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Abstract. This paper gives a truly concurrent semantics with sharing of
resources for the K semantic framework, an executable (term-)rewriting-
based formalism for defining programming languages and calculi. Akin
to graph rewriting rules, the K (rewrite) rules explicitly state what can
be concurrently shared with other rules. The desired true concurrency is
obtained by translating the K rules into a novel instance of term-graph
rewriting with explicit sharing, and then using classical concurrency from
the double-pushout (DPO) approach to graph rewriting. The resulting
parallel term-rewriting relation is proved sound, complete, and serializable
with respect to the jungle rewriting flavor of term-graph rewriting, and,
therefore, also to term rewriting.

1 Introduction

There are several reasons for defining a truly concurrent semantics for a given
model of computation. One reason is that specification languages based on truly
concurrent models are more informative; e.g., testing sequences defining partial
orderings may carry the same information as an exponentially larger number of
interleaving traces. Another reason is that in truly concurrent models the existing
fine parallelism of the application is fully specified. It is left to the implementor
to take advantage of it by allocating concurrent events to different processors, or
to partition events into coarser classes performed by a few concurrent processes.
Finally, truly concurrent semantics carries extra information, being usually
straightforward to recover interleaving semantics from it [10].

The K semantic framework [12,13] is a programming language definitional
framework based on rewriting which attempts to bring together the strengths of
existing frameworks (e.g., the chemical abstract machine (CHAM) [1], evaluation
contexts [15], or continuations [4]) while avoiding their weaknesses. The K
framework relies on computations, configurations, and K rules in giving semantics
to programming language constructs. So far, K has been successfully used for
defining several real-life programming languages, including C [3], Scheme [7],
and the x86-TSO memory model [13].

Currently, computations and configurations are described as algebraic terms
over a first-order signature, and the semantics of K definitions is given through
their translation in rewriting logic [8] theories. Structuring execution configura-
tions as terms is quite convenient, as first order signatures are quite intuitive, and
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〈
〈set(2, 9) ···〉thrd 〈set(3, 0) ···〉thrd
〈··· 2 7→ 5 ··· 3 7→ 1 ···〉mem

〉
≡�

〈
〈5 ···〉thrd 〈1 ···〉thrd

〈··· 2 7→ 9 ··· 3 7→ 0 ···〉mem

〉
(a)

〈
〈set(3 , 0) ···〉thrd 〈set(3 , 2) ···〉thrd

〈··· 3 7→ 1 ···〉mem

〉
≡�

〈
〈1 ···〉thrd 〈set(3 , 2) ···〉thrd

〈··· 3 7→ 0 ···〉mem

〉
≡�

〈
〈1 ···〉thrd 〈0 ···〉thrd
〈··· 3 7→ 2 ···〉mem

〉
≡�

〈
〈set(3 , 0) ···〉thrd 〈1 ···〉thrd

〈··· 3 7→ 2 ···〉mem

〉
≡�

〈
〈2 ···〉thrd 〈1 ···〉thrd
〈··· 3 7→ 0 ···〉mem

〉 (b)

Fig. 1. Synchronous access of memory in a multithreaded environment:
(a) concurrent writes, and (b) interleaving dataraces.

there is plenty of tool support for reasoning about first-order terms. Moreover,
rewriting logic is generally appealing for defining truly concurrent systems, since
rewrite rules can independently match and apply anywhere, unconstrained by the
context [8]. However, although rewriting logic has proved successful in defining se-
quential programming languages as well as actor-like languages [9], it enforces that
“the same object cannot be shared by two simultaneous rewrites” [9], i.e., rule in-
stances are not allowed to overlap. Although there are good reasons for this choice,
such as sufficing to capture concurrent synchronization like that of Petri Nets,
this limitation enforces an interleaving semantics in situations where one may
not want it, especially when describing systems which allow sharing of resources.

Consider a running configuration of a program where two threads are both
ready to set the value of different memory locations, as in the left-hand side (lhs)
of Figure 1(a). Assume the (single-threaded) semantics of the memory update
construct set is to update the value in the memory and return the old value, like
〈set(X ,V ′) ···〉thrd〈··· X 7→ V ···〉mem −→ 〈V ···〉thrd〈··· X 7→ V ′ ···〉mem. Then two in-
stances of this rule (i.e., two threads attempting to concurrently update distinct
memory locations) should be allowed to advance concurrently in one transition
step as in Figure 1(a). In fact, two instances of such memory access rules should
be forced to interleave only if trying to concurrently access the same location,
one of the accesses being a set, as exemplified in Figure 1(b).

However, using the rewriting logic semantics associated to the rule above, the
concurrent rewriting transition from Figure 1(a) would need to be interleaved, too.
The reason is that the two instances of the rule overlap on the mem cell and on the
algebraic constructs representing the cell composition operators. Nevertheless, it is
worthwhile noting that the operators on which the rule instances overlap are only
mentioned as context needed for the transition to apply, playing the same ”gluing”
role that interface graphs play in the DPO approach to graph transformations [2].

The special rewrite rules employed by the K framework, from here on named
K rules, make this sharing of context explicit: rewrite rules are extended to
allow specifying which parts of the matching pattern are effectively changed by
a rule, allowing the rest to be shared with other rules. For example, the K rule
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corresponding to the set rewrite rule presented above is:

〈set(X ,V ′)
V

···〉thrd 〈··· X 7→ V
V ′
···〉mem

The intuition for the above rule is that, while the entire pattern of the top needs
to be matched for the rule to apply, only the underlined set instruction and the
value in the memory are actually changed by the rule, being replaced with the
corresponding values below the line. This furthermore implies that the thrd and
mem containers, along with the ellipses (specifying potential additional content),
called the read-only pattern of the rule are only needed to specify the context
in which the local transformations would apply, and thus can be shared with
other concurrent instances of K rules.

Contributions This paper gives semantics to K rewriting through the help of
graph rewriting, adapting existing representations of terms and rules as graph
and graph rewrite rules to maximize their potential for concurrent application.
The main result, Theorem 2, shows that K rewriting is sound and complete
w.r.t. standard term rewriting, and that the concurrent application of K rules
is serializable. Soundness means that applying one K rule can be simulated by
applying its corresponding direct representation as a rewrite rule. Completeness
means the converse, i.e., that one application of a term rewriting rule can be
simulated by applying the corresponding K rule directly. Finally, the serialization
result ensures that applying multiple K rules in parallel can be simulated by
applying them one by one, obtaining an interleaving semantics for K rewriting
through standard rewriting, which is one of the desirable goals for all truly
concurrent models of computation [10]. Interestingly, a novel and unexpected
acyclicity condition (presented in Section 5) was required to ensure serializability.

The remainder of the article is organized as follows. Section 2 formally
defines K rules and relates them to term-rewrite rules. Section 3 recalls the basic
definitions from the DPO approach to graph rewriting. Section 4 formalizes
the encoding of terms with variables as graphs used by K graph rewriting.
Section 5 presents the encoding of K rules as graph-rewriting rules, defines K
graph rewriting as a term-graph rewriting formalism, and shows it admits parallel
derivations which are serializable. Finally, Section 6 reflects K graph rewriting
upon term rewriting proving soundness, completeness, and serialization of parallel
derivations w.r.t. term-rewriting, and Section 7 concludes. An appendix with
background material on jungle rewriting and proofs for all claimed results is
included for reviewers’ convenience; these are also available in the companion
technical report [14].

