
All-Path Reachability Logic ?

Andrei S, tefănescu1, S, tefan Ciobâcă2, Radu Mereuta1,2,
Brandon M. Moore1, Traian Florin S, erbănut, ă3, and Grigore Ros, u1,2

1 University of Illinois at Urbana-Champaign, USA
{stefane1,radum,bmoore,grosu}@illinois.edu

2 University “Alexandru Ioan Cuza”, Romania, stefan.ciobaca@info.uaic.ro
3 University of Bucharest, Romania, traian.serbanuta@fmi.unibuc.ro

Abstract. This paper presents a language-independent proof system for reachabil-
ity properties of programs written in non-deterministic (e.g. concurrent) languages,
referred to as all-path reachability logic. It derives partial-correctness properties
with all-path semantics (a state satisfying a given precondition reaches states
satisfying a given postcondition on all terminating execution paths). The proof
system takes as axioms any unconditional operational semantics, and is sound
(partially correct) and (relatively) complete, independent of the object language;
the soundness has also been mechanized (Coq). This approach is implemented in
a tool for semantics-based verification as part of the K framework.

1 Introduction

Operational semantics are easy to define and understand. Giving a language an opera-
tional semantics can be regarded as “implementing” a formal interpreter. Operational
semantics require little formal training, scale up well and, being executable, can be tested.
Thus, operational semantics are typically used as trusted reference models for the defined
languages. Despite these advantages, operational semantics are rarely used directly for
program verification (i.e. verifying properties of a given program, rather than performing
meta-reasoning about a given language), because such proofs tend to be low-level and te-
dious, as they involve formalizing and working directly with the corresponding transition
system. Hoare or dynamic logics allow higher level reasoning at the cost of (re)defining
the language as a set of abstract proof rules, which are harder to understand and trust.
The state-of-the-art in mechanical program verification is to develop and prove such
language-specific proof systems sound w.r.t to a trusted operational semantics [1–3], but
that needs to be done for each language separately.

Defining more semantics for the same language and proving the soundness of one
semantics in terms of another are highly uneconomical tasks when real programming
languages are concerned, often taking several years to complete. Ideally, we would like
to have only one semantics for a language, together with a generic theory and a set of
generic tools and techniques allowing us to get all the benefits of any other semantics
without paying the price of defining other semantics. Recent work [4–7] shows this is
possible, by proposing a language-independent proof system which derives program
properties directly from an operational semantics, at the same proof granularity and
compositionality as a language-specific axiomatic semantics. Specifically, it introduces
(one-path) reachability rules, which generalize both operational semantics reduction

? Full version of this paper, with proofs, available at http://hdl.handle.net/2142/46296.

http://hdl.handle.net/2142/46296

rules and Hoare triples, and give a proof system which derives new reachability rules
(program properties) from a set of given reachability rules (the language semantics).

However, the existing proof system has a major limitation: it only derives reachability
rules with a one-path semantics, that is, it guarantees a program property holds on one
but not necessarily all execution paths, which suffices for deterministic languages but not
for non-deterministic (concurrent) languages. We here remove this limitation, proposing
the first generic all-path reachability proof system for program verification.

Using matching logic [8] as a configuration specification formalism (Section 2),
where a pattern ϕ specifies all program configurations that match it, we first introduce
the novel notion of an all-path reachability rule ϕ ⇒∀ ϕ′ (Section 3), where ϕ and
ϕ′ are matching logic patterns. Rule ϕ ⇒∀ ϕ′ is valid iff any program configuration
satisfying ϕ reaches, on any complete execution path, some configuration satisfying
ϕ′. This subsumes partial-correctness in non-deterministic languages. We then present
a proof system for deriving an all-path reachability rule ϕ ⇒∀ ϕ′ from a set S of
semantics rules (Section 4). S consists of reduction rules ϕl ⇒

∃ ϕr, where ϕl and ϕr

are simple patterns as encountered in operational semantics (Section 6), which can be
non-deterministic. The proof system derives more general sequents “S,A `C ϕ⇒∀ ϕ′”,
withA and C two sets of reachability rules. Intuitively,A’s rules (axioms) are already
established valid, and thus can be immediately used. Those in C (circularities) are only
claimed valid, and can be used only after taking execution steps based on the rules in S
orA. The most important proof rules are

Step :
|= ϕ→

∨
ϕl⇒

∃ϕr ∈ S
∃FreeVars(ϕl) ϕl

|= ∃c (ϕ[c/�] ∧ ϕl[c/�]) ∧ ϕr → ϕ′ for each ϕl ⇒
∃ ϕr ∈ S

S,A `C ϕ⇒
∀ ϕ′

Circularity :

S,A `C∪{ϕ⇒∀ϕ′} ϕ⇒
∀ ϕ′

S,A `C ϕ⇒
∀ ϕ′

Step is the key proof rule which deals with non-determinism: it derives a sequent where
ϕ reaches ϕ′ in one step on all paths. The first premise ensures that any configuration
satisfying ϕ has successors, the second that all successors satisfy ϕ′ (� is the configura-
tion placeholder). Circularity adds the current goal to C at any point in a proof, and
generalizes language-independently the various language-specific axiomatic semantics
invariant rules (this form was introduced in [4]).

We illustrate on examples how our proof system enables state exploration (similar
to symbolic model-checking), and verification of program properties (Section 6). We
show that our proof system is sound and relatively complete (Section 5). We describe
our implementation of the proof system as past of the K framework [9] (Section 7).

Contributions This paper makes the following specific contributions:
1. A language-independent proof system for deriving all-path reachability properties,

with proofs of its soundness and relative completeness; the soundness result has also
been mechanized in Coq, to serve as a foundation for certifiable verification.

2. An implementation of it as part of the K framework.

2

2 Matching Logic
Here we briefly recall matching logic [8], which is a logic designed for specifying and
reasoning about arbitrary program and system configurations. A matching logic formula,
called a pattern, is a first-order logic (FOL) formula with special predicates, called basic
patterns. A basic pattern is a configuration term with variables. Intuitively, a pattern
specifies both structural and logical constraints: a configuration satisfies the pattern iff it
matches the structure (basic patterns) and satisfies the constraints.

Matching logic is parametric in a signature and a model of configurations, making it
a prime candidate for expressing state properties in a language-independent verification
framework. The configuration signature can be as simple as that of IMP (Fig. 3), or as
complex as that of the C language [10] (with more than 70 semantic components).

