Finite-Trace Linear Temporal Logic:
Coinductive Completeness

Grigore Rosu

University of Illinois, USA
grosu@illinois.edu

Abstract. Linear temporal logic (LTL) is suitable not only for infinite-trace
systems, but also for finite-trace systems. Indeed, LTL is frequently used as a trace
specification formalism in runtime verification. The completeness of LTL with
only infinite or with both infinite and finite traces has been extensively studied,
but similar direct results for LTL with only finite traces are missing. This paper
proposes a sound and complete proof system for finite-trace LTL. The axioms and
proof rules are natural and expected, except for one rule of coinductive nature,
reminiscent of the Godel-Lob axiom. A direct decision procedure for finite-trace
LTL satisfiability, a PSPACE-complete problem, is also obtained as a corollary.

1 Introduction

Finite execution traces play an important role in several computing fields. For example,
Hoare logic [[12]], which is at the heart of deductive program verification, defines (partial)
correctness in terms of finite traces: {pre}P{post} holds iff any finite execution trace
of P starting in a state satisfying pre ends in a state satisfying post. Also, in runtime
verification, formal specifications are often used to characterize the bad behaviors of a
system. Then the system is monitored against monitors generated from specifications.
While infinite-trace specification formalisms have occasionally been used to specify
systems’ bad behaviors, in the end such bad behaviors occur after a finite number of
observed events, so the generated monitors need only be faithful to the finite-trace safety
fragment of the property. Consequently, many temporal specification formalisms used in
runtime verification (and not only) have finite-trace semantics [5}8l/11}|13}/15/20,23].

Linear temporal logic (LTL) [18] has established itself as one of the major trace
specification formalism. With few exceptions (some mentioned above, others shortly
below), the semantics of LTL is typically given in terms of infinite traces or of both
infinite and finite traces (see, e.g., [17]]), and some of the major theoretical results
of LTL have only been studied in this context. This is unfortunate, because LTL is
just as suitable a specification formalism for properties over only finite traces. For
example, we can specify any finite-state machine FSM as a finite-trace LTL formula
wrsu (Example[2), so that a word is in the language of FSM iff (a variant of) it satisfies
@rsu. Moreover, consider again a Hoare triple {pre}P{post} and suppose that FSM, ¢,
and ¢, respectively, abstract the state-space of the program P (with accepting states
precisely where P is terminated), and pre and post. Then the formula ¢rsyr A @pre —
Opost captures the abstract meaning of the Hoare triple quite elegantly.

When giving LTL a finite-trace semantics, one has to decide upon the semantics
of the “next” operator on one-state traces, that is, when there is no next state. In a
two—valuecﬂ setting, there are three admittedly meaningful semantics for “next ¢” on
one-state traces: (1) it always holds; (2) it never holds; (3) it holds iff ¢ holds itself on the
one-state trace. The semantics (3) has the technical advantage that it reduces finite-trace
to infinite-trace semantics by repeating the last state of the finite trace indefinitely, so the
usual LTL reasoning remains sound. For that reason, for example, it has been used in the
context of runtime verification [20]], where a finite-trace semantics with sound deduction
was needed. However, (3) has a major drawback: the LTL formulae cannot distinguish
between terminated traces and traces which (accidentally) repeat their last state. Hence,
in our view, (3) does not capture the nature of finite-trace LTL properly, so we here stick
to (1) and (2). In fact, (1) and (2) are equivalent and can co-exist: if o is the weak next of
(1) and e is the strong next of (2), then it is easy to see that op = —e—p and ep = —o—.

While first-order logic expressiveness results for LTL variants with finite-trace
semantics have been studied [6,24]], at our knowledge no other major theoretical aspects
of finite-trace LTL have been investigated. In particular, direct decidability and complete
deduction results are missing. By “direct” we mean ones that work directly with finite-
trace LTL formulae, as opposed to ones based on translations to other logics. As an
analogy, an indirect complete proof system for infinite-trace LTL, or for equational
logic, etc., can be easily obtained by translations of these logics into first-order logic
(FOL) and then using the complete proof system for FOL. Practically, such indirect
results have at least two drawbacks: first, the size of the translated formulae may be
larger than the original formula, thus incurring increased algorithmic complexity to solve
the translated problem; second, the meaning and intuitions of the original logic and
its formulae may be lost in translation, making assisted proofs more challenging and
inconvenient for humans. Theoretically, direct decidable procedures and complete proof
systems specialized for the logics of interest are desirable, because they help us better
understand the nature of those logics and their specific challenges.

One may think that complete proof systems for finite-trace LTL should easily follow
from the infinite-trace variants, because finite traces are particular infinite traces which
stutter in the final state after a finite number of states. However, a careful examination
reveals that the infinite-trace LTL results heavily rely on the axiom/property —op < o—,
which does not hold for finite-trace LTL. Only one implication holds, namely —op —
o= (or its equivalent e—¢ — —ey). Therefore, axioms need to be dropped from the
infinite-trace LTL proof system. Furthermore, one may think that it suffices to just drop
the implication o—¢ — —o¢ from the axioms of infinite-trace LTL (or replace it with a
weaker one), like for the LTL variant in [[17] with both infinite and finite traces, because
all the other axioms and proof rules, including the powerful Induction rule

p—op

¢ — Oy

Ind

are sound for finite traces as well, and finite-trace LTL “ought to” be simpler than LTL
with both finite and infinite-traces. However, it turns out that new rules are needed in

! See [2] for multi-valued variants of LTL.

order to achieve completeness, because finite-trace LTL admits new tautologies which
do not hold for infinite-traces, such as ¢oL (every trace eventually terminates).

