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Abstract—Early efforts in runtime verification show that para-
metric regular and temporal logic specifications can be monitored
efficiently. These approaches, however, have limited expressive-
ness: their specifications always reduce to monitors with finite
state. More recent developments showed that parametric context-
free properties can be efficiently monitored with overheads
generally lower than 12–15%. While context-free grammars are
more expressive than finite-state languages, they still do not allow
every computable safety property. This paper presents a monitor
synthesis algorithm for string rewriting systems (SRS). SRSs
are well known to be Turing complete, allowing for the formal
specification of any computable safety property. Earlier attempts
at Turing complete monitoring have been relatively inefficient.
This paper demonstrates that monitoring parametric SRSs is
practical. The presented algorithm uses a modified version of
Aho-Corasick string searching for quick pattern matching with
an incremental rewriting approach that avoids reexamining parts
of the string known to contain no redexes.

Index Terms—Runtime Verification, Monitoring, String
Rewriting

I. INTRODUCTION
Runtime verification (RV) is a formal analysis approach in

which specifications of requirements are given together with
the code to check, as in traditional formal verification, but
the code is checked against its requirements at runtime, as in
testing. A large number of runtime verification techniques and
systems, including TemporalRover [20], JPaX [22], JavaMaC
[25], Hawk/Eagle [19], Tracematches [2], [3], J-Lo [9], PQL
[26], PTQL [21], MOP [16], [15], Pal [13], RuleR [5], etc.,
have been developed recently, and the overall approach has
gained enough traction to spawn its own conference [4]. In
a runtime verification system, monitoring code is generated
from the specified properties and integrated with the system to
monitor. Therefore, a runtime verification approach consists of
at least three interrelated aspects: (1) a specification formalism,
used to state properties to monitor, (2) a monitor synthesis
algorithm, and (3) a means to instrument programs. The chosen
specification formalism determines the expressivity of the
runtime verification approach and/or system.

Monitoring safety properties is arbitrarily complex [29].
Early developments in runtime verification, showed that para-
metric regular and temporal-logic-based formal specifications
can be efficiently monitored against large programs. A paramet-
ric monitor associates monitor states with different object instan-
tiations for the given parameters. This allows for specification of
properties about the relationships of objects, e.g., a relationship
between a Collection object and its associated Iterator objects

in Java1. As shown by experiments with Tracematches [3] and
the most recent experiments using JavaMOP [23], parametric
regular and temporal logic specifications can be monitored
against large programs with little runtime overhead, on the
order of 15% or lower.

However, both regular expressions and temporal logics
are monitored using finite automata, so they have inherently
limited expressivity. More specifically, most runtime verifi-
cation approaches and systems consider only flat execution
traces, or execution traces without any structure. Consequently,
users of such runtime verification systems are prevented from
specifying and checking structured properties, those properties
referring to the program structure such as properties with
requirements on the contents of the program call stack. PQL
[26], Hawk/Eagle [19], and RuleR [5] provide more expressive
logics, but these are relatively inefficient [2], [3], [16]. More
recently, JavaMOP was extended to support efficient context-
free monitors with runtime overheads very similar to the
earlier finite-state logics [27]. While this work allows for
checking many structured properties, it does not have the
full power to specify any possible safety property. In this
paper, we introduce an algorithm for monitoring parametric
deterministic string rewriting systems, to serve as an efficient
runtime verification technique for specifying and monitoring
arbitrarily complex properties; indeed, string rewriting systems
are known to be as expressive as Turing machines [12]. We
also provide an implementation of our algorithm as an MOP
logic plugin [16], [15], so it can be used as an integral part of
the JavaMOP runtime verification system. This finally gives
JavaMOP the ability to monitor any possible safety property
with a formal specification. By abuse of vocabulary, we will
refer to deterministic string rewriting systems as string rewriting
systems and abbreviate them SRSs.

A. Examples
The JavaMOP specification presented in Figure 1, which uses

the new srs logic plugin, is able to catch situations in which
a monitored program attempts to write to a closed FileWriter.
JavaMOP specifications begin with a declaration of the name
of the specification and parameters. Here the property is named
SAFEFILEWRITER, and one parameter f of type FileWriter. The

1Typestates [30], a popular concept in software engineering and software
analysis, can be monitored with parametric monitors that have only one
parameter.



SafeFileWriter(FileWriter f) {

event open after() returning(FileWriter f) :
call(FileWriter.new(..)) {}

event write before(FileWriter f) :
call(* write(..)) && target(f) {}

event close after(FileWriter f) :
call(* close(..)) && target(f) {}

srs :
open write -> open .
close write -> #fail .

@fail {
System.out.println("write after close");

}
}

Fig. 1. SAFEFILEWRITER SRS SPECIFICATION

parameters allow us to associate separate monitor states with
each object instantiation of the parameters. In this case, with
one parameter, there will be one monitor state associated with
each object instance of FileWriter. This is important because
we would not want calls to different object instances of the
FileWriter class to interfere with each other.

The next part of a JavaMOP specification is the declaration of
events. Here we are able to generate three different events: open,
write, and close. The events are defined using a superset [28]
of AspectJ [24] advice with embedded pointcuts. Here, the
event open occurs when the FileWriter constructor is called.

