It replaces the configuration
variables indexed by sequences with locally quantified variables
c, c′, c1, c′1, . . . , cn, c′n (n is the number of conditions of µ), and it
existentially quantifies x̄, the variables occurring free in the rules. It
also ensures that these local configuration variables are instantiated
consistently across the formula. For example, for the variable cs,i,
the predicate β(a, b, add(s̄, j, i), α(c)) ensures that the variable c is
instantiated with the value intended for cs,i, that is, the configuration
mapped by α into the number on the position s̄ + i × p2× j of the se-
quence of natural numbers Gödelized by a and b. Similarly, id(s̄, j, i)
encodes cs,i = cs,i+1. Formally, we have the following result:

Lemma 20. |= path(c, c′)↔ path(c, c′).
Proof. Let ρ, ρ̄ : Var→ T . We call ρ, ρ̄ a Gödel pair iff

(1) ρ and ρ̄ agree on c, c′, k,m
(2) for each indexing sequence s of length 2 j with 0 ≤ j ≤ ρ(k) and

for each 0 ≤ i ≤ ρ(m) it is the case that

β(ρ̄(a), ρ̄(b), s̄ + i × p2× j, α(ρ(cs,i)))

holds, where p is the maximum of ρ(m) and nc. Intuitively,
this states that the number associated to the configuration ρ(cs,i)
by the injective function α is on the position s̄ + i × p2× j (the
position associated to the sequence s, i) in the sequence of natural
numbers Gödelized by the pair ρ̄(a), ρ̄(b).



We intend to use ρ to interpret the top-level existential quantifiers
in path(c, c′) and ρ̄ to interpret the top-level existential quantifiers
in path(c, c′). To simplify the notation, for variables a of sort N,
like k, m, a, b, i, j, etc, we use its syntactic name, e.g. k, to also
refer to its interpretation, e.g. ρ(k). Condition (1) above ensures that
variables common to both path(c, c′) and path(c, c′) are interpreted
consistently by ρ and ρ̄, and by valuations which agree with ρ or ρ̄
on these common variables. With this convention, the instance of
the β predicate above becomes

β(a, b, s̄ + i × p2× j, α(ρ(cs,i)))

We prove that for each Gödel pair ρ, ρ̄, the following two
statements are equivalent

ρ |= c = c0 ∧ c′ = cm ∧ pathk,m (3)
ρ̄ |= ∃c0 (β(a, b, 0, α(c0)) ∧ c = c0)
∧ ∃cm (β(a, b,m, α(cm)) ∧ c = cm)

∧ ∀s̄∀ j∀i (seq(s̄, j) ∧ j = k ∧ 0 ≤ i < m→ id(s̄, j, i))
∧ ∀s̄∀ j∀i (seq(s̄, j) ∧ j < k ∧ 0 ≤ i < m

→
∨
µ∈S

ruleµ(s̄, j, i) ∨ id(s̄, j, i)) (4)

First, we prove that ρ |= ruleµs,i iff ρ̄ |= ruleµ(s̄, j, i) for each indexing
sequence s of length 2 j with 0 ≤ j < k and each 0 ≤ i ≤ m and each
s̄ such that s̄ is the number associated to the sequence s, i. Recall
that ruleµ(s̄, j, i) is obtained from ruleµs,i by

• substituting cs,i, cs,i+1 with c, c′ and cs,i,i′ ,0, cs,i,i′ ,m with c j, c′j for
each 1 ≤ i′ ≤ n;
• by adding constrains on c, c′, c1, c′1, . . . , cn, cn using the β predi-

cate and the α function; and
• existentially quantifying c, c′, c1, c′1, . . . , cn, c′n.

