
Runtime Verification at Work: A Tutorial

Philip Daian, Dwight Guth, Chris Hathhorn, Yilong Li, Edgar Pek, Manasvi
Saxena, Traian Florin S, erbănut,ă, and Grigore Ros,u

Runtime Verification Inc., University of Illinois at Urbana-Champaign

Abstract. We present a suite of runtime verification tools developed by
Runtime Verification Inc.: RV-Match, RV-Predict, and RV-Monitor.
RV-Match is a tool for checking C programs for undefined behavior
and other common programmer mistakes. It is extracted from the most
complete formal semantics of the C11 language and beats many simi-
lar tools in its ability to catch a broad range of undesirable behaviors.
RV-Predict is a dynamic data race detector for Java and C/C++ pro-
grams. It is perhaps the only tool that is both sound and maximal: it
only reports real races and it can find all races that can be found by any
other sound data race detector analyzing the same execution trace. RV-
Monitor is a runtime monitoring tool that checks and enforces safety
and security properties during program execution. Our tools focus on
reporting no false positives and are free for non-commercial use.

1 Introduction

Runtime verification is an analysis and execution approach based on extracting
information from a running system and using it to detect, and possibly react to,
observed behaviors satisfying or violating certain properties. In this session, we
present the practical applications of runtime verification technology that we are
currently exploring.

Runtime verification avoids the complexity of traditional formal verification
techniques (like model checking and theorem proving) by analyzing only one or a
few execution traces and working directly with the actual system. Thus, runtime
verification scales up relatively well and gives more confidence in the results
of the analysis because it avoids the tedious and error-prone step of formally
modeling the system (at the expense of reduced coverage). Moreover, through
its reflective capabilities, runtime verification can be made an integral part of
the target system, monitoring and guiding its execution during deployment.

We present three instantiations of the runtime verification approach: (1) RV-
Match, a dynamic analysis tool for finding a wide range of flaws in C programs,
(2) RV-Predict, a dynamic data race detector for Java and C, and (3) RV-
Monitor, a runtime monitoring framework for checking and enforcing proper-
ties of Java and C programs.1

1 See https://runtimeverification.com/ for an overview of our tools and company.

https://runtimeverification.com/

2 RV-Match

RV-Match is a tool for checking C programs for undefined behavior and other
common programmer mistakes. It is extracted from the most complete formal
semantics of the C11 language. Previous versions of this tool were used primarily
for testing the correctness of the semantics, but we have improved it into a tool
for doing practical analysis of real C programs. It beats many similar tools in
its ability to catch a broad range of undesirable behaviors. We demonstrate this
below with comparisons based on a third-party benchmark.

2.1 Background: RV-Match

The K semantic framework2 is a program analysis environment based on term
rewriting [1]. Users define the formal semantics of a target programming lan-
guage and the K framework provides a series of formal analysis tools specialized
for that language, such as a symbolic execution engine, a semantic debugger, a
systematic checker for undesired behaviors (model checker), and even a fully-
fledged deductive program verifier. Our tool, RV-Match, is based on the K
framework instantiated with the publicly-available C11 semantics3 [8, 9], a rig-
orous formalization of the current ISO C11 standard [15]. We have specially
optimized RV-Match for the execution and detection of errors in C programs.

Unlike modern optimizing compilers, which have a goal to produce binaries
that are as small and as fast as possible at the expense of compiling programs
that may be semantically incorrect, RV-Match instead aims at mathemati-
cally rigorous dynamic checking of programs for strict conformance with the
ISO C11 standard. A strictly-conforming program is one that does not rely on
implementation-specific behaviors and is free of the most notorious feature of the
C language, undefined behavior. Undefined behaviors are semantic holes left by
the standard for implementations to fill in. They are the source of many subtle
bugs and security issues [13].

2.2 Running RV-Match

Users interface with RV-Match through the rv-match executable, which be-
haves as a drop-in replacement for compilers like gcc and clang. Consider a file
undef.c with contents:�

�
�
�

int main(void) {
int a;
&a+2;

}

We compile the program with rv-match just as we would with gcc or clang.
This produces an executable named a.out by default, which should behave just
2 See http://kframework.org for details.
3 Available at https://github.com/kframework/c-semantics.

http://kframework.org
https://github.com/kframework/c-semantics

as an executable produced by another compiler—for strictly-conforming, valid
programs. For undefined or invalid programs, however, rv-match reports errors
and exits if it cannot recover:�

�

�

�

$ rv-match undef.c
$./a.out
Error: UB-CEA1
Description: A pointer (or array subscript) outside the

bounds of an object.
Type: Undefined behavior.
See also: C11 sec. 6.5.6:8, J.2:1 item 46

at main(undef.c:2)

In addition to location information and a stack trace, RV-Match also cites
relevant sections of the standard [15].

2.3 Finding undefined behavior in C using RV-Match

Below, we describe several examples demonstrating RV-Match’s capabilities
for detecting undefined behavior. Note that these examples cover only a small
subset of the errors which RV-Match detects.