2 K rules

The K rules describe how a term can be transformed into another term by
altering some of its parts. They share the idea of match-and-replace of standard
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term rewriting, but each K rule also specifies which part of the pattern is read-
only. These read-only patterns are akin to the interfaces in graph rewriting [2],
being used to glue together read-write patterns, that is, subparts to be rewritten.
Moreover, through their variables, the read-only patters also provide information
which can be used and shared by the read-write patterns.

A signature Σ is a pair (S, F ) where S is a set of sorts and F is a set of
operations f : w → s, where f is an operation symbol, w ∈ S∗ is its arity, and
s ∈ S is its result sort. If w is the empty word ε then f is called a constant. TΣ is
the universe of (ground) terms over Σ and TΣ(X ) is that of Σ-terms with variables
from the S-sorted set X . Given term t ∈ TΣ(X ), let vars(t) be the variables from
X appearing in t. Given an ordered set of variables, W = {�1, . . . ,�n}, named
context variables, or holes, a W-context over Σ(X ) (assume that X ∩W = ∅) is a
term C ∈ TΣ(X ∪W) in which each variable in W occurs once. The instantiation
of aW-context C with an n-tuple t = (t1, . . . , tn), written C[t] or C[t1, . . . , tn], is
the term C[t1/�1, . . . , tn/�n]. One can regard t as a substitution t :W → TΣ(X ),
defined by t(�i) = ti, in which case C[t] = t(C).

Definition 1. A K rule ρ : (∀X ) k[ L⇒ R ] over a signature Σ = (S, F ) is a
tuple (X , k, L,R), where:

– X is an S-sorted set, called the variables of the rule ρ;
– k is a W-context over Σ(X ), called the rule pattern, where W are the holes

of k; k can be thought of as the “read-only” part of ρ;
– L,R : W → TΣ(X ) associate to each hole in W its original and replace-

ment term; L, R can be thought of as the “read/write” part of ρ.

We may write (∀X ) k[ l1
r1

, . . . , ln
rn

] instead of (∀X ) k[ L ⇒ R ] whenever W =

{�1, · · · ,�n} and L(�i) = li and R(�i) = ri; this way, the holes are implicit
and need not be mentioned.

A set of K rules is called a K system.

The variables inW are only used to identify the positions in k where rewriting
takes place; in practice we typically use the compact notation above, that is,
underline the to-be-rewritten subterms in place and write their replacement
underneath. When the set of variables X is clear, it can be omitted.

Given a K rule ρ : (∀X ) k[ L ⇒ R ], its associated 0-sharing K rule is
ρ0 : (∀X ) �[ L(k)

R(k)
], which is a K rule specifying the same transformation but

without sharing anything. It is relatively easy to see that one can associate to
any K rule ρ as above a regular rewrite rule K2R(ρ) = (∀X)L(k)→ R(k). This
is to account for the fact that, when applied in a non-concurrent fashion, K rules
must obey the standard rewriting semantics.

Conversely, given a rewrite rule ρ : (∀X )l → r, let R2K (ρ) denote the 0-
sharing K rule for which K2R(R2K (ρ)) = ρ, that is (∀X ) �[ l

r
]. For this reason,

we take the liberty to denote a 0-sharing K rule ρ : (∀X ) �[ l
r

] by l → r.
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Running Example Consider the following K system, where h is a ternary operation,
g is binary, f is unary, 0, 1, a, b are constants, and x, y are variables:

(1) h( x
g(x, x)

, y, 1
0
) (2) h(x, 0

1
, y) (3) a→ b (4) f(x)→ x

For each of the rules above, its corresponding parts according to Definition 1 are:

rule X W p L R
(1) {x, y} {�1,�2} h(�1, y,�2) �1 7→ x ; �2 7→ 1 �1 7→ g(x, x) ; �2 7→ 0
(2) {x} {�} h(x,�, y) � 7→ 0 � 7→ 1
(3) ∅ {�} � � 7→ a � 7→ b
(4) {x} {�} � � 7→ f(x) � 7→ x

Suppose now we want to rewrite term h(f(a), 0, 1) using rules (1)–(4). Flatten-
ing these K rules into rewrite rules, in rewriting logic one can apply either rules
(1), (3), and (4), or rules (2), (3), and (4) concurrently on the term h(f(a), 0, 1),
to obtain either h(g(b, b), 0, 0) or h(b, 1, 1), respectively. However, executing both
rules (1) and (2) in parallel is impossible with the deduction rules of rewriting logic
because “the same object cannot be shared by two simultaneous rewrites” [9], i.e.,
rule instances are not allowed to overlap. Nevertheless, as seen in the examples
in Section 1, being able to apply rules like (1) and (2) concurrently is crucial for
capturing the truly concurrent semantics of programming languages.

In spite of the fact that all four rule instances above overlap on the term
h(f(a), 0, 1), using K rules one can intuitively apply all four rules concurrently.
First, note that rule (1) modifies the first and the third arguments of h regardless of
the second argument, while rule (2) modifies the second argument of h regardless
of its first and third arguments. Therefore, rules (1) and (2) share the top operator
h and yield complementary changes on the original term, so they can safely apply
their changes in parallel on term h(f(a), 0, 1). Moreover, note that none of these
rules relies on x being bound to f(a), or what happens with f(a) during their
application. Therefore, we can rewrite the f(a) that x points to in parallel with
the application of rules (1) and (2). Using a similar argument, rules (3) and (4)
can apply in parallel on f(a) to rewrite it to b. Thus, all of the rules can apply
in one parallel rewrite step on h(f(a), 0, 1) and produce h(g(b, b), 1, 0).

In the remainder of this paper we will formalize K term rewriting, i.e., rewriting
using K rules, through an embedding into graph rewriting theory. The reasons
for our choice are: (1) the intuition that the pattern k of a K rule is meant to be
“shared” with competing concurrent rule instances is conceptually captured by
the notion of interface graphs of graph rewrite rules in the double-pushout (DPO)
algebraic approach to graph rewriting [2]; (2) (term) graph rewriting [5,11] was
shown to be sound and complete for term rewriting, which we want to preserve
for K; and (3) the results in the DPO theory of graph rewriting show that if
graph rule instances only overlap on the interface graphs, then they can be
concurrently applied and the obtained rewrite step is serializable [6], which is
also the desirable semantics for K.
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As our interests fall at the convergence of term-graph rewriting (for being
sound and complete w.r.t. term rewriting) and the DPO approach to graph
rewriting (for concurrency with sharing of context), the subsequent graph em-
bedding of K rewriting can be seen as an extension (enhancing the concurrency,
while conserving soundness and completeness) of jungle hypergraph rewriting [5].

