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Abstract. This paper presents matching logic, a �rst-order logic (FOL) variant for spec-
ifying and reasoning about structure by means of patterns and pattern matching. Its
sentences, the patterns, are constructed using variables, symbols, connectives and quan-
ti�ers, but no di�erence is made between function and predicate symbols. In models, a
pattern evaluates into a power-set domain (the set of values that match it), in contrast to
FOL where functions and predicates map into a regular domain. Matching logic uniformly
generalizes several logical frameworks important for program analysis, such as: proposi-
tional logic, algebraic speci�cation, FOL with equality, modal logic, and separation logic.
Patterns can specify separation requirements at any level in any program con�guration,
not only in the heaps or stores, without any special logical constructs for that: the very
nature of pattern matching is that if two structures are matched as part of a pattern, then
they can only be spatially separated. Like FOL, matching logic can also be translated
into pure predicate logic with equality, at the same time admitting its own sound and
complete proof system. A practical aspect of matching logic is that FOL reasoning with
equality remains sound, so o�-the-shelf provers and SMT solvers can be used for matching
logic reasoning. Matching logic is particularly well-suited for reasoning about programs in
programming languages that have an operational semantics, but it is not limited to this.
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1. Introduction

In their simplest form, as term templates with variables, patterns abound in mathematics
and computer science. They match a concrete, or ground, term if and only if there is some
substitution applied to the pattern's variables that makes it equal to the concrete term,
possibly via domain reasoning. This means, intuitively, that the concrete term obeys the
structure speci�ed by the pattern. We show that when combined with logical connectives
and variable constraints and quanti�ers, patterns provide a powerful means to specify and
reason about the structure of states, or con�gurations, of a programming language.

Matching logic was inspired from the domain of programming language semantics,
speci�cally from attempting to use operational semantics directly for program veri�ca-
tion. Recently, operational semantics of several real languages have been proposed, e.g., of
C [34, 49], Java [14], JavaScript [13, 71], Python [46, 77], PHP [37], CAML [70], thanks to the
development of semantics engineering frameworks like PLT-Redex [54], Ott [87], K [82, 83],
etc., which make de�ning an operational semantics for a programming language almost as
easy as implementing an interpreter, if not easier. Operational semantics are comparatively
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Figure 1: Architecture of the K framework, powered by matching logic

easy to de�ne and understand, require little formal training, scale up well, and, being exe-
cutable, can be tested. Indeed, the language semantics above have more than 1,000 (some
even more than 3,000) semantic rules and have been tested on benchmarks/test-suites that
language implementations use to test their conformance, where available. Thus, operational
semantics are typically used as trusted reference models for the de�ned languages. We would
like to use such operational semantics of languages, unchanged, for program veri�cation.

Despite their advantages, operational semantics are rarely used directly for program
veri�cation, because the general belief is that proofs tend to be low-level, as they work
directly with the corresponding transition system. Hoare [50] or dynamic [47] logics are
typically used, because they allow higher level reasoning. However, these come at the cost
of (re)de�ning the language semantics as a set of abstract proof rules, which are harder to
understand and trust. The state-of-the-art in mechanical program veri�cation is to develop
and prove such language-speci�c proof systems sound w.r.t. a trusted operational seman-
tics [66, 52, 3], but that needs to be done for each language separately and is labor intensive.

De�ning even one complete semantics for a real language like C or Java is already a
huge e�ort. De�ning multiple semantics, each good for a di�erent purpose, is at best uneco-
nomical, with or without proofs of soundness w.r.t. the reference semantics. It is therefore
not surprising that many practical program veri�ers forgo de�ning a semantics altogether,
and instead they implement ad-hoc veri�cation condition (VC) generation, sometimes via
(unveri�ed) translations to intermediate veri�cation languages like Boogie [4] or Why3 [38].
For example, program veri�ers for C like VCC [26] and Frama-C [38], and for Java like
jStar [32] take this approach. Also, none of the 35 veri�ers that participated in the 2016
software veri�cation competition (SV-COMP) [10] appear to be based on a formal semantics
of any kind. The consequence is that such tools cannot be trusted. We would like program
veri�ers, ideally, to produce proof certi�cates whose trust base is only an operational seman-
tics of the target language, same as mechanical veri�ers based on Coq [61] or Isabelle [67]
do, but without the e�ort to de�ne any other semantics of the same language, either di-
rectly as a separate proof system or indirectly by extending the operational semantics with
language-speci�c lemmas. We would like program veri�ers, ideally, to take an operational
semantics of a language as input and to yield, as output, a veri�er for that language which
is as easy to use and as e�cient as veri�ers speci�cally developed for that language.
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struct listNode { int val; struct listNode *next; };

void list_read_write(int n) {

rule 〈$⇒ return; ···〉code 〈A⇒ · ···〉in 〈··· · ⇒ rev(A)〉out ∧ n = len(A)

int i=0;

struct listNode *x=0;

inv 〈β ∧ len(β) = n− i ∧ i ≤ n ···〉in 〈list(x, α) ···〉heap ∧ A = rev(α)@β

while (i < n) {

struct listNode *y = x;

x = (struct listNode*) malloc(sizeof(struct listNode));

scanf("%d", &(x->val));

x->next = y;

i += 1; }

inv 〈··· α〉out 〈list(x, β) ···〉heap ∧ rev(A) = α@β

while (x) {

struct listNode *y;

y = x->next;

printf("%d ",x->val);

free(x);

x = y; }

}

Figure 2: Reading, storing, and reverse writing a sequence of integers

Matching logic was born from our belief that programming languages must have formal
de�nitions, and that tools for a given language, such as interpreters, compilers, state-space
explorers, model checkers, deductive program veri�ers, etc., can be derived from just one
reference formal de�nition of the language, which is executable. No other semantics for the
same language should be needed. This belief is re�ected in the design of the K framework [82,
83] (http://kframework.org), illustrated in Figure 1. This is the ideal scenario and there
is enough evidence that it is within our reach in the short term. For example, [28] presents
a program veri�cation module of K, based on matching logic, which takes the respective
operational semantics of C [49], Java [14], and JavaScript [71] as input and yields automated
program veri�ers for these languages, capable of verifying challenging heap-manipulating
programs at performance comparable to that of state-of-the-art veri�ers speci�cally crafted
for those languages. A precursor of this veri�er, MatchC [85], has an online interface at
http://matching-logic.org where one can verify dozens of prede�ned programs or new
ones; e.g., the program in Figure 2 is under the io folder and it takes about 150ms to verify.

To reason about programs we need to be able to reason about program con�gurations.
Speci�cally, we need to de�ne con�guration abstractions and reason with them. Consider,
for example, the program in Figure 2 which shows a C function that reads n elements from
the standard input and prints them to the standard output in reversed order (for now, we
can ignore the speci�cations, which are grayed). While doing so, it allocates a singly linked
list storing the elements as they are read, and then deallocates the list as the elements are
printed. In the end, the heap stays unchanged. To state the speci�cation of this program,
we need to match an abstract sequence of n elements in the input bu�er, and then to match
its reverse at the end of the output bu�er when the function terminates. Further, to state

http://kframework.org
http://matching-logic.org
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the invariants of the two loops we need to identify a singly linked pattern in the heap, which
is a partial map. Many such sequence or map patterns, as well as operations on them, can
be de�ned using conventional algebraic data types (ADTs). But some of them cannot.

A major limitation of ADTs and of �rst-order logic (FOL) is that operation symbols are
interpreted as functions in models, which sometimes is insu�cient. E.g., a two-element linked
list in the heap (we regard heaps as maps from natural number locations to values) starting
with location 7 and holding values 9 and 5, written as list(7, 9@5), can allow in�nitely many
heap values, one for each location where the value 5 may be stored. So we cannot de�ne
list as an operation symbol Int × Seq → Map. The FOL alternative is to de�ne list as a
predicate Int × Seq × Map, but mentioning the map all the time as an argument makes
speci�cations verbose and hard to read, use and reason about. An alternative, proposed by
separation logic [78], is to �x and move the map domain from explicit in models to implicit
in the logic, so that list(7, 9@5) is interpreted as a predicate but the non-deterministic map
choices are implicit in the logic. We then may need custom separation logics for di�erent
languages that require di�erent variations of map models or di�erent con�gurations making
use of di�erent kinds of resources. This may also require specialized separation logic provers
needed for each, or otherwise encodings that need to be proved correct. Finally, since the
map domain is not available as data, one cannot use FOL variables to range over maps and
thus proof rules like �heap framing� need to be added to the logic explicitly.

Matching logic avoids the limitations of both approaches above, by interpreting its
terms/formulae as sets of values. Matching logic's formulae, called patterns, are built using
variables, symbols from a signature, and FOL connectives and quanti�ers. We can think of
matching logic as collapsing the function and predicate symbols of FOL, allowing patterns
to be simultaneously regarded both as terms and as predicates. When regarded as terms
they build structure, when regarded as predicates they express constraints. Semantically,
the matching logic models are similar to the FOL models, except that the symbols in the sig-
nature are interpreted as functions returning sets of values instead of single values. Patterns
are then also interpreted as sets of values, where conjunction is interpreted as intersection,
negation as complement, and the existential quanti�er as union over all compatible valu-
ations. The name �matching logic� was inspired from the case when the model is that of
terms, common in the context of language semantics, where terms represent (fragments of)
program con�gurations. There, a pattern is interpreted as the set of terms that match it.

The (grayed) speci�cations in Figure 2 show examples of matching logic patterns, over
the signature used to de�ne the semantics of C [49]. The signature includes symbols cor-
responding to the syntax of the language, to semantic constructs such as 〈_〉code holding
the remaining code fragment, 〈_〉heap holding the current heap as a map, and 〈_〉in and
〈_〉out holding the current input and resp. output bu�ers as sequences, among many others.
Let us discuss the invariant pattern of the �rst loop (second grayed area). It says that the
pattern list(x, α) is matched somewhere in the heap, and that the sequence β of size n − i
is available at the beginning of the input bu�er such that A is the reverse of the sequence
that x points to, rev(α), concatenated with β. The ellipses �· · · � are syntactic sugar for exis-
tentially quanti�ed variables, which we call �structural frame variables�. Note how symbols
from the signature are mixed with logical constructs, and how variables can range over any
data stored in con�gurations, including over heap fragments. In addition to the implicit
existential quanti�ers for �· · · �, the sequence β under the 〈_〉in symbol is conjuncted with
logical constraints about its length; also, the pair consisting of the 〈_〉in and 〈_〉heap patterns
at the top, which is itself a con�guration pattern, is conjuncted with the equality constraint
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A = rev(α)@β. While such mixes of symbols and logical connectives are disallowed in other
logics, such as FOL or separation logic, they are not only well-formed but also strongly
encouraged to be used in matching logic; besides succinctness of speci�cations, they also
allow for local reasoning. This is discussed in detail shortly, in the example in Section 2.2.

Matching logic is particularly well-suited for reasoning about programs when their lan-
guage has an operational semantics. That is because its patterns give us full access to all
the details in a program con�guration, at the same time allowing us to hide irrelevant detail
using existential quanti�cation (e.g., the �...� framing variables in Figure 2) or separately
de�ned abstractions (e.g., the list(x, α) pattern in Figure 2). Also, both the operational se-
mantics of a language and its reachability properties can be encoded as rules ϕ⇒ϕ′ between
patterns, called reachability rules in [28, 27, 80, 85], and one generic, language-independent
proof system can be used both for executing programs and for proving them correct. In both
cases, the operational semantics rules are used to advance the computation. When executing
programs the pattern to reduce is ground and the application of the semantic steps becomes
conventional term rewriting. When verifying reachability properties, the pattern to reduce
is symbolic and typically contains constraints and abstractions, so matching logic reasoning
is used in-between semantic rewrite rule applications to re-arrange the con�guration so that
semantic rules match or assertions can be proved. We refer the interested reader to [28] for
full details on our recommended veri�cation approach using matching logic.

Although we favor the veri�cation approach above, which led to the development of
matching logic, there is nothing to limit the use of matching logic with other veri�cation
approaches, as an intuitive and succinct notation for encoding state properties. For example,
Proposition 9.2 tells us that any separation logic formula is a matching logic pattern as
is. So one can, for example, take an existing separation logic semantics of a language,
regard it as a matching logic semantics and then extend it to also consider structures in
the con�guration that separation logic was not meant to directly reason about, such as
function/exception/break-continue stacks, input/output bu�ers, etc. For this reason, we
here present matching logic as a stand-alone logic, without favoring any particular use of it.

This paper is an extended version of the RTA'15 conference paper [79], which was the
�rst to allow the unrestricted mix of symbols and logical quanti�ers in patterns. A much
simpler variant of matching logic was introduced in 2010 in [81] as a state speci�cation
logic, and has been used since then in several veri�cation e�orts [84, 85, 86, 80, 27, 28], and
implemented in MatchC [85] by reduction to Maude [25] (for matching) and to Z3 [29] (for
domain reasoning). However, that matching logic variant shares only the basic intuition of
�terms as formulae� with the logic presented in this paper, and was only syntactic sugar for
�rst-order logic (FOL) with equality in a �xed model, essentially allowing only term patterns
t and regarding them as syntactic sugar for equalities � = t (see Section 12).

Section 2 introduces the syntax and semantics of matching logic, as well as some ba-
sic properties. Sections 3 and 4 show how propositional calculus and, respectively, pure
predicate logic fall as instances of matching logic. Section 5 shows how several impor-
tant mathematical concepts can be de�ned in matching logic, such as de�nedness, equality,
membership, and functions. Using these, Sections 6, 7, 8 and 9 then show how algebraic
speci�cations, �rst-order logic, modal logic and, respectively, separation logic also fall as
instances of matching logic. Section 10 shows that, like FOL, matching logic also reduces
to pure predicate logic with equality. Section 11 introduces our sound and complete proof
system for matching logic. Section 12 discusses related work and Section 13 concludes.
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2. Matching Logic: Basic Notions

We assume the reader is familiar with many-sorted sets, functions, and �rst-order logic
(FOL). For any given set of sorts S, we assume Var is an S-sorted set of variables, sortwise
in�nite and disjoint. We may write x : s instead of x ∈ Vars, and when the sort of x is
irrelevant we just write x ∈ Var. We let P(M) denote the powerset of a many-sorted setM ,
which is itself many-sorted. We only treat the many-sorted case here, but we see no inherent
limitations in extending the constructions and results in this paper to the order-sorted case.

2.1. Patterns. We start by de�ning the syntax of patterns.

De�nition 2.1. Let (S,Σ) be a many-sorted signature of symbols. Matching logic (S,Σ)-
formulae, also called (S,Σ)-patterns, or just (matching logic) formulae or patterns
when (S,Σ) is understood from context, are inductively de�ned as follows for all sorts s ∈ S:
ϕs ::= x ∈ Vars // Variable

| σ(ϕs1 , ..., ϕsn) with σ ∈ Σs1...sn,s (written Σλ,s when n = 0) // Structure
| ¬ϕs // Complement
| ϕs ∧ ϕs // Intersection
| ∃x . ϕs with x ∈Var (of any sort) // Binding

Let Pattern be the S-sorted set of patterns. By abuse of language, we refer to the symbols
in Σ also as patterns: think of σ ∈ Σs1...sn,s as the pattern σ(x1 :s1, . . . , xn :sn).

We argue that the syntax of patterns above is necessary in order to express meaningful
patterns, and at the same time it is minimal. Indeed, variable patterns allow us to extract
the matched elements or structure and possibly use them in other places in more complex
patterns. Forming new patterns from existing patterns by adding more structure/symbols to
them is standard and the very basic operation used to construct terms, which are the simplest
patterns. Complementing and intersecting patterns allows us to reason with patterns the
same way we reason with logical propositions and formulae. Finally, the existential binder
serves a dual role. On the one hand, it allows us to abstract away irrelevant parts of the
matched structure, which is particularly useful when de�ning and reasoning about program
invariants or structural framing. On the other hand, it allows us to de�ne complex patterns
with binders in them, such as λ-, µ-, or ν-bound terms/patterns (to be presented elsewhere).

To ease notation, ϕ ∈ Pattern means ϕ is a pattern, while ϕs ∈ Pattern or ϕ ∈
Patterns that it has sort s. We adopt the following derived constructs (�syntactic sugar�):

>s ≡ ∃x :s . x ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2

⊥s ≡ ¬>s ϕ1 ↔ ϕ2 ≡ (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1)
ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2) ∀x.ϕ ≡ ¬(∃x.¬ϕ)

Intuitively, > is a pattern that is matched by all elements, ⊥ is matched by no elements,
ϕ1 ∨ϕ2 is matched by all elements matching ϕ1 or ϕ2, and so on. We will shortly formalize
this intuition. We assume the usual precedence of the FOL-like constructs, with ¬ binding
tighter than ∧ tighter than ∨ tighter than → tighter than ↔ tighter than the quanti�ers.

We adapt from �rst-order logic the notions of free variable, (variable capture free) sub-
stitution, and variable renaming, brie�y recalled below. Let FV (ϕ) denote the free variables
of ϕ, de�ned as follows: FV (x) = {x}, FV (σ(ϕs1 , ..., ϕsn)) = FV (ϕs1) ∪ · · · ∪ FV (ϕsn),
FV (¬ϕ) = FV (ϕ), FV (ϕ1∧ϕ2) = FV (ϕ1)∪FV (ϕ2), and FV (∃x.ϕ) = FV (ϕ) \ {x}. Sim-
ilarly, the usual variable capture free substitution: x[ϕ/x] = ϕ and y[ϕ/x] = y when variable
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y is di�erent from x, σ(ϕs1 , ..., ϕsn)[ϕ/x] = σ(ϕs1 [ϕ/x], ..., ϕsn [ϕ/x]), (ϕ1 ∧ ϕ2)[ϕ/x] =
ϕ1[ϕ/x] ∧ ϕ2[ϕ/x], (¬ϕ′)[ϕ/x] = ¬(ϕ′[ϕ/x]), and (∃x.ϕ′)[ϕ/x] = ∃x.ϕ′ and (∃y.ϕ′)[ϕ/x] =
∃y.(ϕ′[ϕ/x]) when variable y is di�erent from x and y 6∈ FV (ϕ) (to avoid variable capture).
And variable renaming, ∃x.ϕ ≡ ∃y.(ϕ[y/x]), which can be used to avoid variable capture.

2.2. Example. There are many examples of patterns throughout the paper resulting from
formulae in various other logics that are captured by matching logic, such as propositional
logic (Section 3), predicate logic (Section 4), algebraic speci�cations (Section 6) �rst-order
logic (Section 7) modal logic (Section 8), and separation logic (Section 9). We will discuss
them in their respective sections, showing that formulae in these logics can be regarded as
matching logic patterns. Here, instead, we discuss an example inspired from programming
language semantics, which is the area that motivated the development of matching logic.

Consider the operational semantics of a real language like C, whose con�guration has
more than 100 semantic components [34, 49, 28]. The semantic components, here called
�cells� and written using symbols 〈...〉cell, can be nested and their grouping (symbol) is gov-
erned by associativity and commutativity axioms. There is a top cell 〈...〉cfg holding subcells
〈...〉code, 〈...〉heap, 〈...〉in, 〈...〉out among many others, holding the current code fragment, heap,
input bu�er, output bu�er, respectively. We cannot show the signature of all the symbols
de�ning the con�guration of a language like C for space reasons, but encourage the interested
reader to check the aforementioned papers. We only show a small subset of symbols that
is su�cient to write interesting patterns for illustration purposes, mentioning that nothing
changes in the subsequent developments of matching logic as the signature grows or changes.
That is, we do not have a matching logic for C, another for Java, another for JavaScript, etc.;
all these languages have their respective signatures and patterns, and the same matching
logic machinery applies to all of them in the same way.

To motivate certain patterns below, we will refer to results that are introduced later in
the paper. The purpose of this example, however, is to illustrate and discuss various kinds
of patterns, and especially to show that it is useful to mix symbols with logical connectives.
The hasty reader can only skim the patterns and their descriptions below for now, and revisit
the example later as other results back-reference it.