Conceptually, the main contribution of this paper is the following Coinduction proof
rule, which appears to play a central role in finite-trace temporal reasoning:

cp—y
12

In words, it states that if we can always prove that a property holds now assuming it
holds next, then the property always holds. For example, if ¢ is “I am happy” and o is
“tomorrow”, then coinduction allows us to infer “I am happy” provided that we are able to
prove “if tomorrow I am happy then today I am happy”. This may seem counter-intuitive
at first, but it makes full sense in the context of finite traces with the weak interpretation
of o. Indeed, suppose that op — ¢ holds for all finite traces. Since og always holds on
one-element traces, op — ¢ implies that all one-element traces satisfy ¢. That implies
that op always holds on two-element traces, so op — ¢ implies that all two-element
traces satisfy ¢. We can thus inductively show that traces of any length satisfy .

As another example of coinduction, consider program verification of partial correct-
ness using operational semantics, as advocated in [4}/19,]21]. There, program partial
correctness is framed as (symbolic) reachability: the desired reachability property holds
iff it holds on all finite paths starting with the current (symbolic) program configuration.
Consider that our property ¢ in the colnd rule above is such a reachability property, and
suppose that it refers to a loop. Then oy corresponds to the same reachability property
holding in the next state, which in this approach is obtained by applying an operational
semantics step, which in our case means unrolling the loop once. Proving op — ¢
corresponds to proving the original loop program assuming the desired loop property
to hold after we unroll the loop once. In other words, checking symbolically the loop
invariant property. If that holds, then we can safely assume that our original reachability
property ¢ holds, in the partial correctness sense. Indeed, if the loop does not terminate,
then any reachability property can be proved for it using colnd (similar to Hoare logic).

Our colnd rule is reminiscent of the Godel-L6b theorem/axiom, which is at the heart
of provability logic [1]], where the modality means “provable”. We are not aware of other
uses of a coinductive, Godel-Lob-style proof rule in the context of program verification.

We show that colnd is strictly more powerful than Ind, by showing that it is equiva-
lent to Ind plus &oL (Propositiond)), and that dropping implication o—¢ — —og from
the proof system of infinite-trace LTL and replacing Ind with colnd yields a complete
proof system for finite-trace LTL. Technically, the contribution is an almost complete
reworking of the infinite-trace LTL decidability and completeness results, to adapt them
to finite-trace LTL. The general organization and structure of our proofs follow [16].

Section 2] recalls basic facts about propositional, modal, and linear temporal logics.
The syntax and semantics of finite-trace LTL are defined in Section 3] Section [5]defines
a variant of formula closure and shows the decidability of the satisfiability problem.
In fact, the decidability result is an immediate corollary of a major result of the paper,
Theorem [I] which characterizes the satisfiable formulae as those admitting complete
atom traces; this result is crucial not only for decidability, but also for completeness.
Section [6]introduces our seven-rule sound proof system and proves several properties of
it. Finally, Section [7]proves the completeness of our proof system. Section [§]concludes.

colnd

2 Preliminaries

In this section we remind some basic notions and notations about propositional and
modal logic, as well as a sound and complete proof system for infinite-trace LTL.

Propositional Logic Propositions are
built with propositional variables froma A1 o1 = (2 = 1)
countable set PVar, a constant symbol L A,
(false), and a binary operation — (impli-
cation). Other derived operations include:

(o1 = (92 = ¥3))
= ((p1 = ¢2) = (1 = ¥3))

- (negation), A (and), V (or), < (equiva- A (=1 = =) = (2 = ¢1)
lence). The proof system in Fig. [T] (with

axiom and proof rule schemata) is sound MP LN S)

and complete for propositional logic (MP $2

stands for modus ponens). To distinguish
it from other deducibility relations, we let
+mp denote the deducibility relation asso-
ciated to the proof system above. The Deduction Theorem of propositional logic states
that I" Fyp @1 — @ iff ' U {1} Fyp 2. There are many equivalent proof systems for
propositional logic, and all can be used in this paper in a similar way. We let Prop denote
the set of all theorems of propositional logic, i.e., Prop = {¢ | Fyp ¢}.

Fig. 1. Propositional logic proof system

Modal Logic In this paper we build upon the modal logic K (see [|10] for a thorough
presentation and history of modal logics, using a modern notation), whose syntax is:

¢ == propositional logic variables (PVar) and constructs
|O¢ (O¢ commonly used as syntactic sugar for —O-¢)

The K modal logic is governed by the axiom
and proof rule in Fig. 2} which together with the |K O(p — ¢') — (Qp — O¢’)
propositional logic proof system in Fig.[T} yield a
sound and complete proof system for frame models
(not discussed here; see, for example, [[10]). K is
typically enriched with additional axioms and/or
proof rules. A notable axiom is Ogp — OO, which
turns %K into the logic known as S4.

An interesting modal logic extension, which is at the core of provability logic [1]
where Op means “p provable”, is with the Godel-Lob axiom O(O¢ — ¢) — ¢, abbrevi-
ated GL. It can be easily shown that GL makes the proof rule

Oy ¢

£
Og

Fig. 2. Modal logic proof system

. 4
sound, but the converse is not true: one cannot prove GL from K plus the rule above.