The remainder of the paper describes K graph rewriting, which uses the same
mechanisms and intuitions of jungle rewriting, but adapts the jungle term-graphs
and graph-rewrite rules [5] to increase the potential for concurrency, both with
sharing and without sharing of context.

3 Graph Transformations—the DPO approach

Before formalizing our embedding of K rules into graph rules, we briefly recall some
basic notions from the theory of graph grammars and graph transformations [2].

Assuming fixed sets LV and LE for node and for edge labels, respectively, a
graph G over labels (LV ,LE) is a tuple G = 〈V,E, source, target, lv, le〉, where V
is the set of vertices (or nodes), E is a set of edges, source, target : E → V are
the source and the target functions, and lv : V → LV and le : E → LE are the
node and the edge labeling functions, respectively. We will use VG, EG, sourceG,
. . . , to refer to the corresponding components of the tuple describing a graph G.
A graph morphism f : G → G′ is a pair f = 〈fV : VG → VG′ , fE : EG → EG′〉
of functions preserving sources, targets, and labels. Let Graph(LV,LE) denote
the category of graphs over labels (LV ,LE). Given graph G, let ≺G⊆ V × V
be its path relation: v1 ≺G v2 iff there is a path from v1 to v2 in G. G is cyclic
iff there is some v ∈ VG s.t. v ≺G v. Given v ∈ VG, let G�v be the subgraph
of G (forwardly) reachable from v.

A graph rewrite rule p : (L
l←− K r−→ R), is a pair of graph morphisms l : K → L

and r : K → R, where l is injective. The graphs L, K, and R are called the
left-hand-side (lhs), the interface, and the right-hand-side (rhs) of p, respectively.

L K R

G C H

l r

l∗ r∗
m m∗m

Given a graph G, a graph rule p : (L
l←− K

r−→ R),
and a match m : L → G, a direct derivation from
G to H using p (based on m) exists iff the diagram
to the right can be constructed, where both squares
are pushouts in the category of graphs. In this case,

C is called the context graph, and we write G
p,m
==⇒

H or G
p

=⇒ H. Whenever l or r is an inclusion, the
corresponding l∗ or r∗ can be chosen to also be an inclusion.

A direct derivation G
p,m
==⇒ H exists iff the following gluing conditions hold [2]:

(Dangling condition) no edge in EG \mE(EL) is incident to any node in mV (VL \
lV (VK)); and (Identification condition) there are no x, y ∈ VL ∪EL with x 6= y,
m(x) = m(y) and x, y 6∈ l(VK ∪ EK). If it exists, H is unique up to graph
isomorphism. The gluing conditions say that whenever a transformation deletes
a node, it should also delete all its edges (dangling condition), and that a match
is only allowed to identify elements coming from K (identification condition).
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Given a family of graph-rewrite rules pi : (Li
li←− Ki

ri−→ Ri), i = 1, n, not
necessarily distinct, their composed graph-rewrite rule p1 + · · · + pn is a rule

p : (L
l←− K r−→ R) where L, K, and R are the direct sums of the corresponding

components from (pi)i=1,n and, similarly, l and r are the canonical morphisms
induced by (li)i=1,n and (ri)i=1,n, respectively. Given a graph G, matches (mi :
Li → G)i=1,n induce a combined match m : L → G defined as the (unique)
arrow amalgamating all individual matches. Matches (mi : Li → G)i=1,n have
the parallel independence property iff for all 1 ≤ i < j < n, mi(Li) ∩mj(Lj) ⊆
mi(Ki)∩mj(Kj). If (mi : Li → G)i=1,n have the parallel independence property
and each mi satisfies the gluing conditions for rule pi, then the combined match
m satisfies the gluing conditions for the composed rule p1 + · · ·+ pn, and thus

there exists a graph H such that G
p1+···+pn,m
========⇒ H. Moreover, this derivation

is serializable, i.e., G
p1+···+pn−1,m

′

==========⇒ Hn−1
pn
=⇒ H, where m′ is the composition

of (mi)i=1,n−1 [6, Theorem 7.3].

4 K Term-Graphs

K term-graphs are close to the bipartite graph representation of jungles (they
actually coincide for ground terms). The difference is that the K term-graph
representation allows certain variables (the anonymous and the pattern-hole
variables) to be omitted from the graph. By reducing the number of nodes
that need to be shared (i.e., by not forcing these variable nodes to be shared
in the interface graph), this “partiality” allows terms at those positions to be
concurrently rewritten by other rules.

The top-half of Figure 2 shows the K term-graphs involved in the graph
representations of the K rules (1)–(4) of our running example. For example, the
representation of variable x can be observed as the (singleton) graph R for rule (4),
the constants a and b as graphs L and R from rule (3), and the term f(x) as graph
L in rule (4); all these K term-graphs are also graph jungles [5]. The bottom-half
of Figure 2 shows the K term-graphs involved in the graph transformation which
uses all four rules combined to rewrite the graph representation of h(f(a), 0, 1)
(graph G) to one that can be used to retrieve h(g(b, b), 1, 0) (graph H).

The novel aspect of our representation is that, unlike the graph jungles, the K
term-graphs are partial: they do not require each operation node to have outward
edges for all sorts in its arity. This partiality plays a key role in “abstracting
away” the anonymous variables and the holes of the pattern. For example, the
number of outward edges specified for the nodes labeled with h have all possible
values between 3 (its normal arity) in graphs G and H, to 0, e.g., in graph K
for rule (1). This flexibility is crucial for enhancing concurrency; only through
it rules (1) and (2) can apply in parallel, as it allows the outward edge of h
labeled with 1 to be rewritten by rule (1), while h is still shared with rule (2).
This is achieved by relaxing the properties of the graph representation of jungles
to allow partially specified operations.
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L K R L K R
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h

x:s
1

int

3

1

s

h

x:s int

1

s

h

s
1
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int

3

0
x:s int

1

1 2

s

h

int
2

0

s

h

int

0

s

h

int
2

1

int

0

l r l r

(1): h( x

g(x, x)

, y, 1

0

) (2): h(x, 0

1

, y)

L K R L K R

s

a

s s

b

s

f

x:s
1

s

x:s

x:s

l r l r

(3): a

b

(4): f(x)

x

G C H

s

h

s
1

f

int
2

0

int

3

1
s
1

a

s

h

s

f

int

s

int

0

int

1

s

h

s
1

g
int

2

1

int

3

0

int

0

int

1

s

b

1 2

l∗ r∗
h(f(a), 0, 1)

(1)+(2)+(3)+(4)
≡≡≡≡≡≡≡≡≡≡≡≡≡� h(g(b, b), 1, 0)

Fig. 2. Graph representations for the K rules (1)–(4) from the motivating example and
their concurrent application.

Definition 2. Given a signature Σ = (S, F ), a K Σ-term-graph is a graph G
over labels (S ∪ F, {ε} ∪Nat) satisfying:

0. G is bipartite, partitions given by nodes with labels in S—sort nodes—, and
F—operation nodes—;

1. every operation node labeled by f : s1 · · · sn → s is
(i) the target of exactly one edge, labeled with 0 and having its source labeled

with s, and
(ii) the source of at most n edges having distinct labels in {1, · · · , n}, such

that lv(target(e)) = sle(e) for each such edge e;
2. every sort node has at most one outward edge; and
3. G is acyclic.
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Let KGraphΣ denote the full subcategory of Graph(S∪F, {ε} ∪Nat) having K
Σ-term-graphs as objects.