After the event definitions, we list the formalized property.
The keyword srs tells JavaMOP that the following property
will be a deterministic string rewriting system. Rules in our
SRS formalism take the form “l→ r .”, meaning that the string
of events on the left hand side of the arrow rewrites to that on
the right side. We only need two rules to specify our desired
property. The first rule states that we replace open write with
open. This allows allows us to collapse multiple safe write
operations. The second rule catches our misuse case: when
we have a write after a close. Here we use one of the three
special keywords in the SRS plugin, #fail, that signifies that a
failure has occurred. Also available is #succeed, which allows
for denoting success, and #epsilon, which simply deletes the
left-hand side of a rule from the current string of events.

Note that the SRS rules can be applied in any order when
a new event is received, so it is user’s responsibility to
write confluent SRSs or to use the deterministic order of
rule application explained in Section III-A. The last part
of a JavaMOP specification is the handler section. Handlers
are arbitrary Java code that is executed when the monitor
raises a particular condition. Here the keyword @fail denote
that the code within the subsequent braces is run when the
string rewrites to #fail. Using @succeed works respectively
for the #succeed keyword. The SRS algorithm allows any
aribitrary handler keyword other than #epsilon. In this example,
the handler simply prints out an informative message when
an invalid write occurs. In general, handler code may be
used for anything, such as running a specific algorithm or

recovering from the error denoted by the failure of the safety
property in question.

Here we show two further examples of safety policies
expressed using deterministic SRS. We show only the property
without worrying about the definition of events or handlers for
the sake of brevity. The first property, called HASNEXT, is
a property of the Java Iterator interface stating that hasNext()
should always be called and return true before next is called.
Below it is specified as a regular expression:

(hasnexttrue next)∗ next

The corresponding SRS is as follows:

hasnexttrue next → #epsilon
hasnexttrue hasnexttrue → hasnexttrue

ˆnext → #fail

While this SRS is certainly larger than the original ERE, it
may be easier to understand by some users because it directly
captures the semantics of the property by simply enumerating
all the cases that one has to worry about. The rule hasnexttrue
hasnexttrue → hasnexttrue conveys the notion that multiple
calls to the hasNext() method are idempotent. hasnexttrue next
rewrites to #epsilon because it is a safe operation. If next is seen
at the beginning of the string a failure is raised as hasnexttrue
was not properly called. Because our algorithm is incremental
and deterministically rewrites from left to right it is not strictly
necessary to match the beginning of the string, but it is more
clear conceptually.

The second property is called SAFELOCK which corresponds
to the proper nesting of acquiring and releasing locks. Proper
nesting, in this case, means that corresponding calls to acquire()
and release() occur within the same method body. Here begin
and end denote the beginning and end of a method body.

S → ε | S acquire M release A
M → ε |M begin M end |M acquire M release
A → ε | A begin | A end

The property is fairly complex, and a complete explanation
can be found in [27]. The SRS for the property follows:

begin end → #epsilon
acquire release → #epsilon

begin release → #tooManyReleases
acquire end → #tooFewReleases

In this case, the SRS is quite a bit less complex than the context-
free grammar specifying the same safety property. Again, it
conveys interesting semantic information. From the SRS it is
clear that a begin followed immediately by a release() results
in an error because we require all release() to occur in the
same method call as the corresponding acquire(). Similarly, an
acquire() follow by a end results in an error because the lock is
not correctly released within the method body. begin end and
acquire release rewrite to #epsilon because they are properly
nested when they occur adjacently. The SRS is also able to
encode information that cannot be encoded in the context-
free grammar. By using the handlers #tooManyReleases and



#tooFewReleases we are able to run different handlers when
there are too many or too few releases, respectively. This allows
us to, for example, ignore an extraneous release or to add a
missed release into the control stream. This cannot be done
with the context-free grammar without adding extra Java code
to the MOP specification.
B. Contributions

There are two main contributions to this paper:
• An efficient, optimized string rewriting algorithm. It builds

upon a modification of the Aho-Corasick algorithm [1].
The original algorithm was designed for quickly finding
strings in text. Our modified algorithm keeps track of
substitution boundaries so that a rewrite step can be
performed in time linear to the length of the right hand
side of the matched rule2. To our knowledge, this is
the first time it has been applied to string rewriting. An
optimization has also been devised, which checks for early
termination of rewriting.

• An implementation and extensive evaluation of the above
algorithm as an MOP logic plugin for runtime verification.
This way, it can serve as a specification formalism for
parametric safety properties in instances of the MOP
framework, such as JavaMOP. We show that its perfor-
mance in practical runtime verification of large systems is
acceptable when compared to other means to specify the
same properties. Additionally, we show that it outperforms
one of the state-of-the-art rewrite engines, Maude [17],
which implicitly supports string rewriting as rewriting
modulo associativity.

C. Paper Outline
Section II presents related work in the field of runtime

verification: popular runtime monitoring systems, with a
particular emphasis on those with greater than finite state
specification languages and on our framework of choice for
our implementation and experimental test-bed, MOP. Section III
presents our string rewriting algorithm, with its use and
construction of pattern match automata and and optimization
that allows for early termination. Section IV presents our
experimental results, and Section V concludes.

II. RELATED WORK AND MOP
Many approaches have been proposed to monitor program

execution against formally specified properties. Interested
readers can refer to [28] for an extensive discussion on existing
runtime monitoring approaches. Briefly, all runtime monitoring
approaches except MOP have their specification formalisms
hardwired, and few of them share the same logic.

There are four orthogonal attributes of a runtime monitoring
system: logic, scope, running mode, and handlers. The logic
specifies which formalism is used to specify the property.
The scope determines where to check the property; it can
be class invariant, global, interface, etc. The running mode
denotes where the monitoring code runs; it can be inline
(weaved into the code), online (operating at the same time

2The right hand side must be copied, so that the rule is still viable the next
time it matches.