Let ρ̄µ :Var→T which agrees with ρ̄ on Var\{c, c′, c1, c′1, . . . , cn, c′n}.
Then we have that ρ̄µ satisfies the constrains on the configuration
variables in the definition of ruleµ(s̄, j, i), namely

ρµ |= β(a, b, add(s̄, j, i), α(c)) ∧ β(a, b, add(s̄, j, i + 1), α(c′))

∧
∧

1≤i′≤n

(β(a, b, add(s̄, j, i, i′, 0), α(ci′ ))

∧ β(a, b, add(s̄, j, i, i′,m), α(c′i′ )))

iff β(a, b, add(s̄, j, i), α(ρ̄µ(c))) and β(a, b, add(s̄, j, i + 1), α(ρ̄µ(c′)))
hold, and for each 1 ≤ i′ ≤ n, β(a, b, add(s̄, j, i, i′, 0), α(ρ̄µ(ci′ )))
and β(a, b, add(s̄, j, i, i′,m), α(ρ̄µ(c′i′ ))) hold. Since ρ and ρ̄ are a
Gödel pair, condition (2) implies that β(a, b, add(s̄, j, i), α(ρ(cs,i)))
and β(a, b, add(s̄, j, i + 1), α(ρ(cs,i+1))) hold, and also that for each
1 ≤ i′ ≤ n, it is the case that β(a, b, add(s̄, j, i, i′, 0), α(ρ(cs,i,i′ ,0)))
and β(a, b, add(s̄, j, i, i′,m), α(ρ(c′s,i,i′ ,m))) hold. Further, since α is
injective, and the first three arguments of β uniquely determine the
fourth argument, we can conclude there exists a unique ρ̄µ which
satisfies the constrains above, namely the one with ρ̄µ(c) = ρ(cs,i)
and ρ̄µ(c′) = ρ(cs,i+1), and with ρ̄µ(ci′ ) = ρ(cs,i,i′ ,0) and ρ̄µ(c′i′ ) =

ρ(cs,i,i′ ,m) for each 1 ≤ i′ ≤ n. Then, it follows that ρ |= ruleµs,i iff ρ̄µ
satisfies ruleµs,i with the configuration variables substituted, that is,
iff ρ̄ |= ruleµ(s̄, j, i).

Similarly, we prove that ρ |= cs,i = cs,i+1 iff ρ̄ |= id(s, j, i) for each
indexing sequence s of length 2 j with 0 ≤ j ≤ k and each 0 ≤ i ≤ m
and each s̄ such that s̄ is the number associated to the sequence s, i.
Let ρ̄id :Var→T which agrees with ρ̄ on Var \ {c, c′}. Then we have
that ρ̄id |= β(a, b, add(s̄, j, i), α(c)) ∧ β(a, b, add(s̄, j, i + 1), α(c′))
iff β(a, b, add(s̄, j, i), α(ρ̄id(c))) and β(a, b, add(s̄, j, i + 1), α(ρ̄id(c′)))

hold. Since ρ and ρ̄ are a Gödel pair, condition (2) implies that
β(a, b, add(s̄, j, i), α(ρ(cs,i))) and β(a, b, add(s̄, j, i + 1), α(ρ(cs,i+1)))
hold. Then, we can conclude there exists a unique ρ̄id which satisfies
the constrains above, namely the one with ρ̄id(c) = ρ(cs,i) and
ρ̄id(c′) = ρ(cs,i+1). It follows trivially that ρ |= cs,i = cs,i+1 iff
ρ̄id |= c = c′, that is, iff ρ̄ |= id(s, j, i).

Based on the above, and on the fact that seq(s̄, j) holds iff s̄ is a
number associated to a sequence s of length 2 j, we conclude that

ρ |= pathk,m

ρ̄ |= ∀s̄∀ j∀i (seq(s̄, j) ∧ j = k ∧ 0 ≤ i < m→ id(s̄, j, i))
∧ ∀s̄∀ j∀i (seq(s̄, j) ∧ j < k ∧ 0 ≤ i < m

→
∨
µ∈S

ruleµ(s̄, j, i) ∨ id(s̄, j, i))

Finally, notice that by condition (2), the predicates β(a, b, 0, α(ρ(c0)))
and β(a, b,m, α(ρ(cm))) hold. Thus, we have that

ρ̄ |= ∃c0 (β(a, b, 0, α(c0)) ∧ c = c0)
∧ ∃cm (β(a, b,m, α(cm)) ∧ c′ = cm)

iff ρ(c0) = ρ̄(c) and ρ(cm) = ρ̄(c′), that is, iff ρ |= c = c0 ∧ c′ = cm.
Therefore, we conclude that statements (3) and (4) are equivalent.