As any graph jungle is a K term-graph, most of the definitions from graph
jungles [5] can be easily extended for term-graphs. For notational simplicity K
term-graphs will be referred to as just term-graphs.

Given a set of anonymous variables A ⊆ X , an A-anonymizing variable-
collapsed tree representation of a term t 6∈ A with variables from X is obtained
from a variable-collapsed tree representing t (i.e., the tree representing t where
variable nodes with same label have been identified) by removing the variable
nodes corresponding to variables in A and their adjacent edges.

A root of term-graph is a (sort-)node v such that indegree (v) = 0. Let ROOTG

denote the set of roots of G. VARG is the set variables of G, that is, sort-nodes
of G such that outdegree (v) = 0. Note that this definition only captures the non-
anonymous variables. To capture all variables, we need to additionally identify
partially specified operation nodes.

Let G be a term-graph over Σ = (S, F ). The set OPENG of open (or
incomplete) operation nodes of G, consists of the operation nodes whose outward
edges are incompletely specified. Formally, OPENG = {v ∈ lv−1(S) | |s−1(v)| <
arity(lv(v))}. The set of term variables of G, TVARSG consists of the variables
of G and the positions of the unspecified outward edges for open operation nodes
(which stand for anonymous variables). Formally, TVARSG = VARG ∪ {xv,i |
v ∈ OPENG, 1 ≤ i ≤ arity(lv(v)) ∧ i 6∈ le(source−1(v))}.

The term represented by some sort node v in a term-graph G, termG(v), is
obtained by descending along operation nodes and collecting their labels:

termG(vs) =


vs, if vs ∈ VARG

σ(t1, . . . , tn), if {ve} = target(source−1(vs)), le(ve) = σ : s1 . . . sn → s,
and ti = subtermG(ve, i), 1 ≤ i ≤ n

where subtermG is defined on pairs of operation nodes with integers by

subtermG(ve, i) =

{
xve,i, if xve,i ∈ TVARSG

termG(target(e)), if source(e) = ve and le(e) = i

5 K Graph Rewriting

As we want K graph rewriting to be a conservative extension of graph jungle
evaluation, every 0-sharing K rule (∀X ) �[ left

right
] is encoded as the graph jungle

evaluation rule corresponding to the rewrite rule left → right—see, for example
the encodings of rules (3) and (4) in Figure 2. However, if the rule pattern
k is non-empty, then the rule is encoded so that the variable-collapsed tree
representing k would not be modified by the rule. To be more precise, instead of
obtaining K by removing the outgoing edge from the root of L, we will instead
only remove the edges connecting the hole variables to their parent operations.
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Moreover, to further increase concurrency, the variables which appear in the
read only pattern k but not in the left substitution are anonymized. However,
departing from the definition of jungle rules, we relax the requirement that the
order between the nodes of K and variables of R should be the same as in L, to
allow rules such as reading or writing the value of a variable from a store.

Let us discuss the representation of the K rule (1) in Figure 2, namely
h( x
g(x, x)

, y, 1
0
). The left-hand-side is represented as a {y}-anonymized variable

collapsed tree representing h(x, y, 1); variable y is anonymized as only appearing
in the pattern k. The interface K is obtained from L by severing (through the
removal of edges labeled by 1 and 3) the part of L representing the read-only
pattern h(�1, y,�2) (which is the {y,�1,�2}-anonymized variable collapsed tree
representing h(�1, y,�2)) from the parts of L representing the left substitution
(namely, x and 1). Thus, the l morphism from K to L is clearly an inclusion. R is
obtained by taking the disjoint union between K and the variable-collapsed trees
corresponding to terms g(x, x) and 0 given by the right substitution, identifying
the variables, and ”gluing” them to the part representing the read-only pattern
through edges from operation node h labeled 1 and 3, respectively. Like l, the
r morphism can also be chosen to be an inclusion.

The graph rules in Figure 2 are obtained using the definition below. To
avoid clutter, we do not depict node or edge names (except for variables). Also,
the actual morphisms are not drawn (they are either inclusions or obvious
collapsing morphisms).

Definition 3. Let ρ :(∀X ) k[ L⇒ R ] be a K rule.
If ρ is 0-sharing, then the K graph rewrite rules representing ρ coincide with

the graph evaluation rules [5] corresponding to the rewrite rule associated to ρ.
Otherwise, a K graph rewrite rule representing ρ is a graph rewrite rule

(Lρ
lρ←− Kρ

rρ−→ Rρ) such that:

Lρ is an A-anonymized variable collapsed tree representation of L(k), where
A = vars(k) \ vars(L) are the anonymous variables of ρ;

Kρ. Let K0 be the subgraph of Lρ which is a A-anonymized variable collapsed
tree representing k; then Kρ = (VKρ , EKρ) is given by VKρ = VLρ and
EKρ = ELρ \ {e ∈ ELρ | source(e) ∈ VK0

and target(e) 6∈ VK0
}. lρ is the

inclusion morphism.
Rρ Let R0 be an A-anonymized variable collapsed tree representation of R(k)

containing K0 as a subgraph. Then Rρ is obtained as the pushout between
the inclusions of K0 ∪VARR0

into Kρ and R0, respectively.

The nodes from K0 will be called pattern nodes.

Note that the edges removed from Lρ to obtain Kρ are those whose target
corresponds to the hole variables of k.

Similarly to the graph jungle rules, the (basic) K graph rules defined above
ensure that the gluing conditions are satisfied for any matching morphism. For the

remainder of this section, let us fix G to be a term-graph, ρi : (Li
li←− Ki

ri−→ Ri),
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i = 1, n to be K graph-rewrite rules, and mi : Li → G to be parallel independent

matches. Let ρ : (L
l←− K

r−→ R) be the composed rule of (ρi)i=1,n, and let
m : L → G be the composition of the individual matches. It follows that m
satisfies the gluing conditions for ρ, and thus (ρ,m) can be applied as a graph
transformation. Let us now provide a concrete construction for the derivation of
(ρ,m) in Graph which will be used in proving the subsequent results.

The pushout complement object of m and l can be defined in Graph as
C = G\m(L\K) where the difference is taken component-wise. That C is a graph
is ensured by the gluing conditions. The standard construction of the pushout
object H is to factor the disjoint union of C and R through the equivalence
induced by the pushout morphism m : K → C and r. We do this directly, by
taking preference for elements in C, and thus choosing representatives from m(K)
and by choosing as representatives variables for the equivalence classes induced
by the parts of r belonging to collapsing rules.