Approach Logic Scope Mode Handler

JPaX [22] LTL class offline violation
TemporalRover [20] MiTL class inline violation

Monopoly [6] MFOTL global offline validation
Larva [18] DATE (timed

automata)
multiple online transitions

JavaMaC [25] PastLTL class outline violation
Hawk [19] Eagle global inline violation
RuleR [5] RuleR global inline violation

Tracematches [3] Reg. Exp. global inline validation
J-Lo [9] LTL global inline violation
Pal [13] modified

Blast
global inline validation

PQL [26] PQL global inline validation
PTQL [21] SQL global outline validation

Fig. 2. A Selection of Monitoring Systems

as the program), outline (receiving events from the program
remotely, e.g., over a socket), or offline (checking logged
event traces). The handlers specify what actions to perform
under exceptional conditions; such conditions include violation
and/or validation of the property. It is worth noting that for
some logics, violation and validation are not complementary
to each other, i.e., the violation of a formula does not always
imply the validation of the negation of the formula. MOP
allows for handlers for any number of user defined exceptional
situations (called handler categories).

Most runtime monitoring approaches can be framed in terms
of these attributes, as illustrated in Figure 2, which shows
an (incomplete) summary of runtime monitoring systems. For
example, JPaX can be regarded as an approach that uses linear
temporal logic (LTL) to specify class-scoped properties, whose
monitors work in offline mode and only detect violation. In
general, JavaMOP (the Java instance of MOP) has proven to
be the most efficient of the runtime monitoring systems despite
being generic in logical formalism.

Of the systems mentioned in Figure 2, only PQL [26],
Hawk/Eagle [19], and RuleR [5] provide logical formalisms
with greater than finite-state power. Hawk/Eagle adopts a
Turing-complete fix-point logic, but it has problems with
large programs because it does not garbage collect the objects
used in monitoring. In addition, Hawk/Eagle is not publicly
available3. Because of this and the fact that Hawk/Eagle has not
been run on DaCapo [8] with the same properties, we cannot
compare JavaMOP with our new string rewriting systems
plugin with Hawk/Eagle. RulerR is a rule-based monitoring
system which has the ability to also specify Turing complete
properties. The current implementation of RuleR is not built
for efficiency, and is, additionally, not publicly available. PQL
is not Turing-complete, and performance comparisons with
PQL using an older, less efficient, version of JavaMOP can
be found in [27]. String rewriting was used in the context

3[3] makes an argument for the inefficiency of Hawk/Eagle. Since
Hawk/Eagle is not publicly available (only its rewrite based algorithm is
public [19]), the authors of Hawk/Eagle kindly agreed to monitor some of the
simple properties from [11]. We have confirmed the inefficiency claims of [3]
with the authors of Hawk/Eagle.



of monitoring for detection of malware in [7]. This was, in
many ways, the inspiration for adding string rewriting to MOP.
However, the string rewriting patterns allowed in that work
were regular (i.e., can capture only regular languages), while
our goal is to provide a true Turing-complete logical formalism
for parametric monitoring.

MOP [16], [15] is an extensible runtime verification frame-
work that provides efficient, logic-independent support for
parametric specifications. JavaMOP is an instance of MOP for
the Java programming language. It allows the developer to
specify desired properties using formal specification languages,
along with code to execute when properties are matched or
fail to match. Monitoring code is then automatically generated
from the specified properties and integrated together with the
user-provided code into the original system.

MOP is a highly extensible and configurable runtime
verification framework. The user is allowed to extend the MOP
framework with his/her own logics via logic plug-ins which
encapsulate the monitor synthesis algorithms. This extensibility
of MOP is supported by an especially designed layered archi-
tecture [15], which separates monitor generation and monitor
integration. By standardizing the protocols between layers,
modules can be added and reused easily and independently.
MOP also provides efficient and logic-independent support
for parametric parameters [14], which is useful for specifying
properties related to groups of objects. This extension allows
associating parameters with MOP specifications and generating
efficient monitoring code from parametric specifications with
monitor synthesis algorithms for non-parametric specifications.
MOP’s generic support for parametric patterns simplified our
SRS plug-in’s implementation.

The JavaMOP instance provides two interfaces: a web-
based interface and a command-line interface, providing
the developer with different means to manage and process
JavaMOP specifications. AspectJ [24] is employed for monitor
integration: JavaMOP translates outputs of logic plug-ins into
AspectJ code, which is then merged within the original program
by an AspectJ compiler. Seven logic-plug-ins are currently
provided with JavaMOP: finite state machines, extended regular
expressions, context-free grammars, past time linear temporal
logic, linear temporal logic with past and future operators, past
time linear temporal logic with calls and returns, and, now,
string rewriting systems. Descriptions of the first six plugin-ins
can be found in [28].

III. MONITORING SRS SPECIFICATIONS

In this section, we present some basic notation for string
rewriting systems and our string rewriting algorithm which
was implemented as a logic plugin in the MOP framework.