Unsequenced side effects. Consider a simple program:�
�

�
�

int main(void) {
int x = 0;
return (x = 1) + (x = 2);

}

Compiled with clang, this program returns 3. With gcc, however, it returns
4, because gcc chooses to sequence both assignments before the addition ex-
pression. In general, compilers are allowed to introduce optimizations as long
as they do not affect the behavior of well-defined programs. However, since this
program is undefined, such optimizations can have unexpected consequences.
When compiled with rv-match, we get the following output after running the
program:�

�

�

�

Error: UB-EIO8
Description: Unsequenced side effect on scalar object

with side effect of same object.
Type: Undefined behavior.
See also: C11 sec. 6.5:2, J.2:1 item 35

at main(1-unsequenced-side-effect.c:3)

Buffer overflows. Perhaps the most notorious errors in C programs are buffer
overflows. RV-Match is capable of detecting all varieties of buffer overflows.4

4 See 2-buffer-overflow.c from the examples/demo directory of the c-semantics
repository at https://github.com/kframework/c-semantics for examples of sev-
eral varieties.

https://github.com/kframework/c-semantics

As a more subtle example, consider an overflow within the subobjects of an
aggregate type (in this case, a struct of an array followed by an integer):�

�

�

�

struct foo { char buffer[32]; int secret; };
int idx = 0;
void setIdx() { idx = 32; }
int main(void) {

setIdx();
struct foo x = {0};
x.secret = 5;
return x.buffer[idx];

}

We can safely assume the struct is laid out sequentially in memory, yet access
to the 32nd index of this array is still undefined behavior. Tools like valgrind
usually do not catch this sort of issue because the accesses will be to valid
addresses for other pieces of the aggregate. But it is still undefined behavior.
gcc compiles the program and execution leads to a leak of the secret integer.
RV-Match, however, will detect the flaw:�

�

�

�

Error: UB-CER4
Description: Dereferencing a pointer past the end of an

array.
Type: Undefined behavior.
See also: C11 sec. 6.5.6:8, J.2:1 item 47

at main(3-array-in-struct.c:16)

RV-Match reports more than 150 varieties of error, like UB-CER4 above,
most of which concern undefined behavior.5

Implementation-defined behavior. RV-Match is also able to detect errors related
to implementation-defined behavior, which the C standard defines as unspeci-
fied behavior where each implementation documents how the choice is made.
rv-match can be instantiated with different profiles corresponding to different
implementation choices (use rv-match -v for existing choices). An example of
implementation-defined behavior is the conversion to a type that cannot store a
specified value, thus triggering a loss of precision.

More examples of undefined behavior and the features of RV-Match are
described in the “Running Examples” section of the RV-Match documenta-
tion [11].

2.4 Evaluation

Of course, there is no shortage of tools for analyzing C programs. To evaluate the
strengths of our tool, we compare RV-Match against some popular C analyzers
5 For a list of the errors and example programs demonstrating them, see https://
github.com/kframework/c-semantics/blob/master/examples/error-codes.

https://github.com/kframework/c-semantics/blob/master/examples/error-codes
https://github.com/kframework/c-semantics/blob/master/examples/error-codes

on a benchmark from Toyota ITC. We also briefly mention our experience with
running our tool on the SV-COMP benchmark. The other tools we consider are
listed below:

– GrammaTech CodeSonar is a static analysis tool for identifying “bugs that
can result in system crashes, unexpected behavior, and security breaches” [10].

– MathWorks Polyspace Bug Finder is a static analyzer for identifying “run-
time errors, concurrency issues, security vulnerabilities, and other defects in
C and C++ embedded software” [22].

– MathWorks Polyspace Code Prover is a tool based on abstract interpretation
that “proves the absence of overflow, divide-by-zero, out-of-bounds array
access, and certain other runtime errors in C and C++ source code” [23].

– Clang UBSan, TSan, MSan, and ASan (version 3.7.1) are all clang mod-
ules for instrumenting compiled binaries with various mechanisms for detect-
ing undefined behavior, data races, uninitialized reads, and various memory
issues, respectively [6].

– Valgrind Memcheck and Helgrind (version 3.10.1, GCC version 4.8.4) are
tools for instrumenting binaries for the detection of several memory and
thread-related issues (illegal reads/writes, use of uninitialized or unaddress-
able values, deadlocks, data races, etc.) [24].

– The CompCert C interpreter (version 2.6) uses an approach similar to our
own. It executes programs according to the semantics used by the CompCert
compiler [4] and reports undefined behavior.

– Frama-C Value Analysis (version sodium-20150201), like Code Prover, is a
tool based on static analysis and abstract interpretation for catching several
forms of undefinedness [5].

The Toyota ITC benchmark [25]. This publicly-available6 benchmark consists
of 1,276 tests, half with planted defects meant to evaluate the defect rate capa-
bility of analysis tools and the other half without defects meant to evaluate the
false positive rate. The tests are grouped in nine categories: static memory, dy-
namic memory, stack-related, numerical, resource management, pointer-related,
concurrency, inappropriate code, and miscellaneous.

We evaluated RV-Match along with the tools mentioned above on this
benchmark. Our results appear in Figure 1 and the tools we used for our eval-
uation are available online.7 Following the method of Shiraishi, Mohan, and
Marimuthu [25], we report the value of three metrics: DR is the detection rate,
the percentage of tests containing errors where the error was detected; FPR =
100−FPR, where FPR is the false positive rate; and PM is a productivity metric,
where PM =

√
DR× FPR, the geometric mean of DR and FPR.

Interestingly, and similar to our experience with the SV-COMP benchmark
mentioned below, the use of RV-Match on the Toyota ITC benchmark detected
a number of flaws in the benchmark itself, both in the form of undefined behavior
6 See https://github.com/Toyota-ITC-SSD/Software-Analysis-Benchmark.
7 For tools and instructions on reproducing these results, see https://github.com/
runtimeverification/evaluation/tree/master/toyota-itc-benchmark.

https://github.com/Toyota-ITC-SSD/Software-Analysis-Benchmark
https://github.com/runtimeverification/evaluation/tree/master/toyota-itc-benchmark
https://github.com/runtimeverification/evaluation/tree/master/toyota-itc-benchmark

that was not intended, and in the form of tests that were intended to contain
a defect but were actually correct. Our fixes for these issues were accepted by
the Toyota ITC authors and we used the fixed version of the benchmark in
our experiments. Unfortunately, we do not have access to the MathWorks and
GrammaTech static analysis tools, so in Figure 1 we have reproduced the results
reported in [25]. Thus, it is possible that the metrics scored for the other tools
may be off by some amount.