We use basic concepts from multi-sorted first-order logic. Given a signature Σ
which specifies the sorts and arities of the function symbols (constructors or operators)
used in configurations, let TΣ(Var) denote the free Σ-algebra of terms with variables
in Var. TΣ,s(Var) is the set of Σ-terms of sort s. A valuation ρ : Var → T with T a
Σ-algebra extends uniquely to a (homonymous) Σ-algebra morphism ρ :TΣ(Var)→T .
Many mathematical structures needed for language semantics have been defined as
Σ-algebras, including: boolean algebras, natural/integer/rational numbers, lists, sets,
bags (or multisets), maps (e.g., for states, heaps), trees, queues, stacks, etc.

Let us fix the following: (1) an algebraic signature Σ, associated to some desired
configuration syntax, with a distinguished sort Cfg, (2) a sort-wise infinite set Var of
variables, and (3) a Σ-algebra T , the configuration model, which may but need not be a
term algebra. As usual, TCfg denotes the elements of T of sort Cfg, called configurations.
Definition 1. [8] A matching logic formula, or a pattern, is a first-order logic (FOL) for-
mula which additionally allows terms in TΣ,Cfg(Var), called basic patterns, as predicates.
A pattern is structureless if it contains no basic patterns.

We define satisfaction (γ, ρ) |= ϕ over configurations γ∈TCfg, valuations ρ :Var→T
and patterns ϕ as follows (among the FOL constructs, we only show ∃):
(γ, ρ) |= ∃X ϕ iff (γ, ρ′) |= ϕ for some ρ′ :Var→T with ρ′(y) = ρ(y) for all y ∈ Var\X
(γ, ρ) |= π iff γ = ρ(π) where π ∈ TΣ,Cfg(Var)
We write |= ϕ when (γ, ρ) |= ϕ for all γ ∈ TCfg and all ρ : Var→ T .

A basic pattern π is satisfied by all the configurations γ that match it; in (γ, ρ) |=π
the ρ can be thought of as the “witness” of the matching, and can be further constrained
in a pattern. For instance, the pattern from Section 6

〈x :=x+1 || x :=x+1, x 7→n〉 ∧ (n = 0 ∨ n = 1)
is matched by the configurations with code “x :=x+1 || x :=x+1” and state mapping
program variable x into integer n with n being either 0 or 1. We use italic for mathe-
matical variables in Var and typewriter for program variables (program variables are
represented in matching logic as constants of sort PVar, see Section 6).

Next, we recall how matching logic formulae can be translated into FOL formulae,
so that its satisfaction becomes FOL satisfaction in the model of configurations, T . Then,
we can use conventional theorem provers or proof assistants for pattern reasoning.
Definition 2. [8] Let � be a fresh Cfg variable. For a pattern ϕ, let ϕ� be the FOL
formula formed from ϕ by replacing basic patterns π ∈ TΣ,Cfg(Var) with equalities � = π.
If ρ : Var→ T and γ ∈ TCfg then let the valuation ργ : Var ∪ {�} → T be such that
ργ(x) = ρ(x) for x ∈ Var and ργ(�) = γ.

3

With the notation in Definition 2, (γ, ρ) |= ϕ iff ργ |= ϕ�, and |= ϕ iff T |= ϕ�. Thus,
matching logic is a methodological fragment of the FOL theory of T . We drop � from
ϕ� when it is clear in context that we mean the FOL formula instead of the matching
logic pattern. It is often technically convenient to eliminate � from ϕ, by replacing �
with a Cfg variable c and using ϕ[c/�] instead of ϕ. We use the FOL representation in
the Step proof rule in Fig. 1, and to establish relative completeness in Section 5.

3 Specifying Reachability
In this section we define one-path and all-path reachability. We begin by recalling some
matching logic reachability [6] notions that we need for specifying reachability.
Definition 3. [6] A (one-path) reachability rule is a pair ϕ⇒∃ ϕ′, where ϕ and ϕ′ are
patterns (which can have free variables). Rule ϕ ⇒∃ ϕ′ is weakly well-defined iff for
any γ ∈ TCfg and ρ : Var → T with (γ, ρ) |= ϕ, there exists γ′ ∈ TCfg with (γ′, ρ) |= ϕ′.
A reachability system is a set of reachability rules. Reachability system S is weakly
well-defined iff each rule is weakly well-defined. S induces a transition system (T ,⇒T

S
)

on the configuration model: γ ⇒T
S
γ′ for γ, γ′ ∈ TCfg iff there is some rule ϕ⇒∃ ϕ′ in S

and some valuation ρ : Var→ T with (γ, ρ) |= ϕ and (γ′, ρ) |= ϕ′. A⇒T
S

-path is a finite
sequence γ0⇒

T

S
γ1⇒

T

S
...⇒T

S
γn with γ0,...,γn ∈ TCfg. A⇒T

S
-path is complete iff it is not

a strict prefix of any other⇒T
S

-path.
We assume an operational semantics is a set of (unconditional) reduction rules

“l ⇒∃ r if b”, where l, r ∈ TΣ,Cfg(Var) are program configurations with variables and
b ∈ TΣ,Bool(Var) is a condition constraining the variables of l, r. Styles of operational
semantics using only such (unconditional) rules include evaluation contexts [11], the
chemical abstract machine [12] and K [9] (see Section 6 for an evaluation contexts
semantics). Several large languages have been given semantics in such styles, including
C [10] (about 1200 rules) and R5RS Scheme [13]. The reachability proof system works
with any set of rules of this form, being agnostic to the particular style of semantics.

Such a rule “l⇒∃ r if b” states that a ground configuration γ which is an instance of
l and satisfies the condition b reduces to an instance γ′ of r. Matching logic can express
terms with constraints: l ∧ b is satisfied by exactly the γ above. Thus, we can regard
such a semantics as a particular weakly well-defined reachability system S with rules
of the form “l ∧ b⇒∃ r”. The weakly well-defined condition on S guarantees that if γ
matches the left-hand-side of a rule in S, then the respective rule induces an outgoing
transition from γ. The transition system induced by S describes precisely the behavior of
any program in any given state. In [4–6] we show that reachability rules capture one-path
reachability properties and Hoare triples for deterministic languages.

Formally, let us fix an operational semantics given as a reachability system S. Then,
we can specify reachability in the transition system induced by S
Definition 4. An all-path reachability rule is a pair ϕ⇒∀ ϕ′ of patterns ϕ and ϕ′.

An all-path reachability rule ϕ⇒∀ ϕ′ is satisfied, S |= ϕ⇒∀ ϕ′, iff for all complete
⇒T
S

-paths τ starting with γ ∈ TCfg and for all ρ : Var → T such that (γ, ρ) |= ϕ, there
exists some γ′ ∈ τ such that (γ′, ρ) |= ϕ′.