To complete the proof of the lemma, we show for each ρ′ that
ρ′ |= path(c, c′) iff ρ′ |= path(c, c′). We have that ρ′ |= path(c, c′)
iff there exist some k,m ∈ N and some ρ : Var → T which
agrees with ρ′ on c, c′ such that statement (3) holds. We also have
that ρ′ |= path(c, c′) iff there exist some k,m, a, b ∈ N and some
ρ̄ : Var → T which agrees with ρ′ on c, c′ such that statement
(4) holds. We know that (3) and (4) are equivalent for Gödel pairs,
hence it suffices to construct for each ρ satisfying (3) a ρ̄ such
that ρ, ρ̄ are a Gödel pair, and conversely, to construct for each ρ̄
satisfying (4) a ρ such that ρ, ρ̄ are a Gödel pair. For both directions,
we choose such that ρ and ρ̄ agree on c, c′, k,m, thus we satisfy (1).
From ρ, we construct ρ̄ by choosing a, b to be the Gödel numbers
associated to the sequence (α(cs,i)), where each indexing sequence s
is of length 2 j with 0 ≤ j ≤ k and for each i is such that 0 ≤ i ≤ m
(the numbers are ordered in a sequence according to the numbers
associated to the sequences s, i). Conversely, from ρ̄, (4) implies that
ρ̄ |= ∃c′′ (β(a, b, s̄ + i × p2× j, α(c′′))) for each number s̄ associated
to an indexing sequence s of length 2 j with 0 ≤ j ≤ k and for
each 0 ≤ i ≤ m. Then we choose ρ such that ρ(cs,i) is the unique
configurations in which c′′ is instantiated in the formula above. In
both cases, the pair ρ, ρ̄ satisfies (2), and we are done. �

The encoding of diverge(c) follows the same pattern as that
of path(c, c′): it replaces the quantification over a sequence of
configurations with the quantification over a and b, it replaces
the big conjunction with the universal quantification over i and
the restriction 0 ≤ i < m, and uses β and α to ensure the
locally quantified variables ci and ci+1 are instantiated consistently.
Formally, we have the following result:

Lemma 21. |= diverge(c)↔ diverge(c).

Proof. The proof takes a similar approach to the previous one. Let
ρ, ρ̄ : Var→ T . We call ρ, ρ̄ a Gödel pair iff

(1) ρ and ρ̄ agree on c,m
(2) for each 0 ≤ i ≤ ρ(m) it is the case that

β(ρ̄(a), ρ̄(b), i, α(ρ(ci)))

holds. Intuitively, this states that the number associated to the
configuration ρ(ci) by the injective function α is on the position
i in the sequence of natural numbers Gödelized by the pair
ρ̄(a), ρ̄(b).



We intend to use ρ to interpret the top-level quantifiers in diverge(c)
and ρ̄ to interpret the top-level quantifiers in diverge(c). To simplify
the notation, for variables a of sort N, like, m, a, b, i, etc, we
use its syntactic name, e.g. m, to also refer to its interpretation,
e.g. ρ(k). Condition (1) above ensures that variables common to
both diverge(c) and diverge(c) are interpreted consistently by ρ and
ρ̄, and by valuations which agree with ρ or ρ̄ on these common
variables. With this convention, the instance of the β predicate above
becomes

β(a, b, i, α(ρ(ci)))
We prove that for each Gödel pair ρ, ρ̄, the following two

statements are equivalent

ρ |= c = c0 ∧
∧

0≤i<m

succ(ci, ci+1) (3)

ρ̄ |= ∃c0 (β(a, b, 0, α(c0)) ∧ c = c0)
∧ ∀i (0 ≤ i < m→ ∃ci∃ci+1 (β(a, b, i, α(ci))

∧ β(a, b, i + 1, α(ci+1)) ∧ succ(ci, ci+1))) (4)

First, we prove that ρ |= succ(ci, ci+1) iff

ρ̄ |= ∃ci∃ci+1 (β(a, b, i, α(ci)) ∧ β(a, b, i + 1, α(ci+1))
∧ succ(ci, ci+1)) (5)

for each 0 ≤ i < m. Let ρ̄′ : Var → T which agrees with ρ̄ on
Var \ {ci, ci+1}. Then we have that ρ̄′ satisfies the constrains on the
configuration variables namely