A. Preliminaries
We refer the reader to [12] for an in-depth presentation of

string rewrite systems. For an alphabet Σ, a string rewriting
system (SRS) is a binary relation, R, on Σ, that is, a subset of
Σ∗×Σ∗. The set {l ∈ Σ∗ | (l, r) ∈ R} is called the domain of R,
denoted dom(R), while similarly the set {r ∈ Σ∗ | (l, r) ∈ R}
is called the range, denoted range(R). We refer here to any

element (l, r) ∈ R as a rule in R, any l ∈ dom(R) as a left
hand side (LHS) of a rule in R, and any r ∈ range(R) as a
right hand side (RHS) of a rule in R. In our SRS specifications
in this paper and in JavaMOP, rules (l, r) ∈ R are written using
the earlier shown syntax “l→ r”.

The single-step reduction relation on Σ∗ that is induced by
R is defined as: for any u, v ∈ Σ∗, u →R v if and only if
there exists (l, r) ∈ R such that for some x, y ∈ Σ∗, u = x l y
and v = x r y. The reduction relation on Σ∗ induced by R is
the reflexive, transitive closure of →R and is denoted by →∗R.
If for x, y ∈ Σ∗, x→∗R y and y is irreducible, y is a normal
form for x. R is confluent if there is only one such y for any
given x, regardless of the order in which rules are applied.

In our SRSs in MOP, the symbols s ∈ Σ correspond to either
events of our property or symbols that appear in the RHS of
rules in R. We call our string rewriting systems deterministic
because the same normal form will always be chosen in the
presence of a non-confluent R. Specifically, rules are applied
left-to-right, with the smallest rule matching first in the case
of overlap (e.g., for LHSs a a and a a b, the rule with a a as
its LHS will always be applied first, starving the other rule).
In the case of a conflict that is not resolved by the above, the
order of rules in the SRS specification is used to determine
which rule to apply (e.g., if two rules have the same LHS, the
one specified first will always be applied).

B. String Rewriting Algorithm Overview
There are two major parts to our SRS algorithm:
1) Finding matches of the LHSs of rules; and
2) Performing replacements with RHSs of rules.

To make replacements as efficiently as possible, the string
of events/symbols that we rewrite is a linked listed of the
SpliceList class, which was specially created for our purposes
to allow constant time replacement of a section of the list with
another list (splicing). The SpliceList class has a special type
of Iterator defined for it, called the SLIterator, that does not
follow the normal Iterator interface in Java.

Rather than only having next() and hasNext() methods, the
SLIterator has next(int i), which moves the SLIterator forward
i times and returns true if it is successful (i.e., does not
reach the end of the SpliceList), and get(), which returns the
current element that the SLIterator points to. SLIterator also has
a method, splice(SLIterator second, SpliceList replacement),
which takes another SLIterator to the same SpliceList and
replaces the sequence denoted by those two SLIterators,
inclusively, by a specified sequence replacement. It is because
of the inclusive nature of the splice method that the SLIterator
must have a method to retrieve its current element without
advancing. The splice method makes it imperative for our string
matching algorithm to maintain SLIterators to the beginning
and end of the current LHS under consideration.

In Section III-C we discuss how this matching occurs using a
modification of the Aho-Corasick string searching algorithm [1]
that, unlike the base algorithm, keeps track of the beginning
of a match, so that rewrites can be performed in constant time
(after copying the RHS in time proportional to its length).



To make the paper self-contained, we give all the necessary
information regarding the Aho-Corasick algorithm, rather than
only this modification, but the modification is clearly delineated.
To our knowledge, this is the first time any variation on the
Aho-Corasick algorithm has been used in string rewriting,
and no implementations of SRSs exist, that we could find.
In Section III-D, we present an in-depth explanation of how
the pattern matching fits into the string rewriting algorithm
and how we optimize string rewriting to avoid considering
sequences that cannot match any LHS.

C. Pattern Match Automata
The pattern match automata used by our string rewriting

process, as mentioned, is a modification of the Aho-Corasick
algorithm for finding strings in text [1]. The Aho-Corasick al-
gorithm, which was originally not designed for string rewriting,
is able to find all matches in a string in one linear pass, rather
than performing separate passes for each rule LHS as would a
naive matching algorithm. Our modification of the algorithm
allows us to correctly adjust the SLIterator to the beginning of
our current match, facilitating quick rewrites.

1) Using Pattern Match Automata: Figure 3 shows the
pattern match automaton for the SAFELOCK property. Each
node has at least its state number and state depth, listed as
a pair number:depth. The depth is used in two places in the
automata generation algorithm, and simply states how many
symbols (events) have been processed since the start state in
one of the LHSs of the rewrite rules in our SRS. This will
be explained in more detail below. Additionally, states which
correspond to matching the left hand side of a given rule also
display that rule, e.g., in state 6, the begin release → #fail
rule is matched. Each edge is marked by the list of symbols
that cause that transition, as well as a number following a “/”.
That number, which we refer to as the action, is the number
of times to increment the first SLIterator except in the self-
transitions of state 0. When a self-transition in state 0 occurs,
the first Iterator must be incremented once. When a forward
transition with “/ 0” is encountered, a transition to the next
state is made, and the next input is considered. If the transition
is suffixed with something other than 0, the transition must be
a backward transition, and the same symbol that is currently
under consideration must be evaluated in the next state. This is
why we handle self-transitions in state 0 as a special case, if it
were suffixed with “/ 1” and handled as a backward transition,
the same symbol would be considered infinitely.