A one-path reachability rule ϕ ⇒∃ ϕ′ is satisfied, S |= ϕ⇒∃ ϕ′, iff for all γ ∈ TCfg

and ρ : Var→ T such that (γ, ρ) |= ϕ, there is either a⇒T
S

-path from γ to some γ′ such
that (γ′, ρ) |= ϕ′, or there is a diverging execution γ ⇒T

S
γ1 ⇒

T

S
γ2 ⇒

T

S
· · · from γ.

4

Step :
|= ϕ→

∨
ϕl⇒

∃ϕr ∈ S ∃FreeVars(ϕl) ϕl

|= ∃c (ϕ[c/�] ∧ ϕl[c/�]) ∧ ϕr → ϕ′ for each ϕl ⇒
∃ ϕr ∈ S

S,A `C ϕ⇒
∀ ϕ′

Axiom :

ϕ⇒∀ ϕ′ ∈ A

S,A `C ϕ⇒
∀ ϕ′

Reflexivity :
·

S,A ` ϕ⇒∀ ϕ

Transitivity :

S,A `C ϕ1 ⇒
∀ ϕ2 S,A∪ C ` ϕ2 ⇒

∀ ϕ3

S,A `C ϕ1 ⇒
∀ ϕ3

Case Analysis :

S,A `C ϕ1 ⇒
∀ ϕ S,A `C ϕ2 ⇒

∀ ϕ

S,A `C ϕ1 ∨ ϕ2 ⇒
∀ ϕ

Abstraction :

S,A `C ϕ⇒
∀ ϕ′ X ∩ FreeVars(ϕ′) = ∅

S,A `C ∃X ϕ⇒∀ ϕ′

Consequence :

|= ϕ1 → ϕ′1 S,A `C ϕ
′
1 ⇒

∀ ϕ′2 |= ϕ′2 → ϕ2

S,A `C ϕ1 ⇒
∀ ϕ2

Circularity :

S,A `C∪{ϕ⇒∀ϕ′} ϕ⇒
∀ ϕ′

S,A `C ϕ⇒
∀ ϕ′

Fig. 1. Proof system for reachability. We make the standard assumption that the free variables of
ϕl ⇒

∃ ϕr in the Step proof rule are fresh (e.g., disjoint from those of ϕ⇒∀ ϕ′).

The racing increment example in Section 6 can be specified by

〈x :=x+1 || x :=x+1, x 7→m〉 ⇒∀ ∃n (〈skip, x 7→n〉 ∧ (n = m +Int 1 ∨ n = m +Int 2)

which states that every terminating execution reaches a state where execution of both
threads is complete and the value of x has increased by 1 or 2 (this code has a race).

A Hoare triple describes the resulting state after execution finishes, so it corresponds
to a reachability rule where the right side contains no remaining code. However, all-
path reachability rules are strictly more expressive than Hoare triples, as they can also
specify intermediate configurations (the code in the right-hand-side need not be empty)
Reachability rules provide a unified representation for both language semantics and
program specifications: ϕ ⇒∃ ϕ′ for semantics and ϕ ⇒∀ ϕ′ for all-path reachability
specifications. Note that, like Hoare triples, reachability rules can only specify properties
of complete paths (that is, terminating execution paths). One can use existing Hoare
logic techniques to break reasoning about a non-terminating program into reasoning
about its terminating components.

4 Reachability Proof System

Fig. 1 shows our novel proof system for all-path reachability. The target language is
given as a weakly well-defined reachability system S. The soundness result (Thm. 1)
guarantees that S |= ϕ ⇒∀ ϕ′ if S ` ϕ ⇒∀ ϕ′ is derivable. Note that the proof system
derives more general sequents of the form S,A `C ϕ⇒∀ ϕ′, whereA and C are sets of
reachability rules. The rules inA are called axioms and rules in C are called circularities.
If either A or C does not appear in a sequent, it means the respective set is empty:
S `C ϕ⇒

∀ ϕ′ is a shorthand for S, ∅ `C ϕ⇒∀ ϕ′, and S,A ` ϕ⇒∀ ϕ′ is a shorthand

5

for S,A `∅ ϕ ⇒
∀ ϕ′. Initially, both A and C are empty. Note that “→” in Step and

Consequence denotes implication.
The intuition is that the reachability rules inA can be assumed valid, while those in

C have been postulated but not yet justified. After making progress from ϕ (at least one
derivation by Step or by Axiomwith the rules inA), the rules in C become (coinductively)
valid (can be used in derivations by Axiom). During the proof, circularities can be added
to C via Circularity, flushed intoA by Transitivity, and used via Axiom. The desired
semantics for sequent S,A `C ϕ ⇒

∀ ϕ′ (read “S with axioms A and circularities C
proves ϕ⇒∀ ϕ′”) is: ϕ⇒∀ ϕ′ holds if the rules inA hold and those in C hold after taking
at least on step from ϕ in the transition system (⇒T

S
,T), and if C , ∅ then ϕ reaches ϕ′

after at least one step on all complete paths. As a consequence of this definition, any rule
ϕ⇒∀ ϕ′ derived by Circularity has the property that ϕ reaches ϕ′ after at lest one step,
due to Circularity having a prerequisite S,A `C∪{ϕ⇒∀ϕ′} ϕ⇒∀ ϕ′ (with a non-empty
set of circularities). We next discuss the proof rules.

Step derives a sequent where ϕ reaches ϕ′ in one step on all paths. The first premise
ensures any configuration matching ϕ matches the left-hand-side ϕl of some rule in S
and thus, as S is weakly well-defined, can take a step. Formally, if (γ, ρ) |= ϕ, then there
exists some rule ϕl ⇒

∃ ϕr ∈ S and some valuation ρ′ of the free variables of ϕl such that
(γ, ρ′) |= ϕl, and thus γ has at least one⇒T

S
-successor generated by the rule ϕl ⇒

∃ ϕr.
The second premise ensures that each ⇒T

S
-successor of a configuration matching ϕ

matches ϕ′. Formally, if γ ⇒T
S
γ′ and γ matches ϕ then there is some rule ϕl ⇒

∃ ϕr ∈ S

and ρ : Var→ T such that (γ, ρ) |= ϕ ∧ ϕl and (γ′, ρ) |= ϕr; then the second part implies
γ′ matches ϕ′.