Consider the signature (S,Σ) in Figure 3, consisting of symbols needed to construct
semantic con�gurations for a C-like language. Usual terms are already patterns, in particular
the �rst while loop in the program in Figure 2, say LOOP. So are terms with variables, e.g.:

〈〈LOOP k〉code 〈x 7→ x, n 7→ n, i 7→ i, e〉env 〈x 7→ a, x+ 1 7→ y, h〉heap 〈β〉in 〈ε〉out〉cfg
The intuition for this pattern is that it matches all the con�gurations whose code starts with
LOOP (k, the �code frame�, matches the rest of the code), whose environment binds program
identi�ers n and i to values n and i, respectively, and x to location x (e, the �environment
frame�, matches the rest of the environment map) such that both x and x+ 1 are allocated
and bound to some values in the heap (h, the �heap frame�, matches the rest of the heap),
whose input bu�er contains some sequence (β) and whose output bu�er contains the empty
sequence. This intuition will be formalized shortly. Also, we will show how the various
symbols can be constrained or de�ned axiomatically, like in algebraic (Section 6) or FOL
(Section 7) speci�cations; for example, sequences are associative and have ε as unit, maps
and Cfg are both associative and commutative with �.� as unit, len(i@α) = 1 + len(α), etc.

The interesting patterns are those combining symbols and logical connectives. For
example, suppose that we want to restrict the pattern above to only match con�gurations
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S = { Id,Exp,Stmt, ... // code synactic categories
Bool ,Nat , Int , ... // basic domains
SeqInt ,MapId,Nat ,MapNat ,Int , ... // more domains
CfgCell,Cfg , // top cell and contents
CodeCell,EnvCell,HeapCell, InCell,OutCell, // con�g cells

... }
ΣIdExp,Stmt = {_=_;, ...} // assignment, ...

ΣExpStmt Stmt,Stmt = {if(_){_}else{_}, ...} // conditional, ...
ΣExpStmt,Stmt = {while(_){_}, ...} // while loop, ...

ΣStmt Stmt,Stmt = { __ } // sequential composition
... // other syntactic language constructs

ΣStmt,Cfg = { 〈_〉code } // cell holding the code
Σλ,MapId,Nat

= { . } // empty environment map

ΣIdNat ,MapId,Nat
= { _ 7→ _ } // one-binding environment map

ΣMapId,Nat MapId,Nat ,MapId,Nat
= { _,_ } // environment map merge

ΣMapId,Nat ,Cfg = { 〈_〉env } // cell holding the environment map

... MapNat ,Int symbols de�ned similarly to MapId,Nat

ΣMapNat,Int ,Cfg = { 〈_〉heap } // cell holding the heap map

Σλ,SeqInt = { ε } // empty sequence
ΣInt ,SeqInt = { _ } // one-integer sequence

ΣSeqInt SeqInt ,SeqInt = { _@_ } // sequence concatenation
ΣSeqInt ,Nat = { len } // sequence length

ΣSeqInt ,SeqInt = { rev } // sequence reverse
ΣSeqInt ,Cfg = { 〈_〉in } // input bu�er
ΣSeqInt ,Cfg = { 〈_〉out } // output bu�er

Σλ,Cfg = { . } // empty con�guration contents
ΣCfg,Cfg = { __ } // merging con�guration contents

ΣCfg,CfgCell = { 〈_〉cfg } // top con�guration cell

Figure 3: Signature for building program con�gurations in a C-like language

where i ≤ n. As discussed later in the paper (Section 5.2), equality can be axiomatized in
matching logic and used in any sort context. Also, due to their ubiquity, Boolean expressions
are allowed to be used in any sort context unchanged, with the meaning that they equal
true; that is, we write just b instead of b = true (Section 5.8). With these, we can restrict
the pattern above as follows (note the top-level conjuction):

〈〈LOOP k〉code 〈x 7→ x, n 7→ n, i 7→ i, e〉env 〈x 7→ a, x+ 1 7→ y, h〉heap 〈β〉in 〈ε〉out〉cfg ∧ i ≤ n
Quanti�ers can be used, for example, to abstract away irrelevant parts of the pattern.
Suppose, for example, that we work in a context where the code and the output cells are
irrelevant, and so are the frames of the environment and heap cells. Then we can �hide�
them to the context as follows:

(∃c .∃e .∃h . 〈〈x 7→ x, n 7→ n, i 7→ i, e〉env 〈x 7→ a, x+ 1 7→ y, h〉heap 〈β〉in c〉cfg) ∧ i ≤ n
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Following a notational convention proposed and implemented inK (http://kframework.org
[82, 83]), we use �...� as syntactic sugar for such existential quanti�ers used for framing:

〈〈x 7→ x, n 7→ n, i 7→ i ···〉env 〈x 7→ a, x+ 1 7→ y ···〉heap 〈β〉in ···〉cfg ∧ i ≤ n
It is often the case that program identi�ers are bound to default mathematical variables
(their symbolic values) in the environment, and then the mathematical variables are used
in many other parts of the con�guration pattern to state additional logical or structural
constraints. For that reason, we typically want to match the program identi�ers to their
(symbolic) values once and for all with a separate, default (sub)pattern, which is then not
mentioned anymore in subsequent patterns:

〈〈x 7→ x, n 7→ n, i 7→ i ···〉env ···〉cfg // assumed by default below
∧ 〈〈x 7→ a, x+ 1 7→ y ···〉heap 〈β〉in ···〉cfg ∧ i ≤ n

Note that the pattern above contains two (top-level) 〈...〉cfg sub-pattern constraints and one
logical constraint, i ≤ n. This pattern will be matched by precisely those con�gurations that
match both sub-patterns and satisfy the constraint, which are the same con�gurations that
match the previous pattern. Therefore, the last two patterns are equal (pattern equality is
formalized in Section 5.2; see Notation 5.8 and Proposition 5.9)).

Now suppose that we want to state that location x in the heap points to a linked list over
the list data-structure in the program in Figure 2, which comprises a mathematical sequence
of integers α. The precise locations of the various nodes in the list are irrelevant. Such a
linked-list pattern can be de�ned by adding a symbol representing it to the signature, say
list ∈ ΣNat SeqInt ,MapNat,Int

, together with two axioms (similar to those in separation logic,

Section 9); it is shown in Section 9.2 that the pattern list(x, α) is matched by precisely
all the (in�nitely many) linked lists starting with location x and containing the sequence
of elements α. This shows why we want pattern symbols to be interpreted into power-set
domains, so they can evaluate to sets of elements (all those that match them) instead of
just elements. Matching logic also allows us to axiomatically state that a symbol is to be
interpreted as a function (Section 5.4); in fact, in this simple example we assume all the
symbols of our signature Σ above to be constrained to be functions, except for those of Map
results. We can now re�ne the pattern above as follows:

〈〈list(x, α) ···〉heap 〈β〉in ···〉cfg ∧ i ≤ n
Inspired from the invariant of the �rst loop in Figure 2, let us add some more constraints:

〈〈list(x, α) ···〉heap 〈β ···〉in ···〉cfg ∧ len(β) = n− i ∧ i ≤ n ∧ A = rev(α)@β

The pattern above is additionally stating that the 〈...〉in cell starts with a pre�x of size
equal to n − i which appended to the reverse of the sequence that x points to in the heap
equals the original input sequence A. We can arrange the pattern to better localize the
logical constraints to the sub-patterns for which they are relevant. For example, the �rst
two constraints are relevant for the sequence β, so we can move them to their place:

〈〈list(x, α) ···〉heap 〈β ∧ len(β) = n− i ∧ i ≤ n ···〉in ···〉cfg ∧ A = rev(α)@β

The above transformation is indeed correct, thanks to Proposition 5.12 (constraint propa-
gation). Similarly, the remaining constraint can be localized to the two cells that need it.
Using also the fact that cell concatenation is commutative, we rewrite the pattern into:

〈〈β ∧ len(β) = n− i ∧ i ≤ n ···〉in 〈list(x, α) ···〉heap ∧ A = rev(α)@β ···〉cfg

http://kframework.org
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The pattern above is very similar to the �rst invariant in Figure 2; the latter does not
mention the top 〈...〉cfg cell because our implementation adds it automatically. The top cell
is not necessary anyway, we added it mostly for uniformity in our notation for con�gurations.

So constraints can be propagated up and down a pattern to where they are needed. But
how are the constraints generated? One way to generate constraints is through reasoning
using language semantic rules, such as the case analysis and consequence rules in [28].
Another way to generate constraints is by local reasoning about patterns. For example,
using the axioms of list in Section 9.2, we can infer list(x, α) → ϕ1 ∨ ϕ2, where ϕ1 is
· ∧ (α = ε) (the empty map �·� with constraint �α is the empty sequence�) and ϕ2 is
∃a .∃γ . α = a@γ ∧ ∃y . (x 7→ a, x + 1 7→ y, list(y, γ)). By Proposition 2.10 (structural
framing) and propositional reasoning we can then infer the following pattern:

〈〈β ∧ len(β) = n− i ∧ i ≤ n ···〉in 〈list(x, α) ···〉heap ∧ A = rev(α)@β ···〉cfg
→ 〈〈β ∧ len(β) = n− i ∧ i ≤ n ···〉in 〈ϕ1 ∨ ϕ2 ···〉heap ∧ A = rev(α)@β ···〉cfg

Since symbol application distributes over ∨ (Proposition 2.11), the pattern to the right of
→ above becomes (again via propositional reasoning):

〈〈β ∧ len(β) = n− i ∧ i ≤ n ···〉in 〈ϕ1 ···〉heap ∧ A = rev(α)@β ···〉cfg
∨ 〈〈β ∧ len(β) = n− i ∧ i ≤ n ···〉in 〈ϕ2 ···〉heap ∧ A = rev(α)@β ···〉cfg

We can now propagate the constraints of each of ϕ1 and ϕ2 up into their respective disjunct
above, to be used in combination with the other constrains on sequences.

We stop here with our example. Note that we made no e�ort above to construct a
signature that does not allow junk con�gurations (for example, there is nothing to stop
us from adding two or more heaps in a con�guration); such junk con�gurations can be
dismissed either by adding stronger sorting or by well-formedness predicates/patterns. Also,
our syntax for empty maps (�·�) and for map merging (�_,_�) above is di�erent from that
in Section 9.2. The syntax above is close to the one we use in our K implementation, while
the syntax in Section 9.2 was speci�cally chosen to be similar to that of separation logic in
order to support the subsequent results in Section 9.3.

2.3. Semantics. In their simplest form, as terms with variables, patterns are usually matched
by other terms that have more structure, possibly by ground terms. However, sometimes we
may need to do the matching modulo some background theories or modulo some existing
domains, for example integers where addition is commutative or 2 + 3 = 1 + 4, etc. For
maximum generality, we prefer to impose no theoretical restrictions on the models in which
patterns are interpreted, or matched, leaving such restrictions to be dealt with in implemen-
tations (for example, one may limit to free models, or to ones for which decision procedures
exist, etc.). This has the additional bene�t that it yields complete deduction (Section 11).

De�nition 2.2. A matching logic (S,Σ)-model M , or just a Σ-model when S is under-
stood, or simply a model when both S and Σ are understood, consists of:

(1) An S-sorted set {Ms}s∈S, where each set Ms, called the carrier of sort s of M ,
is assumed non-empty; and

(2) A function σM : Ms1 × · · · ×Msn → P(Ms) for each symbol σ ∈ Σs1...sn,s, called the
interpretation of σ in M .

Note that symbols are interpreted as relations, and that the usual (S,Σ)-algebra models
are a special case of matching logic models, where |σM (m1, . . . ,mn)| = 1 for any m1 ∈Ms1 ,
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ϕ1 ϕ2

gray area matches ϕ1 → ϕ2

ϕ1 ϕ2

gray area matches ϕ1 ↔ ϕ2

Figure 4: Matching logic semantics of pattern implication and equivalence

. . . , mn ∈ Msn . Similarly, partial (S,Σ)-algebra models also fall as special case, where
|σM (m1, . . . ,mn)| ≤ 1, since we can capture the unde�nedness of σM on m1, . . . , mn with
σM (m1, . . . ,mn) = ∅. We tacitly use the same notation σM for its extension to argument
sets, P(Ms1)× · · · × P(Msn)→ P(Ms), that is,

σM (A1, . . . , An) =
⋃
{σM (a1, . . . , an) | a1 ∈ A1, . . . , an ∈ An}

where A1 ⊆Ms1 , . . . , An ⊆Msn .

De�nition 2.3. Given a model M and a map ρ : Var → M , called an M-valuation, let
its extension ρ : Pattern→ P(M) be inductively de�ned as follows:

• ρ(x) = {ρ(x)}, for all x ∈ Vars
• ρ(σ(ϕ1, . . . , ϕn)) = σM (ρ(ϕ1), . . . ρ(ϕn)) for all σ ∈ Σs1...sn,s and appropriate ϕ1, ..., ϕn
• ρ(¬ϕ) = Ms \ ρ(ϕ) for all ϕ ∈ Patterns
• ρ(ϕ1 ∧ ϕ2) = ρ(ϕ1) ∩ ρ(ϕ2) for all ϕ1, ϕ2 patterns of the same sort

• ρ(∃x.ϕ) =
⋃
{ρ′(ϕ) | ρ′ : Var→M, ρ′�Var\{x}= ρ�Var\{x}} =

⋃
a∈M ρ[a/x](ϕ)

where � \� is set di�erence, �ρ�V � is ρ restricted to V ⊆ Var, and �ρ[a/x]� is map ρ′ with
ρ′(x) = a and ρ′(y) = ρ(y) if y 6= x. If a ∈ ρ(ϕ) then we say a matches ϕ (with witness ρ).

It is easy to see that the usual notion of term matching is an instance of the above;
indeed, if ϕ is a term with variables and M is the ground term model, then a ground term a
matches ϕ i� there is some substitution ρ such that ρ(ϕ) = a. It may be insightful to note
that patterns can also be regarded as predicates, when we think of �a matches pattern ϕ�
as �predicate ϕ holds in a�. But matching logic allows more complex patterns than terms or
predicates, and models which are not necessarily conventional (term) algebras.

The extension of ρ works as expected with the derived constructs:

• ρ(>s) = Ms and ρ(⊥s) = ∅
• ρ(ϕ1 ∨ ϕ2) = ρ(ϕ1) ∪ ρ(ϕ2)
• ρ(ϕ1 → ϕ2) = {m ∈Ms | m ∈ ρ(ϕ1) implies m ∈ ρ(ϕ2)} = Ms \ (ρ(ϕ1) \ ρ(ϕ2))
• ρ(ϕ1 ↔ ϕ2) = {m ∈Ms | m ∈ ρ(ϕ1) i� m ∈ ρ(ϕ2)} = Ms \ (ρ(ϕ1) ∆ ρ(ϕ2))
(�∆� is the set symmetric di�erence operation)

• ρ(∀x.ϕ) =
⋂
{ρ′(ϕ) | ρ′ : Var→M, ρ′�Var\{x}= ρ�Var\{x}} =

⋂
a∈M ρ[a/x](ϕ)

Interpreting formulae as sets of elements in models is reminiscent of modal logic, where
they are interpreted as the �worlds� in which they hold, and of separation logic, where they
are interpreted as the �heaps� they match. We discuss the relationship between matching
logic and these logics in depth in Sections 8 and, respectively, 9.
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Therefore, the matching logic interpretation of the logical connectives is not two-valued
like in classical logics. In particular, the interpretation of ϕ1 → ϕ2 is the set of all the
elements that if matched by ϕ1 then are also matched by ϕ2. One should be careful when
reasoning with such non-classical logics, as basic intuitions may deceive. For example, the
interpretation of ϕ1 → ϕ2 is the total set (i.e., same as >) i� all elements matching ϕ1 also
match ϕ2, but it is the empty set i� ϕ2 is matched by no elements (same as ⊥) while ϕ1 is
matched by all elements (same as >). If in doubt, thanks to the set-theoretical interpretation
of the matching logic connectives, we can always draw diagrams to enhance our intuition; for
example, Figure 4 depicts the semantics of pattern implication and of pattern equivalence.

When doing logical reasoning with patterns, we sometimes want to think of a pattern
exclusively as a �predicate�, that is, as something which is either true or false. To avoid
using quotes in such situations, we introduce the following:

De�nition 2.4. Pattern ϕs is an M-predicate, or a predicate in M , i� for any M-
valuation ρ : Var → M , it is the case that ρ(ϕs) is either Ms (it holds) or ∅ (it does not
hold). Pattern ϕs is a predicate i� it is a predicate in all models M .

Note that >s and ⊥s are predicates, and if ϕ, ϕ1 and ϕ2 are predicates then so are ¬ϕ,
ϕ1 ∧ϕ2, and ∃x . ϕ. That is, the logical connectives of matching logic preserve the predicate
nature of patterns. Section 5 will introduce several useful predicate constructs.

De�nition 2.5. M satis�es ϕs, written M |= ϕs, i� ρ(ϕs) = Ms for all ρ : Var→M .

Proposition 2.6. Unless otherwise stated, assume the default pattern sort to be s. Then:

(1) If ρ1, ρ2 : Var→M , ρ1�FV (ϕ)= ρ2�FV (ϕ) then ρ1(ϕ) = ρ2(ϕ)
(2) If x ∈ Vars then M |= x i� |Ms| = 1
(3) If σ ∈ Σs1...sn,s and ϕ1, . . . , ϕn are patterns of sorts s1, . . . , sn, respectively, then we

have M |= σ(ϕ1, . . . , ϕn) i� σM (ρ(ϕ1), . . . , ρ(ϕn)) = Ms for any ρ : Var→M
(4) M |= ¬ϕ i� ρ(ϕ) = ∅ for any ρ : Var→M
(5) M |= ϕ1 ∧ ϕ2 i� M |= ϕ1 and M |= ϕ2

(6) If ∃x.ϕs closed, M |= ∃x.ϕs i�
⋃
{ρ(ϕs) | ρ : Var→M} = Ms; hence, M |= ∃x.x

(7) M |= ϕ1 → ϕ2 i� ρ(ϕ1) ⊆ ρ(ϕ2) for all ρ : Var→M
(8) M |= ϕ1 ↔ ϕ2 i� ρ(ϕ1) = ρ(ϕ2) for all ρ : Var→M
(9) M |= ∀x.ϕ i� M |= ϕ

Proof. The proof of each of the properties is below:

(1) Structural induction on ϕ. The only interesting case is when ϕ has the form ∃x.ϕ′,
so FV (ϕ) = FV (ϕ′) \ {x}. Then

ρ1(∃x.ϕ′) =
⋃
{ρ′1(ϕ′) | ρ′1 : Var→M, ρ′1�Var\{x}= ρ1�Var\{x}}

(by De�nition 2.3)

=
⋃
{ρ′1(ϕ′) | ρ′1 : Var→M, ρ′1�FV (ϕ)= ρ1�FV (ϕ)}

(by the induction hypothesis)

=
⋃
{ρ′2(ϕ′) | ρ′2 : Var→M, ρ′2�FV (ϕ)= ρ2�FV (ϕ)}

(since ρ1�FV (ϕ)= ρ2�FV (ϕ))

=
⋃
{ρ′2(ϕ′) | ρ′2 : Var→M, ρ′2�Var\{x}= ρ2�Var\{x}}

(by the induction hypothesis)
= ρ2(∃x.ϕ′)

(2) M |= x i� ρ(x) = Ms for all ρ : Var → M , i� {ρ(x)} = Ms for all ρ : Var → M , i�
Ms has only one element.
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(3) M |= σ(ϕ1, . . . , ϕn) i� ρ(σ(ϕ1, . . . , ϕn)) = Ms for all valuations ρ : Var → M , i�
σM (ρ(ϕ1), . . . ρ(ϕn)) = Ms for any ρ : Var→M .