A Proof System for Infinite-Trace LTL Several different proof systems for infinite-
trace LTL can be found in the published literature and in class lecture notes at various
institutions, with no well-established winner. Our proof system is inspired from the
infinite-trace LTL proof system in Fig. 3]

This proof system appears in unpub-
lished lecture notes by Dam and Guelev,
reachable from http://www.csc.kthl
se/~mfd. They credit it to [[16] (personal K.
communication), although in our opinion

proof system of propositional calculus,
extended with the following:

o(p = ¢') = (op — oy’)

there are several important differences be- N, ¥
tween the two. The proof system in Fig. op
is in fact quite close to the one in [9], the K O(e = &) — Qe — 0¢')
only difference being that the latter in- c o ¢ ¢
cludes a fixed point axiom for O, in the N KA
style of U, in Fig. [3] which, as shownby | '~ Op
Dam and Guelev in their lecture notes,
Fun -0 <> o

can in fact be derived. Note that Ind is
given as an axiom rather than as a proof U,

Upy — O
rule, but one can show them equivalent. priege ¥

We used the subscript s to the until op- |U, 01Uy < 02 V @1 A o(1Uspr)
erator to make it clear that strict until is

meant. In our proof system for finite-trace ~ [Ind O(¢ — op) = (¢ — Op)

LTL we prefer to work with weak until,

which allows us to eliminate U;. Fig. 3. Infinite-trace LTL proof system

3 Finite-Trace LTL: Syntax and Semantics

Here we introduce the basic elements of finite-trace LTL. For notational simplicity,
from here on we refer to finite-trace LTL as L. Its core syntax is the same as that of
infinite-trace LTL, that is, it consists of a unary “next” operator and of a binary‘‘until”:

= usual propositional constructs
| oo (next)
| ¢Up (until)

p:

However, the semantics is given in terms of finite-traces, where for technical sim-
plicity both operators are interpreted weakly. That is, op means: if there is a next state
then ¢ holds in that state; and ¢; U, means: either ¢, holds in all future states or there
is some future state in which ¢, holds and ¢; holds in each state until then. Formally,

Definition 1. A finite trace is an element of P(PVar)*, that is, a non-empty finite se-
quence of sets of propositional variables (each such set can be thought of as a “state”).
We inductively define the satisfaction relation between finite-traces and formulae:

S1...SEpiffp e sy

St... 8, FE Ly

S1... S E @1 = @ iff s1...8, FE @1 implies sy ...s, E @2,

S1...S Fopiffn=1o0rsy...s, E¢;

S1...8 F @e1Ues iff either s;...s, = @1 forall 1 <i < northereissomel <i<n
suchthat s;...s, Eprandsj...s, F ¢ foralll < j<i.

http://www.csc.kth.se/~mfd
http://www.csc.kth.se/~mfd

Formula ¢ is satisfiable iff there exists some finite trace s ... s, such that sy ... s, E ¢,
and is valid, or a tautology, written |= ¢, iff 51 ... s, | ¢ for all finite traces s, ... s,.

We can now extend the syntax with several derived operators:

Q= ey (strong next) oy = oy
| Op (always) Op =¢eUL
| Op (eventually) O = -O-g
| ¢Usp (strong until) o1 Uspr = Op2 A1 U

It can be easily shown that these operators have the expected semantics:

s182...5, Fepiffn>1and sy...s, F ¢;

s1...5, EOgiffs;...s, Epforalll <i<mnm;

S1...8 ECpiff s;...5, F pforsome 1 <i<n;

S1...8, F @1Usp, iff there is some 1 < i <nsuchthats;...s, E ¢
and s;...s, F g foralll < j<i

It can also be easily shown that = op < —e—y, that is, o and e are completely dual to
each other. In the rest of the paper some results are easier to formulate and/or prove
using the weak version of next, o, while others using the strong version, e. Since we can
easily and linearly convert a formula to use either one or the other, we will simply state
which one we assume as basic construct at the beginning of each relevant section.
Another relevant and easy to prove tautology is | ¥ U, © Yo V iy A o Uy,).

Example 1. Consider a system which performs one or more actions a followed by an
action b. We want to show that whenever the system terminates, b is eventually reached.
We can specify both the system and the property as the following formula:

O(a — e(a V b)) = (a — Ob)

In words, the system is described as the formula stating that once an action a takes place
then a next step must exist, and in that step a or b takes place. If we additionally want to
state that the trace must terminate as soon as b takes place, then we write:

O((a — e(aV b)) A — ol)) - (a— Ob)

For now, we can show that the above formulae are valid using Definition [T] directly.
Section[6] gives a proof system which will allow us to formally derive any tautologies.
Note that none of these holds under infinite-trace LTL, since a® does not satisfy them.

Example 2. We can, in fact, associate a formula ¢4 over propositional variables Q U A
to any finite-state machine FSM = (Q,A,qo € 0,6 : Q X A — 22, F C Q) as follows:

O [\/q]/\/\ q—> (gqeFAol)V \/ a)| A /\ q/\a—>o\/q’

qeQ qeQ aeA a€A q'€6(q,a)
6(q.a) # 0 o(q.a) # 0

In words, it is always the case that: (1) a state in Q is active; (2) for each final state, allow
the trace to terminate there (oL holds iff there is no next step); (3) for each state g which
is active, its outgoing edges are also active; and (4) if a state g and an action a of that
state are both active, then a step must take place to a state allowed by FSM.