Designing a proof rule for deriving an execution step along all paths is non-trivial.
For instance, one might expect Step to require as many premises as there are transitions
going out of ϕ, as is the case for the examples presented later in this paper. However,
that is not possible, as the number of successors of a configuration matching ϕ may
be unbounded even if each matching configuration has a finite branching factor in
the transition system. Step avoids this issue by requiring only one premise for each
rule by which some configuration ϕ can take a step, even if that rule can be used to
derive multiple transitions. To illustrate this situation, consider a language defined by
S ≡ {〈n1〉 ∧ n1 >Int n2 ⇒

∃ 〈n2〉}, with n1 and n2 non-negative integer variables. A
configuration in this language is a singleton with a non-negative integer. Intuitively, a
positive integer transits into a strictly smaller non-negative integer, in a non-deterministic
way. The branching factor of a non-negative integer is its value. Then S |= 〈m〉 ⇒∀ 〈0〉.
Deriving it reduces (by Circularity and other proof rules) to deriving 〈m1〉 ∧ m1 >Int

0 ⇒∀ ∃m2 (〈m2〉 ∧ m1 >Int m2). The left-hand-side is matched by any positive integer,
and thus its branching factor is infinity. Deriving this rule with Step requires only two
premises, |= (〈m1〉∧m1 >Int 0)→ ∃n1n2 (〈n1〉∧n1 >Int n2) and |= ∃c (c = 〈m1〉∧m1 >Int

0 ∧ c = 〈n1〉 ∧ n1 >Int n2) ∧ 〈n2〉 → ∃m2 (〈m2〉 ∧ m1 >Int m2). A similar situation arises
in real life for languages with thread pools of arbitrary size.

Axiom applies a trusted rule. Reflexivity and Transitivity capture the corresponding
closure properties of the reachability relation. Reflexivity requires C to be empty to
ensure that all-path rules derived with non-empty C take at least one step. Transitivity
enables the circularities as axioms for the second premise, since if C is not empty, the

6

first premise is guaranteed to take at least one step. Consequence, Case Analysis and
Abstraction are adapted from Hoare logic. Ignoring circularities, these seven rules
discussed so far constitute formal infrastructure for symbolic execution.

Circularity has a coinductive nature, allowing us to make new circularity claims. We
typically make such claims for code with repetitive behaviors, such as loops, recursive
functions, jumps, etc. If there is a derivation of the claim using itself as a circularity, then
the claim holds. This would obviously be unsound if the new assumption was available
immediately, but requiring progress (taking at least on step in the transition system
(T ,⇒T

S
)) before circularities can be used ensures that only diverging executions can

correspond to endless invocation of a circularity.
One important aspect of concurrent program verification, which we do not address in

this paper, is proof compositionality. Our focus here is limited to establishing a sound and
complete language-independent proof system for all-path reachability rules, to serve as a
foundation for further results and applications, and to discuss our current implementation
of it. We only mention that we have already studied proof compositionality for earlier
one-path variants of reachability logic [5], showing that there is a mechanical way
to translate any Hoare logic proof derivation into a reachability proof of similar size
and structure, but based entirely on the operational semantics of the language. The
overall conclusion of our previous study, which we believe will carry over to all-path
reachability, was that compositional reasoning can be achieved methodologically using
our proof system, by proving and then using appropriate reachability rules as lemmas.
However, note that this works only for theoretically well-behaved languages which
enjoy a compositional semantics. For example, a language whose semantics assumes a
bounded heap size, or which has constructs whose semantics involve the entire program,
e.g., call/cc, will lack compositionality.

5 Soundness and Relative Completeness

Here we discuss the soundness and relative completeness of our proof system. Unlike the
similar results for Hoare logics and dynamic logics, which are separately proved for each
language taking into account the particularities of that language, we prove soundness
and relative completeness once and for all languages.

Soundness states that a syntactically derivable sequent holds semantically. Because
of the utmost importance of the result below, we have also mechanized its proof. Our
complete Coq formalization can be found at http://fsl.cs.illinois.edu/rl.

Theorem 1 (Soundness). If S ` ϕ⇒∀ ϕ′ then S |= ϕ⇒∀ ϕ′.

Proof (sketch — complete details in [14]). Unfortunately, due to Circularity, a simple
induction on the proof tree does not work. Instead, we prove a more general result
(Lemma 1 below) allowing sequents with nonempty A and C, which requires stating
semantic assumptions about the rules inA and C.

First we need to define a more general satisfaction relation than S |= ϕ⇒∀ ϕ′. Let
δ ∈ {+, ∗} be a flag and let n ∈ N be a natural number. We define a new satisfaction
relation S |=δ

n ϕ ⇒
∀ ϕ′ by restricting the paths in the definition of S |= ϕ ⇒∀ ϕ′ to

length at most n, and requiring progress (at least one step) when δ = +.

7

http://fsl.cs.illinois.edu/rl

step(c, c′) ≡
∨

µ≡ϕl⇒
∃ϕr∈S

∃FreeVars(µ) (ϕl[c/�] ∧ ϕr[c′/�])

coreach(ϕ) ≡ ∀n∀c0...cn

(
� = c0 →

∧
0≤i<n

step(ci, ci+1)→ ¬∃cn+1 step(cn, cn+1)→
∨

0≤i≤n

ϕ[ci/�]
)

Fig. 2. FOL encoding of one step transition relation and all-path reachability.

Formally, we define S |=δ
n ϕ ⇒

∀ ϕ′ to hold iff for any complete path τ = γ1...γk

of length k ≤ n and for any ρ such that (γ1, ρ) |= ϕ, there exists i ∈ {1, ..., k} such that
(γi, ρ) |= ϕ′. Additionally, when δ = +, we require that i , 1 (i.e. γ makes progress). The
indexing on n is required to prove the soundness of circularities. Now we can state the
soundness lemma.

Lemma 1. If S,A `C ϕ ⇒
∀ ϕ′ and S |=+

n A and S |=+
n−1 C then S |=∗n ϕ ⇒

∀ ϕ′, and
furthermore, if C is nonempty then S |=+

n ϕ⇒
∀ ϕ′.

Theorem 1 follows by showing that S |= ϕ⇒∀ ϕ′ iff S |=n ϕ⇒
∀ ϕ′ for all n ∈ N.