Figure 4 shows the pseudocode for pattern matching using
a given pattern match automaton. The only global variable for
the algorithm is the given PatternMatchAutomaton, pma. The
algorithm begins by initializing the first and second SLIterators
to the beginning of the argument SpliceList l, using the head()
method. The local currentState is initialized to the initial
machine state, here represented as 04. The while loop beginning
on line 10 will only exit when the end of l is reached, denoted
by the break statements on lines 20 and 25. We know that

4It is actually a class that may contain a matched rule, as we can see in
Figure 3.

the end of l is reached on lines 20 and 25 when the next(int
i) method returns false. We never need to check if first.next
returns false because it may never advance past second due to
the construction of the PatternMatchAutomaton. Lines 17–22
cover the self transition to state 0 mentioned earlier, while
lines 23–27 represent a normal forward transition. 23–27 are
a forward transition because the action of the transition is 0.
As mentioned earlier, the only difference between the 0 self-
transition and a forward transition is that in the self-transition
the first SLIterator need be incremented (line 18). Lines 28–30
handle a backward transition in the PatternMatchAutomaton.
As expected, with a backward transition the first SLIterator
is incremented a number of times specified by the action of
transition and second is not incremented so that the same
symbol will be considered in the next iteration of the loop.
One interesting property of this algorithm is that if one pattern
is a prefix of another, such as the patterns “a a → c” and
“a a b → d”, both matches will be reported. This is undesirable
behavior for rewriting because “aa” will be rewritten to c
immediately and “a a b” should no longer be matchable. This
will be accounted for in Section III-D.

As an example of how the pattern match algorithm functions,
suppose that the following series of events have been seen at a
given point in a program: begin begin acquire begin end. At this
point, the SAFELOCK property will experience its first match of
a rule LHS. Figure 5 shows the state transitions as each symbol
is considered, as well as the position of the first SLIterator.
An important thing to note is that every time we transition
back to state 0, the first SLIterator index is incremented by 1
(specified by the back transitions), and the symbol is evaluated
again in state 0. In general, back transitions need not be to
state 0, as we shall see. At the end of the input, the algorithm
is in state 2, which matches the rule begin end → #epsilon.
The first SLIterator correctly points to index 3, which is the
last begin event. The second SLIterator always points at the
current input, which is end. These SLIterators can then be used
to quickly replace begin end with #epsilon, as we will see in
Section III-D.

2) Generating Pattern Match Automata: There are two main
phases to the creation of pattern match automata. In the first
phase the forward transitions of the automaton are created.
In the second phase, all of the backward transitions and the
self-transition that (almost) always exists in state 0 are added.
During the computation of the backward transitions, the actions
for the backward transition are also computed and added
to the backward transitions. As mentioned, only backward
transitions ever have non-0 actions, since they correspond to
places in the automaton where there is a switch from matching
one potential set of LHSs of rules to another. For instance,
in Figure 5, between the third begin and the first acquire,
there is a switch from potentially matching {begin end, begin
release} to {acquire end, acquire release}, which requires no
longer considering the begin event for match purposes, thus
the action of 1.

To create the forward transitions for an automaton, we add
one path that corresponds directly to the left hand side of
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5 : 2
(acquire end→ #fail)

4 : 2
(acquire release→ #epsilon)

6 : 2
(begin release→ #fail)

Fig. 3. Pattern match automaton for the SAFELOCK property (see Section I-A)

each rule in our string rewriting system. We add these paths
one at a time, and reuse as many states as possible. Each
forward transition is assigned the action 0. Figure 6 shows the
forward transitions for the pattern match automaton originally
presented in Figure 3. For each LHS, we begin at state 0
and add a transition for the first symbol. Because all patterns
SAFELOCK begin with either begin or acquire, we have only
two transitions, one labeled with begin and one labeled with
acquire. We continue to transitively add transitions based on
the remainder of each LHS. For the two rule LHSs beginning
with begin, one ends with end and the other ends with release,
so there are two transitions out of state 1 labeled accordingly.
As each new state is added to the machine during the forward
transition phase, the depth of the state is recorded. The depth
is simply the number of symbols from state 0. For instance,
state 6 is at depth 2, since two symbols, begin followed by
end, lead to state 6. The largest depth always corresponds to
the longest rule LHS.

In the second phase, the self-transition on state 0 is added
first, if needed. The self-transition is only necessary if there is
not a forward transition out of state 0 for every symbol used
in the SRS or specified by the JavaMOP front end5.

After potentially adding the self-transition in state 0, the
backward transitions are added to the pattern match automaton.
Backward transitions are only added from a given state for
symbols that do not have forward transitions out of that state.
All backward transitions from a given state, s, will go to
the same place, so we define fail(s) = s′, where s′ is the
destination of a backward transition out of s. To find the

5JavaMOP allows one to define events that do not appear in the specified
property; these will correspond to symbols that are never rewritten by the
specified SRS.

destination for the backward transitions out of a state in pattern
match automaton pma with depth d, we consider each state r
of depth d− 1 and perform the following actions, transitions
are added in depth first order [1]:

1) If pma.get(r, a) is a backward transition for all symbols
a, do nothing.

2) Otherwise, for each symbol a such that pma.get(r, a) =
s, do the following:

a) Let s′ = fail(r).
b) Compute s′ ← fail(s′) until such point as

pma.get(s′, a).action = 0. Because state 0 must
have either a forward transition or a self-transition
for every symbol, such an s′ must exist.

c) For all a′ such that pma.get(s, a′) has no for-
ward transition, assign pma.get(s, a′).state = s′,
pma.get(s,a′).action = s.depth - s’.depth.