ρ̄′ |= β(a, b, i, α(ci)) ∧ β(a, b, i + 1, α(ci+1))

iff β(a, b, i, α(ρ̄′(ci))) and β(a, b, i + 1, α(ρ̄′(ci+1))) hold. Since ρ and
ρ̄ are a Gödel pair, condition (2) implies that β(a, b, i, α(ρ(ci))) and
β(a, b, i+1, α(ρ(ci+1))) hold. Further, since α is injective, and the first
three arguments of β uniquely determine the fourth argument, we
can conclude there exists a unique ρ̄′ which satisfies the constrains
above, namely the one with ρ̄′(ci) = ρ(ci) and ρ̄′(ci+1) = ρ(ci+1).
Then, it follows that ρ |= succ(ci, ci+1) iff ρ̄′ satisfies

ρ̄′ |= β(a, b, i, α(ci))∧β(a, b, i + 1, α(ci+1))∧succ(ci, ci+1)

that is, iff ρ̄ satisfies (5).
Based on the above, we can conclude that

ρ |=
∧

0≤i<m

succ(ci, ci+1)

ρ̄ |= ∀i (0 ≤ i < m→ ∃ci∃ci+1 (β(a, b, i, α(ci))
∧ β(a, b, i + 1, α(ci+1)) ∧ succ(ci, ci+1)))

Finally, notice that by condition (2), the predicates β(a, b, 0, α(ρ(c0)))
holds. Thus, we have that

ρ̄ |= ∃c0 (β(a, b, 0, α(c0)) ∧ c = c0)

iff ρ(c0) = ρ̄(c), that is, iff ρ |= c = c0. Therefore, we conclude that
statements (3) and (4) are equivalent.

To complete the proof of the lemma, we show for each ρ′ that
ρ′ |= diverge(c) iff ρ′ |= diverge(c). We have that ρ′ |= diverge(c) iff
for each m ∈ N there exists some ρ : Var→ T which agrees with ρ′

on c such that statement (3) holds. We also have that ρ′ |= diverge(c)
iff for each m ∈ N there exist some a, b ∈ N and some ρ̄ : Var→ T
which agrees with ρ′ on c such that statement (4) holds. We know
that (3) and (4) are equivalent for Gödel pairs, hence it suffices to
construct for each ρ satisfying (3) a ρ̄ such that ρ, ρ̄ are a Gödel pair
and agree on m, and conversely, to construct for each ρ̄ satisfying (4)
a ρ such that ρ, ρ̄ are a Gödel pair and agree m. For both directions,
we choose such that ρ and ρ̄ agree on c,m, thus we satisfy (1).
From ρ, we construct ρ̄ by choosing a, b to be the Gödel numbers
associated to the sequence α(c0), . . . , α(cm). Conversely, from ρ̄, (4)
implies that ρ̄ |= ∃c′ (β(a, b, i, α(c′))) for each number 0 ≤ i ≤ m.

Then we choose ρ such that ρ(ci) is the unique configurations in
which c′′ is instantiated in the formula above. In both cases, the pair
ρ, ρ̄ satisfies (2), and we are done. �

The following summarises the two results above:

Lemma 22. |= path(c, c′) ↔ path(c, c′) and |= diverge(c) ↔
diverge(c).

Proof. Follows by Lemma 20 and Lemma 21. �

Consequently, we can use path(c, c′), to express step(c, c′),
succ(c, c′) and coreach(ϕ) in FOL. Then, diverge(c), which uses
succ(c, c′), is a FOL formula. Since our relative completeness proof
only uses these predicates besides other FOL formulae over the
signature Σ, we can conclude that all the formulae used in our proof
are FOL formulae. For notational simplicity, we continue working
with path and diverge instead of path and diverge.

6.4 Semantic Validity and Relative Completeness
We derive a proof for a valid rule ϕ⇒ ϕ′ with the proof system in
Figure 3, using the FOL predicates encoding the transition system
to express intermediate formulae. First, we show that the semantic
validity of reachability rules can be framed as FOL validity. This
does not give us relative completeness directly, but it enables us to
begin the derivation process.

Lemma 23.S|=ϕ⇒ϕ′ iff |=ϕ→∃c (�=c∧diverge(c))∨coreach(ϕ′).