Lemma 1 is proved by induction on the derivation (with each induction hypothesis
universally quantified over n). Consequence, Case Analysis, and Abstraction are easy.
Axiom may only be used in cases where S |=+

n A includes S |=+
n ϕ⇒

∀ ϕ′ (as S contains
only one-path rules). Reflexivity may only be used when C is empty, and S |=∗ ϕ⇒∀ ϕ
unconditionally. The premises of Step are pattern implications which imply that any
configuration matching ϕ is not stuck in⇒T

S
, and all of its immediate successors satisfy

ϕ′. This directly establishes that S |=+ ϕ ⇒∀ ϕ′. Transitivity requires considering
execution paths more carefully. If C is empty, then the proof is trivial. Otherwise the
induction hypothesis gives that ϕ1 ⇒

∀ ϕ2 holds with progress. Therefore, when proving
ϕ2 ⇒

∀ ϕ3, the circularities are enabled soundly. Circularity proceeds by an inner
well-founded induction on n. The outer induction over the derivation gives an induction
hypothesis showing the desired conclusion under the additional assumption that ϕ⇒∀ ϕ′

holds for any m strictly less than n, which is exactly the induction hypothesis provided
by the inner induction on n. ut

We next show relative completeness: any valid all-path reachability property of any
program in any language with an operational semantics given as a reachability system S
is derivable with the proof system in Fig. 1 from S. As with Hoare and dynamic logics,
“relative” means we assume an oracle capable of establishing validity in the first-order
theory of the state, which here is the configuration model T . An immediate consequence
of relative completeness is that Circularity is sufficient to derive any repetitive behavior
occurring in any program written in any language, and that Step is also sufficient to
derive any non-deterministic behavior! We establish the relative completeness under the
following assumptions: (1) S is finite; (2) the model T includes natural numbers with
addition and multiplication; and (3) the set of configurations TCfg is countable (the model
T includes some injective function α :TCfg→N). Assumption (1) ensures Step has a
finite number of prerequisites. Assumption (2) is a standard assumption (also made by
Hoare and dynamic logic completeness results) which allows the definition of Gödel’s β
predicate. Assumption (3) allows the encoding of a sequence of configurations into a

8

IMP language syntax
PVar F program variables
ExpF PVar | Int | Exp op Exp
Stmt F skip | PVar := Exp

| Stmt; Stmt | Stmt || Stmt
| if(Exp) Stmt else Stmt
| while(Exp) Stmt

IMP evaluation contexts syntax
ContextF �

| 〈Context, State〉
| Context op Exp | Int op Context
| PVar := Context | Context; Stmt
| Context || Stmt | Stmt || Context
| if(Context) Stmt else Stmt

IMP operational semantics
lookup 〈C, σ〉[x]⇒∃ 〈C, σ〉[σ(x)] op i1 op i2 ⇒

∃ i1 opInt i2

asgn 〈C, σ〉[x := i]⇒∃ 〈C, σ[x← i]〉[skip] seq skip; s⇒∃ s
cond1 if(i) s1 else s2 ⇒

∃ s1 if i , 0 cond2 if(0) s1 else s2 ⇒
∃ s2

while while(e) s⇒∃ if(e) s; while(e) s else skip finish skip || skip⇒∃ skip

Fig. 3. IMP language syntax and operational semantics based on evaluation contexts.

sequence of natural numbers. We expect the operational semantics of any reasonable
language to satisfy these conditions. Formally, we have the following

Theorem 2 (Relative Completeness). If S |= ϕ⇒∀ ϕ′ then S ` ϕ⇒∀ ϕ′, for any
semantics S satisfying the three assumptions above.

Proof (sketch — complete details in [14]). Our proof relies on the fact that pattern
reasoning in first-order matching logic reduces to FOL reasoning in the model T . A
key component of the proof is defining the coreach(ϕ) predicate in plain FOL. This
predicate holds when every complete⇒T

S
-path τ starting at c includes some configuration

satisfying ϕ. We express coreach(ϕ) using auxiliary predicate step(c, c′) which encodes
the one step transition relation (⇒T

S
). Fig. 2 shows both definitions. As it is, coreach(ϕ)

is not a proper FOL formula, as it quantifies over a sequence of configurations. This
is addressed using the injective function α to encode universal quantification over a
sequence of configurations into universal quantification over a sequence of integers,
which is in turn encoded into quantification over two integer variables using Gödel’s β
predicate (encoding shown in [14]).

Next, using the definition above we encode the semantic validity of an all-path
reachability rule as FOL validity: S |= ϕ⇒∀ ϕ′ iff |= ϕ→ coreach(ϕ′). Therefore, the
theorem follows by Consequence from the sequent S ` coreach(ϕ′)⇒∀ ϕ′. We derive
this sequent by using Circularity to add the rule to the set of circularities, then by using
Step to derive one⇒T

S
-step, and then by using Transitivity and Axiom with the rule

itself to derive the remaining⇒T
S

-steps (circularities can be used after Transitivity).
The formal derivation uses all eight proof rules. ut

6 Verifying Programs

In this section we show a few examples of using our proof system to verify programs
based on an operational semantics. In a nutshell, the proof system enables generic
symbolic execution combined with circular reasoning. Symbolic execution is achieved
by rewriting modulo domain reasoning.

9

〈
x:=x+1 || x:=x+1,
x7→m

〉 〈
x:=x+1 || x:=m+1,
x7→m

〉 〈
x:=x+1 || x:=m+Int1,
x 7→m

〉 〈
x:=x+1 || skip,
x7→m+Int1

〉
〈
x:=m+1 || x:=x+1,
x7→m

〉 〈
x:=m+1 || x:=m+1,
x 7→m

〉 〈
x:=m+1 || x:=m+Int1,
x7→m

〉 〈
x:=m+1 || skip,
x7→m+Int1

〉 〈
x:=m+Int1+1 || skip,
x7→m+Int1

〉
〈
x:=m+Int1 || x:=x+1,
x7→m

〉 〈
x:=m+Int1 || x:=m+1,
x 7→m

〉 〈
x:=m+Int1 || x:=m+Int1,
x7→m

〉 〈
x:=m+Int1 || skip,
x7→m+Int1

〉 〈
x:=m+Int2 || skip,
x 7→m+Int1

〉
〈
skip || x:=x+1,
x7→m+Int1

〉 〈
skip || x:=m+1,
x7→m+Int1

〉 〈
skip || x:=m+Int1,
x7→m+Int1

〉 〈
skip || skip,
x7→m+Int1

〉
〈
skip || x:=m+Int1+1,
x7→m+Int1

〉 〈
skip || x:=m+Int2,
x7→m+Int1

〉 〈
skip || skip,
x7→m+Int2

〉
Fig. 4. State space of the racing increment example

First, we introduce a simple parallel imperative language, IMP. Fig. 3 shows its
syntax and an operational semantics based on evaluation contexts [11] (we choose
evaluation contexts for presentation purposes only). IMP has only integer expressions.
When used as conditions of if and while, zero means false and any non-zero integer
means true (like in C). Expressions are formed with integer constants, program variables,
and conventional arithmetic constructs. Arithmetic operations are generically described
as op. IMP statements are assignment, if, while, sequential composition and parallel
composition. IMP has shared memory parallelism without explicit synchronization. The
examples use the parallel construct only at the top-level of the programs. The second
example shows how to achieve synchronization using the existing language constructs.