The procedure above is essentially the same as [1]. The part
in bold is specific to our algorithm for string rewriting. The
action is assigned as such because the depth of a given state
represents the number of symbols processed since state 0 in the
automaton, thus the difference in the depths tell us the number
of symbols that we need to skip with the first SLIterator in
Figure 4. While the pattern match automaton for SAFELOCK
has backward transitions that only go to state 0, as mentioned,
this is not always the case in general. When the suffix of one
LHS overlaps with the prefix of another, backward transitions
that do not go back to state 0 are generated. An example of
this can be seen in Figure 7, where the SRS in question is b a
a→ #epsilon, a a c→ #epsilon. Because b a a and a a c have
a suffix/prefix overlap, the backward transitions from state 3
at depth 3 go to state 5 at depth 2, resulting in an action of
only 1. For example, consider input b a a c. When we switch



1 globals PatternMatchAutomaton pma
2 locals SLIterator first, second
3 State currentState, nextState
4 Symbol symbol
5 Transition transition
6 procedure match(SpliceList l)
7 first← l.head()
8 second← l.head()
9 currentState← 0
10 while (true){
11 if (currentState.hasMatch()){
12 //signal match
13 }
14 symbol← second.get()
15 transition← pma.get(currentState, symbol)
16 nextState← transition.state
17 if (nextState = 0){
18 first.next(1)
19 if (¬second.next(1)){
20 break
21 }
22 }
23 else if (transition.action = 0){
24 if (¬second.next(1)){
25 break
26 }
27 }
28 else {
29 first.next(transition.action)
30 }
31 currentState← nextState
32 }

Fig. 4. Pattern Match Algorithm

current state symbol next state first index

0 begin 1 0
1 begin 0 1
0 begin 1 1
1 acquire 0 2
0 acquire 3 2
3 begin 0 3
0 begin 1 3
1 end 2 3

Fig. 5. A run of the pattern match algorithm on begin begin acquire
begin end

0 : 01 : 1 3 : 1

2 : 2 6 : 2 4 : 2 5 : 2

begin / 0

acquire / 0

end / 0
release / 0

release / 0
end / 0

Fig. 6. Forward Transitions for SAFELOCK (matched rules omitted)

c, b / 1

a / 0

a, c, b / 1

a, c, b / 3

a, b / 1 a / 0

c / 0

a / 0

c / 0

c, b / 1

b / 0

a / 0

c, b / 1

1 : 1

0 : 0

3 : 3
(b a a→ #epsilon)

2 : 2

5 : 2

4 : 1 6 : 3
(a a c→ #epsilon)

Fig. 7. A pattern match automaton with overlap

from matching b a a to matching a a c, which occurs between
states 3 and 5, we wish to only “forget” the b at the beginning,
an action of 1. Note that when we use the rule application
order of “smallest left hand side”, this transition will never be
taken because b a a will be immediately rewritten. We include
these transitions in the automaton for future rewrite orders.

D. Rewriting using Pattern Match Automata

The rewriting algorithm we use to monitor SRS’s is presented
in Figure 8. Not pictured in Figure 8, is the action of the monitor
itself. As any monitoring algorithm in the MOP framework,
events arrive one at a time. As each event occurs, we add
it—as a symbol representing that event—to a SpliceList that
contains the results of rewriting previous sequences of events.
Additionally, if any rules make use of the ˆ symbol, it will
be added to the beginning of the SpliceList and treated as a
normal symbol by the rewriting algorithm. As for uses of $,



1 globals PatternMatchAutomaton pma
2 locals SLIterator first, second, last
3 State currentState, nextState
4 Symbol symbol
5 Transition transition
6 boolean changed pastLast
7 procedure match(SpliceList l)
8 do {
9 first← l.head()
10 second← l.head()
11 currentState← 0
12 changed← false
13 pastLast← false
14 while (true){
15 if (currentState.hasMatch()){
16 if (currentState.match = #succeed){
17 // raise succeed
18 }
19 if (currentState.match = #fail){
20 // raise fail
21 }
22 first.splice(second, currentState.match)
23 nextState← 0
24 changed← true
25 pastLast← false
26 last← second
27 second← first.copy()
28 }
29 symbol← second.get()
30 transition← pma.get(currentState, symbol)
31 nextState← transition.state
32 if (nextState = 0){
33 first.next(1)
34 if (¬second.next(1)){
35 break
36 }
37 }
38 else if (transition.action = 0){
39 if (¬second.next(1)){
40 break
41 }
42 }
43 else {
44 first.next(transition.action)
45 }
46 if (¬changed){
47 if (second = last){
48 pastLast← true
49 }
50 if (pastLast and nextState = 0){
51 return
52 }
53 }
54 currentState← nextState
55 }
56 } while (changed)

Fig. 8. Rewriting Algorithm

the current event must be added before $6.
After an event is added to the SpliceList, the algorithm in

Figure 8 is evaluated to completion before another event can
be accepted. The algorithm is similar to the pattern match
procedure of Figure 4. The changes are in bold. There are
three main changes: the inclusion of a loop that ensures that a
normal form is reached, the actual rewriting step itself, and a
section that recognizes early termination.

The first new control structure to notice is the do...while loop
from line 8 to 56. This loop ensures that rewriting continues
until there is a pass through the loop in which nothing changes,
i.e., the string is in normal form. The new boolean variable,
changed, controls this loop. It is set to false at the beginning
of an iteration of the do...while loop, and to true on line 24,
which is only executed when a rewrite occurs.