Proof. Let γ ∈ TCfg and ρ : Var → T . We establish the necessary
and sufficient conditions such that

(γ, ρ) |= ϕ→ ∃c (� = c ∧ diverge(c)) ∨ coreach(ϕ′)

According to the semantics of implications, the above happens
iff (γ, ρ) |= ϕ implies either (γ, ρ) |= ∃c (� = c ∧ diverge(c)) or
(γ, ρ) |= coreach(ϕ′). By Lemma 16, the former holds iff γ does not
terminate, while by Lemma 19 the latter holds iff there exists some
γ′ ∈ TCfg such that (γ′, ρ) |= ϕ′ and γ �?

S
γ′. Thus, we can conclude

that |= ϕ→ ∃c (� = c ∧ diverge(c))∨ coreach(ϕ′) iff for each γ and
ρ we have that (γ, ρ) |= ϕ implies that either γ does not terminate
or there exists some γ′ ∈ TCfg such that (γ′, ρ) |= ϕ′ and γ �?

S
γ′.

According to the definition of semantic validity for reachability rules
(see Definition 10), the above conditions hold iff S |= ϕ⇒ ϕ′, and
we are done. �

The following three lemmas are useful in proving our relative
completeness result.

Lemma 24. IfA ` �=c ∧ path(c, c′)⇒ �=c′ is derivable and ϕ
is well-defined, thenA ` ϕ ∧ ϕ[c/�] ∧ ϕ′[c′/�] ∧ path(c, c′)⇒ ϕ′

is derivable.

Proof. Since ϕ is well-defined, we have that |= ϕ∧ϕ[c/�]→ � = c,
by Lemma 8. Also, it is easy to see that |= � = c′ ∧ ϕ′[c′/�]→ ϕ′.
Thus, A ` ϕ ∧ ϕ[c/�] ∧ ϕ′[c′/�] ∧ path(c, c′) ⇒ ϕ′ is derivable
by Consequence with the two implications above from the sequent

A ` � = c ∧ ϕ′[c′/�] ∧ path(c, c′)⇒ � = c′ ∧ ϕ′[c′/�]

which follows by Logical Framing (Lemma 3) with ϕ′[c′/�] from

A ` � = c ∧ path(c, c′)⇒ � = c′

The last sequent is derivable according to the hypothesis, and we
are done. �

Lemma 25. IfA ` � = c ∧ step(c, c′′) ∧ path(c′′, c′)⇒ � = c′ is
derivable, thenA ` � = c ∧ path(c, c′)⇒ � = c′ is derivable.



Proof. By Lemma 14, we have that

|= path(c, c′)→ c = c′ ∨ ∃c′′ (step(c, c′′) ∧ path(c′′, c′))

Then, A ` � = c ∧ path(c, c′) ⇒ � = c′ is derivable by Conse-
quence with the implication above, Abstraction with c′′, and Case
Analysis from

A ` � = c ∧ c = c′ ⇒ � = c′

A ` � = c ∧ step(c, c′′) ∧ path(c′′, c′)⇒ � = c′

The former follows by Consequence and Reflexivity, while the latter
is derivable according to the hypothesis, and we are done. �

Lemma 26. If S ∪C ` � = c ∧ path(c, c′)⇒ � = c′ is derivable,
then S `C � = c ∧ step(c, c′)⇒ � = c′ is derivable.

Proof. The sequent S `C � = c ∧ step(c, c′) ⇒ � = c′ follows by
Abstraction with c1, c′1, . . . , cnc, c′nc, x̄ (the top existentially quanti-
fied variables in the definition of step(c, c′)) from

S `C

∨
µ∈S

(ϕ[c/�] ∧ ϕ′[c′/�] ∧
∧

1≤i≤n

(ϕi[ci/�] ∧ ϕ′i [c
′
i/�] ∧ path(ci, c′i )))

∧ � = c

⇒ � = c

Then, by Consequence, we can drop � = c and substitute c by �,
and it suffices to derive

S `C

∨
µ∈S

(ϕ ∧ ϕ′[c′/�] ∧
∧

1≤i≤n

(ϕi[ci/�] ∧ ϕ′i [c
′
i/�] ∧ path(ci, c′i )))