The program configurations of IMP are pairs 〈code, σ〉, where code is a program
fragment and σ is a state term mapping program variables into integers. As usual, we
assume appropriate definitions for the integer and map domains available, together
with associated operations like arithmetic operations (i1 opInt i2, etc.) on the integers and
lookup (σ(x)) and update (σ[x← i]) on the maps. We also assume a context domain with
a plugging operation (C[t]) that composes a context and term back into a configuration.
A configuration context consists of a code context and a state. The definition in Fig. 3
consists of eight reduction rules between program configurations, which make use of
first-order variables: x is a variable of sort PVar; e is a variable of sort Exp; s, s1, s2 are
variables of sort Stmt; i, i1, i2 are variables of sort Int; σ is a variable of sort State; C is a
variable of sort Context. A rule reduces a configuration by splitting it into a context and
a redex, rewriting the redex and possibly the context, and then plugging the resulting
term into the resulting context. As an abbreviation, a context is not mentioned if not
used; e.g., the rule op is in full 〈C, σ〉[i1 op i2] ⇒∃ 〈C, σ〉[i1 opInt i2]. For example,
configuration 〈x := (2 + 5) − 4, σ〉 reduces to 〈x := 7 − 4, σ〉 by applying the op+ rule
with C ≡ x :=� − 4, σ ≡ σ, i1 ≡ 2 and i2 ≡ 5. We can regard the operational semantics
of IMP above as a set of reduction rules of the form “l ⇒∃ r if b”, where l and r are
program configurations with variables constrained by boolean condition b. As discussed
in Section 3, our proof system works with any rules of this form.

Next, we illustrate the proof system on a few examples. The first example shows
that our proof system enables exhaustive state exploration, similar to symbolic model-
checking but based on the operational semantics. Although humans prefer to avoid such
explicit proofs and instead methodologically use abstraction or compositional reasoning
whenever possible (and such methodologies are not excluded by our proof system), a

10

complete proof system must nevertheless support them. The code x :=x+1 || x :=x+1
exhibits a race on x: the value of x increases by 1 when both reads happen before either
write, and by 2 otherwise. The all-path rule that captures this behavior is

〈x :=x+1 || x :=x+1, x 7→m〉 ⇒∀ ∃n (〈skip, x 7→n〉 ∧ (n = m +Int 1 ∨ n = m +Int 2)

We show that the program has exactly these behaviors by deriving this rule in the
proof system. Call the right-hand-side pattern G. The proof contains subproofs of
c ⇒∀ G for every reachable configuration c, tabulated in Fig. 4. The subproofs for c
matching G use Reflexivity and Consequence, while the rest use Transitivity, Step,
and Case Analysis to reduce to the proofs for the next configurations. For example, the
proof fragment below shows how 〈x := m + 1 || x := x + 1, x 7→ m〉 ⇒∀ G reduces to
〈x := m +Int 1 || x := x+1, x 7→ m〉 ⇒∀ G and 〈x := m+1 || x := m+1, x 7→ m〉 ⇒∀ G:

Step
...〈

x:=m+1 || x:=x+1,
x7→m

〉
⇒∀

〈
x:=m+Int1 || x:=x+1,
x7→m

〉
∨

〈
x:=m+1 || x:=m+1,
x7→m

〉
...〈

x:=m+Int1 || x:=x+1,
x7→m

〉
⇒∀G

...〈
x:=m+1 || x:=m+1,
x7→m

〉
⇒∀G〈

x:=m+Int1 || x:=x+1,
x7→m

〉
∨
〈
x:=m+1 || x:=m+1,
x7→m

〉
⇒∀ G

CA

〈x := m + 1 || x := x + 1, x 7→ m〉 ⇒∀ G
Trans

For the rule hypotheses of Step above, note that all rules but lookup and op+ make
the overlap condition ∃c

(〈
x:=m+1 || x:=x+1,
x7→m

〉
[c/�] ∧ ϕl[c/�]

)
unsatisfiable, and only one

choice of free variables works for the lookup and op+ rules. For lookup, ϕl is 〈C, σ〉[x]
and the overlap condition is only satisfiable if the logical variables C, σ and x are equal
to (x := m + 1 || x := � + 1), (x 7→ m), and x, resp. Under this assignment, the pattern
ϕr = 〈C, σ〉[σ(x)] is equivalent to 〈x := m + 1 || x := m + 1, x 7→ m〉, the right branch of
the disjunction. The op+ rule is handled similarly. The assignment for lookup can also
witness the existential in the progress hypothesis of Step. Subproofs for other states in
Fig. 4 can be constructed similarly.

f0 = 1;
turn = 1;
while (f1 && turn)
skip
x = x + 1;
f0 = 0;

f1 = 1;
turn = 0;
while (f0 && (1 - turn))
skip
x = x + 1;
f1 = 0;

Fig. 5. Peterson’s algorithm (threads T0 and T1)

The next two examples use loops and
thus need to state and prove invariants.
As discussed in [4], Circularity gener-
alizes the various language-specific invari-
ant proof rules encountered in Hoare log-
ics. One application is reducing a proof of
ϕ ⇒∀ ϕ′ to proving ϕinv ⇒

∀ ϕinv ∨ ϕ
′ for some pattern invariant ϕinv. We first show

|= ϕ → ϕinv, and use Consequence to change the goal to ϕinv ⇒
∀ ϕ′. This is claimed

as a circularity, and then proved by transitivity with ϕinv ∨ ϕ
′. The second hypothesis

{ϕinv ⇒
∀ ϕ′} ` ϕinv ∨ ϕ

′ ⇒∀ ϕ′ is proved by Case Analysis, Axiom, and Reflexivity.
Next, we can use Peterson’s algorithm for mutual exclusion to eliminate the race as

shown in Fig. 5. The all-path rule ϕ⇒∀ ϕ′ that captures the new behavior is

〈T0 || T1, (f0 7→ 0, f1 7→ 0, x 7→ N)〉
⇒∀ ∃t 〈skip, (f0 7→ 0, f1 7→ 0, x 7→ N +Int 2, turn 7→ t)〉

Similarly to the unsynchronized example, the proof contains subproofs of c⇒∀ ϕ′ for
every configuration c reachable from ϕ. The main difference is that Circularity is used
with each of these rules c ⇒∀ ϕ′ with one of the two threads of c in the while loop

11

(these rules capture the invariants). Thus, when we reach a configuration c visited before,
we use the rule added by Circularity to complete the proof.