(4) M |= ¬ϕ i� ρ(¬ϕ) = Ms for any ρ : Var → M , i� Ms \ ρ(ϕ) = Ms for any
ρ : Var→M , i� ρ(ϕ) = ∅ for any ρ : Var→M .

(5) M |= ϕ1 ∧ ϕ2 i� ρ(ϕ1 ∧ ϕ2) = Ms for any ρ : Var → M , i� ρ(ϕ1) ∩ ρ(ϕ2) = Ms for
any ρ : Var→M , i� ρ(ϕ1) = Ms and ρ(ϕ2) = Ms for any ρ : Var→M , i� M |= ϕ1

and M |= ϕ2.
(6) M |= ∃x.ϕs i� ρ(∃x.ϕs) = Ms for any ρ : Var → M , i�

⋃
{ρ′(ϕs) | ρ′ : Var →

M, ρ′ �Var\{x}= ρ�Var\{x}} = Ms for any ρ : Var → M , i� (by the �rst property

in this proposition, since FV (ϕs) ⊆ {x})
⋃
{ρ′(ϕs) | ρ′ : Var → M} = Ms for any

ρ : Var → M , i�
⋃
{ρ(ϕs) | ρ : Var → M} = Ms. In particular, if ϕs = x then⋃

{ρ(x) | ρ : Var→M} = Ms, so M |= ∃x.x.
(7) M |= ϕ1 → ϕ2 i� ρ(ϕ1 → ϕ2) = M for all ρ : Var→M , i� ρ(¬(ϕ1 ∧¬ϕ2)) = M for

all ρ : Var→M , i� ρ(ϕ1∧¬ϕ2) = ∅ for all ρ : Var→M , i� ρ(ϕ1)∩ (M \ ρ(ϕ2)) = ∅
for all ρ : Var→M , i� ρ(ϕ1) ⊆ ρ(ϕ2) for all ρ : Var→M .

(8) Follows from the previous similar properties for ∧ and →.
(9) M |= ∀x.ϕ i� ρ(∀x.ϕ) =

⋂
{ρ′(ϕ) | ρ′ : Var → M, ρ′�Var\{x}= ρ�Var\{x}} = M for

all ρ : Var→M , i� ρ′(ϕ) = M for all ρ, ρ′ : Var→M with ρ′�Var\{x}= ρ�Var\{x}, i�
ρ(ϕ) = M for all ρ : Var→M , i� M |= ϕ.

Therefore, all properties hold.

Since ∃x.x is satis�ed by all models (by (6) above), we could have also de�ned > as ∃x.x
instead of as x ∨ ¬x. Properties (9) and (2) in Proposition 2.6 imply that the pattern ∀x.x
is satis�ed precisely by the models whose carrier of the sort of x contains only one element.

Note that property �if ϕ closed thenM |= ¬ϕ i�M 6|= ϕ�, which holds in classical logics
like FOL, does not hold in matching logic. This is because M |= ¬ϕ means ¬ϕ is matched
by all elements, i.e., ϕ is matched by no element, while M 6|= ϕ means ϕ is not matched
by some elements. These two notions are di�erent when patterns can have more than two
interpretations, which happens when M can have more than one element.

De�nition 2.7. Pattern ϕ is valid, written |= ϕ, i� M |= ϕ for all M . If F ⊆ Pattern
then M |= F i� M |= ϕ for all ϕ ∈ F . F entails ϕ, written F |= ϕ, i� for each M , M |= F
implies M |= ϕ. A matching logic speci�cation is a triple (S,Σ, F ) with F ⊆ Pattern.

2.4. Basic Properties. A natural question is how to formally reason about patterns. Al-
though they can be inductively built with symbols, like terms are, the following result says
that pure predicate logic reasoning is sound for matching logic when we regard patterns as
predicates. By pure predicate logic we mean predicate logic with just predicate symbols,
without constants or function symbols. As shown in Section 11, the Substitution axiom of
non-pure predicate logics (∀x . ϕ) → ϕ[t/x] is not sound when t is an arbitrary matching
logic pattern (it needs to be modi�ed to only allow patterns which interpret to singletons).

Proposition 2.8. The following properties hold for patterns of any sort s ∈ S, so the
Hilbert-style axioms and proof rules that are sound and complete for pure predicate logic
[39], are also sound for matching logic, for any sort (more axioms and proof rules are needed
for completeness, as shown in Section 11):

(1) |= ϕ, where ϕ is a propositional tautology over patterns of sort s.
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(2) Modus ponens: |= ϕ1 and |= ϕ1 → ϕ2 imply |= ϕ2.
(3) |= (∀x . ϕ1 → ϕ2)→ (ϕ1 → ∀x . ϕ2) when x 6∈ FV (ϕ1).
(4) Universal generalization: |= ϕ implies |= ∀x . ϕ.
(5) Substitution: |= (∀x . ϕ)→ ϕ[y/x], with variable y 6∈ FV (∀x . ϕ) of same sort as x.

Proof. Indeed,

(1) Let ψ be a propositional tautology over propositional variables p1, ..., pn, such that
ϕ is obtained from ψ by substituting patterns ϕ1, ..., ϕn of sort s for propositional
variables p1, ..., pn, respectively. Let M be any matching logic model, whose carrier
of sort s is Ms, and let ρ be any M -valuation. It is well-known that power-sets are
Boolean algebras, in our case (P(Ms),¬,∩) with ¬ the complement w.r.t. Ms, and
that all Boolean algebras are models of propositional calculus. Therefore, no matter
how we interpret the variables p1, ..., pn as subsets of Ms, in particular as ρ(ϕ1), ...,
ρ(ϕn), respectively, the interpretation of ψ is the entire set Ms. Hence, |= ϕ.

(2) If ρ : Var → M is a matching logic model valuation such that ρ(ϕ1) = Ms and
ρ(ϕ1) ⊆ ρ(ϕ2), then it must be that ρ(ϕ2) = Ms.

(3) By (7) in Proposition 2.6, it su�ces to show that ρ(∀x . ϕ1 → ϕ2) ⊆ ρ(ϕ1 → ∀x . ϕ2)
for any valuation ρ : Var→M . A stronger result (equality) holds, as expected:

ρ(∀x . ϕ1 → ϕ2) =
⋂
{ρ′(ϕ1 → ϕ2) | ρ′ : Var→M, ρ′�Var\{x}= ρ�Var\{x}}

=
⋂
{Ms \ (ρ′(ϕ1) \ ρ′(ϕ2)) | ρ′ : Var→M, ρ′�Var\{x}= ρ�Var\{x}}

=
⋂
{Ms \ (ρ(ϕ1) \ ρ′(ϕ2)) | ρ′ : Var→M, ρ′�Var\{x}= ρ�Var\{x}}

(by (1) in Proposition 2.6, because x 6∈ FV (ϕ1))
= Ms \ (ρ(ϕ1) \

⋂
{ρ′(ϕ2)) | ρ′ : Var→M, ρ′�Var\{x}= ρ�Var\{x}}

(set theory properties of relative complements)
= Ms \ (ρ(ϕ1) \ ρ(∀x . ϕ2)
= ρ(ϕ1 → ∀x . ϕ2)

(4) Immediate by (9) in Proposition 2.6.
(5) Follows by (7) and (1) in Proposition 2.6, because for any valuation ρ : Var → M ,

we have ρ(ϕ[y/x]) = ρ′(ϕ) where ρ′ : Var → M is de�ned as ρ′�Var\{x}= ρ�Var\{x}
and ρ′(x) = ρ(y) (this holds also when y = x), while ρ(∀x . ϕ) is the intersection of
all ρ′′(ϕ) for all ρ′′ : Var→M with ρ′′�Var\{x}= ρ�Var\{x} and ρ

′ is one of these ρ′′.

Therefore, pure predicate logic reasoning can also be used to reason about patterns.

Proposition 2.8 tells us that the proof system of pure predicate logic is actually sound
for matching logic, unchanged. That is, we do not need to attempt to translate patterns
to predicate logic formulae in order to reason about them, we can simply regard them as
predicates the way they are. Section 11 shows that a few additional proof rules yield a sound
and complete proof system for matching logic, similarly to how (term) Substitution together
with the other four proof rules of pure predicate logic brings complete deduction to FOL.

Sometimes we can show that patterns are two-valued:

De�nition 2.9. Pattern ϕ is called a predicate in (S,Σ, F ), or simply a predicate when
(S,Σ, F ) is understood, i� it is anM -predicate (De�nition 2.4) in all modelsM withM |= F .

However, note that Proposition 2.8 applies to any patterns, not only to predicates.
Moreover, there are also interesting properties that appear to be very speci�c to patterns
and their dual logical-structural nature, and not to predicates, such as the following:
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Proposition 2.10. (Structural Framing) If σ ∈ Σs1...sn,s and ϕi, ϕ
′
i ∈ Patternsi such

that |= ϕi → ϕ′i for all i ∈ 1 . . . n, then |= σ(ϕ1, . . . , ϕn)→ σ(ϕ′1, . . . , ϕ
′
n).

Proof. Immediate by (7) in Proposition 2.6, because for any model M , the extension of σM
as a function P(Ms1)× · · · × P(Msn)→ P(Ms) is monotone.

This structural framing property generalizes to positive, or monotone contexts: if |=
ϕ → ϕ′ then |= C[ϕ] → C[ϕ′] for any positive context C. By a positive/monotone context
we mean a context with no negation on the path to the placeholder.1 Indeed, except for ¬,
the matching logic constructs are interpreted as monotone functions over powerset domains.
Structural framing is crucial for localizing reasoning. Consider, for example, the property

|= (1 7→ 5 ∗ 2 7→ 0 ∗ 7 7→ 9 ∗ 8 7→ 1)→ list(7, 9 · 5)

proved in Section 11 for the matching logic speci�cations of maps (which captures separation
logic: Section 9). Taking σ as the map/heap merge operation _∗_, Proposition 2.10 implies

|= (1 7→ 5 ∗ 2 7→ 0 ∗ 7 7→ 9 ∗ 8 7→ 1 ∗ h)→ list(7, 9 · 5) ∗ h
where h is a free map/heap variable. So the property we �locally� proved can be �framed�
within any map/heap. Of course, one can go further and �globalize� the property in any
positive context. For example, consider the operational semantics of a real language like C,
whose con�guration was partly discussed in the example in Section 2.2. Recall from Sec-
tion 2.2 that semantic cells, written using symbols 〈...〉cell, can be nested and their grouping
(symbol) is governed by associativity and commutativity axioms. Also, there is a top cell
〈...〉cfg holding a subcell 〈...〉heap among many others. Proposition 2.6 then implies

|= 〈〈1 7→ 5 ∗ 2 7→ 0 ∗ 7 7→ 9 ∗ 8 7→ 1 ∗ h〉heap c〉cfg → 〈〈list(7, 9 · 5) ∗ h〉heap c〉cfg
where h and c are free variables (the �heap� and, respectively, �con�guration� frames).

As discussed in the example in Section 2.2, sometimes it is useful to move the logical
connectives from inside terms to the top level, or viceversa. While disjunction and existential
quanti�cation can be propagated both ways through symbol applications (↔), conjunction
and universal quanti�cation weaken the pattern as they are propagated from the inside to
the outside of a symbol application (→), and negation appears to not be movable at all:

Proposition 2.11. (Distributivity of symbol application) Let σ ∈ Σs1...sn,s and ϕi ∈
Patternsi for all 1 ≤ i ≤ n. Pick a particular 1 ≤ i ≤ n. Let ϕ′i ∈ Patternsi be another
pattern of sort si and let Cσ,i[�] be the context σ(ϕ1, . . . , ϕi−1,�, ϕi+1, . . . ϕn) (a context
C[�] is a pattern with one occurrence of a free variable, ���, and C[ϕ] is C[ϕ/�]). Then:

(1) |= Cσ,i[ϕi ∨ ϕ′i]↔ Cσ,i[ϕi] ∨ Cσ,i[ϕ′i]
(2) |= Cσ,i[∃x . ϕi]↔ ∃x .Cσ,i[ϕi], where x 6∈ FV (Cσ,i[�])
(3) |= Cσ,i[ϕi ∧ ϕ′i]→ Cσ,i[ϕi] ∧ Cσ,i[ϕ′i]
(4) |= Cσ,i[∀x . ϕi]→ ∀x .Cσ,i[ϕi], where x 6∈ FV (Cσ,i[�])

Proof. Trivial, using the basic set properties that for any function f : X → P(Y ) (i.e.,
relation in X × Y ), if {Ai}i∈I is a family of subsets of X, i.e., Ai ⊆ X for all i ∈ I, then
f(
⋃
{Ai | i ∈ I}) =

⋃
{f(Ai) | i ∈ I} and f(

⋂
{Ai | i ∈ I}) ⊆

⋂
{f(Ai) | i ∈ I}, where

f(A) =
⋃
{f(a) | a ∈ A}. Note the inclusion for intersection, as opposed to equality for

1In the context of programming language semantics, reasoning typically happens in semantic cells in the
program con�guration and the program con�guration is typically a term with variables, possibly domain-
constrained, so requiring a context to be positive is not a strong requirement.
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disjunction. The inclusion for intersection becomes equality when f is injective as a relation,
that is, when f(a) ∩ f(a′) 6= ∅ implies a = a′.

The other implications in (3) and (4) above in Proposition 2.11 do not hold in general.
Consider a signature Σ containing only one sort, two constants a and b, and a binary symbol
f . Consider also a modelM containing only two elements, aM and bM , with constants a and
b interpreted as {aM} and {bM}, respectively, and with f interpreted as the injective function
fM (aM , aM ) = {aM}, fM (bM , aM ) = {bM}, fM (aM , bM ) = {bM}, fM (bM , bM ) = {aM}. Let
Cf,2[�] be the context f(a ∨ b,�) and let ϕ2 and ϕ′2 be a and b, respectively. Then the
pattern Cf,2[a] ∧ Cf,2[b], that is f(a ∨ b, a) ∧ f(a ∨ b, b), is interpreted by any valuation to
M as the (total) set {aM , bM}, while Cf,2[a ∧ b], that is f(a ∨ b, a ∧ b), as the empty set
(because a ∧ b is interpreted as the empty set). Therefore, 6|= Cf,2[a] ∧Cf,2[b]→ Cf,2[a ∧ b].
Similarly, 6|= ∀x .Cf,2[x] → Cf,2[∀x . x] because ∀x .Cf,2[x] and Cf,2[∀x . x] are interpreted
as {aM , bM} and ∅, respectively, by any valuation to M .

The reason for which the counter-examples above worked was that the context Cf,2[�],
that is f(a ∨ b,�), did not yield an injective relation in M : indeed, it was not the case
that the interpretations of f(a ∨ b, x) and f(a ∨ b, y) were disjoint whenever x and y were
interpreted as distinct elements. We can de�ne a general notion of injectivity, for any context
Cσ,i[�], which generalizes the usual notion of injectivity of a function or relation:

De�nition 2.12. With the notation in Proposition 2.11, Cσ,i[�] is injective in speci�cation
(S,Σ, F ) i� F |= Cσ,i[x] ∧ Cσ,i[y] → Cσ,i[x ∧ y], where x, y ∈ Varsi are distinct variables
which do not occur in Cσ,i[�]. We drop (S,Σ, F ) when understood. Symbol σ is injective on
position i i� Cσ,i[�] is injective with ϕ1, ..., ϕi−1, ϕi+1,...,ϕn chosen as distinct variables.

It is easy to check that σ is injective on position i i� for any modelM withM |= F , σM
is injective on position i as a relation in M . Recall that functions are particular relations,
and that injectivity is a property of relations in general: R ⊆Ms1×Msn×Ms is injective on
position 1 ≤ i ≤ i� (a1, ..., ai−1, ai, ai+1, ..., an, b) ∈ R and (a1, ..., ai−1, a

′
i, ai+1, ..., an, b) ∈ R

implies ai = a′i. Regarding σM as such a relation, its injectivity on position i means that
σM (a1, ..., ai−1, ai, ai+1, ..., an) ∩ σM (a1, ..., ai−1, a

′
i, ai+1, ..., an) 6= ∅ implies ai = a′i.

Proposition 2.13. (Distributivity of injective symbol application) With the notation
in De�nition 2.12, if Cσ,i[�] is injective in (S,Σ, F ) and ϕi, ϕ

′
i ∈ Patternsi then:

(1) F |= Cσ,i[ϕi] ∧ Cσ,i[ϕ′i]→ Cσ,i[ϕi ∧ ϕ′i]
(2) F |= ∀x .Cσ,i[ϕi]→ Cσ,i[∀x . ϕi], where x 6∈ FV (Cσ,i[�])

Together with Proposition 2.11, this implies the full distributivity of injective contexts w.r.t.
the matching logic constructs ∧, ∨, ∀, ∃ (but not ¬).

Proof. Let M be a model with M |= F and let ρ : Var→M be a valuation.
To prove the �rst property, let b ∈ ρ(Cσ,i[ϕi] ∧ Cσ,i[ϕ′i]), that is, b ∈ ρ(Cσ,i[ϕi]) and

b ∈ ρ(Cσ,i[ϕ
′
i]). Then there are a, a′ ∈ Msi such that a ∈ ρ(ϕi) and b ∈ ρ[a/�](Cσ,i[�]),

and a′ ∈ ρ(ϕ′i) and b ∈ ρ[a′/�](Cσ,i[�]). Let x, y ∈ Varsi be two distinct variables that do

not occur in Cσ,i[�] and let ρ′ be the valuation ρ[a/x][a′/y]. Then we have b ∈ ρ′(Cσ,i[x])

and b ∈ ρ′(Cσ,i[y]), that is, b ∈ ρ′(Cσ,i[x] ∧ Cσ,i[y]). The injectivity hypothesis then implies

b ∈ ρ′(Cσ,i[x ∧ y]). Therefore, ρ′(x ∧ y) is non-empty, that is, {a} ∩ {a′} is non-empty,
that is, a = a′. Since a ∈ ρ(ϕi) and a′ ∈ ρ(ϕ′i), it follows that a ∈ ρ(ϕi ∧ ϕ′i). Since

b ∈ ρ[a/�](Cσ,i[�]), it follows that b ∈ ρ(Cσ,i[ϕi ∧ ϕ′i]).
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For the second, let b ∈ ρ(∀x .Cσ,i[ϕi]), that is, b ∈ ρ[v/x](Cσ,i[ϕi]) for all v ∈ Msort(x),

that is, for any v ∈ Msort(x) there is some av ∈ ρ[v/x](ϕi) such that b ∈ ρ[av/�](Cσ,i[�])

(because x 6∈ FV (Cσ,i[�]), so ρ[v/x][av/�](Cσ,i[�]) = ρ[av/�](Cσ,i[�])). The injectivity of
Cσ,i[�] implies that all such av elements are equal. Indeed, let v, v′ ∈ Msort(x) and av ∈
ρ[v/x](ϕi) and av′ ∈ ρ[v′/x](ϕi) such that b ∈ ρ[av/�](Cσ,i[�]) and b ∈ ρ[av′/�](Cσ,i[�]).
Let z, y ∈ Varsi be two distinct variables that do not occur in Cσ,i[�], like in the Def-
inition 2.12 of injectivity (but with z instead of x to avoid name collision), and note

that the above implies b ∈ ρ[av/z][av′/y](Cσ,i[z] ∧ Cσ,i[y]). Then De�nition 2.12 implies

b ∈ ρ[av/z][av′/y](Cσ,i[z ∧ y]). Therefore ρ[av/z][av′/y](z ∧ y) 6= ∅, that is, av = av′ . Since

all the elements av ∈ ρ[v/x](ϕi) for all v ∈ Msort(x) are equal, it follows that there is some

element a ∈ ρ(∀x . ϕi) such that av = a for all av as above. Moreover, b ∈ ρ[a/�](Cσ,i[�]),
that is, b ∈ ρ(Cσ,i[∀x . ϕi]).