The SV-COMP benchmark suite. This consist of a large number of C programs
used as verification tasks during the International Competition on Software Ver-
ification (SV-COMP) [3]. We analyzed 1346 programs classified as correct with
RV-Match and observed that 188 (14%) of the programs exhibited undefined
behavior. Issues ranged from using uninitialized values in expressions, potentially
invalid conversions, incompatible declarations, to more subtle strict aliasing vi-
olations. Our detailed results are available online.8

3 RV-Predict

RV-Predict is a dynamic data race detector for Java and C/C++ programs.
RV-Predict is perhaps the only tool that is both sound and maximal: it only
reports real races and it can find all races that can be found by any other sound
data race detector analyzing the same execution trace. We have evaluated our
tool on a set of real Java programs and we have been able to find a large number
of previously unknown data race violations. We report a case study on testing
Tomcat, a widely used Java application server, using RV-Predict. Moreover,
we have obtained encouraging results after evaluating RV-Predict on a smaller
class of C programs. The more mature Java version can perform both online (i.e.,
data races detection as the program runs) and offline (i.e. data race detection
after the program is run and traces are collected) analysis. The C/C++ version
is a prototype and can only perform offline data race detection.

3.1 Background: RV-Predict

RV-Predict is based on an important theoretical result by S, erbănut,ă, Chen,
and Ros,u [2]: given an execution trace, it is possible to build a maximal and
sound causal model for concurrent computations. This model has the property
that it consists of all traces that any program capable of generating the original
trace can also generate.

Moreover, based on the results of Huang, Meredith, and Ros,u [14], RV-
Predict implements a technique that provides a provably higher detection
capability than the state-of-the-art techniques. A crucial insight behind this
technique is the inclusion of abstracted control flow information in the execu-
tion model, which expands the space of the causal model provided by classical
8 Detailed SV-COMP benchmark results are available at https://github.com/
runtimeverification/evaluation/tree/master/svcomp-benchmark.

https://github.com/runtimeverification/evaluation/tree/master/svcomp-benchmark
https://github.com/runtimeverification/evaluation/tree/master/svcomp-benchmark

Tool St
at
ic
me
mo
ry

Dy
na
mi
c m

em
or
y

St
ac
k-r
ela
ted

Nu
me
ric
al

Re
so
ur
ce
ma
na
ge
me
nt

Po
int
er-
rel
at
ed

Co
nc
ur
ren
cy

In
ap
pr
op
ria
te
co
de

M
isc
.

Av
g.
(u
nw
eig
ht
ed
)

Av
g.
(w
eig
ht
ed
)

RV-Match
(rv-match)

DR           
FPR        –   
PM           

GrammaTech
CodeSonar

DR           
FPR   –        
PM           

MathWorks
Bug Finder

DR           
FPR       –    
PM           

MathWorks
Code Prover

DR           
FPR       –    
PM           

UBSan + TSan
+ MSan + ASan

(clang)

DR           
FPR        –   
PM           

Valgrind
+ Helgrind

(gcc)

DR           
FPR           
PM           

CompCert
interpreter

DR         3  
FPR           
PM           

Frama-C
Value Analysis

DR           
FPR           
PM           

Fig. 1. Comparison of tools on the 1,276 tests of the ITC benchmark. The num-
bers for the GrammaTech and MathWorks tools come from Shiraishi, Mohan, and
Marimuthu [25].

– Blue indicates the best score in a category for a particular metric, while orange
emphasizes the weighted average of the productivity metric for each tool.

– DR, FPR, and PM are, respectively, the detection rate, 100−FPR (the complement
of the false positive rate), and the productivity metric.

– The final average is weighted by the number of tests in each category.
– Italics and a dash indicate categories for which a tool has no support.

happens-before or causally-precedes race detection techniques. We encode the
control flow and a minimal set of feasibility constraints in first-order logic, thus
reducing the race detection problem to a constraint satisfaction problem, which
can be efficiently solved by SMT solvers.

3.2 Running RV-Predict

The Java version. RV-Predict can be run both from the command line, as a
drop-in replacement for the java command, and as an agent, to ease integration
with IDEs and build management tools like Maven. For more details, please refer
to the “Running RV-Predict” section of the documentation [19].

The C/C++ version. Running RV-Predict for C/C++ involves two steps. In
the first step, we create an instrumented version of the multithreaded C/C++
program. In the second step, RV-Predict’s backend performs offline data race
predictive analysis based on the principles described in the background section.
Concretely, given a C program file.c, the two steps are shown below:�

�
�
�$ rv-predict-c-compile file.c

$ rv-predict-execute ./a.out

3.3 Detecting common data-race patterns using RV-Predict

Data races are common concurrency bugs in multithreaded programs. A data
race can be defined as two threads accessing a shared memory location con-
currently and at least one of the accesses is a write. Data races are notoriously
difficult to find and reproduce because they often happen under very specific cir-
cumstances. They usually manifest as intermittent or non-deterministic failures
during testing. And when failures do occur, they typically produce mysterious
error messages, far from the root cause of the data race.

Despite all of the work on solving this problem, it remains a challenge in prac-
tice to detect data races effectively and efficiently. In this section, we summarize
common classes of data races and show how to detect them with RV-Predict.
The examples described below can be found in the RV-Predict distribution.

A simple data race. The simplest data race is also the most frequent in practice:
two threads access a shared variable without synchronization. In Java, a shared
variable is either a field (instance or static) or an array element. See JLS section
17.4.1 for the precise definition. For example:�

�

�

�

public class SimpleRace {
static int sharedVar;
public static void main(String[] args) {

new ThreadRunner() {
@Override public void thread1() {sharedVar++;}
@Override public void thread2() {sharedVar++;}

};
}

}

The access to sharedVar is not synchronized. Note that the ThreadRunner class
(see the simple race description on our blog [18]) is a utility class containing
boilerplate code that instantiates two threads with the defined tasks (it will be
used throughout this section to simplify descriptions).