The final example is the program SUM ≡ “s := 0; LOOP” (where LOOP stands
for “while (n>0) (s := s+n; n := n-1)”), which computes in s the sum of the
numbers from 1 up to n. The all-path reachability rule ϕ⇒∀ϕ′ capturing this behavior is

〈SUM, (s 7→ s, n 7→ n)〉 ∧ n ≥Int 0 ⇒∀ 〈skip, (s 7→ n ∗Int (n +Int 1)/Int2, n 7→ 0)〉

We derive the above rule in our proof system by using Circularity with the invariant rule
∃n′(〈LOOP, (s 7→ (n−Int n′)∗Int (n+Int n′+Int 1)/Int2, n 7→n′)〉 ∧ n′ ≥Int 0) ⇒∀ ϕ′. Previous
work [4–7] presented a proof system able to derive similar rules, but which hold along
some execution path, requiring a separate proof that the program is deterministic.

7 Implementation

Here we briefly discuss our prototype implementation of the proof system in Fig. 1 in
K [9]. We choose K because it is a modular semantic language design framework, it is
used for teaching programming languages at several universities, and there are several
languages defined in it including C [10], PHP [15], Python, and Java. Due to space
limitations, we do not present K here. We refer the reader to http://kframework.org
for language definitions, a tutorial, and our prototype. As discussed in Section 3, we
simply view a K semantics as a set of reachability rules of the form “l ∧ b⇒∃ r”.

The prototype is implemented in Java, and uses Z3 [16] for domain reasoning. It takes
an operational semantics and uses it to perform concrete or symbolic execution. At its
core, it performs narrowing of a conjunctive pattern with reachability rules between con-
junctive patterns, where a conjunctive pattern is a pattern of the form ∃X(π∧ψ), with X a
set of variables, π a basic pattern (program configurations with variables), and ψ a struc-
tureless formula. Narrowing is necessary when a conjunctive pattern is too abstract to
match the left-hand side of any rule, but is unifiable with the left-hand sides of some rules.
For instance, consider the IMP code fragment “if (b) then x = 1; else x = 0;”.
This code does not match the left-hand sides of either of the two rules giving semantics
to if (similar to cond1 and cond2 in Fig. 3), but it is unifiable with the left-hand sides of
both rules. Intuitively, if we use the rules of the semantics, taking steps of rewriting on a
ground configuration yields concrete execution, while taking steps of narrowing on a
conjunctive pattern yields symbolic execution. In our practical evaluation, we found that
conjunctive patterns tend to suffice to specify both the rules for operational semantics
and program specifications.

For each step of narrowing, the K engine uses unification modulo theories. In
our implementation, we distinguish a number of mathematical theories (e.g. booleans,
integers, sequences, sets, maps, etc) which the underlying SMT solver can reason about.
Specifically, when unifying a conjunctive pattern ∃X(π ∧ ψ) with the left-hand side of
a rule ∃Xl(πl ∧ ψl) (we assume X ∩ Xl = ∅), the K engine begins with the syntactic
unification of the basic patterns π and πl. Upon encountering corresponding subterms (π′

in π and π′l in πl) which are both terms of one of the theories above, it records an equality
π′ = π′l rather than decomposing the subterms further (if one is in a theory, and the other
one is in a different theory or is not in any theory, the unification fails). If this stage of

12

http://kframework.org

unification is successful, we end up with a conjunction ψu of constraints, some having
a variable in one side and some with both sides in one of the theories. Satisfiability of
∃X∪Xl(ψ∧ψu∧ψl) is then checked by the SMT solver. If it is satisfiable, then narrowing
takes a step from ∃X(π∧ ψ) to ∃X ∪ Xl ∪ Xr(πr ∧ ψ∧ ψu ∧ ψl ∧ ψr), where ∃Xr(πr ∧ ψr)
is the right-hand side of the rule. Intuitively, “collecting” the constraints ψu ∧ ψl ∧ ψr is
similar to collecting the path constraint in traditional symbolic execution (but is done in
a language-generic manner). For instance, in the if case above, narrowing with the two
semantics rules results in collecting the constraints b = true and b = false.

The K engine accepts a set of user provided rules to prove together, which capture
the behavior of the code being verified. Typically, these rules specify the behavior of
recursive functions and while loops. For each rule, the K engine searches starting from
the left-hand side for formulae which imply the right-hand side, starting with S the
semantics and C all the rules it attempts to prove. By a derived rule called Set Circularity,
this suffices to show that each rule is valid. As an optimization, Axiom is given priority
over Step (use specifications rather than stepping into the code).

Most work goes into implementing the Step proof rule, and in particular calculating
how ρ |= ∃c (ϕ[c/�] ∧ ϕl[c/�]) can be satisfied. This holds when ργ |= ϕ and ργ |= ϕl,
which can be checked with unification modulo theories. To use Step in an automated
way, the K tool constructs ϕ′ for a given ϕ as a disjunction of ϕr ∧ ψu ∧ ψ ∧ ψl over each
rule ϕl ⇒

∃ ϕr ∈ S and each way ψu of unifying ϕ with ϕl. As discussed in Section 4, in
general this disjunction may not be finite, but it is sufficient for the examples that we
considered. The Consequence proof rule also requires unification modulo theories, to
check validity of the implication hypothesis |= ϕ1 → ϕ′1. The main difference from Step
is that the free variables of ϕ′ become universality quantified when sending the query to
the SMT solver. The implementation of the other proof rules is straight-forward.

8 Related Work
Using Hoare logic [17] to prove concurrent programs correct dates back to Owicki
and Gries [18]. In the rely-guarantee method proposed by Jones [19] each thread relies
on some properties being satisfied by the other threads, and in its turn, offers some
guarantees on which the other threads can rely. O’Hearn [20] advances a Separation
Hypothesis in the context of separation logic [21] to achieve compositionality: the
state can be partitioned into separate portions for each process and relevant resources,
respectively, satisfying certain invariants. More recent research focuses on improvements
over both of the above methods and even combinations of them (e.g., [22–25]).

The satisfaction of all-path-reachability rules can also be understood intuitively in
the context of temporal logics. Matching logic formulae can be thought of as state
formulae, and reachability rules as temporal formulae. Assuming CTL∗ on finite traces,
the semantics rule ϕ⇒∃ ϕ′ can be expressed as ϕ→ E©ϕ′, while an all-path reachability
rule ϕ ⇒∀ ϕ′ can be expressed as ϕ → A3ϕ′. However, unlike in CTL∗, the ϕ and ϕ′

formulae of reachability rules ϕ ⇒∃ ϕ′ or ϕ ⇒∀ ϕ′ share their free variables. Thus,
existing proof systems for temporal logics (e.g., the CTL∗ one by Pnueli and Kesten) are
not directly comparable with our approach.