It can be shown that a word a; . .. a, is in the language of FSM iff there are states
qis---,qn € Q such that g, € F and {qo,ai1}{q1,a2}...{gn-1,an}{gn} E @rsu. This
allows us to prove properties about FSM (either directly using Definition[I]or using the
subsequent proof system), such as: F p» — O(gyp — ©a) (that is, a will be reached on
any terminating path starting from ¢qg), or | ¢4 — O(a — <©b) (that is, b will be reached
on any terminating path starting with a from any state), etc.

4 Relationship to Infinite-Trace LTL

Before we proceed to present our novel results starting with Section [3] it is worth
discussing alternative, indirect approaches to reason about finite-trace LTL properties.
We do it in this section, at the same time also arguing for a direct approach.

There is a relatively simple way to transform any LTL formula into another LTL
formula so that the former is satisfiable under the finite-trace semantics iff the latter is
satisfiable under infinite-trace semantics. The idea is to conceptually complete finite
traces with infinite suffixes $¢, where $ is a new propositional variable thought of as
“nothing”. Formally, given ¢, let ¢ be the formula defined as follows:

1 =1
p = pA-$ where p is a propositional variable
2R TR)
°p = o(pV?9)

eiUpy = p1UP2 V' S)

Then ¢ is satisfiable in finite-trace LTL iff (=$)74$ A @ is satisfiable in infinite-trace LTL.
For example, the formula (recall that D¢ is syntactic sugar for ¢ L, and O for ~O-¢p)

O(a — e(a V b)) = (a — Ob)
in Example [I]is satisfiable in finite-trace LTL iff
(=US A (@A=$ = o((aVD)A=$)NUS$ — (a A=$ — ~((=(b A =$)US)))

is satisfiable in infinite-trace LTL. Therefore, finite-trace LTL is PSPACE-decidable,
like infinite-trace LTL [22]], and a decidable procedure can be obtained by translation to
infinite-trace LTL as above.

Following such a translation approach has, however, an important practical drawback:
the size of the formula doubles, and a more complex than needed procedure is applied
on the larger formula. Indeed, as seen in Section[5] our specialized decision procedure
for finite-trace LTL reduces to checking simple reachability in a graph exponential in the
size of ¢, as opposed to checking for algorithmically more complex, ultimately periodic
sequences in a graph exponential in twice the size of ¢, as the translation to infinite-trace
LTL approach would require.

Also, it can be shown that ¢ is valid in finite-trace LTL iff (=$)2$ — o is valid
in infinite-trace LTL. Therefore, one can indirectly obtain a complete proof system
for finite-trace LTL by translation to infinite-trace LTL and then using off-the-shelf
proof systems for the latter, for example [16}[17] (see also Section [2). Besides having
to prove a twice-larger formula, this translation-to-infinite-trace-LTL approach has the
additional drawback that we now have to explicitly reason about $ and termination of
traces, departing ourselves from the basic intuitions of finite-trace LTL. For example,
it seems hard to find a proof of the infinite-trace LTL formula corresponding to the
finite-trace formula in Example[I] while as shown in Example 3] there is simple, direct
and intuitive proof of the original formula using our new proof system.

Arguments like the above, in favor of direct procedures and reasoning systems for
specific logics instead of translations to other logics, abound in the literature. Consider,
for example, conventional infinite-trace LTL and its well-known translation to (a monadic
fragment of) first-order logic (FOL), suggested for the first time by Kamp in his seminal
1968 thesis [[14]]. Specifically, each LTL formula ¢ can be inductively translated to an
equivalent (in appropriate models) FOL formula ¢(x) over free variable x; for example,

(¢ U ¥)(x) is the FOL formula Jz. x <z AY(@) AVYy.x <y <z— @(y)

Then we can use existing or develop new procedures for that fragment of FOL to decide
satisfiability of LTL formulae, and we can use the FOL sound and complete proof system
to derive any tautology of LTL. Despite the above, significant research and development
effort has been spent since 1968 by the formal verification and analysis community to
develop specialized, direct decision procedures and proof systems for LTL. Similarly
and perhaps even more interestingly, equational logic is a well-established fragment of
FOL, yet almost no equational provers are based on FOL reasoning, but on procedures
and sound and complete proof systems specifically crafted for equational logic.

To push the argument to extreme, consider the seminal result by Bergstra and
Tucker [3[]: any computable domain, of any complexity class, is isomorphic to the initial
model of a finite set of equations. Therefore, inductive equational proofs are sufficient
to reason within any domain, regardless of its complexity. Such results, in spite of
their beauty and insights, tend to have little practical relevance and have certainly not
stopped, nor even slowed down the research and development of particular decision
procedures and proof systems for particular logics. The fact that finite-trace LTL can be
translated to infinite-trace LTL falls into the same category and it is, in our view, no more
than an interesting observation. While one can attempt to use decision procedures and
proof systems for infinite-trace LTL via the translation to infinite-trace LTL discussed
above, we believe that finite trace LTL is a pivotal logic for runtime verification and thus
deserves our full attention. Decision procedures and specialized sound and complete
proof systems for it will provide the runtime verification researchers with understanding
and insights that should carry over to other finite-trace specification formalisms, too.