The notion of context injectivity in De�nition 2.12 is the weakest theoretical condition
we were able to �nd in order for the (bidirectional) distributivity of conjunction and universal
quanti�cation to hold. In practice, stronger conditions are met. For example, Section 5.7
discusses constructors, which are symbols whose interpretations are injective in all their
arguments at the same time (i.e., σM (a1, ..., an) ∩ σM (a′1, ..., a

′
n) 6= ∅ implies a1 = a′1, ...,

an = a′n). Contexts corresponding to constructors are injective in the sense of De�nition 2.12.
We next demonstrate the usefulness of matching logic by a series of other examples.

3. Instance: Propositional Calculus

In Section 2, (1) in Proposition 2.8, we showed that propositional reasoning is sound for
matching logic. Here we go one step further and show that we can can instantiate matching
logic to become precisely propositional calculus, without any translation needed in any
direction. The idea is to add a special sort for propositions, say Prop, then to use the already
existing syntax of matching logic to build propositions as we know them, and then to show
that the existing semantics of matching logic, given by |=, yields the expected semantics of
propositions as we know it in propositional calculus (let us refer to it as |=Prop).

We build a matching logic signature as follows: S contains only one sort, Prop, and Σ
is empty. Let us also drop the existential quanti�er, so that the resulting syntax of patterns
becomes exactly that of propositional calculus:

ϕ ::= VarProp
| ¬ϕ
| ϕ ∧ ϕ

Then the default matching logic semantics endows the resulting syntax of propositions with
the desired propositional calculus semantics:

Proposition 3.1. For any proposition ϕ, the following holds: |=Prop ϕ i� |= ϕ.

Proof. The implication �|=Prop ϕ implies |= ϕ� follows by (1) in Proposition 2.8. For the
other implication, let us suppose that |= ϕ and let θ : VarProp → {true, false} be an arbitrary
propositional valuation (it is often called a �model� in the literature, but we refrain from
using that terminology to avoid confusion with our notion of model). All we have to do is
show that θ(ϕ) = true. Let M be the matching logic model with MProp = {true, false} and
let ρθ : Var→M be the matching logic valuation where ρθ(x) = θ(x) for each x ∈ VarProp.
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Note that, unlike in propositional calculus where propositions ψ evaluate to precisely
one of true or false for any given valuation θ, in matching logic ρθ(ψ) can be any of the
four subsets of {true, false}. For example, if x and y are variables such that θ(x) = true
and θ(y) = false, then ρθ(x) = {true}, ρθ(y) = {false}, ρθ(¬x) = {false}, ρθ(¬y) = {true},
ρθ(x ∧ y) = ∅, ρθ(x ∨ y) = {true, false}. Nevertheless, we can inductively show that the
propositional validity of a proposition ψ is dictated by the membership of true to its matching
logic evaluation as a set: θ(ψ) = true i� true ∈ ρθ(ψ). Indeed: if ψ is a variable x then
ρθ(x) = {θ(x)}, so the property holds; if ψ is ¬ψ′ then ρθ(¬ψ′) = {true, false}\ρθ(ψ′), so
true ∈ ρθ(¬ψ′) i� true 6∈ ρθ(ψ′), i� (by the induction hypothesis) θ(ψ′) 6= true, i� (by the
two-valued semantics of propositional calculus) θ(¬ψ′) = true; �nally, if ψ is ψ1 ∧ ψ2 then
true ∈ ρθ(ψ1 ∧ ψ2) i� true ∈ ρθ(ψ1) and true ∈ ρθ(ψ2), i� (by the induction hypothesis)
θ(ψ1) = true and θ(ψ2) = true, i� θ(ψ1 ∧ ψ2) = true.

Now |= ϕ implies ρθ(ϕ) = {true, false}, so true ∈ ρθ(ϕ). By the result proved induc-
tively above we conclude that θ(ϕ) = true.

An alternative way to capture propositional logic is to add a constant symbol (i.e., a
symbol without any arguments) to Σ for each propositional variable, like we do for modal
logic in Section 8. This is similar to how predicate logic captures propositional calculus,
namely by associating a predicate without arguments to each propositional variable. We
leave the details as an exercise to the interested reader.

4. Instance: (Pure) Predicate Logic

Recall from Section 2, Proposition 2.8 and the discussion preceding it, that by pure predicate
logic in this paper we mean predicate logic or �rst-order logic (FOL) with only predicate
symbols (no function and no constant symbols). Note that some works call the fragment of
FOL with only constant (i.e., zero-argument function) symbols �predicate logic�, others use
�predicate logic� as a synonym for FOL. We do not discuss the fragment of FOL with only
constant symbols in this paper, so from here on we take the liberty to refer to �pure predicate
logic� as just �predicate logic�. Proposition 2.8 showed that predicate logic reasoning is sound
for matching logic. Similarly to propositional calculus in Section 3, here we go one step
further and show that we can can instantiate matching logic to become precisely predicate
logic; the FOL case will be discussed in Section 7. We follow the same approach like for
propositional calculus: add a special sort for predicates, say Pred, then use the already
existing syntax of matching logic to build formulae as we know them in predicate logic, and
then show that the existing semantics of matching logic, given by |=, yields the expected
semantics of pure predicate logic. We let |=PL denote the predicate logic satisfaction.

Recall that predicate logic is the fragment of �rst-order logic with just predicate symbols,
that is, with no function (including no constant) and no equality symbols. We consider only
the many-sorted case here. Formally, if S is a sort set and Π is a set of predicate symbols,
the syntax of pure predicate logic formulae is

ϕ ::= π(x1, . . . , xn) with π ∈ Πs1...sn , x1 ∈ Vars1 , ..., xn ∈ Varsn
| ¬ϕ
| ϕ ∧ ϕ
| ∃x . ϕ

Without loss of generality, suppose that we can pick a fresh sort name, Pred; that
is, Pred 6∈ S. Let us now construct the matching logic signature (S ∪ {Pred},Σ), where
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Σs1...sn,Pred = Πs1...sn are the only symbols in Σ; that is, Σ contains precisely the predicate
symbols of the predicate logic signature, but regarded as pattern symbols of result sort Pred.
Suppose also that we disallow any variables of sort Pred in patterns. Then the matching logic
patterns of sort Pred are precisely the predicate logic formulae, without any translation in
any direction. Moreover, the following result shows that the default matching logic semantics
endows these patterns with their desired predicate logic semantics:

Proposition 4.1. For any predicate logic formula ϕ, the following holds: |=PL ϕ i� |= ϕ.

Proof. That |=PL ϕ implies |= ϕ follows by Proposition 2.8: each of the proof rules of
the complete proof system of (pure) predicate logic [39] is sound for matching logic. For
the other implication, note that we can associate to any predicate logic model MPL =
({MPL

s }s∈S , {πMPL}π∈Π) a matching logic model MML = ({MML
s }s∈S∪{Pred}, {πMML}π∈Σ),

whereMML
s = MPL

s for all s ∈ S andMML
Pred = {?} (with ? some arbitrary but �xed element)

and πMML(a1, . . . , an) = {?} i� πMPL(a1, . . . , an) holds, and πMML(a1, . . . , an) = ∅ otherwise.
Furthermore, we can show that for any PL formula ϕ, we haveMPL |=PL ϕ i�MML |=ML ϕ.
Since ϕ does not contain any variables of sort Pred, by (1) in Proposition 2.6 it su�ces to
show that for any ρ : Var → MPL, it is the case that MPL, ρ |=PL ϕ i� ρ(ϕ) = {?}. We
can easily show this property by structural induction on ϕ. The only relatively non-trivial
case is the complement construct, which shows why it was important for MML

Pred to contain

precisely one element: MPL, ρ |=PL ¬ϕ i� MPL, ρ 6|=PL ϕ i� (by the induction hypothesis)
ρ(ϕ) 6= {?} i� ρ(ϕ) = ∅ i� ρ(¬ϕ) = {?}.

Therefore, MPL |=PL ϕ i� MML |=ML ϕ. Since the predicate logic model MPL was
chosen arbitrarily, it follows that |= ϕ implies |=PL ϕ.

5. Matching Logic: Useful Symbols and Notations

Here we show how to de�ne, in matching logic, several mathematical instruments of practical
importance, such as equality, membership, and functions. We also introduce appropriate
notations for them, because they will be used frequently and tacitly in the rest of the paper.

The role of this section is twofold. On the one hand, it illustrates the expressiveness
of matching logic. Indeed, we can de�ne all the crucial mathematical notions above as
matching logic speci�cations or as syntactic sugar, without any changes to the matching
logic itself (recall, for example, that equality cannot be de�ned in �rst-order logics; the logic
itself needs to be modi�ed into ��rst-order logic with equality��more details in Section 5.2).
On the other hand, it shows that despite the apparently non-conventional interpretation of
patterns as sets of values in matching logic, the conventional mathematical machinery used
to reason about program states is still available, with its expected meaning.

Unless otherwise mentioned, for the rest of this section we assume an arbitrary but �xed
matching logic speci�cation (S,Σ, F ).

5.1. De�nedness and Totality. In classical logics, the interpretation of a formula under
a given valuation is either true or false, and there is only one syntactic category for for-
mulae while multiple syntactic categories for data. In contrast, matching logic patterns are
interpreted as sets of values, those that match them, where the total set corresponds to the
intution of �true�, or >, and the empty set corresponds to �false�, or ⊥. Also, each matching
logic syntactic category, or sort, admits both data constructs and its own logical connectives
and quanti�ers. These leave two questions open:
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(1) How can we interpret patterns in a conventional, two-valued way? Are the patterns
matched by proper (i.e., neither total nor empty) subsets of elements true, or false?

(2) How can we lift reasoning within syntactic category s1 to syntactic category s2?

These questions are particularly important when attempting to combine matching logic
reasoning with classical reasoning or provers for existing mathematical domains.

It turns out that the above can be methodologically achieved by adding some symbols
and de�ning patterns for them to the matching logic speci�cation (S,Σ, F ). Speci�cally, for
any pair of sorts of interest s1, s2 ∈ S, which need not be distinct, we can add a symbol d_es2s1
to Σs1,s2 and an axiom pattern to F that makes d_es2s1 behave like a de�nedness predicate
for any pattern of sort s1, with two-valued result of sort s2: dϕes2s1 is either ⊥s2 when ϕ is
⊥s1 , or >s2 otherwise (i.e., if ϕ is matched by some values of sort s1). The pattern that we
can add to F in order to achieve the above is in fact unexpectedly simple: dx :s1es2s1 .

Although we do not need it for many of the subsequent results, to simplify the overall
presentation of the rest of the paper, from here on we tacitly work under the following:

Assumption 5.1. For any (not necessarily distinct) sorts s1, s2 ∈ S, assume the following:

d_es2s1 ∈ Σs1,s2 // De�nedness symbol
dx :s1es2s1 ∈ F // De�nedness pattern

We call the symbols d_es2s1 de�nedness symbols.

We next show that the de�nedness symbol indeed has the expected meaning:

Proposition 5.2. If ϕ ∈ Patterns1 then dϕes2s1 is a predicate (De�nition 2.9). Speci�cally,
if ρ : Var→M is any valuation then ρ(dϕes2s1) is either ∅ (i.e., ρ(⊥s2)) when ρ(ϕ) = ∅ (i.e.,
ϕ unde�ned in ρ), or is Ms2 (i.e., ρ(>s2)) when ρ(ϕ) 6= ∅ (i.e., ϕ de�ned).

Proof. By De�nition 2.3, ρ(dϕes2s1) = (d_es2s1)M (ρ(ϕ)). The de�nedness pattern axiom states
that dx : s1es2s1 is valid (Assumption 5.1), which implies (d_es2s1)M (m1) = Ms2 for all m1 ∈
Ms1 , so if there is any m1 ∈ ρ(ϕ) then (d_es2s1)M (ρ(ϕ)) can only beMs2 . On the other hand,
if ρ(ϕ) = ∅ then (d_es2s1)M (ρ(ϕ)) = ∅.

Notation 5.3. We also de�ne totality, b_cs2s1, as a derived construct dual to de�nedness:

bϕcs2s1 ≡ ¬d¬ϕes2s1
The totality construct states that the enclosed pattern must be matched by all values:

Proposition 5.4. If ϕ ∈ Patterns1 then bϕcs2s1 is a predicate (De�nition 2.9). Speci�cally,
if ρ : Var → M is any valuation then ρ(bϕcs2s1) is either ∅ (i.e., ρ(⊥s2)) when ρ(ϕ) 6= Ms1

(i.e., ϕ not total in ρ), or is Ms2 (i.e., ρ(>s2)) when ρ(ϕ) = Ms1 (i.e., ϕ total).

Proof. ρ(bϕcs2s1) = ρ(¬d¬ϕes2s1) = Ms2\ρ(d¬ϕes2s1). So ρ(bϕcs2s1) = ∅ i� ρ(d¬ϕes2s1) = Ms2 i�
ρ(¬ϕ) 6= ∅ (by Proposition 5.2) i� ρ(ϕ) 6= Ms1 . Similarly, ρ(bϕcs2s1) = Ms2 i� ρ(d¬ϕes2s1) = ∅
i� ρ(¬ϕ) = ∅ (by Proposition 5.2) i� ρ(ϕ) = Ms1 .

Totality is useful, for example, to de�ne pattern equality as the totality of the pattern
equivalence relation; this is discussed in depth shortly (Section 5.2). It is also useful when
there is a need to restrict a pattern context, say ϕ of sort s2, to only instances where pattern
ϕ1 of sort s1 implies pattern ϕ2 of sort s1: ϕ ∧ bϕ1 → ϕ2cs2s1 . Indeed, ρ(ϕ ∧ bϕ1 → ϕ2cs2s1) is
ρ(ϕ) i� ρ(ϕ1) ⊆ ρ(ϕ2), and it is ∅ otherwise. For example, ∃x . x ∧ bϕ1 → ϕ2cs2s1 de�nes the
set of all values of x with the property that if they match ϕ1 then they also match ϕ2. A
concrete instance of this is the de�nition of �magic wand� in separation logic (Section 9).



22 GRIGORE RO�U

The totality constructs satisfy, in a more general sorted setting, some of the basic
properties of modal logic operators, such as (N), (K), (M) and (5) [7, 57, 45]:

Corollary 5.5. If s1, s2 ∈ S and ϕ, ϕ1 and ϕ2 are patterns of sort s1, then:

(N) If |= ϕ then |= bϕcs2s1
(K) |= bϕ1 → ϕ2cs2s1 → (bϕ1cs2s1 → bϕ2cs2s1)
(M) |= bϕcs1s1 → ϕ
(5) |= dϕes2s1 → bdϕe

s2
s1c

s2
s2

Proof. The (N) property is an immediate corollary of Proposition 5.4. For the (K) property,
let M be a model and ρ : Var → M a valuation. By Proposition 5.4 and the discussion
in the paragraph following it, ρ(bϕ1 → ϕ2cs2s1) is either ∅ or Ms2 , the latter happening i�
ρ(ϕ1) ⊆ ρ(ϕ2). The �rst case makes our property vacuously hold. In the second case,
we have to show that ρ(bϕ1cs2s1 → bϕ2cs2s1) = Ms2 , that is, that ρ(bϕ1cs2s1) ⊆ ρ(bϕ2cs2s1),
which follows by Proposition 5.4 from ρ(ϕ1) ⊆ ρ(ϕ2). To show (M), we have to show
ρ(bϕcs1s1) ⊆ ρ(ϕ) for any ρ : Var → M . By Proposition 5.4, we only need to consider the
case where ρ(bϕcs1s1) = Ms1 ; but this can only happen when ρ(ϕ) = Ms1 , so the property
holds. For (5), let ρ : Var → M be such that ρ(dϕes2s1) = Ms2 (by Proposition 5.2, the
only other case is ρ(dϕes2s1) = ∅, so the property holds vacuously for that case). Then by
Proposition 5.4 it follows that ρ(bdϕes2s1c

s2
s2) = Ms2 , so ρ(dϕes2s1) ⊆ ρ(bdϕes2s1c

s2
s2).

In Section 8 we show that the modal logic S5 is equivalent to a matching logic speci�ca-
tion, where the de�nedness and totality constructs play the role of the ♦ and � modalities.

Notation 5.6. Since s1 and s2 can usually be inferred from context, we write d_e or b_c in-
stead of d_es2s1 or b_cs2s1, respectively. If the sort decorations cannot be inferred from context,
then we assume the stated property/axiom/rule holds for all such sorts.

For example, the generic pattern axiom �dxe where x ∈ Var� replaces all the axioms
dx :s1es2s1 above for all the de�nedness symbols for all the sorts s1 and s2.

Notation 5.7. If ϕ is a predicate (De�nition 2.9, then we write [ϕ] instead of dϕe or bϕc.
This notation is justi�ed, because if ϕ is a predicate then |= dϕe ↔ bϕc.

As Proposition 5.12 will shortly show, if ϕ is a predicate, then by �wrapping� it with
square brackets, as [ϕ], we can propagate it through the con�guration symbols and conjunc-
tive constraints to wherever it is needed, to facilitate local reasoning.

5.2. Equality. Here we show that, unlike in predicate logic or FOL, equality can be de�ned
in matching logic. Before that, let us recall why equality cannot be de�ned in FOL. We only
give a short intuitive explanation here; the interested reader is referred to authoritative FOL
textbooks for full details, e.g., [56, 48]. Suppose that equality were de�nable in FOL, that
is, that there existed some FOL speci�cation in which a formula Eq(x, y) could only be
interpreted as equality in models. Then we could use such a formula to state that all models
have singleton carriers: ∀x.∀y .Eq(x, y). However, FOL is not expressive enough to de�ne
models of �xed carrier size. In FOL, if a speci�cation admits a model of non-empty carrier
A then it also admits a model whose carrier is A ∪ {b}, where b is some element that is not
already in A. Indeed, pick some arbitrary element a ∈ A and extend all the operations and
predicates in the model to behave on b exactly the same as on a. Since the operation and
predicate interpretations cannot distinguish between a and b, the model of carrier A and the
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model of carrier A∪{b} satisfy exactly the same formulae. In particular, no FOL speci�cation
can admit only models of singleton carrier. One can de�ne equivalence and congruence
relations, but not actual equality. Since precise equality is sometimes desirable, extensions
of FOL with equality have been proposed [56, 48], where a special binary predicate �=� is
added to the logic together with axioms like equality introduction �t = t� and elimination
�(t1 = t2) ∧ ϕ[t1/x]→ ϕ[t2/x]�, and interpreted as the equality/identity relation in models.

Let us �rst discuss why we cannot use ↔ as equality in matching logic. Indeed, since
M |= ϕ1 ↔ ϕ2 i� ρ(ϕ1) = ρ(ϕ2) for all ρ : Var → M , one may be tempted to use ↔
as equality. E.g., given a signature with one sort and one unary symbol f , one may think
that the pattern ∃y . f(x) ↔ y de�nes precisely the models where f is a function (because
a function evaluates to only one value for any given argument, and the interpretation of
variable pattern y has precisely one value). Unfortunately, that is not true. Consider
model M with M = {1, 2} and fM the non-functional relation fM (1) = {1, 2}, fM (2) =
∅. Let ρ : Var → M be any M -valuation; recall (De�nition 2.3) that ρ's extension ρ to
patterns interprets �∃� as union and �↔� as the complement of the symmetric di�erence.
If ρ(x) = 1 then ρ(∃y . f(x) ↔ y) = (M\({1, 2}∆{1})) ∪ (M\({1, 2}∆{2})) = {1, 2} = M .
If ρ(x) = 2 then ρ(∃y . f(x) ↔ y) = (M\(∅∆{1})) ∪ (M\(∅∆{2})) = {1, 2} = M . Hence,
M |= ∃y . f(x)↔ y, yet fM is not a function, so ↔ fails to capture the pattern equality.