⇒ � = c

Recall that one of the assumptions of relative completeness is that
S is not empty. Then, by |S| − 1 applications of Case Analysis, it
suffices to derive for each µ ∈ S

S `C ϕ ∧ ϕ
′[c′/�] ∧

∧
1≤i≤n

(ϕi[ci/�] ∧ ϕ′i [c
′
i/�] ∧ path(ci, c′i ))⇒�=c

Recall that one of the assumptions of relative completeness is that
ϕ′ is well-defined. By Lemma 8, |= ϕ′ ∧ ϕ′[c′/�]→ � = c′, thus by
Consequence it suffices to derive

S `C ϕ ∧ ϕ
′[c′/�] ∧

∧
1≤i≤n

(ϕi[ci/�] ∧ ϕ′i [c
′
i/�] ∧ path(ci, c′i ))

⇒ ϕ′ ∧ ϕ′[c′/�]

The last sequent follows by Logical Framing (Lemma 3) with
ϕ′[c′/�] and Axiom with µ ∈ S from the prerequisites

S ∪C ` ϕ j ∧
∧

1≤i≤n

(ϕi[ci/�] ∧ ϕ′i [c
′
i/�] ∧ path(ci, c′i ))⇒ ϕ′j

for each 1 ≤ j ≤ n. By Consequence, it suffices to derive

S ∪C ` ϕ j ∧ ϕ j[c j/�] ∧ ϕ′j[c
′
j/�] ∧ path(c j, c′j)⇒ ϕ′j

According to the hypothesis, S ∪C ` � = c ∧ path(c, c′)⇒ � = c′
is derivable. Recall that one of the assumptions of relative complete-
ness is that ϕ j is well-defined. Then the last sequent follows by
Lemma 24 with α-renaming c, c′ into c j, c′j, and we are done. �

The following lemma states that if there is a path in the transition
system from c to c′ (expressed by path(c, c′)) then we can derive it.

Lemma 27. S ` � = c ∧ path(c, c′)⇒ � = c′.

Proof. By Lemma 25, it suffices to derive

S ` � = c ∧ step(c, c′′) ∧ path(c′′, c′)⇒ � = c′

Let C ≡ {� = c ∧ step(c, c′′) ∧ path(c′′, c′) ⇒ � = c′}. Then, by
Circularity, it suffices to derive

S `C � = c ∧ step(c, c′′) ∧ path(c′′, c′)⇒ � = c′

which in turn follows by Transitivity from

S `C �=c∧step(c, c′′)∧path(c′′, c′)⇒ �=c′′∧path(c′′, c′) (1)
S ∪C ` �=c′′∧path(c′′, c′)⇒ �=c′ (2)

Sequent (1) follows by Logic Framing with path(c′′, c′) from

S `C � = c ∧ step(c, c′′)⇒ � = c′′

By Lemma 26 (with α-renaming c′′ into c′), it suffices to derive

S ∪C ` � = c ∧ path(c, c′)⇒ � = c′

Further, by Lemma 25, it suffices to derive

S ∪C ` � = c ∧ step(c, c′′) ∧ path(c′′, c′)⇒ � = c′

which follows by Axiom with the rule in C. By Lemma 25 (with
α-renaming c′′ into c), sequent (2) follows from

S ∪C ` � = c ∧ step(c, c′′) ∧ path(c′′, c′)⇒ � = c′

which follows by Axiom with the rule in C, and we are done. �

The result above has the following consequence:

Lemma 28. S `C � = c ∧ step(c, c′)⇒ � = c′.

Proof. By Lemma 26, it suffices to derive

S ∪C ` � = c ∧ path(c, c′)⇒ � = c′

which follows form Lemma 27 and weakening (Lemma 2) with
S ⊆ S ∪C. �

The next lemma states that if c diverges in the transition system
then we can derive it.

Lemma 29. S ` � = c ∧ diverge(c)⇒ ω.