5 Complete Atom Traces

In this section we show our first important result for finite-trace LTL (£): a formula ¢ is
satisfiable iff there is a complete (i.e., finite and terminated) trace in the tableaux of ¢,

where the tableaux is constructed in a way specific to the finite-trace semantics. This
also gives a direct decision procedure for finite-trace LTL satisfiability, but the result is
particularly important for completeness. Here we prefer to work with e and U as core
formula constructs, so we assume that £ formulae are built with: propositional variables
in PVar, L, —, e and U. As notational convenience, we use — as a shortcut for ¢ — L.

Definition 2. Let =’ ¢ be either ¢’ when ¢ is =¢’, or —¢ otherwise. A set of formulae
C is {—}-closed when ¢ € C implies "¢ € C, is {e}-closed when e¢ € C implies ¢ € C,
and is closed when: (1) is {—, ®}-closed; (2) ¢p1—y, € C implies ¢1, 2 € C; (3)op € C
implies ='¢ € C; and (4) o1 Uy, € C implies @1, ¢2, (o1 Up,) € C. If is a formula
then Closure(yp) is the smallest closed set that includes .

Note that our notion of closure is slightly stronger than the classic Fischer-Ladner
closure [[7], in that Fischer-Ladner does not require condition (3), namely that e—"¢ is
included in the closure together with e¢. Thus, our closures of formulae will be slightly
larger than Fischer-Ladner’s, but nevertheless still linear in the formula. For example, if
©1Up,; € C then also e—(p; Uy,) € C, which is critical for the proof of Theorem

Definition 3. Let C be a {e}-closed set of formulae. The {e}-generated transition rela-
tion of C, written Rc C P(C)XP(C), is defined as follows: for any A, B C C, (A, B) € R¢
iff e'A # 0 and e~'A C B, where o~ 'A = |y | ey € A}. A complete C-trace is a se-
quence A ... A, of subsets of C with (A;,Ai11) € R, forall 1 <i<nand oA, =0.

The reason C was required to be {e}-closed in Definition |3} is because we want
o lA£0Dto imply that there is some B C C such that (4, B) € R¢. In other words, we
want the emptyness of @' A alone to determine whether A is terminal for R or not.

Definition 4. Let C be a closed set of formulae. A C-atom is a set A C C such that:

1. L¢A;

2. Foreachy € C, either yy € A or ="y € A;

3. If e A # O then for each ey € C, either @y € A or e—"yy € A;

4. For each =y, € C, Y1 —Yp € Aiff (W € A implies Y, € A);

5. Foreach y\ Uy, € C, y U, € Aiffyy € A or g € A and o= UY») ¢ A.

Let Atomc¢ be the set of C-atoms. If C = Closure(p) for some formula ¢, then we write
Atomy, instead of Atomciosure(p) and R, instead of Rciosure(y)- Also, a complete atom trace
of ¢ is a complete Closure(p)-trace A, ... A, such that Ay, ..., A, € Atom, and ¢ € Ay.

The next theorem is a crucial result of finite-trace semantics, which is used to show
both the decidability (Corollary [T)) and the completeness (Theorem4) of L.

Theorem 1. A formula is satisfiable iff it admits a complete atom trace.

Theorem|[T] gives us a straightforward algorithm to test the satisfiability of a formula
: show that there is at least one node A € Atom,, in the (finite) graph (Atom,, R,) with
¢ € A, such that there is some path from A to a node without any outgoing edges. In
other words, the satisfiability problem of ¢ reduces to the reachability problem in graph
(Atomg, R,), which is decidable. Thus, like infinite-trace LTL [22]], finite-trace LTL is
also decidable. Although checking reachability is algorithmically simpler than checking
for ultimately periodic sequences as needed for infinite-trace LTL [22], deciding finite-
trace LTL satisfiability is still a PSPACE-complete problem:

Corollary 1. The satisfiability problem for L is PSPACE-complete.

6 Proof System

Fig.] depicts our proof system for finite
trace LTL. In this section we prefer to |proof system of propositional calculus,
work with o instead of e as core construct |extended with the following:

(so e¢ desugars to o). We start by in-
heriting propositional logic and the modal | Ko ol = ¢') = (op = o¢)
logic rules corresponding to the modali- @

ties o and O. Unlike in infinite-trace LTL, N @

—op & o—gp does not hold anymore, as
both o and o-¢ hold in one-state traces; |Ko O(p — ¢') — (Qp — O¢')
only the implication —o¢p — o-¢ holds.

In interesting multi-modal logics, the vari- |No Di;

ous modal operators tend to be connected

somehow. In our case, we axiomatize the |-o —op — oy

expected fact that ¢ Uy, is the fixed-

point of the formula X & ¢, V ¢ A oX. Fix e1Upy © 02V 1 Ao(p1Upn)
The only unexpected rule is the Coinduc- op = ¢

tion rule for o. As usual, the axioms and colnd
rules are schemata. The fixed-point equiv-
alence of O, Op < @ AoQg, is an instance
of Fix with ¢; — ¢ and ¢, — L. To
avoid inventing rule names, from now on
we take the liberty to let Fix also refer to
the latter equivalence. In fact, if one prefers a fragment of LTL with only o and O, then
one can replace Fix with the fixed-point equivalence of 0O and the results in this paper
still hold.