The problem above is that the interpretation of ϕ1 ↔ ϕ2, depicted in Figure 4, is not
two-valued (> or ⊥), as we are used to think in classical logics. Speci�cally, ρ(ϕ1) 6= ρ(ϕ2)
does not su�ce for ρ(ϕ1 ↔ ϕ2) = ∅ to hold. Indeed, ρ(ϕ1 ↔ ϕ2) = M \ (ρ(ϕ1) ∆ ρ(ϕ2)) and
there is nothing to prevent, e.g., ρ(ϕ1)∩ρ(ϕ2) 6= ∅, in which case ρ(ϕ1) ∆ ρ(ϕ2) 6= M . What
we would like is a proper equality over patterns, ϕ1 = ϕ2, which behaves as a two-valued
predicate: ρ(ϕ1 = ϕ2) = ∅ when ρ(ϕ1) 6= ρ(ϕ2), and ρ(ϕ1 = ϕ2) = M when ρ(ϕ1) = ρ(ϕ2).
Moreover, we want equalities to be used with patterns of any sort s1 and in contexts of any
sort s2, similarly to the de�nedness and totality constructs in Section 5.1.

Equality can be de�ned quite compactly using the pattern totality and equivalence
constructs, which were themselves de�ned using the assumed de�nedness symbols (Assump-
tion 5.1, Section 5.1) and, respectively, the core ∧ and ¬ constructs (Section 2). Speci�cally,

Notation 5.8. For each pair of sorts s1 (for the compared patterns) and s2 (for the context
in which the equality is used), we de�ne _ =s2

s1 _ as the following derived construct:

ϕ =s2
s1 ϕ

′ ≡ bϕ↔ ϕ′cs2s1 where ϕ,ϕ′ ∈ Patterns1
Intuitively, ϕ↔ ϕ′ matches the grey area in the diagram depicting pattern equivalence

in Figure 4 (complement of the symmetric di�erence), so bϕ ↔ ϕ′cs2s1 is interpreted as Ms2

i� the white area is empty, i� the two patterns match exactly the same elements. Formally,

Proposition 5.9. Let ϕ,ϕ′ ∈ Patterns1. Then:
(1) ρ(ϕ =s2

s1 ϕ
′) = ∅ i� ρ(ϕ) 6= ρ(ϕ′), for any ρ : Var→M

(2) ρ(ϕ =s2
s1 ϕ

′) = Ms2 i� ρ(ϕ) = ρ(ϕ′), for any ρ : Var→M
(3) M |= ϕ =s2

s1 ϕ
′ i� M |= ϕ↔ ϕ′, for any model M

(4) |= ϕ =s2
s1 ϕ

′ i� |= ϕ↔ ϕ′

Proof. Recall that ϕ =s2
s1 ϕ

′ stands for bϕ↔ ϕ′cs2s1 , which stands for ¬d¬(ϕ↔ ϕ′)es2s1 .
(1) Therefore, ρ(ϕ =s2

s1 ϕ
′) is equal to Ms2 \ (d_es2s1)M (Ms1 \ (Ms1 \ (ρ(ϕ1) ∆ ρ(ϕ2)))),

which is further equal to Ms2 \ (d_es2s1)M (ρ(ϕ1) ∆ ρ(ϕ2)). So ρ(ϕ =s2
s1 ϕ

′) = ∅ i�
(d_es2s1)M (ρ(ϕ1) ∆ ρ(ϕ2)) = Ms2 , i� ρ(ϕ1) ∆ ρ(ϕ2) 6= ∅, i� ρ(ϕ) 6= ρ(ϕ′).
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(2) Similarly to the above, we have ρ(ϕ =s2
s1 ϕ

′) = Ms2 i� (d_es2s1)M (ρ(ϕ1) ∆ ρ(ϕ2)) = ∅,
i� ρ(ϕ1) ∆ ρ(ϕ2) = ∅, i� ρ(ϕ) = ρ(ϕ′).

(3) M |= ϕ =s2
s1 ϕ

′ i� ρ(ϕ =s2
s1 ϕ

′) = Ms2 for any ρ : Var → M , i� ρ(ϕ) = ρ(ϕ′) for any
ρ : Var→M , i� (by Proposition 2.6) M |= ϕ↔ ϕ′.

(4) |= ϕ =s2
s1 ϕ

′ i� M |= ϕ =s2
s1 ϕ

′ for any model M , i� (by the above) M |= ϕ↔ ϕ′ for
any model M , i� |= ϕ↔ ϕ′.

Therefore, pattern equality satis�es all these properties.

Note that (4) in the proposition above is not in con�ict with the discussion at the
beginning of this section concluding that we cannot use equivalence instead of equality. The
example there illustrated an equivalence which was nested under a quanti�er (∃y . f(x)↔ y),
while (4) above says that equivalence and equality are interchangeable at the pattern top.

Like for de�nedness and totality (Section 5.1), where we decided to drop the sorts s1

and s2 from d_es2s1 and instead write d_e because the sort of the enclosed pattern and that
of the context dictate s1 and s2, we also take the freedom to drop the sort embellishments
of =s2

s1 and instead write just =. Like for de�nedness and totality, s1 and s2 can typically be
inferred from context, and, if ambiguity arises, then we assume all instances. For example,
�x = x� means �x =s2

s1 x� for any s1, s2 ∈ S and x ∈ Vars1 . Note that the equality symbol
in algebraic speci�cations and in FOL (with equality) is also implicitly indexed by the sort
of the two terms, although that sort is typically not mentioned as subscript; but one needs
to exercise more care in matching logic, because equality patterns can be nested now. For
example, the pattern in Section 9.2 de�ning linked list data-structures within maps,

list(x) = (x = 0 ∧ emp ∨ ∃z . x 7→ z ∗ list(z))

is a sugared variant of the explicit patterns (one for each �equality context� sort s),

list(x) =s
Map (x =Map

Nat 0 ∧ emp ∨ ∃z . x 7→ z ∗ list(z))

To minimize the number of disambiguation parentheses, we assumed that equality (=) binds
tighter than conjunction (∧). We also assume that negation (¬) binds tighter than equality
(=). To avoid confusion, we may use disambiguation parentheses even if not strictly needed.

Despite the fact that patterns evaluate to any set of values and thus are more general
than both terms (which evaluate to only one value) and predicates (which evaluate to one of
two values), and despite the fact that Boolean combinations of patterns and quanti�cation
yield other patterns which can be used under any symbol in Σ, as we saw in Proposition 2.8,
the proof rule/axiom schemas of (pure) predicate logic continue to be sound for matching
logic. Now that we have equality, a natural question is whether the equality proof rule/axiom
schemas of FOL with equality [56, 48] are also sound. For example, in FOL with equality,
�equality elimination� states that terms can be substituted with equal terms in any context.
A similar result holds for matching logic, where terms are replaced with arbitrary patterns:

Proposition 5.10. The following hold:

(1) Equality introduction: |= ϕ = ϕ
(2) Equality elimination: |= (ϕ1 = ϕ2) ∧ ϕ[ϕ1/x]→ ϕ[ϕ2/x]

Proof. (1) follows by (4) in Proposition 5.9 and by Proposition 3.1. For (2), let M be some
model and ρ : Var→M . By Proposition 2.6, it su�ces to show ρ(ϕ1 = ϕ2) ∩ ρ(ϕ[ϕ1/x]) ⊆
ρ(ϕ[ϕ2/x]). If ρ(ϕ1) 6= ρ(ϕ2) then ρ(ϕ1 = ϕ2) = ∅ by Proposition 5.9, so the inclusion holds.
Now suppose that ρ(ϕ1) = ρ(ϕ2), which implies ρ(ϕ1 = ϕ2) = M by Proposition 5.9, so it
su�ces to show ρ(ϕ[ϕ1/x]) ⊆ ρ(ϕ[ϕ2/x]). The stronger result ρ(ϕ[ϕ1/x]) = ρ(ϕ[ϕ2/x]) in
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fact holds, because the �rst element is a function of ρ(ϕ1), the second element is the same
function but of ρ(ϕ2), and ρ(ϕ1) = ρ(ϕ2).

Notation 5.11. From here on in the rest of the paper we write ϕ 6= ϕ′ instead of ¬(ϕ = ϕ′).

One may wonder what really made it possible to de�ne equality in matching logic,
which is not possible in predicate or �rst-order logic. Let us consider the simplest instance
of equality, x = y between two variables, which is sugar for ¬d¬(x ↔ y)e. After all,
de�nedness-like predicates can also be de�ned in predicate logic; following the translation
in Section 10, for example, the unary matching logic symbols d_e are associated binary
predicates πd_e, and the de�nedness pattern axioms dxe are translated into formula axioms
πd_e(x, r). So the de�nedness symbol is not the key. The key is the capability to allow logical
connectives between �terms�, which is not allowed in �rst-order logic. For example, x ↔ y
already tells us whether x and y are interpreted as the same value or not: for any valuation
ρ, it is indeed the case that ρ(x↔ y) is the total set i� ρ(x) = ρ(y) (see Proposition 2.6).

Equality elimination (Proposition 5.10) allows us to replace patterns by equal patterns
in any context. Further, Proposition 5.9 allows us to replace any top-level ↔ with =. In
particular, the equivalences in Proposition 2.11 become |= Cσ,i[ϕi ∨ ϕ′i] = Cσ,i[ϕi] ∨ Cσ,i[ϕ′i]
and |= Cσ,i[∃x . ϕi] = ∃x .Cσ,i[ϕi], respectively, meaning that we can propagate disjunction
and existential quanti�cation through symbols in any context, not only at the top level.
Because of the stronger nature of equality, from here on we state properties in terms of
equality instead of ↔ whenever possible. Below is an important such property:

Proposition 5.12. (Constraint propagation) Assume the same hypothesis as in Propo-
sition 2.11: σ ∈ Σs1...sn,s and ϕi ∈ Patternsi for all 1 ≤ i ≤ n, a particular 1 ≤ i ≤ n,
and let Cσ,i[�] be the context σ(ϕ1, . . . , ϕi−1,�, ϕi+1, . . . ϕn). Then for any pattern ϕ:

(1) |= Cσ,i[ϕi ∧ dϕe] = Cσ,i[ϕi] ∧ dϕe
(2) |= Cσ,i[ϕi ∧ bϕc] = Cσ,i[ϕi] ∧ bϕc
(3) |= Cσ,i[ϕi ∧ [ϕ]] = Cσ,i[ϕi]∧ [ϕ] if ϕ is a predicate (De�nition 2.9 and Notation 5.7).

Proof. We only show (1), because (2) and (3) are similar. Let ρ : Var→M and let ρ(Cσ,i) :
Msi → P(Ms) be de�ned as ρ(Cσ,i)(a) = σM (ρ(ϕ1), . . . , ρ(ϕi−1), a, ρ(ϕi+1), . . . , ρ(ϕn)).
Then ρ(Cσ,i[ϕi ∧ dϕe]) = ρ(Cσ,i)(ρ(ϕi) ∩ ρ(dϕe)) and ρ(Cσ,i[ϕi] ∧ dϕe) = ρ(Cσ,i)(ρ(ϕi)) ∩
ρ(dϕe]). By Proposition 5.2, ρ(dϕe]) is either the empty set or the total set, regard-
less of the result sort context (si vs. s). If the empty set, then ρ(Cσ,i[ϕi ∧ dϕe]) =
ρ(Cσ,i)(ρ(ϕi) ∩ ∅) = ∅ and ρ(Cσ,i[ϕi] ∧ dϕe) = ρ(Cσ,i)(ρ(ϕi)) ∩ ∅ = ∅. If the total set,
then ρ(Cσ,i[ϕi ∧ dϕe]) = ρ(Cσ,i)(ρ(ϕi) ∩ Msi) = ρ(Cσ,i)(ρ(ϕi)) and ρ(Cσ,i[ϕi] ∧ dϕe) =
ρ(Cσ,i)(ρ(ϕi)) ∩Ms = ρ(Cσ,i)(ρ(ϕi)). Therefore, ρ(Cσ,i[ϕi ∧ dϕe]) = ρ(Cσ,i[ϕi] ∧ dϕe).

Constraint propagation allows us to propagate, through symbols, any logical constraints
that appear in a conjunctive context. Indeed, as seen in the rest of this section (in particular
in Section 5.8) and in Section 7, domain constraints can be expressed as equalities or as
FOL predicates, and both of these are instances of matching logic predicates. Recall from
De�nition 2.9 that (matching logic) predicates are patterns which interpret to either the
empty or the total set of their carrier. The de�nedness symbol applied to a predicate, the
square brackets in [ϕ] (Notation 5.7), does not change the semantics of the predicate, but
thanks to its polymorphic nature (Notation 5.6) we can syntactically move ϕ from the sort
context of the argument pattern (si) of σ to the sort context of σ's result (s).

Proposition 5.12 (constraint propagation) and Proposition 2.10 (structural framing) are
particularly useful to localize proof e�orts, as illustrated in the example in Section 2.2.
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5.3. Membership. Since in matching logic a pattern ϕ evaluates to a set of values while
a variable (pattern) x evaluates to just a (set containing only one) value, the membership
question, �does x ∈ ϕ hold?�, is natural. As seen later in Section 11, membership in fact
plays a key role in proving the completeness of matching logic reasoning. Fortunately,
membership can be quite easily de�ned as a derived construct in matching logic, making
use of the de�nedness symbol (Section 5.1), in a similar way to equality (Section 5.2):

Notation 5.13. If x ∈ Vars1, ϕ ∈ Patterns1 and s2 ∈ S, then we introduce the notation

x ∈s2s1 ϕ ≡ dx ∧ ϕes2s1
Like for de�nedness, totality and equality, there is a membership construct for each pair of
sorts s1 (for variable and pattern) and s2 (for context); we take the freedom to omit them.

Proposition 5.14. With the above, the following hold:

(1) ρ(x ∈s2s1 ϕ) = ∅ i� ρ(x) 6∈ ρ(ϕ), for any ρ : Var→M
(2) ρ(x ∈s2s1 ϕ) = Ms2 i� ρ(x) ∈ ρ(ϕ), for any ρ : Var→M
(3) |= (x ∈s2s1 ϕ) =s3

s2 (x ∧ ϕ =s2
s1 x), for any sort s3

Proof. Recall that x ∈s2s1 ϕ is [x ∧ ϕ]s2s1 .

(1) Therefore, we have ρ(x ∈s2s1 ϕ) = (d_es2s1)M ({ρ(x)} ∩ ρ(ϕ)), so ρ(x ∈s2s1 ϕ) = ∅ i�
{ρ(x)} ∩ ρ(ϕ) = ∅, that is, i� ρ(x) 6∈ ρ(ϕ).

(2) Similarly to above, ρ(x ∈s2s1 ϕ) = Ms2 i� {ρ(x)} ∩ ρ(ϕ) 6= ∅, that is, i� ρ(x) ∈ ρ(ϕ).
(3) Let M be some model and ρ : Var → M . By Proposition 5.9, the property holds

i� we can show ρ(x ∈s2s1 ϕ) = ρ(x ∧ ϕ =s2
s1 x). Since the membership and equality

patterns are predicates (De�nition 2.4), and thus they evaluate either to the entire
set or to the empty set, the following completes the proof: by (2) we have ρ(x ∈s2s1
ϕ) = Ms2 i� ρ(x) ∈ ρ(ϕ), i� {ρ(x)} ∩ ρ(ϕ) = {ρ(x)}, i�, by (2) in Proposition 5.9,
ρ(x ∧ ϕ =s2

s1 x) = Ms2 ; and by (1) we have ρ(x ∈s2s1 ϕ) = ∅ i� ρ(x) 6∈ ρ(ϕ), i�
{ρ(x)} ∩ ρ(ϕ) 6= {ρ(x)}, i�, by (1) in Proposition 5.9, ρ(x ∧ ϕ =s2

s1 x) = ∅;
Therefore, these basic properties hold.

Property (3) in Proposition 5.14 suggests that the equality x ∧ ϕ = x can be regarded
as an alternative de�nition of membership x ∈ ϕ, but we prefer dx ∧ ϕe because is simpler
(the other one requires an additional sort, s3, for the context of the equality).

Proposition 2.8 showed that some of the proof rule/axiom schemas of FOL with equality
are already sound for matching logic, namely the rules corresponding to (pure) predicate
logic. Proposition 5.10 further showed that the equality-related rules/axioms are also sound.
The soundness of several other rule/axiom schemas are shown below, essentially completing
the soundness of the matching logic proof system (discussed later in Section 11), except for
one rule, Substitution, which needs more discussion and we postpone it to Section 11:

Proposition 5.15. The following hold:

(1) |= ∀x . x ∈ ϕ i� |= ϕ
(2) |= (x ∈ y) = (x = y) when x, y ∈ Var
(3) |= (x ∈ ¬ϕ) = ¬(x ∈ ϕ)
(4) |= (x ∈ ϕ1 ∧ ϕ2) = (x ∈ ϕ1) ∧ (x ∈ ϕ2)
(5) |= (x ∈ ∃y.ϕ) = ∃y.(x ∈ ϕ), with x and y distinct
(6) |= x ∈ σ(ϕ1, ..., ϕi−1, ϕi, ϕi+1, ..., ϕn) = ∃y.(y ∈ ϕi ∧ x ∈ σ(ϕ1, ..., ϕi−1, y, ϕi+1, ..., ϕn))

Proof. The proofs below make repetitive use of Propositions 5.9 and 5.14:
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(1) Let M be a model. Then M |= ∀x . x ∈ ϕ i� M |= x ∈ ϕ (Proposition 2.6), i�
ρ(x ∈ ϕ) = M for any ρ : Var → M , i� ρ(x) ∈ ρ(ϕ) for any ρ : Var → M , i�
ρ(ϕ) = M for any ρ : Var→M , i� M |= ϕ.

(2) It su�ces to show ρ(x ∈ y) = M i� ρ(x = y) = M for any model M and any
ρ : Var→M , that is, that ρ(x) ∈ {ρ(y)} i� ρ(x) = ρ(y), which obviously holds.

(3) It su�ces to show ρ(x ∈ ¬ϕ) = M i� ρ(x ∈ ϕ) = ∅ for any model M and any
ρ : Var→M , that is, that ρ(x) ∈M\ρ(ϕ) i� ρ(x) 6∈ ρ(ϕ), which obviously holds.

(4) It su�ces to show ρ(x) ∈ ρ(ϕ1) ∩ ρ(ϕ2) i� ρ(x) ∈ ρ(ϕ1) and ρ(x) ∈ ρ(ϕ2) for any
model M and any ρ : Var→M , which obviously holds.

(5) It su�ces to show for any model M and any ρ : Var → M , that ρ(x) ∈
⋃
{ρ′(ϕ) |

ρ′ : Var → M, ρ′�Var\{y}= ρ�Var\{y}} i�
⋃
{ρ′(x ∈ ϕ) | ρ′ : Var → M, ρ′�Var\{y}=

ρ�Var\{y}} = M . It is easy to see that each of the two statements holds i� there

exists some ρ′ : Var→M with ρ′�Var\{y}= ρ�Var\{y} such that ρ(x) ∈ ρ′(ϕ).
(6) It su�ces to prove for any model M and any valuation ρ : Var→M , that

ρ(x) ∈ σM (ρ(ϕ1), . . . , ρ(ϕi−1), ρ(ϕi), ρ(ϕi+1), . . . , ρ(ϕn))

i� there exists a ρ′ : Var→M with ρ′�Var\{y}= ρ�Var\{y} such that ρ′(y) ∈ ρ(ϕi) and

ρ(x) ∈ σM (ρ(ϕ1), . . . , ρ(ϕi−1), {ρ′(y)}, ρ(ϕi+1), . . . , ρ(ϕn)),

which obviously holds.

The proof is complete.

We next de�ne several common relations using patterns, such as functions.

5.4. Functions. Matching logic makes no distinction between function and predicate sym-
bols, treating all symbols uniformly as pattern symbols which are interpreted relationally.
A natural question is whether there is any way, in matching logic, to state that a symbol is
to be interpreted as a function in all models. We show a more general result, namely that
there is a way to state that any pattern, not only a symbol, has a functional interpretation.