RV-Predict detects this race and the report it generates is below. For read-
ability, the code above only shows the core of the problem, and so the lines in
the report do not match line numbers in the code above.

�

�

�

�

Data race on field examples.SimpleRace.sharedVar: {{{
Concurrent write in thread T10 (locks held: {})

----> at examples.SimpleRace$1.thread1(SimpleRace.java:11)
at examples.ThreadRunner$1.run(ThreadRunner.java:17)

T10 is created by T1
at examples.ThreadRunner.<init>(ThreadRunner.java:26)

Concurrent read in thread T11 (locks held: {})
----> at examples.SimpleRace$1.thread2(SimpleRace.java:16)

at examples.ThreadRunner$2.run(ThreadRunner.java:23)
T11 is created by T1

at examples.ThreadRunner.<init>(ThreadRunner.java:27)
}}}

Although this particular data race might be easy to spot through code review,
similar instances buried deep in thousands of lines of code can be very hard to
discover. As shown above, RV-Predict can make detection of such bugs simple
because it provides the precise location where conflicting memory accesses occur,
the stack traces of the two threads involved in the race, the point of thread
creation, and the locks held by each thread.

Even while developing RV-Predict, we were able to find a variation of this
bug in our own RV-Match code base. Specifically, there was an intermittently
occurring null pointer exception in the parser implementation. A (still) standard
approach for debugging such issues relies on reproducing the bug and attempting
to track the behavior backward to the root of the issue. Such an approach can
be tedious and time consuming—RV-Predict, by contrast, finds these issues
with minimal effort (for the story on our experience of using RV-Predict to
debug RV-Match, see our blog [12]).

Using a non-thread-safe class without synchronization. This class of bugs oc-
curs if a developer assumes that the class being used is thread-safe. In fact
many classes are not designed to be used in a multithreaded environment, e.g.,
java.util.ArrayList, java.util.HashMap, and many other classes in the Java
Collections Framework, so unwarranted thread-safety assumptions can easily
creep into the code. Consider this example:

�

�

�

�

import java.util.ArrayList;
import java.util.List;
public class RaceOnArrayList {

static List<Integer> list = new ArrayList<>();
public static void main(String[] args) {

new ThreadRunner() {
LX: @Override public void thread1() {list.add(0);}
LY: @Override public void thread2() {list.add(1);}

};
}

}

Both threads are trying to add an element to the ArrayList. However, since
the underlying data structure is not thread-safe, and the client code does not
perform synchronization, there exists a data race.

Simply running this example will occasionally trigger an exception, indicating
that something went wrong, but there is no guarantee this bug will appear during
testing. Below is the shortened output from RV-Predict (exact values of line
numbers are replaced with symbolic values LX and LY):�

�

�

�

Data race on field java.util.ArrayList.$state: {{{
Concurrent read in thread T10 (locks held: {})

----> at examples.RaceOnArrayList$1.thread1(RaceOnArrayList.java:LX)
...

Concurrent write in thread T11 (locks held: {})
----> at examples.RaceOnArrayList$1.thread2(RaceOnArrayList.java:LY)

...
}}}

Notice that RV-Predict reports the race on the symbolic field $state, rather
than the field inside the class ArrayList where the race actually occurs. This
is by design: RV-Predict’s error messages abstract away from the low-level
implementation details of the Java class library to make identifying the root
cause of a data race easier.

A more complex example violates rule LCK04-J from the CERT Oracle Cod-
ing Standard for Java: “Do not synchronize on a collection view if the backing
collection is accessible.” The CERT standard continues:

Any class that uses a collection view rather than the backing collection as
the lock object may end up with two distinct locking strategies. When the
backing collection is accessible to multiple threads, the class that locked
on the collection view has violated the thread-safety properties and is
unsafe. Consequently, programs that both require synchronization while
iterating over collection views and have accessible backing collections
must synchronize on the backing collection; synchronization on the view
is a violation of this rule. [20]

In the example below, map is an already synchronized map backed by a
HashMap. When the first thread inserts a key-value pair into the map, the sec-

ond thread acquires the monitor of keySet and iterates over the key set of the
map. This is a direct violation of LCK04-J: thread 2 incorrectly synchronizes on
keySet instead of map.

�

�

�

�

public class RaceOnSynchronizedMap {
static Map<Integer, Integer> map =

Collections.synchronizedMap(new HashMap<>());
public static void main(String[] args) {

new ThreadRunner() {
LX: @Override public void thread1() {

map.put(1, 1);
}
@Override public void thread2() {

Set<Integer> keySet = map.keySet();
LY: synchronized (keySet) {
LY’: for (int k : keySet)

System.out.println("key = " + k);
}

}
};

}
}

Thankfully, RV-Predict reports the race condition and reveals the underlying
reason—two threads are holding different monitors:

�

�

�

�

Data race on field java.util.HashMap.$state: {{{
Concurrent write in thread T10 (locks held: {Monitor@722c41f4})

----> at examples.RaceOnSynchronizedMap$1.thread1(
RaceOnSynchronizedMap.java:LX)

- locked Monitor@722c41f4 at
examples.RaceOnSynchronizedMap$1.thread1
(RaceOnSynchronizedMap.java:LX)
...

Concurrent read in thread T11 (locks held: {Monitor@1f72ae1d})
----> at examples.RaceOnSynchronizedMap$1.thread2(

RaceOnSynchronizedMap.java:LY’)
- locked Monitor@1f72ae1d at
examples.RaceOnSynchronizedMap$1.thread2
(RaceOnSynchronizedMap.java:LY)
...