Proof. Let C ≡ {� = c ∧ diverge(c) ⇒ ω}. Then the sequent
S ` � = c ∧ diverge(c)⇒ ω follows by Circularity from

S `C � = c ∧ diverge(c)⇒ ω

By Lemma 17, we have that

|= diverge(c)→ ∃c′ (succ(c, c′) ∧ diverge(c′))

Thus, by Consequence, and Abstraction with c′, it suffices to derive

S `C � = c ∧ succ(c, c′) ∧ diverge(c′)⇒ ω

Let ψcond be defined as

ψcond ≡
∨
µ∈S

(ϕ[c/�] ∧
∨

1≤i≤n

(ϕi[c′/�]

∧
∧

1≤ j<i

(ϕ j[c j/�] ∧ ϕ′j[c
′
j/�] ∧ path(c j, c′j))))

Then, according to the definition of succ(c, c′), by Case Analysis
and Abstraction with c1, c′1, . . . , cnc, c′nc, x̄ (the top existentially quan-
tified variables), it suffice to derive

S `C � = c ∧ step(c, c′) ∧ diverge(c′)⇒ ω (1)
S `C � = c ∧ ψcond ∧ diverge(c′)⇒ ω (2)

By Lemma 28 and Logic Framing with diverge(c′), we derive

S `C � = c ∧ step(c, c′) ∧ diverge(c′)⇒ � = c′ ∧ diverge(c′)

By Axiom with the rule in C and α-renaming of c′ into c, we derive

S ∪C ` � = c′ ∧ diverge(c′)⇒ ω



Then, sequent (1) follows by Transitivity with the two sequents
above. Therefore, we are left to derive sequent (2). Let ϕcond be
defined as

ϕcond ≡
∨
µ∈S

(ϕ ∧
∨

1≤i≤n

(ϕi[c′/�]

∧
∧

1≤ j<i

(ϕ j[c j/�] ∧ ϕ′j[c
′
j/�] ∧ path(c j, c′j))))

Then, by Consequence, we can drop � = c and substitute c by � in
sequent (2), and it suffices to derive

S `C ϕcond ∧ diverge(c′)⇒ ω

Recall that one of the assumptions of relative completeness is that
S is not empty. Then, by |S| − 1 applications of Case Analysis, each
followed by n applications of Case Analysis, it suffices to derive for
each µ ∈ S and each 1 ≤ i ≤ n (n is the number of conditions of µ)

S `C ϕ ∧ ϕi[c′/�] ∧
∧

1≤ j<i

(ϕ j[c j/�] ∧ ϕ′j[c
′
j/�] ∧ path(c j, c′j))

∧ diverge(c′)
⇒ ω

Recall that one of the assumption of relative completeness is that
S is ω-closed (see Definition 11). Thus, for µ and i there must be
some rule µω ∈ S of the form

ϕ⇒ ω if ϕ1 ⇒ ϕ′1
∧
. . .
∧
ϕi−1 ⇒ ϕ′i−1

∧
ϕi ⇒ ω

Then the sequent above follows by Axiom with µω and with the
prerequisites

S ∪C ` ϕk ∧ ϕi[c′/�] ∧
∧

1≤ j<i

(ϕ j[c j/�] ∧ ϕ′j[c
′
j/�] ∧ path(c j, c′j))

∧ diverge(c′)
⇒ ϕ′k (3)

S ∪C ` ϕi ∧ ϕi[c′/�] ∧
∧

1≤ j<i

(ϕ j[c j/�] ∧ ϕ′j[c
′
j/�] ∧ path(c j, c′j))

∧ diverge(c′)
⇒ ω (4)

for each 1 ≤ k < i. By Consequence, to derive each sequent (3), it
suffices to derive

S ∪C ` ϕk ∧ ϕk[ck/�] ∧ ϕ′k[c′k/�] ∧ path(ck, c′k)⇒ ϕ′k

for each 1 ≤ k < i. By Lemma 27, we have that

S ` � = c ∧ path(c, c′)⇒ � = c′

is derivable. Recall that one of the assumption of relative complete-
ness is that ϕk is well-defined. Then, the sequents above follow by
Lemma 24 with α-renaming c, c into ck, c′k. By Consequence, to
derive sequent (4), it suffices to derive

S ∪C ` ϕi ∧ ϕi[c′/�] ∧ diverge(c′)⇒ ω

Recall that one of the assumption of relative completeness is that ϕi
is well-defined. By Lemma 8, we have that |= ϕi∧ϕi[c′/�]→ � = c′.
Thus, by Consequence the last sequent follows from

S ∪C ` � = c′ ∧ diverge(c′)⇒ ω

which follows by Axiom with the rule in C and α-renaming c into
c′, and we are done. �

Lemma 30. S ` coreach(ϕ)⇒ ϕ.