Lines 15–28 perform the actual rewriting step. The element
match of a State contains the right hand side of the rule
matched in that State. If the match is one of the two special
keywords #succeed or #fail, a success or fail handler is executed,
as appropriate, and rewriting terminates. If either handler is
executed, the monitor is considered dead unless it is reset
(see [28]). If match is something else, the splice method is
called on line 22. The splice method is a special method of
SLIterator that replaces a range specified by the this and an
argument SLIterator with the argument sequence. Here the
range is specified by first and second, and currentState.match
is passed as the replacement. Note that if the right hand side
of the rule is #epsilon, it is represented as an empty sequence,
which splice is able to handle. The splice method also correctly
sets first and second to point to the beginning and end of
the spliced in match sequence, or the next symbol if match
was #epsilon. On line 26, we set last to second, so that last
points to the end of the last replacement, this will be used to
determine early termination. Then, on line 27, second is set as
a copy of first. This ensures that segments of string which are
transitively rewritten will be rewritten immediately. Because
splice changes the SpliceList, it is important to set currentState
back to state 0 because any matching will occur in the newly
rewritten segment of the SpliceList.

In the last new addition to the match algorithm, from lines 46
to 53, we test for early termination of the algorithm. The idea
here is to exit early if we enter a segment of the SpliceList that
we know for certain cannot be rewritten. This happens when we
reach a point that is past the end of the last SLIterator, which
was set in a previous iteration, no rewrites have occurred in the
current iteration, and currentState returns to 0. The first two
requirements are fairly straight-forward: if a change occurs,
new matches are possible, and if we are in a segment of
the SpliceList before the last rewrite, we are still investigating
symbols that are potentially new. However, if there is no rewrite
in the current iteration and we are past the last change from
the previous iteration, we are seeing symbols that were seen
in the previous iteration with no change. The last condition,

6Because of this there is a very small performance hit for using $ in a rule,
but ˆ is essentially free.



event initial l l in normal form

begin begin begin
end begin end #epsilon
begin begin begin
acquire begin acquire begin acquire
release begin acquire release begin
acquire begin acquire begin acquire
end begin acquire end #fail

Fig. 9. An SRS monitoring run for SAFELOCK

that we must return to State 0, is more subtle. The reason
for this is that there could have been a rewrite in the last
iteration that inserted a segment that appears in the middle of
a left hand side of one of the rules. A simpler way to look at
this requirement is that if pma is not in state 0 it is actively
matching something. This condition for early termination can
lead to an unbounded amount of saving, as the SpliceList can
be of an unbounded length.

Figure 9 shows a monitor run as non-parametric events for
SAFELOCK arrive. The non-parametric events are dispatched
to the correct monitor instance by the indexing of JavaMOP
(or whatever projection method is used in future language
instances of MOP). The first column shows the arriving event,
the second column shows the state of the SpliceList l before
any rewriting, and the last column shows the normal form for l
after the rewriting algorithm of Figure 8 has run. After the last
event a failure has occurred, and the fail handler will execute.

IV. EVALUATION
An important thing to note about SRS execution is that it may

add an unbounded amount overhead to a program execution in
full generality, since it is Turing-complete. Because of this, our
evaluation focuses on two specific types of experiments: first
we show how it compares, within the context of JavaMOP, to
finite-state logics on the DaCapo benchmark suite [8]. Then we
give a comparison of our underlying SRS rewrite engine against
the Maude [17] term rewriting engine, modulo associativity.
The goal of the first evaluation is to show that SRS monitoring
is efficient enough to be used in large programs, being not
much less efficient than finite-state logics7 when monitoring
finite-state properties. However, it should be stressed that a fully
recursively enumerable safety property may add an unbounded
amount of overhead, or even not terminate. The goal of the
second experiment is to show that our SRS implementation is
more efficient than the state-of-the-art8.

All experiments were performed on a machine with a
3.82GHz Intel R© CoreTM i7 970 hexcore with Hyper-Threading
(12 hardware threads) and 24 GB of ram. Ubuntu 11.10 64 bit
was used as the operating system and version 9.12 of DaCapo
was used as the benchmark suite, with default inputs and the
-converge option to gain convergence within 3%. OpenJDK

7In this case, extended regular expressions.
8Note that Maude is more general than our SRS engine, but there is a price

for that generality, and general term rewriting makes little sense in the context
of MOP event traces.

N Maude Time (ms) SRS Time (ms)

100 42 33
1000 37038 236
5000 DNF 7112
10000 DNF 26132

Fig. 11. Comparison of maude versus SRS rewrite. DNF: did not finish in
one hour

version 1.6.0 23 as the Java virtual machine. All compiled
JavaMOP specs were weaved into DaCapo using ajc 1.6.11.
Maude 2.6 was used for comparison with Maude.

The following properties were used in the DaCapo exper-
iments. The SRS versions of them (shown below) are new,
while the extended regular expression versions were borrowed
from [11], [10], [14], [27].
• HASNEXT: Do not use the next element in an Iterator

without checking for the existence of it (see Section I-A);
• SAFESYNCCOL: If a Collection is synchronized, then its

iterator also should be accessed synchronously:

sync asyncCreateIter → #fail
sync syncCreateIter accessIter → #fail

• SAFESYNCMAP: If a Collection is synchronized, then its
iterators on values and keys also should be accessed in a
synchronized manner:

sync createSet asyncCreateIter → #fail
sync createSet syncCreateIter accessIter → #fail

• UNSAFEITER: Do not update a Collection when using
the Iterator interface to iterate its elements:

update use → #fail
use use → use

update update → update
createIterator → #epsilon

• UNSAFEMAPITER: Do not update a Map when using the
Iterator interface to iterate its values or its keys:

update use → #fail
use use → use

update update → update
createIterator → #epsilon

createCollection → #epsilon

For the comparison with Maude, strings of equal numbers of
2’s, 1’s, and 0’s, with the 2’s preceding the 1’s preceding the
0’s were generated, and the following rewrite system applied.
Note, that the language of strings that reduce to #epsilon with
this rewrite system is strictly context-sensitive.