}}}

Broken spinning loop. Often, we want to synchronize multiple threads based on
some condition. We might achieve this by using a while loop to block until the
condition becomes satisfied. For example:

�

�

�

�

public class BrokenSpinningLoop {
static int sharedVar;
static boolean condition = false;
public static void main(String[] args) {

new ThreadRunner() {
@Override public void thread1() {

sharedVar = 1;
condition = true;

}
@Override public void thread2() {

while (!condition) Thread.yield();
if (sharedVar != 1)

throw new RuntimeException(
"How is this possible!?");

}
};

}
}

How can this program ever throw the RuntimeException? The data race on
condition might be obvious, but it appears to be innocuous. The exception
should be impossible regardless of how accesses to condition are ordered.

Nonetheless, the exception can, in fact, be raised, because thread 2, after
passing the while loop, might still read 0 instead of 1 from sharedVar. This
can be due to several reasons, such as reordering and caching. In fact, the Java
memory model allows such counter-intuitive behavior to happen when the pro-
gram contains any data races at all. In one instance, this type of bug directly
caused a loss of $12 million worth of lab equipment [26].

More examples of data race patterns that RV-Predict detects can be found
on our website [18].

3.4 The RV-Predict backend: prediction power vs. efficiency

By default, RV-Predict attempts to strike a good balance between efficiency
and prediction power. Nevertheless, while the default settings were engineered
to work for most common cases, there might be cases where user input could
improve the prediction process. We provide several options for advanced users
to tune RV-Predict:

1. Window size. For efficiency reasons, RV-Predict splits the execution trace
into segments (called windows) of a specified size. The default window size is
1000. Users can alter this size using the --window option, with the intuition
that a larger size provides better coverage at the expense of increasing the
analysis time.

2. Excluding packages. To allow better control over the efficiency, RV-Predict
provides the option --exclude to remove certain packages from logging.
This option takes a list of package pattern prefixes separated by commas
and excludes from logging any class matched by one of the patterns. The

patterns can use * to match any sequence of characters. Moreover, * is
automatically assumed at the end of each pattern (to make sure inner classes
are excluded together with their parent). Note that excluding packages might
affect precision, as events from non-logged packages might prevent certain
race conditions from occurring.

3. Including packages. For more flexibility in selecting which packages to include
and exclude, RV-Predict also provides the --include option, which is
similar to the --exclude option (it accepts a comma separated list of package
patterns), but opposite in effect.

3.5 Running RV-Predict on Tomcat

When developers are dealing with a large project using multiple kinds of synchro-
nization mechanisms, debugging becomes much more difficult and often requires
a thorough understanding of the system. But RV-Predict can help with this
task regardless of the code size of the project. As an example, we have run
RV-Predict on Tomcat, one of the most widely used Java application servers.

Integrating RV-Predict into Tomcat’s build cycle is straightforward. It es-
sentially boils down to assuring that the RV-Predict agent is run with the unit
tests. The only required change is in build.xml:

<jvmarg value="-javaagent:${rvPath}/rv-predict.jar=--base-log-dir log" />

Where ${rvPath} is RV-Predict’s installation path and log is the location
where RV-Predict will store its logs and results. RV-Predict runs along with
unit-tests and its inclusion introduces a runtime overhead of roughly 5x (i.e.,
from 50 minutes to 260 minutes). We performed these experiments on Tomcat
8.0.26 and RV-Predict found almost 40 unique data races in only a few runs.
All bugs were reported to developers and fixed in the next release.9

4 RV-Monitor

RV-Monitor is a software analysis and development framework that aims to
reduce the gap between specification and implementation by allowing them to-
gether to form a system [21]. With RV-Monitor, runtime monitoring is sup-
ported and encouraged as a fundamental principle for building reliable software:
monitors are synthesized from specifications and integrated into the original sys-
tem to check its behavior during execution.

RV-Monitor evolved from the popular JavaMOP runtime verification frame-
work [16] and represents an effort to create a robust, extendable framework for
monitoring library generation. In this section, we will show examples of RV-
Monitor compiling specifications into code, for both desktop applications and
embedded systems.
9 See https://goo.gl/L00hWt for a list of the bugs and http://tomcat.apache.org/
tomcat-8.0-doc/changelog.html#Tomcat_8.0.27_(markt) for the Tomcat 8.0.27
changelog.

https://goo.gl/L00hWt
http://tomcat.apache.org/tomcat-8.0-doc/changelog.html#Tomcat_8.0.27_(markt)
http://tomcat.apache.org/tomcat-8.0-doc/changelog.html#Tomcat_8.0.27_(markt)

4.1 Background: RV-Monitor

Monitoring executions of a system against expected properties plays an impor-
tant role in both the software development process (e.g., during debugging and
testing) and as a mechanism for increasing the reliability and security of deployed
systems. Monitoring a program execution generates a trace comprising events of
interest. When an execution trace validates or violates a property, the monitor
triggers actions appropriate to its purpose in the system [16]. RV-Monitor is
a parametric monitoring system, i.e., it allows the specifications of properties
that relate objects in the program, as well as global properties. Our approach
consists of two phases: in the first phase, the execution trace is sliced according
to a parameter instance, while in the second phase each slice is checked by a
monitor dedicated to the slice.

At its core, RV-Monitor allows users to specify properties that the system
should satisfy at runtime (safety or security properties, API protocols, etc.) and
then generate efficient monitoring libraries for them. The generated libraries can
then be used in two ways, either (1) manually, by calling the monitoring methods
at the desired places, or (2) automatically, by inserting calls to the monitoring
methods using instrumentation mechanisms.

When a specification is violated or validated during program execution, user-
defined actions are triggered. The triggered actions can range from logging to
runtime recovery. RV-Monitor can be considered from at least three perspec-
tives: (1) as a discipline allowing one to improve safety, reliability and depend-
ability of a system by monitoring its requirements against its implementation at
runtime; (2) as an extension of programming languages with logics (one can add
logical statements anywhere in the program, referring to past or future states);
and (3) as a lightweight formal method.