Proof. According to the definition of coreach(ϕ), by Abstraction
with c, c′, it suffices to derive

S ` � = c ∧ ϕ[c′/�] ∧ path(c, c′)⇒ ϕ

We have that |= � = c′ ∧ ϕ[c′/�]→ ϕ′, thus the last sequent follows
by Consequence from

S ` � = c ∧ ϕ[c′/�] ∧ path(c, c′)⇒ � = c′ ∧ ϕ[c′/�]

which in turn follows by Logic Framing (see Lemma 3) with ϕ[c′/�]
from

S ` � = c ∧ path(c, c′)⇒ � = c′

which is derivable by Lemma 27, and we are done. �

Using the lemmas above, we derive the following rule between
the formula specifying the configurations reaching ϕ and the diver-
gent configurations, on one hand, and ϕ itself, on the other hand.

Lemma 31. S ` ∃c (� = c ∧ diverge(c)) ∨ coreach(ϕ)⇒ ϕ.

Proof. By Case Analysis and Abstraction with c, it suffices to derive

S ` � = c ∧ diverge(c))⇒ ϕ

S ` coreach(ϕ)⇒ ϕ

The latter follows by Lemma 30. For former follows by Transitivity
from

S ` � = c ∧ diverge(c))⇒ ω

S ` ω⇒ ϕ

The first sequent is derivable by Lemma 29. To derive the second,
Circularity and Transitivity, it suffices to derive

S `{ω⇒ϕ} ω⇒ ω

S ∪ {ω⇒ ϕ} ` ω⇒ ϕ

Recall that one of the assumption of relative completeness is that S
is ω-closed. Then the first sequent follows by Axiom with ω⇒ ω,
while the second sequent follows by Axiom with ω ⇒ ϕ, and we
are done. �

Finally, the relative completeness follows from all the lem-
mas above. Note how the configuration model is being used, via
Lemma 23, as an oracle to answer the semantic reachability question
formulated as a FOL sentence.

Theorem 2. If S |= ϕ⇒ ϕ′ then S ` ϕ⇒ ϕ′.

Proof. Suppose that S |= ϕ ⇒ ϕ′. Then Lemma 23 implies that
|= ϕ → (∃c (� = c ∧ diverge(c)) ∨ coreach(ϕ′)). By Lemma 31 it
follows that S ` ∃c (� = c ∧ diverge(c)) ∨ coreach(ϕ′) ⇒ ϕ′ is
derivable. Then the theorem follows by Consequence. �

A direct consequence of the theorem above is the following
(recall that for relative completeness S is assumed ω-closed)

Corollary 2. If S |= ϕ↑ then S ` ϕ⇒ ω.

7. Conclusion and Future Work
We presented reachability logic, a novel framework for reasoning
about reachability which unifies operational and axiomatic seman-
tics. The reachability logic sentences are called reachability rules,
and can express both transitions between configurations, as needed
for operational semantics, and Hoare-style triples, as needed for
axiomatic semantics. A programming language is given as a set of
reachability rules defining its operational semantics, and a language-
independent seven-rule proof system is then used to derive any
reachability property of the language. Our reachability logic proof
system was proven sound and relatively complete. The soundness
was also mechanized in Coq, which lets reachability logic proofs
serve as proof certificates.

Until this paper, reachability rules were unconditional, so they
could only express a limited number of operational semantics



(whose rules had no premises). By allowing conditional rules,
reachability logic can now express virtually all operational semantics
styles, including the standard small-step (by Plotkin) and big-step
(by Kahn) semantics which were excluded before.

We hope reachability logic may serve a foundation for verifying
programs. Also, since Hoare-style proof derivations can be mechani-
cally translated into reachability logic proof derivations, reachability
logic may serve as a more elegant means to establish the soundness
of axiomatic semantics. We plan to extend our MatchC prover and
connect it to the Coq formalization to produce a mostly-automated
and efficient certifying verifier based on the presented proof system.
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