Comparing our proof system above with the one for infinite-trace LTL in Section 2]
we note that the main difference is that the Induction rule has been replaced with the
Coinduction rule. Also, the axiom o—¢ — —ogp has been removed, and since we chose to
work with weak instead of strong until we were able to also remove rule U;. We argue,
without proof, that our proof system above is minimal. Indeed, the rules K., N,, K5, and
Np say that the o and O modalities form K logics, and K is the poorest modal logic. The
axiom —o captures the specific one-step granularity of o, which distinguishes it from O
for example, so it is unlikely to eliminate it. Fix captures the recursive nature of the until
operator, and it is the only axiom which does it, so again it is unlikely to be removed.
Finally, note that none of the rules discussed so far is specific to finite traces, because
they are in fact consequences of the infinite-trace LTL proof system, so at least one more
rule is needed to allow proving finite-trace-specific properties like Go_L. The colnd rule
not only allows proving oL, but as shown in Proposition @] it also allows proving the
Induction proof rule of infinite-trace LTL (which therefore also holds for finite-traces), a
rule which is considered crucial for LTL and, indeed, no proof system for LTL omits it.

12

Fig. 4. Finite-trace LTL proof system

10

Let +, denote the induced deducibility relation. Specifically, if I" is a set of formulae
and ¢ a formula, then I" -y ¢ denotes that ¢ is deducible from I” using the proof system
above; k- ¢ is a shortcut for O +, ¢. Let Thy = {¢ | £ ¢} be the set of all theorems of
L. For notational simplicity, we let Prop also denote the set of all formulae (not only
propositions) deducible with the propositional logic proof subsystem; e.g., Op — (o¢ —
O¢) € Prop (instance of A; with formulae in £). Note that Prop = {¢ | Fyp ¢} C Thy.

Theorem 2. (Soundness) For any formula ¢, v ¢ implies |= ¢. In particular, L ¢ Thy.

Fig. [5] shows a few basic properties of the

next operators, which can be shown using only oT
the {K,, N,, —o} fragment of the proof system. el
ol — op
Proposition 1. The formulae in Fig. 3 are all op > oT
derivable, i.e., belong to Thy. op <> ep Vol
090 g O(’D ANeT
The following says that the O modality is Sy: oT — (op & o)
oT — (—op & o)
Proposition 2. +, Op — OO for any formula . o(@1 A @) > o1 A 0@y
. . . (g1 V) & ep Ve,
The deduction theorem of propositional logic, stat- o(@1 V ¢2) © 0 V o)
ing that I" +yp ¢ — W iff I, @ Fyp i, 1S technically o(p1 A g2) © 8| A 8y
unnecessary but quite useful in practice, because o(g1 = ¢2) © (0 — 0py)
it allows us to prove implications by “assuming” o(p1 > @) — (80 — o)
their hypothesis and then deriving their conclusion.
We would like to also have it in our setting here. Fig. 5. Properties of o and e

However, it is well-known that the deduction theo-

rem does not hold by default in other logics. For example, in first-order logic, it only
holds when ¢ is a closed formula (i.e., it has no free variables). Here we can prove the
following variant of the deduction theorem:

Theorem 3. (Deduction theorem) I' +p Op — W iff I, ¢ +p .

When doing proofs by induction, it is often convenient to assume the property holds
in all past moments, and not only in the previous one, and then prove it holds now.
Dually, when doing proofs by coinduction, it is often convenient to assume the property
holds in all future moments, and not only in the next one, and then prove it holds now.

The following proposition establishes that this

apparently stronger variant of coinduction is in fact o — ¢
equivalent to the one we have now. It also gives colnd; e
equivalent axiomatic variants of both coinductive ¢

proof rules. GL, O(op = ¢) = ¢
Proposition 3. Keeping all the other axioms and ~— |GLo O(cOp — @) = ¢
rules unchanged, the rule colnd is equivalent to

any of the alternative rules or axioms in Fig. |6 Fig. 6. Other coinductive rules

11

A natural question is what is the relationship between
induction and coinduction. Induction is valid for infinite-traces, Ind Y — 0P
too, which means that it is not powerful enough to prove @ — Op
QoL (each trace terminates); indeed, Go.L is equivalent to
L in infinite-trace LTL. On the other hand, coinduction, as
formulated here, is only valid for finite traces. We next show
that coinduction is actually equivalent to both induction and
the finite trace axiom <o L fogether:

Fin Ool

Fig. 7. Induction rule and
finite-trace axiom

Proposition 4. Let Ind be the induction rule and Fin be the finite-trace axiom in Fig.[]]
Keeping all the other rules unchanged, colnd is equivalent to Ind and Fin together.

The properties in Fig. [§]are quite useful in practice. O < O0¢p
. - . Op © OOy
Pr0p951tlon 5. The formulae in Fig.[8|are all deriv- 0p — ¢ A og
able, i.e., belong to Thy. @V e — O
Example 3. Let us prove the property in Example [I] O(p — ep) = =

O(a — e(a V b)) — (a — <©b). By the Deduction O(p1 A @2) « Opy A Op,
Theorem 3] it suffices to show a — e(a V b) Fr a — D(p1 = ¢2) = (Op1 = O¢a)
Ob. This follows by the colnd proof rule, if we can
show a — e(a V b) Fy o(a — Ob) — (a — Ob). By
propositional reasoning, it suffices to show r, e(a V b) A o(a — Ob) — &b, which
follows by K., propositional reasoning, and some theorems in Propositions [T]and 3]

Fig. 8. Properties of O and ¢

7 Completeness

In this section we show that the proof system discussed in Section [6]is complete for
finite-trace LTL (£). The general proof scheme adopted in this section is standard:
assume that ¢ is valid but not derivable, which implies that = is consistent, and then use
the proof system to construct a model of —¢ within the atom universe of the tableaux,
thus contradicting the validity of ¢. Like in Section[5] we here also prefer to work with e
as a basic “next” construct instead of o. Recall that I-yp is the deducibility relation using
only the proof subsystem of propositional logic.