RV-Monitor takes as input one or more specification files and generates
Java classes that implement the monitoring functionality defined therein. Each
RV-Monitor specification defines a number of events, which represent abstrac-
tions of certain points in programs, e.g., a call to the hasNext() method in Java,
or closing a file. With these event abstractions in mind, a user can define one
or more properties over the events, taking the events as either atoms in logical
formulae or as symbols in formal language descriptions. For example, the user
may use these events as symbols in a regular expression or as atoms in a lin-
ear temporal logic formula. In the generated Java class, each event becomes a
method that can be either called manually by a user or inserted automatically
by using some means of instrumentation, such as AspectJ.

Each specification also has a number of handlers associated with each prop-
erty that are run when the associated property matches some specific conditions.
For instance, when a regular expression pattern matches, we run a handler des-
ignated by the keyword @match, and when a linear temporal logic property is
violated, we run a handler designated by the keyword @violation. Addition-
ally, RV-Monitor is able to generate monitors that enforce a given property
by delaying threads in multithreaded programs.

4.2 Running RV-Monitor

As mentioned above, calls to the event methods generated by RV-Monitor
can either be manually added to programs or programs can be automatically
instrumented. Note that the examples in this section and the following sections
are included as part of the RV-Monitor distribution and available online.10

The manual instrumentation method. Manual calls may appear tedious at first,
but they allow for fine grain use of RV-Monitor monitors as a programming
paradigm. For example, consider the RV-Monitor HasNext.rvm property:

�

�

�

�

package rvm;
HasNext(Iterator i) {

event hasnext(Iterator i) { }
event next(Iterator i) { }
ere : (hasnext hasnext* next)*
@fail {

System.out.println(
"! hasNext() has not been called before "
+ "calling next() for an iterator");
__RESET;

}
}

Now the generated Java monitoring library (named HasNextRuntimeMonitor
after the property) will contain two methods (one for each event), with the
following signatures:

�
�

�
�public static final void hasNextEvent(Iterator i)

public static final void nextEvent(Iterator i)

By calling these methods directly, we can control exactly what we wish to mon-
itor. For instance, we can add a wrapper class for Iterator that has versions
hasNext and next that call our monitoring code and only use them in places
where correctness is crucial. The class could be defined as follows:

10 See https://github.com/runtimeverification/javamop/tree/master/examples.

https://github.com/runtimeverification/javamop/tree/master/examples

�

�

�

�

public class SafeIterator<E>
implements java.util.Iterator<E> {

private java.util.Iterator<E> it;
public SafeIterator(java.util.Iterator it) {

this.it = it;
}
public boolean hasNext() {

rvm.HasNextRuntimeMonitor.hasnextEvent(it);
return it.hasNext();

}
public E next() {

rvm.HasNextRuntimeMonitor.nextEvent(it);
return it.next();

}
public void remove() { it.remove(); }

}

Now programs of interest can distinguish between monitored and unmoni-
tored iterators by simply creating SafeIterators from Iterators. For example,
consider the program Test.java:�

�

�

�

public class Test {
public static void main(String[] args) {

Vector<Integer> v = new Vector<Integer>();
v.add(1); v.add(2); v.add(4); v.add(8);
Iterator it = v.iterator();
SafeIterator i = new SafeIterator(it);
int sum = 0;
if (i.hasNext()) {

sum += (Integer)i.next();
sum += (Integer)i.next();
sum += (Integer)i.next();
sum += (Integer)i.next();

}
System.out.println("sum: " + sum);

}
}

Note that, to build this program, the javac and java commands require the RV-
Monitor runtime library (rv-monitor-rt.jar) and the monitor directory to
be in the CLASSPATH. This allows the use of the RV-Monitor runtime, required
by the libraries generated by the rv-monitor command. With this in mind, and
if the rvm directory contains the HasNext.rvm property and the corresponding
generated library, HasNextRuntimeMonitor.java, the commands to compile and
run the program above are as follows:�
�

�
�$ javac Test.java SafeIterator.java rvm/HasNextRuntimeMonitor.java

$ java Test

RV-Monitor, then, outputs the following:

�
�

�
�

! hasNext() has not been called before calling next() for an iterator
! hasNext() has not been called before calling next() for an iterator
! hasNext() has not been called before calling next() for an iterator
sum: 15

The automated instrumentation method. In some use-cases, the manual insertion
of calls to a monitoring library can be tedious and error-prone. In these cases,
aspect-oriented programming [17] can be used to instrument large code bases
automatically. We can create an AspectJ aspect that calls monitoring methods
for all instances of next and hasNext in the program. This aspect can be weaved
throughout any program to make all uses of Iterators safe. For example:

�

�

�

�

aspect HasNextAspect {
after(Iterator i) : call(* Iterator.hasNext())

&& target(i) {
rvm.HasNextRuntimeMonitor.hasnextEvent(i); }

after(): before(Iterator i) : call(* Iterator.next())
&& target(i) {

rvm.HasNextRuntimeMonitor.nextEvent(it); }
}

Additionally, the RV-Monitor ecosystem includes a database of over 200
real, production-quality properties specifying the correct operation of the Java
and Android APIs that may be automatically checked in Java programs using
AspectJ and RV-Monitor.11 The RV-Monitor distribution provides a pre-
compiled suite of common Java API protocol properties together in an agent
that is automatically invoked when java is replaced with rv-monitor-all in
the command line.

4.3 Specifying and checking properties with RV-Monitor

In this section, we demonstrate monitors generated by RV-Monitor from prop-
erties expressed in three different formalisms (as finite-state machines, regular
expressions, and linear temporal logic) to check Java and C/C++ programs.