Suppose G is a K graph representation of term t, i.e., that ROOTG = {rootG},
G = G�rootG , and termG(rootG) = t. When applying a (composed, or not) K
graph rewrite rule to graph G, rootG must be preserved in the context C, because
K contains all nodes of L. Therefore, let us define the top of the obtained
graph H as being rootH = r∗(rootG). Note that rootH might not be equal to
rootG, because rootG could be identified with a variable node by a collapsing
rule; moreover, rootH might not be the only element of ROOTH , because of
the potential “junk” left by the application of the rule. Nevertheless, the term
termH(rootH) would be the one to which termG(rootG) was rewritten.

To show that KGraphΣ admits similar constructions for (composed) K
graph-rewrite rules as Graph, that is, that the graphs described above are in fact
term-graphs, we need to strengthen the constraints on the matching morphisms.

Indeed, without further constraints, applying K graph rules on term-graphs
can produce cyclic graphs. Consider K rules f(g(a

x
), x) and f(y, h(b

y
)) together

with the term to rewrite f(g(a), h(b)). Upon formalizing terms as term-graphs
and K rules as K graph rewrite rules, the result of applying the composed K
graph rewrite rule on the graph representing f(g(a), h(b)) is the graph H in
Figure 3(b), which has a cycle and thus it is not a term-graph.

The reason for the cycle being introduced is that the matches overlap, allowing
variable nodes to precede operation nodes in the path order of G, while r reorders
the mapping of the variables to create a cycle. In jungle rewriting [5] this issue is
prevented by imposing a statically checkable condition on the rules, namely that
the path relation between the nodes preserved from L should not be changed

by R. Formally, we say that a rule ρ : (L
l←− K

r−→ R) is cycle free if whenever
v ≺R x with v ∈ VK and x ∈ VARL∩VK , it must be that v ≺L x. This condition
is sufficient to prevent the introduction of cycles; however, we find it rather
strong in our programming language context—in particular, this condition would
disallow rules like the one for reading the value of a variable from the store. In
what follows, we give a (semantical) condition on the matching morphism m
rather than the rule which is sufficient to avoid the introduction of cycles.
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Fig. 3. Parallel K graph rewriting can introduce cycles.

Given a (composed) term-graph rewrite rule ρ : (L
l←− K r−→ R), r induces on K

a (partial) replacement order ≺r= r−1(≺R), i.e., v1 ≺r v2 in K iff r(v1) ≺R r(v2)
(there is a path from r(v1) to r(v2) in R). Moreover, given match m of p into G,
m induces on K a (partial) matching order ≺m= l−1(m−1(≺G)), i.e., v1 ≺r v2
in K iff m(v1) ≺G m(v1) (l is an inclusion). Although both these (partial) orders
are strict, their combination is not guaranteed to remain strict. We say that
the match m is cycle free w.r.t. p if the transitive closure of ≺m ∪ ≺r is also
a strict (partial) order.

Proposition 1. If any matching morphism for a K graph rewriting rule ρ is
cycle free, then ρ is a jungle graph rewriting rule. If ρ is a K graph rule, G is a

term-graph, G
(ρ,m)
===⇒ H, and m is cycle free w.r.t. ρ, then H is acyclic.

The following result guarantees that if the original graph is a tree, then cycle
freeness of the matching morphism characterizes acyclicity of the resulting graph.

Proposition 2. Let G be a tree term-graph. If ρ is a simple K graph rule and
m is a match for ρ into G, then m is cycle free. If ρ is a composed K graph rule

and G
(ρ,m)
===⇒ H, then H is acyclic iff m is cycle free w.r.t. ρ.

Next result shows that, under cycle-freeness conditions, KGraphΣ is closed
under (parallel) derivations using K graph rewrite rules.
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Theorem 1. Let G, (ρi)i=1,n, (mi)i=1,n, ρ, m, C, and H be defined as above.
If m is cycle-free w.r.t. p, then:

(Parallel) Derivation: G
ρ,m

======⇒
KGraphΣ

H;

Serialization: There exist (Gi)i=0,n such that G0 = G, Gn = H, and

Gi−1
ρi

======⇒
KGraphΣ

Gi for each 1 ≤ i ≤ n.

6 K Term Rewriting

Theorem 1 allows us to capture the serializable fragment of K rewriting as the
relation ≡� defined below:

Definition 4. Let t be a Σ-term and ρ1, · · · , ρn be K rules (not necessarily dis-

tinct). Then t
ρ1+···+ρn
≡≡≡≡≡≡≡≡� t′ iff there is a term-graph H s.t. G

K2G(ρ1)+···+K2G(ρn)
===============⇒

KGraphΣ

H and termH(>H) = t′, where G is the tree term-graph representing t. We say

that t ≡� t′ iff there is a (composed) K rule ρ s.t. t
ρ
≡� t′.

We next show that the K rewriting above is a conservative extension of the
standard term rewriting relation.

We can give a straightforward definition for what it means for a K rule to
match a term: one K rule ρ : (∀X ) k[ L⇒ R ] matches a term t using context C
and substitution θ iff its corresponding rewrite rule K2R(ρ) : (∀X)L(k)→ R(k)
matches t using the same C and θ, that is, iff t = C[θ(L(k))]. This conforms to
the intuition that, when applied sequentially, K rules behave exactly as their
corresponding rewrite rules.
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Fig. 4. Subterm sharing might lead to unsound K graph rewriting.

However, it turns out that, although preserving the term-graph structure
(under cycle-freeness assumptions), K rewriting on graphs might not be sound
w.r.t. term rewriting in the presence of subterm sharing. Consider the example in
Figure 4. We want to apply rule f(h(a

b
), x), corresponding to the regular rewrite
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rule f(h(a), x) → f(h(b), x), to the term f(h(a), h(a)). If we would represent
f(h(a), h(a)) as a tree, then the K graph rewriting step would be sound, leading
to a graph depicting f(h(b), h(a)); however, if we decide to collapse the tree
representing h(a) then we obtain f(h(b), h(b)), as depicted in Figure 4 which
cannot be obtained through regular rewriting. The reason for this unsound
rewriting is that part of the read-only patten of the rule is shared. To overcome
this, we will restrict the read-only pattern of the rule to only match against
a tree in the graph to be rewritten. We say that a match m : L → G of a K
graph rewrite rule ρ : (L

l←− K
r−→ R) is safe if m(K�rootL) is a tree in G, that

is, if indegreeG(mV (v)) = 1 for any v ∈ VK�rootL \ {rootL}. Note that, if G is a
tree then all matching morphisms on G are safe.

Proposition 3. Let ρ be a proper K rewrite rule, let ρ0 be its associated 0-sharing
K rewrite rule, and let m be a cycle free safe matching morphism for K2G(ρ) in

G. Let H be such that G
K2G(ρ),m
======⇒
KGraphΣ

H, and let H ′ be such that G
K2G(ρ0),m
=======⇒
KGraphΣ

H ′.

Then for any v ∈ ROOTG, termH(v) = termH(v).

Since the K graph representation of a term t without anonymous variables
is a graph jungle representing the same term, and since the K term-graph
representation of a 0-sharing K rewrite rule is a graph jungle rule representing the
rewrite rule associated to it, we can use the soundness and completeness of jungle
rewriting w.r.t. standard term rewriting [5] to prove the sequential soundness
and completeness of K graph rewriting w.r.t. standard term rewriting, and, by
combining that with Theorem 1, to prove the serializability result for K rewriting.