De�nition 5.16. Pattern ϕ is functional in a model M i� |ρ(ϕ)| = 1 for any valuation
ρ : Var→M . Furthermore, ϕ is functional in F ⊆ Pattern, or simply functional when
F is understood, i� it is functional in all models M with M |= F .

Recall from the preamble of Section 5 that (S,Σ, F ) was assumed to be an arbitrary
but �xed matching logic speci�cation. Therefore F is understood, so we take the freedom
to just say �ϕ is functional� instead of �ϕ is functional in F �.

The following trivial result relates functional patterns to (total) functions:

Proposition 5.17. If σ ∈ Σs1...sn,s and M is a Σ-model, then pattern σ(x1, . . . , xn) is
functional in M i� σM : Ms1 × · · · × Msn → Ms is a total function in M , that is, i�
σM (a1, ..., an) contains precisely one element for any elements a1 ∈Ms1 , ..., an ∈Msn.

Proof. Pattern σ(x1, . . . , xn) is functional in M i� |ρ(σ(x1, . . . , xn))| = 1 for any valuation
ρ : Var→M (by De�nition 5.16), i� |σM (a1, ..., an)| = 1 for any a1 ∈Ms1 , ..., an ∈Msn .
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The following proposition gives an axiomatic characterization of functional patterns:

Proposition 5.18. Pattern ϕ is functional in modelM i�M |= ∃y . (ϕ = y), where variable
y is chosen so that y 6∈ FV (ϕ). Therefore, ϕ is functional i� F |= ∃y . (ϕ = y).

Proof. ϕ is functional in M i� |ρ(ϕ)| = 1 for any ρ : Var → M (by De�nition 5.16), i� for
any ρ : Var → M there is some a ∈ M such that ρ(ϕ) = {a}, i� for any ρ : Var → M
there is some ρ′ : Var → M with ρ′�Var\{y}= ρ�Var\{y} such that ρ′(ϕ) = ρ′(y) (by (1) in
Proposition 2.6), i� M |= ∃y . (ϕ = y) (by De�nition 2.3 and Proposition 5.9).

Corollary 5.19. Variables are functional: |= ∃y . x = y for any variable x.

Proof. Immediate consequence of De�nition 5.16 and Proposition 5.18, because variables are
interpreted as singletons: ρ(x) = {ρ(x)} for any valuation ρ : Var→M .

We have seen in the discussion at the beginning of Section 5.2 that if f is a one-argument
symbol, the pattern ∃y . f(x) ↔ y is not strong enough to enforce f(x) to be functional.
However, thanks to Proposition 5.18, using equality instead of equivalence works:

Corollary 5.20. If σ ∈ Σs1...sn,s and M is a Σ-model, then σM is a total function i�
M |= ∃y . σ(x1, . . . , xn) = y.

Proof. By Propositions 5.17 and 5.18.

Hence, we can state that a symbol σ ∈ Σs1...sn,s is a function in all models by requiring
σ(x1, . . . , xn) to be a functional pattern, which by Proposition 5.18 is equivalent to stating
that the pattern ∃y . σ(x1, . . . , xn) = y holds (i.e., it is entailed by F ), where x1, ..., xn are
free variables. The simplest way to ensure this is to add this pattern directly to F , as an
axiom. To avoid manually writing such trivial pattern axioms for lots of symbols which are
meant to be interpreted as functions, we adopt the following notation and terminology:

De�nition 5.21. For a symbol σ ∈ Σs1...sn,s, the notation

σ : s1 × · · · × sn → s

is syntactic sugar for stating that F contains the pattern ∃y . σ(x1, . . . , xn) = y. If σ ∈
Σs1...sn,s is a symbol such that σ : s1 × · · · × sn → s, then we call σ a function symbol.
Patterns built with only function symbols are called term patterns, or simply just terms.

De�nition 5.21 is instrumental to capturing algebraic speci�cations and �rst-order logic
as instances of matching logic; full details are given in Sections 6 and 7.

Corollary 5.22. Term patterns are functional: |= ∃y . t = y for any term pattern t.

Proof. Structural induction on term pattern t. Obvious when t is a variable. Let t be
σ(t1, . . . , tn) with σ : s1 × . . . × sn → s and t1, . . . , tn term patterns of sorts s1, . . . , sn,
respectively, and let ρ : Var→ M . Then ρ(t) = σM (ρ(t1), . . . , ρ(tn)). By the induction hy-
pothesis, t1, . . . , tn are functional, that is, ρ(t1), . . . , ρ(tn) are singleton sets (De�nition 5.16),
say {m1}, . . . , {mn}, respectively. Then ρ(t) = σM (m1, . . . ,mn), which is also a singleton
set, say {m}, as σM is a function (Corollary 5.20). The rest follows by Proposition 5.18.
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In FOL, the Substitution axiom ((∀x : s . ϕ) → ϕ[t/x]) allows for universally quanti�ed
variables to be substituted with any terms. Together with the proof rules and axioms of
predicate logic, Substitution makes FOL deduction complete. An important property of
term patterns in matching logic is that the Substitution axiom of FOL holds for them:

Corollary 5.23. If ϕ is any pattern and t is a term pattern of sort s, then

Term Substitution: |= (∀x :s . ϕ)→ ϕ[t/x]

Proof. Let ρ : Var→M be any valuation. Then

ρ(∀x . ϕ) =
⋂
{ρ′(ϕ) | ρ′�Var\{x}= ρ�Var\{x}} ⊆ ρ′′(ϕ)

where ρ′′ : Var → M is such that ρ′′ �Var\{x}= ρ �Var\{x} and {ρ′′(x)} = ρ(t). Such a
ρ′′ exists thanks to Corollary 5.22 and can only be ρ′′ = ρ[m/x] where ρ(t) = {m}, so
ρ′′(ϕ) = ρ(ϕ[t/x]).

Note Corollary 5.23 generalizes Corollary 5.22: pick ϕ to be ∃y . x = y; then ∀x : s . ϕ is
a tautology and ϕ[t/x] is ∃y . t = y, which by Proposition 5.18 implies that t is functional.
Corollary 5.23 also generalizes (5) in Proposition 2.8, because variables are particular terms.

Corollary 5.23, Proposition 5.10 and Proposition 2.8 imply that FOL reasoning with
or without equality is sound for matching logic, provided that the Substitution axiom of
FOL is only applied when t is a term pattern. To avoid confusing the FOL Substitution
axiom schema with the matching logic variant in Corollary 5.23, we called the later Term
Substitution. As shown in Section 11, Term Substitution can be generalized a bit into
Functional Substitution, which takes functional patterns instead of term patterns t, but in
general it is not sound for arbitrary patterns instead of t.

Since functional patterns evaluate to singleton sets for any valuation, the conjunction
of two functional patterns evaluate either to the empty set when the two patterns evaluate
to di�erent singleton sets, or to the same singleton set when the two patterns evaluate to
the same singleton set. Formally,

Proposition 5.24. If ϕ and ϕ′ are functional patterns of the same sort, then:

(1) |= ((ϕ ∧ ϕ′) = ⊥) = (ϕ 6= ϕ′)
(2) |= ((ϕ ∧ ϕ′) 6= ⊥) = (ϕ = ϕ′)
(3) |= (ϕ ∧ ϕ′) = (ϕ ∧ (ϕ = ϕ′))

Proof. Trivial: pick a model M and a valuation ρ : Var→M , and apply the de�nitions.

Particular functions with particular properties, such as injective of surjective functions,
can be de�ned in a conventional way using conventional FOL. For example, pattern (one-
argument functions only, for simplicity)

f(x) = f(y)→ x = y

states that f is injective and pattern

∃x . f(x) = y

states that f is surjective. We only show the former: if (M,fM : M → M) is any model
satisfying f(x) = f(y)→ x = y, then fM must be injective. Indeed, let a, b ∈ M such that
a 6= b and fM (a) = fM (b). Pick ρ : Var → M such that ρ(x) = a and ρ(y) = b. Since M
satis�es the axiom above, we get ρ(f(x) = f(y)) ⊆ ρ(x = y). But Proposition 5.9 implies
that ρ(x = y) = ∅ and ρ(f(x) = f(y)) = M , which is a contradiction. We can also show that
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any model whose f is injective satis�es the axiom. Let (M,fM : M →M) be any model such
that fM is injective. It su�ces to show ρ(f(x) = f(y)) ⊆ ρ(x = y) for any ρ : Var → M ,
which follows by Proposition 5.9: if ρ(x) = ρ(y) then ρ(f(x) = f(y)) = ρ(x = y) = M , and
if ρ(x) 6= ρ(y) then ρ(f(x) = f(y)) = ρ(x = y) = ∅ because fM is injective.

With the notation ϕ 6= ϕ′ for ¬(ϕ = ϕ′) introduced in Section 5.2, x 6= y → f(x) 6= f(y)
is an alternative way to capture the injectivity of f .

5.5. Partial Functions. In FOL, operation symbols are interpreted as total functions by
default, meaning that they are de�ned on all the elements in their domain. Interpreting
function symbols as partial functions leads to a completely di�erent logic, called partial
FOL in the literature (see, e.g., [35]), which has many di�erent axioms to properly capture
the desired properties of de�nedness and unde�nedness. Our interpretations of symbols into
powersets allows us not only to elegantly de�ne de�nedness (Section 5.1), but also to de�ne
partial functions without a need to develop a di�erent logic. Speci�cally, the pattern

¬σ(x1, . . . , xn) ∨ ∃y . σ(x1, . . . , xn) = y,

where ¬σ(x1, . . . , xn) can be equivalently replaced with σ(x1, . . . , xn) = ⊥s, states that
σ ∈ Σs1...sn,s is a partial function. From now on we use the notation (note the �⇀� symbol)

σ : s1 × · · · × sn ⇀ s

to automatically assume a pattern like the above for σ. For example, a division partial
function which is unde�ned i� the denominator is 0 can be speci�ed as:

_ /_ : Nat ×Nat ⇀ Nat
x/y = ⊥ ↔ y = 0

which means a symbol _ /_ ∈ ΣNat×Nat ,Nat with pattern axioms ¬(x/y) ∨ ∃z . x/y = z and
x/y = ⊥ ↔ y = 0; the latter is equivalent to dx/ye = (y 6= 0) and to b¬(x/y)c = (y = 0).

5.6. Total Relations. Recall from Section 5.4 that we can de�ne total functions using
patterns of the form ∃y . σ(x1, . . . , xn) = y, stating not only that the interpretation of σ in
model M , σM , is de�ned in any of its arguments, but also that it has only one value. We
sometimes want to state that relations, not only functions, are total. All we have to do is
to say that the relation is non-empty for any arguments, which can be easily stated with a
pattern of the form dσ(x1, . . . , xn)ess, equivalent to σ(x1, . . . , xn) 6= ⊥s. We write

σ : s1 × · · · × sn⇒ s

to automatically state that σ is a total relation.

5.7. Constructors, Uni�cation, Anti-Uni�cation. Constructors can be used to build
programs, data, as well as semantic structures to de�ne and reason about languages and
programs. Hence, constructors have been extensively studied in the literature, using various
approaches and logical formalisms. We believe that classic approaches to constructors can
also be adapted to our matching logic setting, either directly by rede�ning the corresponding
concepts (e.g., the matching logic analogous to initial algebras [44], etc.) or indirectly
by translating them together with their underlying logic to matching logic (e.g., following
the translations of FOL and algebraic speci�cations to matching logic in Sections 7 and
6, respectively). Here we discuss a di�erent approach. Speci�cally, we show how the dual
nature of patterns to specify both structure and constraints can make some of the de�nitions
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and notions related to constructors more elegant and appealing. For example, uni�cation
and anti-uni�cation can be seen as conjunction and, respectively, disjunction of patterns.

One main property of constructors is that they collectively can construct all the elements
of their target domain; i.e., the target domain has �no junk� [44]. One simple pattern stating
that a unary symbol f is to be interpreted as a surjective relation in every model is ∃x . f(x).
Generalizing this idea to an arbitrary set of n symbols

{ci ∈ Σs1i ...s
mi
i ,si

| 1 ≤ i ≤ n}

that we want to be constructors for target sort s, we get the following �no junk� pattern:∨
si=s

∃x1
i : s1

i . . . ∃x
mi
i : smi

i . ci(x
1
i , . . . , x

mi
i )

For example, applied to the usual 0 and succ constructors of natural numbers, the above
becomes 0 ∨ ∃x : Nat . succ(x). Indeed, the interpretation of this pattern in the model of
natural numbers is the entire domain; or said di�erently, any number matches this pattern.

The other main property of constructors is that they yield a unique way to construct each
element in the target domain; i.e., the target domain has �no confusion� [44]. That means
two separate types of conditions, each speci�able with patterns. First, each constructor ci
builds a set of elements distinct from that of any other constructor cj with sj = si:

¬(ci(x
1
i , . . . , x

mi
i ) ∧ cj(x1

j , . . . , x
mj

j ))

Recall that, by convention, free variables in pattern axioms are assumed universally quan-
ti�ed. For our 0 and succ example, the above becomes ¬(0 ∧ succ(x)), stating that succ(x)
is di�erent from 0 for any x. Second, each constructor ci is injective in all its arguments at
once (regarded as a tuple), which can be speci�ed with a pattern as follows:

ci(x
1
i , . . . , x

mi
i ) ∧ ci(y1

i , . . . , y
mi
i )→ ci(x

1
i ∧ y1

i , . . . , x
mi
i ∧ y

mi
i )

Indeed, the above pattern ensures that in any model M , if

(ci)M (a1
i , . . . , a

mi
i ) ∩ (ci)M (b1i , . . . , b

mi
i ) 6= 0

then it must be that a1
i = b1i , ..., a

mi
i = bmi

i .
Putting all the above together, below we formally introduce constructors:

De�nition 5.25. Given a speci�cation (S,Σ, F ), the symbols in set

{ci ∈ Σs1i ...s
mi
i ,si

| 1 ≤ i ≤ n}

are called constructors i� they have the following properties:

No junk: For any sort s ∈ {si | 1 ≤ i ≤ n},

F |=
∨
si=s

∃x1
i : s1

i . . . ∃x
mi
i : smi

i . ci(x
1
i , . . . , x

mi
i )

No confusion, di�erent constructors: For any 1 ≤ i 6= j ≤ n with sj = si,

F |= ¬(ci(x
1
i , . . . , x

mi
i ) ∧ cj(x1

j , . . . , x
mj

j ))

No confusion, same constructor: For any 1 ≤ i ≤ n,
F |= ci(x

1
i , . . . , x

mi
i ) ∧ ci(y1

i , . . . , y
mi
i )→ ci(x

1
i ∧ y1

i , . . . , x
mi
i ∧ y

mi
i )

Additionally, if each ci is functional, then we call them functional constructors. The
usual way to de�ne a set of constructors is to have F include all the patterns above.
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It is easy to see that if the symbol σ that occurs in the context Cσ,i[�] in De�nition 2.12
is a constructor, then Cσ,i[�] is injective, and thus, by Propositions 2.13 and 2.11, it enjoys
full distributivity w.r.t. the matching logic constructs ∧, ∨, ∀ and ∃. Thanks to Proposi-
tions 5.9 and 5.10, we can therefore apply these distributivity properties of constructors in
any context. In addition to the distributivity properties, the following equality properties
of constructors turned out to also be very useful in program veri�cation e�orts:

Proposition 5.26. Given a set of constructors {ci ∈ Σs1i ...s
mi
i ,si

| 1 ≤ i ≤ n} for a speci�-

cation (S,Σ, F ), the following hold:

Case analysis: If ϕ is a pattern of sort s ∈ {si | 1 ≤ i ≤ n}, then

F |= ϕ =
∨
si=s

∃x1
i : s1

i . . . ∃x
mi
i : smi

i . ϕ ∧ ci(x1
i , . . . , x

mi
i )

Additionally, if the constructors and ϕ are all functional, then

F |= ϕ =
∨
si=s

∃x1
i : s1

i . . . ∃x
mi
i : smi

i . ci(x
1
i , . . . , x

mi
i ) ∧ (ϕ = ci(x

1
i , . . . , x

mi
i ))

Di�erent constructors: If 1 ≤ i 6= j ≤ n with si = sj, and ϕ
1
i ∈ Patterns1i , ...,

ϕmi
i ∈ Patternsmi

i
, and ϕ1

j ∈ Patterns1j , ..., ϕ
mj

j ∈ Patternsmj
j
, then

F |= ci(ϕ
1
i , . . . , ϕ

mi
i ) ∧ cj(ϕ1

j , . . . , ϕ
mj

j ) = ⊥

Same constructor: If ϕ1
i , ψ

1
i ∈ Patterns1i , ..., ϕ

mi
i , ψmi

i ∈ Patternsmi
i
, then

F |= ci(ϕ
1
i , . . . , ϕ

mi
i ) ∧ ci(ψ1

i , . . . , ψ
mi
i ) = ci(ϕ

1
i ∧ ψ1

i , . . . , ϕ
mi
i ∧ ψ

mi
i )

Proof. Case analysis follows by Proposition 5.9, which reduces equality (=) to double im-
plication (↔). The latter follows by the propositional distributivity of ∧ over ∨ and, of
course, the �no junk� requirement of constructors in De�nition 5.25. The part where the
constructors and ϕ are functional is an immediate corollary, making use of Proposition 5.24.

Di�erent constructors: Suppose that there is some modelM and valuation ρ : Var→M
such that ρ(ci(ϕ

1
i , . . . , ϕ

mi
i )∧cj(ϕ1

j , . . . , ϕ
mj

j )) 6= ∅. Then there are some elements a1
i ∈ ρ(ϕ1

i ),

..., ami
i ∈ ρ(ϕmi

i ), and a1
j ∈ ρ(ϕ1

j ), ..., a
mj

j ∈ ρ(ϕ
mj

j ) such that (ci)M (a1
i , . . . , a

mi
i ) ∩

(cj)M (a1
j , . . . , a

mj

j ) 6= ∅, which contradicts the �no confusion� requirement for di�erent con-
structors in De�nition 5.25.

Same constructor: By Proposition 5.9, we can replace = with ↔. The ← implication
is immediate by structural framing, Proposition 2.10. For the → implication, let M be a
model, ρ : Var → M a valuation, and b ∈ ρ(ci(ϕ

1
i , . . . , ϕ

mi
i ) ∧ ci(ψ1

i , . . . , ψ
mi
i )). Then there

are some elements u1
i ∈ ρ(ϕ1

i ), ..., u
mi
i ∈ ρ(ϕmi

i ), and v1
i ∈ ρ(ψ1

i ), ..., v
mi
i ∈ ρ(ψmi

i ) such that

b ∈ (ci)M (u1
i , . . . , u

mi
i )∧(ci)M (v1

i , . . . , v
mi
i )), that is, b ∈ ρ′(ci(x1

i , . . . , x
mi
i )∧ci(y1

i , . . . , y
mi
i )),

where ρ′ : Var→M is some valuation that takes x1
i to u

1
i , ..., x

mi
i to umi

i , and y1
i to v

1
i , ...,

ymi
i to vmi

i . By the �no confusion� requirement for the same constructor in De�nition 5.25 we

conclude that b ∈ ρ′(ci(x1
i ∧ y1

i , . . . , x
mi
i ∧ y

mi
i )), that is, b ∈ (ci)M ({u1

i } ∧ {v1
i }, . . . , {u

mi
i } ∧

{vmi
i }). This can only happen when u1

i = v1
i , ..., u

mi
i = vmi

i . And in that case it can only
be that b ∈ ρ(ci(ϕ

1
i ∧ ψ1

i , . . . , ϕ
mi
i ∧ ψ

mi
i )).
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The case analysis property is useful when additional constraints are needed on a pattern
in order to reason with it. For example, if b is a Boolean (symbolic) expression in a given
positive context, C[b], then we can replace b with true ∧ (b = true)∨ false ∧ (b = false), and
then by Propsitions 2.11 (distributivity) and 5.12 (constraint propagation) we can reduce
C[b] to C[true] ∧ (b = true) ∨ C[false] ∧ (b = false). Similarly, if e is a Nat (symbolic)
expression in a positive context C[e], then we can reduce the pattern C[e] to the pattern
C[0]∧(e = 0)∨∃x .C[succ(x)]∧(e = succ(x)), which may be further reducible. The other two
properties in Proposition 5.26 are self-explanatory and clearly useful for the same reasons
why constructors are useful, but we found them particularly useful when attempting to do
symbolic execution using the operational semantics rules of a language. As explained in [28],
the main technical instrument there is uni�cation: indeed, in order to check if a symbolic
program con�guration ϕ can be executed with an operational rule left⇒ right, a uni�cation
of ϕ and left is attempted. If it fails then the rule cannot be applied; if it succeeds then the
rule can be applied and ϕ is advanced to right∧ψ, where ψ is the constraints resulting from
unifying ϕ and left. As discussed below, uni�cation can be achieved in matching logic by
pattern conjunction, which makes the last properties in Proposition 5.12 indispensable.