Bae et al [26], Rocha and Meseguer [27], and Rocha et al [28] use narrowing to
perform symbolic reachability analysis in a transition system associated to a uncondi-
tional rewrite theory for the purposes of verification. There are two main differences

13

between their work and ours. First, they express state predicates in equational theories.
Matching logic is more general, being first-order logic over a model of configurations T.
Consequently, the Step proof rule takes these issues into account when considering the
successors of a state. Second, they use rewrite systems for symbolic model checking. Our
work is complementary, in the sense that we use the operational semantics for program
verification, and check properties more similar to those in Hoare logic.

Language-independent proof systems A first proof system is introduced in [6], while [5]
presents a mechanical translation from Hoare logic proof derivations for IMP into
derivations in the proof system. The Circularity proof rule is introduced in [4]. Finally,
[7] supports operational semantics given with conditional rules, like small-step and
big-step. All these previous results can only be applied to deterministic programs.

9 Conclusion and Future Work
This paper introduces a sound and (relatively) complete language-independent proof
system which derives program properties holding along all execution paths (capturing
partial correctness for non-deterministic programs), directly from an operational seman-
tics. The proof system separates reasoning about deterministic language features (via the
operational semantics) from reasoning about non-determinism (via the proof system).
Thus, all we need in order to verify programs in a language is an operational semantics
for the respective language.

We believe that existing techniques such as rely-guarantee and concurrent separation
logic could be used in conjunction with our proof system to achieve semantically
grounded and compositional verification.

Our approach handles operational semantics given with unconditional rules, like K
framework, PLT-Redex, and CHAM, but it cannot handle operational semantics given
with conditional rules, like big-step and small-step (rules with premises). Extending
the presented results to work with conditional rules would boil down to extending the
Step proof rule, which derives the fact that ϕ reaches ϕ′ in one step along all execution
paths. Such a extended Step would have as prerequisites whether the left-hand side of a
semantics rule matches (like the existing Step) and additionally whether its premises
hold. The second part would require an encoding of reachability in first-order logic,
which is non-trivial and mostly likely would result in a first-order logic over a richer
model than T . The difficulty arises from the fact that Step must ensure all successors of
ϕ are in ϕ′. Thus, this extension is left as future work.
Acknowledgements We would like to thank the anonymous reviewers and the FSL
members for their valuable feedback on an early version of this paper. The work presented
in this paper was supported in part by the Boeing grant on "Formal Analysis Tools for
Cyber Security" 2014-2015, the NSF grant CCF-1218605, the NSA grant H98230-10-
C-0294, the DARPA HACMS program as SRI subcontract 19-000222, the Rockwell
Collins contract 4504813093, and the (Romanian) SMIS-CSNR 602-12516 contract no.
161/15.06.2010.

References

1. Nipkow, T.: Winskel is (almost) right: Towards a mechanized semantics textbook. Formal
Aspects of Computing 10 (1998) 171–186

14

2. Jacobs, B.: Weakest pre-condition reasoning for Java programs with JML annotations. J.
Logic and Algebraic Programming 58(1-2) (2004) 61–88

3. Appel, A.W.: Verified software toolchain. In: ESOP. Volume 6602 of LNCS. (2011) 1–17
4. Ros, u, G., S, tefănescu, A.: Checking reachability using matching logic. In: OOPSLA, ACM

(2012) 555–574
5. Ros, u, G., S, tefănescu, A.: From Hoare logic to matching logic reachability. In: FM. Volume

7436 of LNCS. (2012) 387–402
6. Ros, u, G., S, tefănescu, A.: Towards a unified theory of operational and axiomatic semantics.

In: ICALP. Volume 7392 of LNCS. (2012) 351–363
7. Roşu, G., Ştefănescu, A., Ciobâcă, c., Moore, B.M.: One-path reachability logic. In: LICS’13,

IEEE (2013)
8. Ros, u, G., Ellison, C., Schulte, W.: Matching logic: An alternative to Hoare/Floyd logic. In:

AMAST. Volume 6486 of LNCS. (2010) 142–162
9. Ros, u, G., S, erbănut, ă, T.F.: An overview of the K semantic framework. J. Logic and Algebraic

Programming 79(6) (2010) 397–434
10. Ellison, C., Ros, u, G.: An executable formal semantics of C with applications. In: POPL,

ACM (2012) 533–544
11. Felleisen, M., Findler, R.B., Flatt, M.: Semantics Engineering with PLT Redex. MIT (2009)
12. Berry, G., Boudol, G.: The chemical abstract machine. Theoretical Computer Science 96(1)

(1992) 217–248
13. Matthews, J., Findler, R.B.: An operational semantics for Scheme. JFP 18(1) (2008) 47–86
14. Ştefănescu, A., Ciobâcă, c., Moore, B.M., Şerbănuţă, T.F., Roşu, G.: Reachability Logic in K.

Technical Report http://hdl.handle.net/2142/46296, University of Illinois (Nov 2013)
15. Filaretti, D., Maffeis, S.: An executable formal semantics of php. In: ECOOP. LNCS (2014)

to appear.
16. de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: TACAS. Volume 4963 of

LNCS. (2008)
17. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications of the ACM

12(10) (1969) 576–580
18. Owicki, S.S., Gries, D.: Verifying properties of parallel programs: An axiomatic approach.

Communications of the ACM 19(5) (1976) 279–285
19. Jones, C.B.: Specification and design of (parallel) programs. In Mason, R.E.A., ed.: Informa-

tion Processing 1983: World Congress Proceedings, Elsevier (1984) 321–332
20. O’Hearn, P.W.: Resources, concurrency, and local reasoning. Theoretical Computer Science

375(1-3) (2007) 271–307
21. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In: LICS, IEEE

(2002) 55–74
22. Feng, X.: Local rely-guarantee reasoning. In: POPL, ACM (2009) 315–327
23. Vafeiadis, V., Parkinson, M.J.: A marriage of rely/guarantee and separation logic. In:

CONCUR. Volume 4703 of LNCS. (2007) 256–271
24. Reddy, U.S., Reynolds, J.C.: Syntactic control of interference for separation logic. In: POPL,

ACM (2012) 323–336
25. Hayman, J.: Granularity and concurrent separation logic. In: CONCUR. Volume 6901 of

LNCS. (2011) 219–234
26. Bae, K., Escobar, S., Meseguer, J.: Abstract logical model checking of infinite-state systems

using narrowing. In: RTA. (2013) 81–96
27. Rocha, C., Meseguer, J.: Proving safety properties of rewrite theories. In: CALCO. Volume

6859 of LNCS. (2011) 314–328
28. Rocha, C., Meseguer, J., Muñoz, C.A.: Rewriting modulo smt and open system analysis. In:

WRLA. LNCS (2014) to appear.

15

	 *-5ex All-Path Reachability Logic