Theorem 2. Let ρ, ρ1, . . . , ρn be K rules. Then:

Completeness: If t
K2R(ρ)
====⇒ t′ then t

ρ
≡� t′.

Soundness: If t
ρ
≡� t′ then t

K2R(ρ)∗

=====⇒ t′.

Serializability: If t
ρ1+···+ρn
≡≡≡≡≡≡≡≡� t′, then there exists a sequence of terms t0, · · · , tn,

such that t0 = t, tn = t′, and ti−1
ρ∗i
≡� ti.

Therefore, K rewriting is sound and complete for term rewriting, while
providing a higher degree of concurrency in one step than existing approaches.

7 Conclusion

This paper presents a truly concurrent semantics with sharing of resources for the
K framework, a term-rewriting-based semantic framework specialized for defining
programming languages and calculi. The distinguishing aspect of the K rewrite
rules is that they explicitly state what portions of the term can be concurrently
shared with other rules. This sharing information allows one to increase the
potential for concurrent rewriting, but it may also lead to inconsistencies if
not used properly. We showed that, under reasonable conditions, K rewriting
is actually sound, complete, and serializable w.r.t. term rewriting. Moreover,
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although being motivated by the K framework, K rewriting is not confined to
it; it rather is an extension of rewriting which allows additional concurrency
for any rewriting-based formalism.

Future work Although we have found a sufficient condition for sound and seri-
alizable concurrent executions, this condition is rather semantical, and might
be non-trivial to check. However, all of the rule combinations in our current
definitions of programming languages seem to generate cycle free executions.
An interesting research problem would be to find generic enough syntactic con-
ditions which would guarantee that cycle freeness is satisfied for all possible
combinations of matches.
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The material presented below is included for reviewers’ convenience and can
be found in the companion technical report [14].

A Jungle rewriting
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The jungle term-graph rewriting [5] approach uses (directed)
hypergraphs to encode terms and rules. Hypergraphs generalize
graphs by allowing edges to have multiple (or zero) sources
and targets; more precisely, the source and target mappings
now yield words over nodes instead of just a node (words,
rather than sets, to maintain an order among nodes). A jungle
represents a term as an acyclic hypergraph whose nodes are
labeled by sort names, and whose edges are labeled by names of
operations in the signature; the above figure on the right depicts
the jungle representation of term h(f(a), 0, 1). Constants are
edges without any target. Variables are represented as nodes
which are not sources of any edge. Non-linear terms are represented by identifying
the nodes corresponding to the same variable. There could be multiple possible
representations of the same term as a jungle, as identical subterms can be
identified (or not) in the jungle representation.

Let VARG denote the variables of G; we have that VARG = {v ∈ VG |
outdegreeG(v) = 0}. The term represented by some node v in a jungle G,
termG(v), is obtained by descending along hyperedges and collecting the hyper-
edge labels:

termG(v) =

{
v if v ∈ VARG

le(e)(term∗G(target(e)) otherwise,
where {e} = source−1(v).

A root of a jungle is a node v such that indegree (v) = 0. Let ROOTG denote
the set of roots of G. Given a term t (with variables), a variable-collapsed tree
representing t is a jungle G with a single root rootG which is obtained from the tree
representing t by identifying all nodes corresponding to the same variable, that
is, termG(rootG) = t, and for all v ∈ V , indegree (v) > 1 implies that v ∈ VARG.

A term rewrite rule left → right is encoded as a jungle evaluation rule
L←↩ K r−→ R in the following way: L is a variable-collapsed tree corresponding
to left ; K is obtained from L by removing the hyperedge corresponding to the
top operation of left ; if right is a variable (i.e., the rule is collapsing, then R is
obtained from K by identifying rootL with right ; otherwise, R is the disjoint
union of K and a variable collapsing tree R′ corresponding to right , where rootR′

is identified with rootL and each variable of R′ is identified with its counterpart

from VARL; L
l←↩ K and K

r−→ R are inclusions with the exception that r maps
rootL to right if right is a variable.

Since each edge has precisely one source, it is easy to reconstruct a term
given a jungle and specifying a top node. It has been shown [5] show that graph
rewriting on jungles is sound and complete for term rewriting.

By using the bipartite graph model of hypergraphs, jungle hypergraphs can
be represented as bipartite graphs, where both sort nodes and operation edges of
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the hypergraph become sort and operation nodes in the graph and new edges
are added to link them similarly to how they were linked in the hypergraph.
To maintain the order given by the target word, we here prefer to label the
corresponding edges with their position in that word. For example, the bipartite
graph of the jungle representing h(f(a), 0, 1) is represented by graph G in Figure 2.

B Proofs of the results

Let us first state some facts given by the structure of K graph rewrite rules. Let
root i identify the root of Li in L. Since the lhs cannot be a variable, it follows
that Li has at least one edge and one operation node. Ki is a subgraph of Li
and li is the inclusion morphism; moreover Ki contains all nodes of Li.

We have that ROOTL = {root i | i = 1, n}. Let now J be the set of indexes of
collapsing rules. In the following, let i range over {1, . . . , n} and let j range over J .

We define H, together with r∗ : C → H and m∗ : R → H, as follows:

– VH = (VC \ {m(rootj) | j ∈ J}) ] (VR \ VK)

– r∗V (v) =

{
v,if v 6= m(rootj),

r∗V (m(r(rootj))),if v = m(rootj),

– m∗V (v) =

{
v,if v 6∈ VK

r∗V (mV (v)),otherwise
– EH = EC ] (ER \ EK)

– r∗E(e) = e and m∗E(e) =

{
e,if e 6∈ EK

mE(e),otherwise

– sourceH(e) =

{
r∗(sourceC(e)),if e ∈ EC
m∗V (sourceR(e)),if e ∈ ER \ EK

– targetH(e) =

{
r∗V (targetC(e)),if e ∈ EC
m∗V (targetR(e)),if e ∈ ER \ EK

Note that r∗V is recursively defined. However, it is well defined, because G is
acyclic and, since rV (rootj) ∈ VARLj , it must be that G�mV (rV (rootj)) is a strict
subgraph of G�mV (rootj), implying that the recursion should end because both G
and J are finite. It can be easily verified that (H, r∗,m∗) is a pushout of (m, r).

Proposition 1. (1) If any matching morphism for a K graph rewriting rule ρ
is cycle free, then ρ is a jungle graph rewriting rule. (2) If ρ is a K graph rule,

G is a term-graph, G
(ρ,m)
===⇒ H, and m is cycle free w.r.t. ρ, then H is acyclic.

Proof. Let ρ : (L
l←− K r−→ R) be a K graph rewriting rule.