1 0 → 0 1 2 0 → 0 2
2 1 → 1 2 0 1 → 3
1 3 → 3 1 3 0 → 0 3
3 2 → #epsilon 2 3 → #epsilon

Figure 10 shows a comparison of finite-state properties spec-
ified in JavaMOP using ERE and SRS. The first column shows



Benchmark Original (ms) HASNEXT SAFESYNCCOL SAFESYNCMAP UNSAFEITER UNSAFEMAPITER

ERE SRS ERE SRS ERE SRS ERE SRS ERE SRS

avrora 2317∗ 194 227 35∗ 103∗ 28 120∗ 253∗ 288∗ 41 134∗

batik 773 0 6 5 11 9 -1 5 3 1 2
eclipse 11749 -1 -2 -2 -4 -1 -3 -2 -2 -2 -2

fop 251 922 2091 26 24 21 20 34 57 28 42
h2 3860 9 15 6 2 0 4 15 22 8 24

jython 1400 3 4 3 3 4 2 16 18 3 3
luindex 478 2 -1 2 0 0 4 1 2 0 -5

lusearch 581 1 3 -1 1 3 3 46 46 2 0
pmd 1441 27 117 139 137 10 17 72 148 177 199

sunflow 1222 5 8 0 -1 6 -3 -4 4 0 3
tomcat 1068 2 4 3 3 3 1 2 2 2 2

tradebeans 4618 2 1 -1 -3 -1 2 4 -2 -2 -1
tradesoap 3213 1 -1 1 -1 0 -2 1 0 0 0

xalan 359 5 1 5 1 6 3 90 172 7 8

Fig. 10. Comparison of JavaMOP with extended regular expressions (ERE) and with the same properties expressed as string rewriting systems (SRS): average
percent overhead (convergence within 3% except those marked with *)

the individual DaCapo [8] benchmarks, and the second column
shows runtime of the original uninstrumented benchmarks in
milliseconds. All other columns are percent overhead. Each
benchmark-property pair converged to within 3% except the
instances of avrora marked with *. The results presented for
avrora that did not converge are the average of twenty runs
with outliers removed, but they are still not as trustworthy as
the converging results. This lack of convergence is a problem
on highly multi-threaded machines. We can see that even
the uninstrumented, original run, fails to converge. Negative
overheads are the result of noise in the experimental settings
and changes in code layout due to instrumentation resulting in
slightly more efficient programs.

Overall, the average overhead on the DaCapo benchmark
suite was 58% for SRS, while it was 33% for ERE. When
fop-HASNEXT—which has, by far, the worst overhead of any
trial—is removed from both, the overhead drops to 29% and
20%, respectively. It must be noted, that the properties we use
are specifically selected for generating large overheads; they
are very intensive properties that generate many events (see
[23]). The overhead numbers are slightly larger than reported
in previous papers because we have moved to a multi-threaded,
and quite simply faster, machine. The monitors in JavaMOP
must be synchronized, which results in higher overhead for
programs that actually make use of multiple threads. Any
monitoring system must do the same thing if the monitors are
for cross-thread properties (like all of those properties used
here). In most of the benchmark/property pairs, the performance
of ERE and SRS are very comparable. For pmd-HASNEXT
and avrora-SAFESYNCMAP, SRS shows more than three times
the overhead of ERE, but for all other trials SRS is never more
than three times worse.

Figure 11 shows the comparison of Maude to our SRS engine
with the rewrite system discussed above. N refers to the number
of each digit, i.e., N=100 has 300 characters in it: 100 each of
2, 1, and 0. As we can see from the results, our SRS engine
runs in 78% of the time of maude at N=100. At N=1000, our

SRS engine runs in .006% of the time of Maude. With larger
inputs, Maude fails to complete in an hour, while our SRS
engine takes less than 30 seconds on every tested input.
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V. CONCLUSION
We provided the first means to efficiently monitor parametric

Turing-complete specifications using string rewriting systems.
By using a modified version of the Aho-Corasick string
matching algorithm and a means to terminate the rewriting
process early, the resultant string rewriting algorithm is quite
practical, as shown in our extensive evaluation9.

The average overhead on the DaCapo benchmark suite was
58% for finte state properties monitored using SRS, while it was
33% using ERE plugin to monitor the same properties. When
the largest benchmark/property pair is removed from both, the
overhead drops to 29% and 20%, respectively. This shows that
the SRS plugin can be efficient when monitoring reasonable
properties on large programs. We must stress however that
arbitrarily complex properties may add arbitrary overhead,
regardless of the efficiency of the monitoring algorithm or
implementation there of.

A less extensive comparison of our core string rewriting
algorithm with the term rewrite engine Maude, which provides
implicit support for string rewriting through its rewriting
modulo associativity, suggests that our approach vastly out-
performs the state-of-the-art in rewriting, when restricted
to string rewriting10.

9Special thanks to Dongyun Jin for help with DaCapo experimental settings.
10The full generality of term rewriting provided by Maude makes little

sense when applied to monitoring safety properties, which necessarily operate
on strings (traces) of events.
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