Consistency, maximal consistency and related results are given below, following a
pattern common to many logics (propositional logic, FOL, infinite-trace LTL, etc.).

Definition 5. I is inconsistent iff Thy U I" +yp L, and it is consistent otherwise. A
formula ¢ is consistent (resp. inconsistent) iff {p} is consistent (resp. inconsistent). I is
maximally consistent iff I is consistent and if I’ consistent with I’ C I then I’ =1T".

Therefore, I” is inconsistent iff we can derive L using only propositional reasoning,
but all the theorems of finite-trace LTL. Once we can derive L, we can derive anything:

Proposition 6. I is inconsistent iff Thy U I Fyp @ for any formula .
We can always add more formulae to a consistent set of formulae which is not

maximal. Once maximal, we cannot add new formulae without breaking consistency:

12

Proposition 7. Suppose that I is consistent and ¢ is any formula. Then:
1. I" U {y} is consistent, or I' U {—¢} is consistent, or both;
2. If T is maximally consistent, then either ¢ € I’ or ~¢ € I'. In particular, Thy C T

In particular, no new formulae can be derived from a maximally consistent set:
Corollary 2. If I is maximally consistent and ¢ is any formula, then I' vyp @ iff o € T.

Proposition 8. Suppose that I is maximally consistent. Then ¢; — ¢y € I' iff oy € I
impliespy e I p;iy AN e Liffpreland g, €I, o0y Vor e liff o1 € INor gy €T, and
o Upr eTiff oo € T or gy € I' and o=(oUpy) ¢ T

Any consistent set of formulae can be extended into a maximally consistent one;
folklore goes that a result of this kind was first shown for predicate logic by Lindenbaum
in late 1920’s (according to Taski):

Proposition 9. I" consistent implies there is a I’ maximally consistent with I’ C I,

The results above in this section followed a standard pattern to prove completeness
in several logics. The remaining results, however, are specific to finite-trace LTL ().

Recall from Definition [3|that ~'I" = {y/ | ey € I'}. The next proposition tells that
o~ ! preserves consistency. This, with the help of Proposition@ allows us to start with a
special consistent set of formulae and iteratively “derive” it with e~!; the difficult part is
to show that, for finite-trace LTL, this derivation process can be finite. A result similar to
Proposition@] also exists for infinite-trace LTL (see, e.g., [[16]]), but our proof is more
involved, because of the existence of two distinct next operators. In fact, a similar result
for the weak next o operator is not possible: for example, o_L is consistent but L is not.

Proposition 10. If I is consistent then ¢~ 'I" is also consistent.

To prove the completeness, we will show that any consistent formula admits a
complete atom trace (see Definition E]), SO We can use TheoremE]to conclude the formula
is satisfiable. Like for infinite-trace LTL [16]], it is convenient to consider a subset of the
atoms of the formula, namely those obtained by intersecting its closure with maximally
consistent sets of formulae. Let us define the worlds of a {e}-closed set:

Definition 6. Let C be a {e}-closed set of formulae and let We C P(C) be the set
{ ' N C | I’ maximally consistent }, whose elements are called the worlds of C. Also, let
Rg C We X W¢ be the restriction of Rc € P(C) X P(C) to We.

Proposition and the {e}-closedness of C guarantee that for any w € W¢, e~ 'w # 0
iff there is some w’ € W¢ such that (w,w’) € RZV. Now let us show that if C is closed
then its worlds are indeed particular atoms. In particular, if C is a formula closure then
its worlds are among the atoms that appear in the tableaux of the formula (see Section [3)).

Proposition 11. If C is closed then W C Atomc.

The next result tells that we can formally derive that a world can evolve to its
successors, if any. A similar result also exists for infinite-trace LTL (see, e.g., [[16]]), but
like before our proof is more involved due to the two distinct next operators available.

13

Proposition 12. Let C be a finite and {=, o}-closed set of formulae, and let w € Wc such

that o 'w # 0. Then+y W — \/(w,w')eRgV w', where A = Ny | ¢ € A} for any A C C.
Unlike for infinite-trace LTL, where the objective is to show the existence of a
ultimately periodic infinite atom trace that satisfies the formula, for finite-trace LTL the
challenge is to show the existence of any finite trace that satisfies the formula. This is
where our proof differs completely from that for infinite-trace LTL: we show that for any
world w € W, it is impossible to have only infinite Rg’-sequences starting with w:

Proposition 13. If C is finite and {—, o}-closed, then for any w € W there exists some
complete C-trace (see Definition[3)) starting with w whose elements are all in W.

We can now show that formula consistency and satisfiability coincide:
Proposition 14. A formula is consistent iff it is satisfiable.
The completeness theorem is now a simple corollary of the above:

Theorem 4. (Completeness) For any formula ¢, = ¢ implies v .