(1) Suppose that there exist v ∈ VK and x ∈ VARL such that v ≺R x and
v 6≺L x. Let then G be the graph obtained from L by adding an edge e such
that source(e) = x and target(e) = v. G is still acyclic, because L is acyclic and
because v 6≺L x. Let m : L→ G be the inclusion morphism. We have that m is
not cycle free, since v ≺R x implies that v ≺r x and x ≺G v implies that x ≺m v,
contradiction.
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(2) Proof by contradiction. Assume that H is not acyclic, and let e0, . . . , en
be a sequence of edges in H exhibiting a cycle. Let then eα0

, . . . , eαm be a
subsequence of the above sequence with the property that all its elements are
edges in C and that the blocks of edges between them (including the one starting
at eαm and wrapping over to eα0

are alternating between C and R \K. Then, if
the edges between eαi and eαi+1

are all in C, it must be that both source(eαi)
and target(eαi+1

) are in VK , and moreover, that source(eαi) ≺m target(eαi+1
).

Similarly, if the edges between eαi and eαi+1
are in R \K, then both target(eαi)

and source(eαi+1) are in VK (which we already knew from the previous sentence)
and that target(eαi) ≺r source(eαi+1). But this precisely implies that m is not
cycle free, contradiction.

Proposition 2. Let G be a tree term-graph.

1. If ρ is a simple K graph rule and m is a match for ρ into G, then m is cycle
free.

2. If ρ is a composed K graph rule and G
(ρ,m)
===⇒ H, then H is acyclic iff m is

cycle free w.r.t. ρ.

Proof. Observation 1: Since G is a tree, v1 ≺G v and v2 ≺G v implies that either
v1 ≺G v2 or v2 ≺G v1.

Observation 2: Assuming m is not cycle free, since both ≺m and ≺r are
acyclic, it must be that the cycle is obtained by an alternating sequence v1 ≺r
x1 ≺m v2 . . . ≺r xn−1 ≺m vn = v1, where xi is a variable node and vi is a pattern
node for all 1 ≤ i < n.

(1) Let us show that is impossible to have x ≺m v where x is a variable node
and v is a pattern node, whence m must be cycle free. Indeed, x ≺m v means
that m(x) ≺G m(v), which would lead to x ≺L v (since m(L) is a subtree of G),
which is not possible, as x is a leaf in L.

(2) We only need to prove that if m is not cycle-free, then H has cycles,
as the converse was proven in the general case by Proposition 1. Assume m
is not cycle free, and consider a minimal sequence exhibiting a cycle as in
Observation 2. We want to show that this sequence is also valid if we replace
≺m with ≺m= m−1(≺C), which would necessarily lead to a cycle in H, as H is
obtained as the pushout between C and R identifying K. We again reason by
contradiction and assume that this is not the case, that is, there exists 1 ≤ i < n
such that xi ≺m vi+1 but xi 6≺m vi+1. However, this can only happen if an
edge between m(xi) and m(vi+1) in G is removed by another rule. Therefore,
there must exist a pattern node v and a variable node x such that xi ≺m v,
v ≺L x, x ≺m vi+1, and v 6≺K x. From vi+1 ≺r xi+1 we deduce that vi+1 ≺r xi+1

are part of the same rule, and therefore there must be some v′ ∈ K such that
v′ ≺L vi+1 and v′ ≺L xi+1. Using Observation 1, m(v) ≺G m(x) ≺G m(vi+1) and
m(v′) ≺G m(vi+1) implies that either m(v) ≺G m(v′) or m(v′) ≺G m(v). Using
the parallel independence condition we deduce that m(v) ≺G m(v′), whence
xi ≺m v ≺m v′ ≺m xi+1 ≺m vi+2. However, xi ≺m vi+2 is in contradiction with
our original assumption that the cycle was minimal.

ICGT'12, LNCS, to appear



Theorem 1. Let G, (ρi)i=1,n, (mi)i=1,n, ρ, m, C, and H be defined as above.
If m is cycle-free w.r.t. p, then:

(Parallel) Derivation: G
ρ,m

======⇒
KGraphΣ

H;

Serialization: There exist (Gi)i=0,n such that G0 = G, Gn = H, and

Gi−1
ρi

======⇒
KGraphΣ

Gi for each 1 ≤ i ≤ n.

Proof. From the parallel independence condition, there exists a derivation G
ρ,m
==⇒

H in Graph, and, H must be acyclic (Proposition 1). To prove the Derivation
claim we only need to show that the graphs produced by the derivation, C and
H, are indeed term-graphs.

Assuming that we have proved the Derivation claim, we can use the seri-
alizability result for the category of graphs iteratively, the first step being the

following: From G
p1+···+pn,m
========⇒ H we deduce that G

p1+···+pn−1,m
′

==========⇒ H ′
pn
=⇒ H,

where m′ is the composition of (mi)i=1,n−1; however, by the derivation claim,
H ′ is also a term-graph, and, therefore, we can iterate to obtain the serialization
result in KGraphΣ.

To prove the derivation part of the theorem, we only need to show that the
graphs C and H defined above are term-graphs. First, let us show that C is a
term-graph. Conditions (0)—C is bipartite, (1.ii) at most n consistently labeled
outward edges for each operation node, (2)—at most one outward edge for each
sort node, and (3)—C is acyclic are obviously satisfied, since we only remove
nodes and edges. For (1.i) we only need to notice that whenever e ∈ EL \EK such
that source(e) is a sort node then target(e) ∈ VL\VK since it is the root operation
node corresponding to a 0-sharing rule. Let l∗ : C → G and m : K → C be the
morphisms completing the pushout diagram. We have that l∗ is an inclusion and
m is the restriction and co-restriction of m to K and C, respectively.

Let us now additionally verify that H is a term-graph.

(0)—H is bipartite This is ensured by the fact that R is bipartite and r only
identifies nodes of the same kind.

(1.i)—each operation node has exactly one inward edge Proof by contradiction.
Suppose there exists distinct edges e, e′ in EH such that targetH(e) = targetH(e)
and it is an operation node. Since >i and rV (>i) are sort nodes, we can assume,
as above that e ∈ EC , e′ ∈ ER \ EK , targetR(e′) ∈ VK , and targetC(e) =
mV (targetR(e′)). However, e′ ∈ ER \ EK , targetR(e′) ∈ VK , and targetR(e′)
operation node constitute a contradiction with the fact that R satisfies (1.i),
since there should be another edge in EK with the same target as e′.

(1.ii)—each operation node’s outward edges are consistent Since both C and
R are term-graphs, the labels of outward edges of operation sorts, as well as
the labels of their targets must be consistent in H. To complete our proof we
only need to additionally show that no duplicates are introduced by the merging.
Proof by contradiction. Suppose there exists distinct edges e and e′ in EH , such
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that sourceH(e) = sourceH(e′) is an operation node, and leH(e) = leH(e′). Then
we can assume that e′ ∈ EC , e ∈ ER \ EK , and sourceR(e) ∈ VK , inducing
that sourceC(e′) = mV (sourceR(e)). From e ∈ ER \ EK and sourceR(e) ∈ VK
we infer that there exists i such that e ∈ ERi \ EKi and sRi(e) ∈ VK is an
operation node. Therefore, xsourceRi (e),leRi (e) cannot be a (term) variable of
Ri, and therefore, it cannot be a term variable of Li, as well. Moreover, since
sourceRi(e) ∈ VK , it must be that sourceRi(e) ∈ VLi , and hence there exists
ei ∈ ELi such that sourceLi(ei) = sourceRi(e) and leLi(ei) = leRi(e). But this
implies that ei ∈ ELi \ EKi , which contradicts with the fact that e′ ∈ EC (since
e′ has the same source and label).