We next show how uni�cation and anti-uni�cation can be explained as conjunction and,
respectively, disjunction of matching logic patterns. To fall into the conventional setting,
for the reminder of this section assume that all the symbols are functional constructors and
all the starting patterns are term patterns (De�nition 5.21) built with such constructors.

Let us re-think uni�cation in terms of matching logic and pattern matching. Consider
two patterns ϕ1 and ϕ2 having the same sort. Each of them is matched by a potentially
in�nite set of elements. We are interested in the elements that match both ϕ1 and ϕ2.
Moreover, we are interested in some pattern ϕ that captures all these elements. Clearly
ϕ → ϕ1 and ϕ → ϕ2, and we would like the most general such ϕ, that is, if ϕ′ → ϕ1 and
ϕ′ → ϕ2 then ϕ′ → ϕ. We do not have to search for such a ϕ any further, because it is,
by de�nition, ϕ1 ∧ ϕ2. All we have to do then is to simplify ϕ1 ∧ ϕ2 to a convenient form,
say a term pattern constrained with equalities telling how ϕ1 and ϕ2 fall as instances, using
matching logic reasoning. Let us exemplify this when ϕ1 ≡ f(g(x), x) and ϕ2 ≡ f(y, 0)
where f is a binary symbol (functional construct), g is unary, and 0 is a constant:

f(g(x), x) ∧ f(y, 0) = (by Proposition 5.26)
f(g(x) ∧ y, x ∧ 0) = (by Proposition 5.24)

f(g(x) ∧ (y = g(x)), x ∧ (x = 0)) = (by Proposition 5.12)
f(g(x), x) ∧ (y = g(x)) ∧ (x = 0) = (by Proposition 5.10)
f(g(0), 0) ∧ (y = g(0)) ∧ (x = 0)

Therefore, using matching logic reasoning we obtained both the most general uni�er of
the two term patterns, encoded as a conjunction of equalities (y = g(0)) ∧ (x = 0), and
the unifying term pattern f(g(0), 0). We believe that uni�cation algorithms should not be
di�cult to adapt into matching logic proof search heuristics capable of producing proofs like
above, thus narrowing the gap between tools and certi�able program veri�cation.

Anti-uni�cation, or generalization, can be dually regarded as disjunction of patterns2.
Let us brie�y recall Plotkin's original two-rule algorithm [76]:

(1) f(u1, . . . , un) t f(v1, . . . , vn) f(u1 t v1, . . . , un t vn),
(2) u t v  xu,v otherwise, where xu,v is a variable uniquely determined by u and v.

2The author thanks Traian Florin �erb nuµ  for observing this.
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Given terms s and t, the term obtained by applying this algorithm to s t t is their anti-
uni�cation; the corresponding substitutions instantiating it to s and, respectively, t are ob-
tained by instantiating each variable xu,v to u and, respectively, v. For example, f(g(0), 0)t
f(g(1), 1) ∗ f(g(x0,1), x0,1). Indeed, the term f(g(x0,1), x0,1) containing one variable, x0,1,
is the least general term that is more general than both f(g(0), 0) and f(g(1), 1). Also, the
two original terms can be recovered by substituting x0,1 with 0 and, respectively, 1.

Plotkin's algorithm can be mimicked with inference in matching logic. For the exam-
ple above, the following matching logic proof blindly follows the application of Plotkin's
algorithm (all proof steps correspond to applications of proof rules of FOL with equality):

f(g(0), 0) ∨ f(g(1), 1) =
∃x .∃y . f(x, y) ∧ (x = g(0) ∧ y = 0 ∨ x = g(1) ∧ y = 1) =

∃x .∃y .∃z . f(x, y) ∧ x = g(z) ∧ (z = 0 ∧ y = 0 ∨ z = 1 ∧ y = 1) =
∃x .∃y .∃z . f(x, y) ∧ x = g(z) ∧ (z = 0 ∧ y = z ∨ z = 1 ∧ y = z) =

∃x .∃y . ∃z . f(x, y) ∧ x = g(z) ∧ y = z ∧ (z = 0 ∨ z = 1) =
∃z . f(g(z), z) ∧ (z = 0 ∨ z = 1)

The resulting pattern contains both the generalization, f(g(z), z), and the two witness sub-
stitutions that can recover the original terms (encoded as a disjunction of equalities).

5.8. Built-in Domains. Dedicated solvers and decision procedures specialized for particu-
lar but important mathematical domains abound in the literature. Some domains may not
even have �nite descriptions in certain logics; a classic example is the domain of natural
numbers, which does not admit a �nite, not even a recursively enumerable axiomatization
in FOL (Gödel's incompleteness [39, 40]). Therefore, to reason about certain properties that
involve natural numbers, we need to leave FOL. The standard approach is to assume some
oracle for the domain of interest, which is capable of answering validity questions within
that domain. At the practical level, such an oracle may be implemented using specialized
procedures and algorithms for that domain, such as those provided by Z3 [29], Yices [33],
CVC [6, 5], etc. At the theoretical level, the set of models of the FOL speci�cation in ques-
tion is restricted to those that inherit the desired model for the built-in data-types, and thus
we can assume all the valid FOL properties of that domain in the rest of the proof even if
those properties are not provable using FOL.

Reasoning with built-in domains can be done exactly the same way in matching logic:
assume the desired sorts and symbols for the built-in domains, together with all their valid
patterns. Due to their ubiquitous nature, from now on we tacitly assume de�nitions of
integers and of natural numbers, as well as of Boolean values, with common operations on
them. We assume that these come with three sorts, Int , Nat and Bool , and the operations
on them use the conventional syntax; e.g., _+_ : Int×Int → Int , _+_ : Nat×Nat → Nat ,
_ > _ : Nat ×Nat → Bool , _and_ : Bool × Bool → Bool , not_ : Bool → Bool , etc.

Boolean expressions are frequently used in matching logic speci�cations to constrain
variables that occur in patterns of possibly other sorts. For example, suppose that in some
domain Real of real numbers we want to refer to all numbers of the form 1/x where x is a
strictly positive integer. These numbers are precisely matched by the pattern 1/x ∧ (x >
0 =Real

Bool true). However, this pattern is too verbose. For the sake of a more compact and
easy to read notation, we introduce the following:

Notation 5.27. If b is a proper Boolean expression, that is, a term pattern of sort Bool
(De�nition 5.21), then we will write just b instead of b = true in any other sort context.
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Notation 5.27 allows us to use Boolean expressions in any sort context, thanks to the
additional notational conventions for equality in Section 5.2. For example, we can write
1/x ∧ x > 0 instead of 1/x ∧ (x > 0 =Real

Bool true).
To avoid confusion or even introducing inconsistencies, we urge the reader to respect

the underlined words proper and other in Notation 5.27. That's because Bool expressions,
when regarded as patterns, evaluate to one of the singleton sets {t} (the true value) or {f}
(the false value), while patterns of sort Bool can evaluate to any of the four sets ∅, {t},
{f}, or {t, f}. For example, consider the Bool patterns >Bool and ⊥Bool , which are not
proper Bool expressions and evaluate to the sets {t, f} and ∅, respectively, and an equality
pattern >Bool = ⊥Bool which is obviously ⊥ (regardless of the sort context). If we carelessly
apply the notation above to this pattern we get (>Bool = true) = (⊥Bool = true), that is,
>; that's because both >Bool = true and ⊥Bool = true are ⊥, and ⊥ = ⊥ is >. So it is
important to apply the notation �b as a shortcut for b = true� only when it is guaranteed
that b evaluates to either {t} or {f}, such as when b is a proper Boolean expression term. It
is also important to apply the notation only when b occurs in sort contexts other than Bool.
For example, consider the Boolean expression b ≡ (true or false). If we carelessly apply the
notation above to the Boolean sub-expressions true and false, which occur in b above in
Bool contexts, then we get (true = true) or (false = true), which is >Bool or ⊥Bool , which is
⊥Bool (by the second item in De�nition 2.3). On the other hand, b = true is >Bool .

When reasoning with matching logic patterns, it is often the case that various Boolean
expression constraints come from various sub-patterns. We would like to combine them into
larger Boolean expressions, which we can then send to SMT solvers. The following result
allows us to do that:

Proposition 5.28. If b, b1 and b2 are proper Bool expressions, then

• |= (b1 = true ∧ b2 = true) = (b1 and b2 = true)
• |= ¬(b = true) = (not b = true)

Other similar properties for derived Boolean constructs can be derived from these.

Proof. Trivial: each of ρ(b), ρ(b1), and ρ(b2) can only be {t} or {f}, for any valuation ρ.

6. Instance: Algebraic Specifications and Beyond

An algebraic speci�cation is a many-sorted signature (S,Σ) together with a set of equations3

E over Σ-terms with variables. The variables are assumed universally quanti�ed over the
entire equation. The models, called Σ-algebras, are �rst-order Σ-models without predicates
where equality is interpreted as the identity relation. We let |=Alg denote the algebraic
speci�cation satisfaction relation; in particular, E |=Alg emeans that any model that satis�es
all the equations in E also satis�es e.

Algebraic speci�cations play a crucial role in theoretical computer science and program
reasoning, because they are often used to de�ne abstract data types (ADTs) [60, 41]. Some
common ADTs, which have proved useful in many applications, are lists (or sequences),
sets, multisets, maps, multimaps, graphs, stacks, queues, priority queues, double-ended
queues, double-ended priority queues, etc. [91]. These ADTs can be found a variety of formal
de�nitions using algebraic speci�cations in the literature, not necessarily always equivalent,
and are easily de�nable or already pre-de�ned in algebraic speci�cation languages such as

3We only consider unconditional equations here.
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Maude [25], CASL [63], CafeOBJ [31], OBJ [42], Clear [19], etc., as well as in many other
languages with support for ADTs.

Here we show not only that algebraic speci�cations can be regarded as matching logic
speci�cations, but also that the use of matching logic often allows for more expressive,
concise and intuitive speci�cations of ADTs. To capture conventional ADTs as matching
logic speci�cations, we need to do almost nothing besides recalling the conventions and
notations introduced in Section 5. Speci�cally, algebraic equations t = t′ in E are regarded
as matching logic equality patterns t = t′ (Section 5.2), algebraic symbols in Σ are interpreted
as functional symbols (Section 5.4, De�nition 5.21), and no other patterns but equations are
allowed in speci�cations. The resulting matching logic speci�cations are then precisely the
algebraic speci�cations not only syntactically, but also semantically:

Proposition 6.1. Let (S,Σ, F ) be the matching logic speci�cation associated to the algebraic
speci�cation (S,Σ, E) as above, that is, F contains an equality pattern for each equation in
E, as well as all the patterns stating that the symbols in Σ are interpreted as functions (see
De�nition 5.21). Then for any Σ-equation e, we have E |=Alg e i� F |= e.

Proof. The key observation is that, in a similar style to the proof of Proposition 4.1, there
is a bijection between the matching logic models M satisfying F and the (S,Σ)-algebras M ′

satisfying E, such that M |= e i� M ′ |=Alg e for any Σ-equation e. The model bijection is
de�ned as follows:

• M ′s = Ms for each sort s ∈ S;
• σM ′ : Ms1 × · · · ×Msn →Ms with σM ′(a1, . . . , an) = a i� σM : Ms1 × · · · ×Msn →
P(Ms) with σM (a1, . . . , an) = {a}. Note that this is well-de�ned because F includes
all the patterns stating that all the symbols are functional, so σM is a function.

This model relationship is easy to prove a bijection, and everything else follows from it.

Using the notations introduced so far, Peano natural numbers, for example, can be
de�ned as the following matching logic speci�cation:

0 : → PNat
succ : PNat → PNat plus(0, y) = y
plus : PNat × PNat → PNat plus(succ(x), y) = succ(plus(x, y))

This looks identical to the conventional algebraic speci�cation de�nition, which is precisely
the point and justi�es our notation conventions in Section 5. In particular, the functional
notation (De�nition 5.21) for the three symbols ensures that they will be interpreted as
functions in the matching logic models. Also, as seen in the proof of Proposition 6.1, there
is a bijective correspondence between the matching logic models of the speci�cation above
and the conventional models of the Peano algebraic speci�cation (we only discuss the loose
semantics here, not the initial-algebra semantics [44]).

Note, however, that matching logic allows more than just equational patterns. For ex-
ample, we can add to F the pattern 0 ∨ ∃x . succ(x) stating that any number is either 0
or the successor of another number. Nevertheless, since matching logic ultimately has the
same expressive power as predicate logic (Proposition 10.1), we cannot �nitely axiomatize
in matching logic any mathematical domains that do not already admit �nite FOL axioma-
tizations. As indicated in Section 5.8, we follow the standard approach to deal with built-in
domains, namely we assume them theoretically presented with potentially in�nitely many
axioms but implemented using specialized decision procedures. Indeed, our matching logic
implementation prototype in K defers the solving of all domain constraints to Z3 [29].
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6.1. Sequences, Multisets and Sets. Sequences, multisets and sets are typical ADTs.
Matching logic enables, however, some useful developments and shortcuts. For simplicity,
we only discuss collections over Nat, and name the corresponding sorts Seq , MultiSet , and
Set , respectively. Ideally, we would build upon an order-sorted algebraic signature setting,
e.g. following the approach in [43], so that we can regard x :Nat not only as an element of
sort Nat , but also as one of sort Seq (a one-element sequence), as one of sort MultiSet , as
well as one of sort Set . Extending matching logic to an order-sorted setting is beyond the
scope of this paper. The reader who is not familiar with order-sorted concepts can safely
assume that elements of sort Nat used in a Seq , MultiSet , or Set context are wrapped with
injection symbols. The symbols below can have many equivalent de�nitions.

Sequences can be de�ned with two symbols and corresponding equations:

ε : → Seq ε · x = x
_ ·_ : Seq × Seq → Seq x · ε = x

(x · y) · z = x · (y · z)
We assume that lowercase variables have sort Nat and uppercase variables have the appro-
priate collection sort. To avoid adding initiality constraints on models, yet be able to do
proofs by case analysis and elementwise equality, we can add the following patterns:

ε ∨ ∃x .∃S. x · S
(x · S = x′ · S′) = (x = x′) ∧ (S = S′)

The second axiom above holds strictly for sequences, but not for commutative collections,
so it needs to be removed later when we add the commutativity axiom to de�ne multisets
and sets. We next de�ne two common operations on sequences:

rev : Seq → Seq _ ∈ _ : Nat × Seq → Bool
rev(ε) = ε x ∈ ε = false
rev(x · S) = rev(S) · x x ∈ y · S = (x = y ∧ true) or x ∈ S

To illustrate the �exibility of matching logic, we next de�ne up-to and Fibonacci se-
quences of natural numbers.

upto : Nat → Seq upto(n) = (n = 0 ∧ ε ∨ n > 0 ∧ upto(n− 1) · n)

This speci�cation needs to be explained. Let M be a model satisfying the above. First
recall Notation 5.27. For notational simplicity, assume that MNat and MSeq are the sets of
natural numbers and of comma-separated sequences of natural numbers, respectively. We
show by induction on m that uptoM (m) = {1 · 2 · · ·m}. If m = 0 then the second disjunct
of the axiom is ∅ and thus the �rst disjunct ensures that uptoM (0) = εM = ε. If m > 0 then
the �rst disjunct is ∅ and thus the second disjunct, with ρ : Var→M such that ρ(n) = m,
yields ρ(upto(n)) = ρ(upto(n− 1) ·n), that is, uptoM (m) = uptoM (m− 1) ·m, which by the
induction hypothesis implies uptoM (m) = {1 · 2 · · ·m− 1} ·m = {1 · 2 · · ·m}.

Similarly, we can specify a function that de�nes the sequence of Fibonacci numbers up
to a given number n > 0:

fib : Nat → Seq fib(n) = (n = 0 ∧ 0 ∨ n > 0 ∧ aux (n, 0 · 1))
aux : Nat × Seq ⇀ Seq aux (1, S) = S

n > 1→ aux (n, S · x · y) = aux (n− 1, S · x · y · x+ y)

We conclude the discussion on sequences with an elegant means to sort sequences fol-
lowing a bubble-sort methodology:

(x · y ∧ x > y) = y · x
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Since equations are symmetric, the above e�ectively allows to prove (so far only semantically,
in a model) a sequence equal to any of its permutations, i.e., sequences become multisets.
If the equations were oriented, like they are in reachability logic [80], then the above would
yield a sequence sorting procedure.

We can transform sequences into multisets adding the equality axiom x · y = y · x, and
into sets by also including x ·x = ⊥ or x ·x = x. Here is one way to axiomatize intersection:

_ ∩_ : Set × Set → Set ε ∩ S2 = ε
(x · S1) ∩ S2 = ((x ∈ S2 → x) ∧ (¬(x ∈ S2)→ ε)) · (S1 ∩ S2)

6.2. Maps. Finite-domain maps are also a typical ADT. Due to their ubiquity in de�ning
algebraic speci�cations, maps are usually prede�ned in languages like those mentioned in
the preamble of this section (Section 6). For example, below is a snippet of Maude's MAP

module [25], which is parametric in both the source and the target domains:

fmod MAP{X :: TRIV, Y :: TRIV} is

sorts Entry{X,Y} Map{X,Y} .

subsorts Entry{X,Y} < Map{X,Y} .

op _|->_ : X$Elt Y$Elt -> Entry{X,Y} [ctor] .

op empty : -> Map{X,Y} [ctor] .

op _,_ : Map{X,Y} Map{X,Y} -> Map{X,Y} [assoc comm id: empty ctor] .

...

endfm

Note that the map concatenation symbol, �_,_�, is associative (attribute �assoc�), com-
mutative (�comm�), and has the �empty� map as identity (�id: empty�). The attribute
�ctor� states that the corresponding symbols are constructors. Additional axioms, not
shown here, ensure that maps are always well-formed, that is, maps with multiple bind-
ings of the same key are disallowed. When instantiated with natural numbers for both
the domain and the target, this MAP module de�nes well-formed �nite-domain maps such
as �1 |-> 5, 2 |-> 0, 7 |-> 9, 8 |-> 1�. In Section 9, to show how separation logic
can be framed as a matching logic theory with essentially zero representational/encoding
distance, we will pick an instance of maps with natural numbers as both the domain and
the co-domain, and will rename empty to emp and _,_ to _ ∗_.

7. Instance: First-Order Logic

First-order logic (FOL) extends predicate logic with function symbols and allows predicates
to apply to terms with variables built using the function symbols. Recall from Section 4
that by �predicate logic� in this paper we mean what is also called �pure predicate logic� in
the literature, namely FOL without any function or constant symbols.