The finite-state machine (FSM) formalism. First, we explore how we can lever-
age the FSM formalism to express the Java API property that the next method
of an iterator must not be called without a previous call to the hasNext method.
This property can be specified as shown below:

11 For more information, please see https://github.com/runtimeverification/
property-db.

https://github.com/runtimeverification/property-db
https://github.com/runtimeverification/property-db

�

�

�

�

full-binding HasNext(Iterator i) {
event hasnext(Iterator i) { } // after
event next(Iterator i) { } // before
fsm :

start [
next -> unsafe
hasnext -> safe]

safe [
next -> start
hasnext -> safe]

unsafe [
next -> unsafe
hasnext -> safe]

alias match = unsafe
@match {

System.out.println(
"next called without hasNext!");

}
}

After installing RV-Monitor we can see what monitoring of this property looks
like in action:�
�

�
�

$ cd examples/FSM/HasNext
$ rv-monitor rvm/HasNext.rvm
$ javac rvm/HasNextRuntimeMonitor.java HasNext_1/HasNext_1.java
$ java HasNext_1.HasNext_1

RV-Monitor reports that next has been called without hasNext four times in
the corresponding Java code.

The FSM formalism: an example in C. In addition to Java, RV-Monitor also
supports C. Below is an example of a simple property about the state of a seat
belt in a vehicle simulation:�

�

�

�

SeatBelt {
event seatBeltRemoved() {

fprintf(stderr, "Seat belt removed.");
}
event seatBeltAttached() {

fprintf(stderr, "Seat belt attached.");
}
fsm :

unsafe [seatBeltAttached -> safe]
safe [seatBeltRemoved -> unsafe]

@safe {
fprintf(stderr, "set max speed to user input.");

}
@unsafe {

fprintf(stderr, "set max speed to 10 mph.");
}

}

The extended regular expression (ERE) formalism. Consider the property ex-
pressed as a regular expression below. This property aims to ensure there are no
writes to a file after the file is closed. As in the first example, this is a property
of the Java API that is potentially a source of many program bugs. It can be
defined as follows:�

�

�

�

SafeFileWriter(FileWriter f) {
static int counter = 0;
int writes = 0;
event open(FileWriter f) { // after

this.writes = 0;
}
event write(FileWriter f) { // before

this.writes ++;
}
event close(FileWriter f) { } // after
ere : (open write write* close)*
@fail {

System.out.println("write after close");
__RESET;

}
@match {

System.out.println(++counter + ":" + writes);
}

}

In the previous examples of property checking, we defined properties of in-
valid program executions. This example, however, defines a property representing
the correct execution of a FileWriter in Java. Specifically, this property formal-
izes the behavior of a file being opened, written to some number times, and then
closed. Correct execution traces for a given File object contain this sequence
of events occurring zero or more times. The above property can be exercised on
the code from the RV-Monitor distribution as shown below:�

�

�

�
$ cd examples/ERE/SafeFileWriter
$ rv-monitor rvm/SafeFileWriter.rvm
$ javac rvm/SafeFileWriterRuntimeMonitor.java \

SafeFileWriter_1/SafeFileWriter_1.java
$ java SafeFileWriter_1.SafeFileWriter_1

The linear temporal logic (LTL) formalism. The same specification about files
mentioned above can be captured in another formalism, namely linear temporal
logic. The only difference from the last specification is that we replace the ERE
property with an LTL property:�� ��ltl : [](write => (not close S open))

This property specifies that at a write, there should not have been in the past a
call to close, and that open must have occurred after the start. This represents

the same property as the extended regular expression property and demonstrates
the ability of RV-Match to use multiple formalisms, depending on the knowl-
edge and preferences of the property developer.

Analyzing logs. In addition to monitoring software execution, RV-Monitor is
able to check logical properties over text-based log files. These properties can be
anything that is Turing computable, and do not require storing the entire log
files. This makes RV-Monitor ideal for in-depth analysis of large log files which
may be impractical to analyze with traditional techniques. For more details,
please see the Running Examples section of RV-Monitor documentation [7].

5 Conclusion

Whereas RV-Match is a tool for rigorously detecting all forms of undefined-
ness, RV-Predict targets the hard problem of efficiently detecting data races.
RV-Match interprets programs according to a complete operational semantics,
while RV-Predict is able to infer a maximal causal model of concurrent behav-
ior from a single real execution trace. RV-Monitor, on the other hand, confronts
the problem of software correctness from a broader perspective by providing a
framework for directly monitoring and enforcing adherence to a specification.
Together, these tools represent a rigorous yet pragmatic and user-friendly ap-
proach to verification (eponymously) characterized by its focus on the analysis
of programs at runtime.

References

[1] Grigore Ros,u and Traian Florin S, erbănut,ă. “An Overview of the K Se-
mantic Framework”. In: 79.6 (2010), pp. 397–434. doi: 10.1016/j.jlap.
2010.03.012.

[2] Traian Florin S, erbănut,ă, Feng Chen, and Grigore Ros,u. “Maximal Causal
Models for Sequentially Consistent Systems”. In: RV 2012. LNCS. doi:
10.1007/978-3-642-35632-2_16.

[3] Dirk Beyer. “Tools and Algorithms for the Construction and Analysis of
Systems: 22nd International Conference (TACAS’16)”. In: 2016, pp. 887–
904. doi: 10.1007/978-3-662-49674-9_55.

[4] Brian Campbell. “An Executable Semantics for CompCert C”. In: Certi-
fied Programs and Proofs. Vol. 7679. Lecture Notes in Computer Science.
Springer, 2012, pp. 60–75. doi: 10.1007/978-3-642-35308-6_8.

[5] Géraud Canet, Pascal Cuoq, and Benjamin Monate. “A Value Analysis for
C Programs”. In: Conference on Source Code Analysis and Manipulation
(SCAM’09). IEEE, 2009, pp. 123–124. doi: 10.1109/SCAM.2009.22.

[6] Clang. Clang 3.9 Documentation. url: http://clang.llvm.org/docs/
index.html.