8 Conclusion

This paper gave direct decidability and completeness results for finite-trace LTL. Neither
the PSPACE-completeness of satisfiability nor the existence of a sound and complete
proof system for finite-trace LTL are surprising results in themselves, because similar
results exist for other variants of temporal logics. Moreover, the presented proof archi-
tecture follows the usual pattern encountered in infinite-trace variants of temporal logic,
which itself follows a pattern well-established in first-order and predicate logics (for
almost 100 years now). Looked at from that angle, this paper made two contributions,
one conceptual and one technical. The conceptual contribution is the Coinduction proof
rule, stating that if o — ¢ is provable then ¢ is also provable. It surprised the author
that it captures so well the essence of finite-trace reasoning and yields its complete-
ness. Its simplicity and elegance suggest that Coinduction may play a central role in
finite-trace temporal reasoning. The technical contribution is Proposition[I3] together
with Proposition [I2] on which it relies, saying that a consistent formula cannot admit
only infinite-trace models; it must admit some finite-trace models, too, so the formula is
finite-trace satisfiable. It may look “obvious” to the hasty reader now, after the fact, but
the difficulty of proving these results made the author initially believe that finite-trace
LTL may in fact not allow any complete proof system within itself, that is, without
translation to other (richer) logics. This would have not been unheard of: equational logic
restricted to unconditional equalities over regular expressions does not admit a finite
axiomatization within itself, but it does admit one if we allow conditional equations.
It could have just as well been the case that finite-trace LTL admitted no finite proof
system within itself, in spite of its infinite-trace variants admitting finite proof systems.

References

1. S.N. Artemov and L. D. Beklemishev. Provability logic. In Handbook of Philosophical Logic,
Volume X111, pages 181-360. Springer-Verlag, Berlin, 2 edition, 2005.

14

10.

12.
13.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

. A. Bauer, M. Leucker, and C. Schallhart. Comparing Itl semantics for runtime verification. J.
Log. and Comput., 20(3):651-674, June 2010.

. J. A. Bergstra and J. V. Tucker. Initial and final algebra semantics for data type specifications:
Two characterization theorems. SIAM J. Comput., 12(2):366-387, 1983.

. A. Stefanescu, c. Ciobacd, R. Mereuta, B. M. Moore, T. F. Serbdnuta, and G. Rosu. All-
path reachability logic. In Proceedings of the 25th Conference on Rewriting Techniques and
Applications and 12th Conference on Typed Lambda Calculi and Applications (RTA-TLCA’14),
volume 8560 of LNCS, pages 425-440. Springer, July 2014.

. M. d’Amorim and G. Rosu. Efficient monitoring of omega-languages. In CAV, volume 3576
of LNCS, pages 364-378. Springer, 2005.

. V. Diekert and P. Gastin. Ltl is expressively complete for mazurkiewicz traces. Journal of
Computer and System Sciences, 64(2):396 — 418, 2002.

. M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular programs. J. Comput.
Syst. Sci., 18(2):194-211, 1979.

. D. Giannakopoulou and K. Havelund. Automata-based verification of temporal properties on
running programs. In ASE, pages 412-416. IEEE Computer Society, 2001.

. R. Goldblatt. Logics of Time and Computation. Number 7 in CSLI Lecture Notes. Center for

the Study of Language and Information, Stanford, CA, 2. edition, 1992.

R. Goldblatt. Mathematical modal logic: A view of its evolution. J. of Applied Logic,

1(5-6):309-392, Oct. 2003.

. K. Havelund and G. Rosu. Efficient monitoring of safety properties. International Journal on

Software Tools for Technology Transfer (STTT), 6:158-173, 2004.

C. A. R. Hoare. An axiomatic basis for comp. programming. CACM, 12(10):576-580, 1969.

C. Jard and T. Jéron. On-line model checking for finite linear temporal logic specifications.

In Proc. of Automatic Verif. Methods for Finite State Systems, pages 189-196. Springer, 1990.

. H. W. Kamp. Tense logic and the theory of linear order. PhD thesis, University of California,

Los Angeles, 1968.

I. Lee, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan. Runtime assurance based on

formal specifications. In H. R. Arabnia, editor, PDPTA, pages 279-287. CSREA Press, 1999.

O. Lichtenstein and A. Pnueli. Propositional temporal logics: Decidability and completeness.

Logic Journal of the IGPL, 8(1):55-85, 2000.

O. Lichtenstein, A. Pnueli, and L. Zuck. The glory of the past. In R. Parikh, editor, Logics

of Programs, volume 193 of Lecture Notes in Computer Science, pages 196-218. Springer

Berlin Heidelberg, 1985.

A. Pnueli. The temporal logic of programs. In FOCS, pages 46-57. IEEE, 1977.

G. Rosu, A. Stefdnescu, c. Ciobacd, and B. M. Moore. One-path reachability logic. In

Proceedings of the 28th Symposium on Logic in Computer Science (LICS’13), pages 358-367.

IEEE, June 2013.

G. Rosu and K. Havelund. Rewriting-based techniques for runtime verification. Automated

Software Engineering, 12:151-197, 2005. 10.1007/s10515-005-6205-y.

G. Rosu and A. Stefanescu. Checking reachability using matching logic. In Proceedings of

the 27th Conference on Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA’12), pages 555-574. ACM, 2012.

A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal logics. J. ACM,

32(3):733-749, July 1985.

M. Sulzmann and A. Zechner. Constructive finite trace analysis with linear temporal logic. In

Tests and Proofs, volume 7305 of LNCS, pages 132—148. Springer Berlin Heidelberg, 2012.

P. Thiagarajan and 1. Walukiewicz. An expressively complete linear time temporal logic for

mazurkiewicz traces. Information and Computation, 179(2):230 — 249, 2002.

15

	Finite-Trace Linear Temporal Logic: Coinductive Completeness