(2)—each sort node has at most one outward edge Proof by contradiction.
Suppose there exist distinct edges e and e′ in EH such that sourceH(e) =
sourceH(e′) = v, and v is a sort node. We can then suppose (without loss
of generality) that e ∈ EC and e′ ∈ ER \ EK . Then sourceR(e′) ∈ VK and
v = sourceH(e) = sourceC(E) = mV (sourceR(e′)). Reusing a previous argument,
from sourcer(e

′) ∈ VK , e′ ∈ ER \ EK and sourceR(e′) sort node we deduce that
sourceR(r′) ∈ ROOTL. Therefore, there exists i such that e′ ∈ ERi \ EKi and
sourceRi(e

′) = >i. However, this implies that source−1C (mV (sourceRi(e
′))) = ∅,

which contradicts with e ∈ EC .

(3)—H is acyclic This is ensured by the hypothesis that m is cycle-free w.r.t. p.

Proposition 3. Let ρ be a proper K rewrite rule, let ρ0 be its associated 0-sharing
K rewrite rule, and let m be a cycle free safe matching morphism for K2G(ρ) in

G. Let H be such that G
K2G(ρ),m
======⇒
KGraphΣ

H, and let H ′ be such that G
K2G(ρ0),m
=======⇒
KGraphΣ

H ′.

Then for any v ∈ ROOTG, termH(v) = termH(v).

Proof. First, cycle freeness ensures the existence of H; moreover, any 0-sharing
K rule generates the graph representation of a jungle evaluation rule, and thus
the existence of H ′ is ensured.

Second, since ρ is proper, neither ρ nor ρ0 is collapsing, and therefore
ROOTG ⊆ ROOTH and ROOTG ⊆ ROOTH′ , so the final claim is also de-
fined.

Let K2G(ρ) : (Lρ
lρ←− Kρ

rρ−→ Rρ) and K2G(ρ0) : (Lρ
lρ0←−− Kρ0

rρ0−−→ Rρ0)
be the complete descriptions of K2G(ρ) and K2G(ρ0), and let C, C ′ be the
corresponding context graphs obtained in the process of applying the rules to G.

We have that C = G\m(Lρ \Kρ), whence VC = VG and EC = EG \{m(e�i) |
e�i ∈ ELρ , target(e�i) corresponds to �i ∈ W}. Also C ′ = G \ m(Lρ \ Kρ0),
whence VC′ = VG \mV (v0) and EC′ = EG \ (source−1(v0)∪ target−1(v0)), where
v0 = target(source−1(rootLρ)).

H ′ is obtained by “gluing” on C ′ Rρ0 \Kρ0 , that is the variable collapsed
tree representation of R(k) in which the root and the variable nodes have been
removed. This gluing is done by setting the source of the topmost edge to be
mV (rootL) and the target of any edge whose target is variable node x in Rρ0 to
be mV (x).
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H is obtained by “gluing” on C Rρ \Kρ, that is the variable collapsed tree
representation of {R(Hole) | � ∈ W} in which the variable nodes have been
removed, and an edge e′�i for each �i has been added having as target the node
representing the root of R(�i). The gluing is done by setting the target of any
edge whose target is variable node x in Rρ to be mV (x) and by setting the source
of e′�i to be sourceG(e�i).

We can define a morphism f : H → H ′, as follows: For C \ m(K0) it is
the identity: fV (v) = vifv ∈ VC \ m(VLρ) = VG \ m(VLρ). fE(e) = eife ∈
EC \m(ELρ) = EG \m(ELρ). For the root of Lρ and for its variables, it is also
the identity: fV (m(rootLρ)) = m(rootLρ); fV (m(x)) = m(x). Now, for K0 =
Kρ�rootLρ , it yields the copy of K0 in R: fV (mV (v)) = v for any v ∈ VKρ�rootLρ ,

v 6= rootLρ and fV (mV (e)) = e for any e ∈ EKρ�rootLρ
. Finally, the mapping

Rρ \Kρ it is already determined by the mapping of the elements coming from
K0, ad basically says that the variable collapsed trees corresponding to R(�i)
are mapped to their corresponding (variable collapsed) subtrees coming from
Rρ0 .

It is relatively easy to verify that f is an injective morphism. Moreover the
nodes and edges which are not in its image are part of the graph m(K0) (excluding
rootL and the topmost operation node as well as its adjacent edges), which, by
being required to be a tree in G, has no incoming edge, and thus is not part of
H ′ = H ′�ROOTG

. Hence, the restriction and co-restriction of f to H = H�ROOTG

and H ′, respectively, is a bijection, and, therefore for any v ∈ ROOTG, H�v is
isomorphic with H ′�v, whence termH(v) = termH′(v).

Theorem 2. Let ρ, ρ1, . . . , ρn be K rules. Then:

Completeness: If t
K2R(ρ)
====⇒ t′ then t

ρ
≡� t′.

Soundness: If t
ρ
≡� t′ then t

K2R(ρ)∗

=====⇒ t′.

Serializability: If t
ρ1+···+ρn
≡≡≡≡≡≡≡≡� t′, then there exists a sequence of terms t0, · · · , tn,

such that t0 = t, tn = t′, and ti−1
ρ∗i
≡� ti.

Proof. Let G be the tree term-graph representation of t.

Completeness From the completeness of jungle evaluation, we infer that there

exists H such that G
m,K2G(ρ0)
=======⇒ H and termH(m∗(rootG)) = t′. Since G is a

tree, m must be both cycle-free and safe for K2G(ρ). From Proposition 3 we then

infer that G
m,K2G(ρ)
======⇒ H ′ and that termH′(m

∗(rootG)) = t′, whence t
ρ
≡� t′.

Soundness From t
ρ
≡� t′ it follows that there exists a rewrite sequence G

m,K2G(ρ)
======⇒

H ′ such that termH′(m
∗(rootG)) = t′. Again, since G is a tree, m must be

both cycle free and safe, whence, by Proposition 3, G
m,K2G(ρ0)
=======⇒ H such that

termH(m∗(rootG)) = t′, and by the soundness of jungle evaluation, t
K2R(ρ)∗

=====⇒ t′.
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Serializability t
ρ1+···+ρn
≡≡≡≡≡≡≡≡� t′ implies that G

K2G(ρ1)+...+K2G(ρn)
===============⇒ H such that

termH(m∗(rootG)) = t′. Applying Theorem 1, we deduce that there exist
G0, G1, . . . , Gn such that G0 = G, Gn = H, and Gi−1K2G(ρ1)Gi. Since G
is a tree and all rules satisfy the parallel independence property, we can deduce
that the matching morphism for each of the steps is safe, and thus also cycle free.
Therefore we can for each step apply Proposition 3, and the the soundness of
jungle evaluation w.r.t. rewriting, to obtain the desired answer.
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