[7] Philip Daian. RV-Monitor Documentation. https://runtimeverification.
com/monitor/1.3/docs/. 2015.

http://dx.doi.org/10.1016/j.jlap.2010.03.012
http://dx.doi.org/10.1016/j.jlap.2010.03.012
http://dx.doi.org/10.1007/978-3-642-35632-2_16
http://dx.doi.org/10.1007/978-3-662-49674-9_55
http://dx.doi.org/10.1007/978-3-642-35308-6_8
http://dx.doi.org/10.1109/SCAM.2009.22
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
https://runtimeverification.com/monitor/1.3/docs/
https://runtimeverification.com/monitor/1.3/docs/

[8] Chucky Ellison. “A Formal Semantics of C with Applications”. PhD thesis.
University of Illinois, July 2012. url: http://hdl.handle.net/2142/
34297.

[9] Chucky Ellison and Grigore Ros,u. “An Executable Formal Semantics of C
with Applications”. In: ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (POPL’12). 2012, pp. 533–544. doi: 10.
1145/2103656.2103719.

[10] GrammaTech. CodeSonar. url: http://grammatech.com/products/
codesonar.

[11] Dwight Guth. RV-Match Documentation. https://runtimeverification.
com/match/1.0-SNAPSHOT/docs/. 2016.

[12] Dwight Guth. Using RV-Predict to track down race conditions. https:
//runtimeverification.com/blog/?p=47. 2015.

[13] Chris Hathhorn, Chucky Ellison, and Grigore Ros,u. “Defining the Unde-
finedness of C”. In: 36th Conference on Programming Language Design and
Implementation (PLDI’15). 2015.

[14] Jeff Huang, Patrick O’Neil Meredith, and Grigore Ros,u. “Maximal Sound
Predictive Race Detection with Control Flow Abstraction”. In: PLDI 2015.
doi: 10.1145/2594291.2594315.

[15] ISO/IEC JTC 1, SC 22, WG 14. ISO/IEC 9899:2011: Prog. Lang.—C.
Tech. rep. International Organization for Standardization, 2012.

[16] Dongyun Jin et al. “JavaMOP: Efficient Parametric Runtime Monitoring
Framework”. In: ICSE 2012. IEEE, June 2012, pp. 1427–1430. doi: http:
//dx.doi.org/10.1109/ICSE.2012.6227231.

[17] Gregor Kiczales et al. “An overview of AspectJ”. In: European Conference
on Object-Oriented Programming. Springer. 2001, pp. 327–354.

[18] Yilong Li. Detecting popular data races in Java using RV-Predict. https:
//runtimeverification.com/blog/?p=58. 2015.

[19] Yilong Li. RV-Predict Documentation. https://runtimeverification.
com/predict/1.8.2/docs/. 2015.

[20] Fred Long et al. The CERT Oracle secure coding standard for Java. The
SEI series in software engineering. Upper Saddle River, NJ: Addison-
Wesley, 2012. isbn: 978-0-321-80395-5.

[21] Qingzhou Luo et al. “RV-Monitor: Efficient Parametric Runtime Verifica-
tion with Simultaneous Properties”. In: RV 2014. LNCS, Sept. 2014.

[22] MathWorks. Polyspace Bug Finder. url: http://www.mathworks.com/
products/polyspace-bug-finder.

[23] MathWorks. Polyspace Code Prover. url: http://www.mathworks.com/
products/polyspace-code-prover.

[24] Nicholas Nethercote and Julian Seward. “Valgrind: A Framework for Heavy-
weight Dynamic Binary Instrumentation”. In: ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI’07). ACM,
2007, pp. 89–100. doi: 10.1145/1250734.1250746.

[25] Shinichi Shiraishi, Veena Mohan, and Hemalatha Marimuthu. “Test Suites
for Benchmarks of Static Analysis Tools”. In: The 26th IEEE International

http://hdl.handle.net/2142/34297
http://hdl.handle.net/2142/34297
http://dx.doi.org/10.1145/2103656.2103719
http://dx.doi.org/10.1145/2103656.2103719
http://grammatech.com/products/codesonar
http://grammatech.com/products/codesonar
https://runtimeverification.com/match/1.0-SNAPSHOT/docs/
https://runtimeverification.com/match/1.0-SNAPSHOT/docs/
https://runtimeverification.com/blog/?p=47
https://runtimeverification.com/blog/?p=47
http://dx.doi.org/10.1145/2594291.2594315
http://dx.doi.org/http://dx.doi.org/10.1109/ICSE.2012.6227231
http://dx.doi.org/http://dx.doi.org/10.1109/ICSE.2012.6227231
https://runtimeverification.com/blog/?p=58
https://runtimeverification.com/blog/?p=58
https://runtimeverification.com/predict/1.8.2/docs/
https://runtimeverification.com/predict/1.8.2/docs/
http://www.mathworks.com/products/polyspace-bug-finder
http://www.mathworks.com/products/polyspace-bug-finder
http://www.mathworks.com/products/polyspace-code-prover
http://www.mathworks.com/products/polyspace-code-prover
http://dx.doi.org/10.1145/1250734.1250746

Symposium on Software Reliability Engineering (ISSRE’15). Vol. Indus-
trial Track. 2015.

[26] Why does this Java program terminate despite that apparently it shouldn’t
(and didn’t)? http://stackoverflow.com/questions/16159203/why-
does-this-java-program-terminate-despite-that-apparently-it-
shouldnt-and-d. 2013.

http://stackoverflow.com/questions/16159203/why-does-this-java-program-terminate-despite-that-apparently-it-shouldnt-and-d
http://stackoverflow.com/questions/16159203/why-does-this-java-program-terminate-despite-that-apparently-it-shouldnt-and-d
http://stackoverflow.com/questions/16159203/why-does-this-java-program-terminate-despite-that-apparently-it-shouldnt-and-d

	Runtime Verification at Work: A Tutorial