Formally, given a FOL signature (S,Σ,Π), the syntax of its (many-sorted) formulae is:

ts ::= x ∈ Vars
| σ(ts1 , . . . , tsn) with σ ∈ Σs1...sn,s

ϕ ::= π(ts1 , . . . , tsn) with π ∈ Πs1...sn

| ¬ϕ
| ϕ ∧ ϕ
| ∃x.ϕ
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Compare the above with the syntax of matching logic in Section 2. Unlike FOL, matching
logic does not distinguish between the term and predicate syntactic categories, reason for
which its syntax is in fact more compact than FOL's. Moreover, matching logic allows
logical constructs over all the syntactic categories, not only over predicates, and locally
where they are needed instead of only at the top, predicate level. Also, matching logic allows
quanti�cation over any sorts, including over sorts of symbols thought of as predicates.

Like with predicate logic (Section 4), we can instantiate matching logic to capture FOL
as is, modulo the notational conventions in Section 5 but without any translations from one
logic to the other. Like in predicate logic, we add a Pred sort and regard the FOL predicate
symbols as matching logic symbols of result Pred , and disallow variables of sort Pred and
restrict the use of logical connectives and quanti�ers to only patterns of sort Pred. Then
there is a one-to-one correspondence between FOL formulae and matching logic patterns
of sort Pred; we let ϕ range over them. Moreover, following the approach in Section 5.4,
we constrain each FOL operational symbol σ ∈ Σs1...sn,s to be interpreted as a function,
that is, with the notation introduced in Section 5.4, we write the symbols meant to be
functions as σ : s1 . . . sn → s. Formally, let (SML,ΣML) be the matching logic signature
with SML = S ∪ {Pred} and ΣML = Σ ∪ {π : s1 . . . sn → Pred | π ∈ Πs1...sn}, and let F be
{∃z :s . σ(x1 :s1, . . . , xn :sn) = z | σ ∈ Σs1...sn,s} stating that each symbol in Σ is a function.

Proposition 7.1. For any FOL formula ϕ, we have |=FOL ϕ i� F |= ϕ.

Proof. The proof is similar to that of Proposition 4.1. Like there, the implication �|=FOL ϕ
implies F |= ϕ� follows by the completeness of FOL. Indeed, it is well-known that the
properties in Proposition 2.8 and Corollary 5.23, when regarded as proof rules for deriving
FOL formulae ϕ, yield a sound and complete proof system for FOL [39]. That is, �|=FOL ϕ
i� `FOL ϕ�. However, since Proposition 2.8 and Corollary 5.23 show that these proof rules
are also sound for matching logic in the context of F (Corollary 5.23 requires that t is a
term pattern in the substitution rule, which holds in the context of F ), we conclude that
�`FOL ϕ implies F |= ϕ�. Therefore, �|=FOL ϕ implies F |= ϕ�.

For the other implication, we also follow the idea in Proposition 4.1. From any FOL
model MFOL = ({MFOL

s }s∈S , {σMFOL}σ∈Σ, {πMPL}π∈Π) we can construct a matching logic
model MML = ({MML

s }s∈S∪{Pred}, {σMML}σ∈Σ ∪ {πMML}π∈Π), where MML
s = MFOL

s for all

sorts s ∈ S and MML
Pred = {?} (with ? some arbitrary but �xed element), σMML(a1, . . . , an) =

{σMFOL(a1, . . . , an)}, and πMML(a1, . . . , an) = {?} i� πMPL(a1, . . . , an) holds, and other-
wise πMML(a1, . . . , an) = ∅. Note that MML |= F : indeed, σMML(a1, . . . , an) contains
precisely one element for any σ ∈ Σs1...sn,s and any a1 ∈ MML

s1 , ..., an ∈ MML
sn , namely

σMFOL(a1, . . . , an). It therefore su�ces to show, for any FOL formula ϕ, thatMFOL |=FOL ϕ
i� MML |=ML ϕ. Like in Proposition 4.1, we can show by structural induction on ϕ that for
any ρ : Var → MFOL, it is the case that MFOL, ρ |=FOL ϕ i� ρ(ϕ) = {?}. The induction
proof di�ers from that in Proposition 4.1 only in the base case, where we need to notice that
term patterns are functional inMML, thanks to Corollary 5.22, and that ρ(t) = a for a term
t in the FOL context (with ρ : Var → MFOL) i� ρ(t) = {a} in the matching logic context
(where ρ is regarded as ρ : Var→MML, which is possible as we disallow Pred variables).

Consequently, FOL is also a methodological fragment of matching logic. Moreover,
since the rules of FOL where we replace all the predicate meta-variables with pattern meta-
variables are sound for matching logic, we can use o�-the-shelf decision procedures and
solvers for FOL or fragments of it unchanged when doing matching logic reasoning. The
only thing we have to be careful about is to distinguish the term patterns from arbitrary
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patterns, and make sure that the Substitution rule of FOL is only applied with t a term
pattern, otherwise it may be unsound. Section 11 discusses this in detail.

Predicate logic and FOL with equality also fall as methodological fragments of matching
logic. In addition to the constructions in Section 4 and, respectively, above in this section, all
we have to do is to is to make use of the de�nedness symbols that we assume by convention
included in all signatures (Section 5.1), which give us equality as an alias as described in
Section 5.2. We leave the details as an exercise for the interested reader.

Like Boolean expressions, FOL is also frequently used in matching logic speci�cations to
constrain variables that occur in patterns of possibly other sorts. Consider the same example
we discussed before and after Notation 5.27, where we want to refer to all real numbers of the
form 1/x with x a strictly positive integer, but this time using a given predicate positive?(x)
that tells whether x is positive. We can use the pattern 1/x∧(positive?(x) =Real

Pred >Pred), but
that is too verbose. We would like to just write 1/x∧positive?(x). Following Notation 5.27,
we introduce the following similar notation for predicates instead of Boolean expressions:

Notation 7.2. If ϕ is a FOL formula, we take the freedom to write ϕ instead of ϕ = >Pred.

Since both the FOL formulae and the patterns of Pred sort evaluate to only two possible
values, ∅ or {?}, unlike Notation 5.27 we can freely apply the notation above in any contexts,
including of sort Pred. Note, however, that care must be exercised to ensure that ϕ is
indeed a FOL formula. For example, if one extends FOL with additional formula constructs,
like separation logic does for example (Section 9), then the above notation may lead to
inconsistencies. As discussed in Section 9 in detail, matching logic has a di�erent way to
deal with such extensions (allowing di�erent sorts of �predicates�), without polluting the
universe of FOL formulae and thus allowing the notation above to still apply.

Same as with Boolean expressions in Proposition 5.28, we sometimes need to combine
various FOL constraints resulting from various sub-patterns in order to make appropriate
calls to FOL provers, e.g., SMT solvers. The following result allows us to do that:

Proposition 7.3. If p, p1 and p2 are FOL formulae, then

• |= (p1 = >Pred ∧ p2 = >Pred) = (p1 ∧ p2 = >Pred)
• |= ¬(p = >Pred) = (¬p = >Pred)

Other similar properties for derived FOL constructs can be derived from these.

Proof. Trivial: each of ρ(p), ρ(p1), and ρ(p2) can only be ∅ or {?}, for any valuation ρ.

8. Instance: Modal Logic

It turns out that the vanilla matching logic over just one sort with (countably many) con-
stants and de�nedness (as de�ned in Section 5.1) captures one of the most popular modal
logics, S5 [7, 57, 45]. At the end of this section we brie�y discuss how other modal logics
can also be framed as matching logic instances, but until there we only discuss S5 and thus
take the liberty to implicitly mean the �S5 modal logic� whenever we say �modal logic�.

We start by giving the syntax and semantics of modal logic. Let VarProp be a countable
set of propositional variables p, q, etc. Then the modal logic syntax is de�ned as follows:

ϕ ::= VarProp
| ¬ϕ
| ϕ→ ϕ
| �ϕ
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The remaining propositional constructs ∧, ∨ and ↔, can be de�ned as derived constructs.
Therefore, syntactically, modal logic adds the � construct to propositional logic, which is
called necessity: �ϕ is read �it is necessary that ϕ�. The dual possibility construct can be
de�ned as a derived construct: ♦ϕ ≡ ¬�¬ϕ is read �it is possible that ϕ�. Semantically, the
truth value of a formula is relative to a �world�. Propositions can be true in some worlds
but false in others, and thus formulae can also be true in some worlds but not in others:

De�nition 8.1. LetW be a set of worlds. Mappings v : VarProp×W → {true, false}, called
(modal logic) W -valuations, state that each proposition only holds in a given (possibly
empty or total) subset of worlds. Valuations extend to modal logic formulae:

• v(¬ϕ,w) = true i� v(ϕ,w) = false
• v(ϕ1 → ϕ2, w) = true i� v(ϕ1, w) = false or v(ϕ2, w) = true
• v(�ϕ,w) = true i� v(ϕ,w′) = true for every w′ ∈W

Formula ϕ is valid in W , written W |=S5 ϕ, i� v(ϕ,w) = true for any W -valuation v and
any w ∈W . Formula ϕ is valid, written |=S5 ϕ, i� W |=S5 ϕ for all W .

Modal logic (S5) admits the following sound and complete proof system [7, 57]:

(N) Rule: If ϕ derivable then �ϕ derivable
(K) Axiom: �(ϕ1 → ϕ2)→ (�ϕ1 → �ϕ2)
(M) Axiom: �ϕ→ ϕ
(5) Axiom: ♦ϕ→ �♦ϕ
We next show that we can de�ne a matching logic speci�cation (S,Σ, F ) which faithfully

captures modal logic, both syntactically and semantically. The idea is quite simple: S
contains precisely one sort, say World ; Σ contains one constant symbol p ∈ Σλ,World for
each propositional variable p ∈ VarProp, plus a unary symbol ♦ ∈ ΣWorld ,World ; and F
contains precisely one axiom stating that ♦ is the de�nedness symbol (Section 5.1), namely
♦x : World (x is a free World variable in this pattern). Then we let �ϕ be the totality
construct (Notation 5.3), that is, syntactic sugar for ¬♦¬ϕ. Note that any modal logic
formula ϕ can be regarded, as is, as a ground matching logic pattern over this signature; by
�ground� we mean a pattern without variables, so the other implication is also true, because
disallowing variables includes disallowing quanti�ers. Moreover, Corollary 5.5 implies that
the modal logic proof system above is sound for the resulting matching logic speci�cation,
so |=S5 ϕ implies |= ϕ. We show the stronger result that the world/valuation models of
modal logic are essentially identical the the matching logic (S,Σ, F )-models, and thus:

Proposition 8.2. For any modal logic formula ϕ, we have |=S5 ϕ i� |= ϕ.

Proof. For any world W and W -valuation v : VarProp ×W → {true, false} (De�nition 8.1),
let MW,v be the matching logic (S,Σ, F )-model whose carrier is W , whose constant symbols
p ∈ Σλ,World (i.e., p ∈ VarProp) are interpreted as the sets of worlds pMW,v

= {w ∈ W |
v(p, w) = true}, and ♦w is the total set W for each w ∈ W . Similarly, for each match-
ing (S,Σ, F )-model M let WM = MWorld be its carrier and let vM : VarProp × WM →
{true, false} be de�ned as v(p, w) = true i� w ∈ pM . It is clear that the two mappings
de�ned above, (W, v) 7→MW,v and respectively M 7→ (WM , vM ), are inverse to each other.

Since a modal logic formula ϕ can be regarded as a matching logic pattern with no
variables, ρ(ϕ) only depends on the model M but not on any particular valuation ρ :
Var → M (by (1) in Proposition 2.6). Let us then use the notation ϕM for the (unique)
interpretation of ϕ in matching logic model M ; note that ϕM ⊆MWorld .
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We show that for any W and any W -valuation v, we have v(ϕ,w) = true i� w ∈ ϕMW,v
.

We show it by structural induction on ϕ. The cases when ϕ is a propositional symbol or a
logical connective are trivial. For the necessity modal construct �, we have v(�ϕ,w) = true
i� v(ϕ,w′) = true for all w′ ∈ W (De�nition 8.1), i� w′ ∈ ϕMW,v

for all w′ ∈ W (induction
hypothesis), i� ϕMW,v

= W = (MW,v)World , i� (�ϕ)MW,v
= W (by Proposition 5.4), i�

w ∈ (�ϕ)MW,v
(by Proposition 5.4). Therefore, v(ϕ,w) = true i� w ∈ ϕMW,v

.
We are now ready to prove the main result: |=S5 ϕ i� v(ϕ,w) = true for any W and

W -valuation v and w ∈ W (De�nition 8.1), i� w ∈ ϕMW,v
for any W and W -valuation v

and w ∈W (by the property proved above by structural induction), i� ϕMW,v
= W for any

W and W -valuation v, i� MW,v |= ϕ for any W and W -valuation v (by Proposition 2.5), i�
M |= ϕ for any matching logic (S,Σ, F )-model M (because of the bijective correspondence
between pairs (W, v) and (S,Σ, F )-models M proved above), i� |= ϕ.

The result above, together with the general translation of matching logic to predicate
logic with equality discussed in Section 10, will also give us a translation of modal logic to
predicate logic with equality. Translations from modal logic to various types of �rst-order
(or second-order or other even more expressive) logics are well-known in the literature, one
of them to predicate logic being called the �standard translation� [90, 11]. Our goal in this
section was not to propose yet another translation, but to show how modal logic can be
framed as a matching logic speci�cation without any translation.

There are many variants of modal logic [90, 11, 45]. One may naturally wonder if
all of them can be similarly regarded as matching logic theories. While systematically
investigating each and everyone of them seems tedious and likely not worth the e�ort, it
is nevertheless interesting to note that there is an immediate connection between one of
the most general variants of modal logic, called multi-dimensional or polyadic modal logic
[11], and matching logic. Instead of particular unary modal operators like � and ♦, polyadic
modal logic allows arbitrary operators taking any number of formula arguments; if ∆ is such
an operator of n arguments and ϕ1, ..., ϕn are formulae, then ∆(ϕ1, ..., ϕn) is also a formula.
In models, called general frames, each such operator ∆ is associated a relation R∆ of n+ 1
arguments. Propositional variables are also interpreted as sets (of �worlds in which they
hold�) by valuations, and given set of worlds W , valuation v : VarProp ×W → {true, false}
and world w ∈W , we have v(∆(ϕ1, ..., ϕn), w) = true i� there are w1, ..., wn ∈W such that
v(ϕ1, w1) = true, ..., v(ϕn, wn) = true and R∆(w,w1, ..., wn).

It is easy to associate a matching logic speci�cation (S,Σ, F ) to any polyadic modal
logic. Like for S5, we let S contain precisely one sort, World , and Σ contain one constant
symbol p ∈ Σλ,World for each propositional variable p ∈ VarProp. Further, we add a symbol
∆ ∈ ΣWorld×···×World ,World of n arguments for each polyadic modal operator ∆ taking n
arguments. Then any polyadic modal logic formula ϕ can be regarded without any change/-
translation as a matching logic formula. Further, any axioms/schemas in polyadic modal
logic can be added as matching logic axioms/schemas in F . Then we can extend Propo-
sition 8.2 to show |= ϕ in the polyadic modal logic i� F |= ϕ in matching logic; the key
technical insight here is that there is a bijective correspondence between relations of n + 1
arguments and functions of n arguments returning sets of elements.

When compared to polyadic modal logic, matching logic has a couple of advantages
which, in our view, make it more appealing to use in practice. First, it has sorts. Thus,
unlike polyadic modal logic which only has �formulae�, matching logic allows us to have
patterns of various types. For example, in Section 2.2 we show how heap patterns interact
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with program patterns and how all can be put together in con�guration patterns; while
possible in theory, it would be quite inconvenient to force all patterns to have the same sort.
Second and more importantly, modal logic and matching logic have a di�erent interpretation
for �variables�. In modal logic (propositional) variables are interpreted as sets and we are
not allowed to quantify over them, while in matching logic variables are interpreted as just
elements and we can quantify over them. Like shown above, the set interpretation can be
recovered in matching logic by associating constant symbols to propositional variables. But
the singleton interpretation of variables in matching logic, combined with the capability to
quantify over variables of any sort, allows us to elegantly de�ne many useful properties,
such as those in Section 5. For example, the simple pattern ∀x . dxe de�nes the semantics
of the de�nedness symbol d_e, which as seen above gives us the ♦ construct of S5. It is
critical that x ranges over singleton elements in models. If one attempts to do the same in
polyadic modal logic naively replacing x with a propositional variable p, then one gets an
inconsistent theory (because we want dpe to be false when p is interpreted as the empty set
of worlds). De�nedness then allows us to de�ne membership and equality, and thus allows
us to use patterns like ∀x .∃y . f(x) = y to state that symbol f is a function, etc.

Whether the results and observations above have practical relevance remains to be seen.
We hope they at least enhance our understanding of both matching logic and modal logic.

9. Instance: Separation Logic

Matching logic has inherent support for structural separation, without a need for any special
logic constructs or extensions. Indeed, pattern matching has a spatial meaning by its very
nature: matching a subterm already separates that subterm from the rest of the context, so
matching two or more terms can only happen when there is no overlapping between them.
Moreover, matching logic patterns can combine structure with logical constraints, which
allows not only to de�ne very sophisticated patterns, but also to reason about patterns
as if they were logical formulae, and to achieve modularity by globalizing local reasoning.
Finally, since matching logic allows variables of any sorts, including of sort Map when heaps
are concerned, it has inherent support for heap framing and local reasoning, too.

9.1. Separation Logic Basics. Separation logic (originating with ideas in [69, 68], fol-
lowed by canonical work in [78], with more recent developments in [73, 18, 24, 17, 55] and
with several provers supporting it in [8, 2, 15, 64, 9, 65, 72, 75, 73]), is a logic speci�cally
crafted for reasoning about heap structures. There are many variants, but here we only
consider the original variant in [68, 78]. Moreover, here we only discuss separation logic as
an assertion-language, used for specifying state properties, and not its extension as an ax-
iomatic programming language semantic framework. We regard the latter as an orthogonal
aspect, which can similarly be approached using matching logic.

Separation logic extends the syntax of formulae in FOL (Section 7) as follows:

ϕ ::= (FOL syntax)
| emp
| Nat 7→ Nat
| ϕ ∗ ϕ
| ϕ−∗ϕ �magic wand�
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Its semantics is based on a �xed model of stores and heaps, which are �nite-domain maps
from variables and, respectively, locations (which are particular numbers), to integers. Be-
low we recall the formal de�nition of satisfaction in the original variant of separation logic,
noting that subsequent variants of separation logic extend the underlying model to include
stacks (instead of stores) as well as various types of resources that are encountered in modern
programming languages. Such extensions are ignored here because they would only com-
plicate the presentation without changing the overall message: they would only add more
symbols to the corresponding matching logic signature with appropriate interpretations in
the underlying model, and Theorem 9.2 would still hold. Nevertheless, we leave the thorough
analysis of the diversity of separation logic variants proposed in the last 15 years through
the lenses of matching logic as a subject for future work.

De�nition 9.1. (Separation logic semantics, adapted from [68, 78]) Partial �nite-domain
maps s : Var ⇀ Nat are called stores, partial �nite-domain maps h : Nat ⇀ Nat are
called heaps, and pairs (s, h) of a store and a heap are called states. The semantics of the
separation logic constructs are given in terms of such states, as follows:

• (s, h) |=SL ϕ for a FOL formula ϕ i� s |=FOL ϕ (the heap portion of the model is
irrelevant for the FOL fragment);
• (s, h) |=SL emp i� Dom(h) = ∅;
• (s, h) |=SL e1 7→ e2 where e1 and e2 are terms of sort Nat (thought of as �expres-
sions�) i� Dom(h) = s(e1) 6= 0 and h(s(e1)) = s(e2), where s is the (partial function)
extension of s to expressions (with variables) of sort Nat , de�ned similarly to the
extension of valuations to patterns in De�nition 2.3;
• (s, h) |=SL ϕ1 ∗ ϕ2 i� there exist h1 and h2 such that Dom(h1) ∩ Dom(h2) = ∅
and h = h1 ∗ h2 (the merge of h1 and h2, a partial function on maps written as an
associative/commutative comma in Section 6.2) and (s, h1) |=SL ϕ1, (s, h2) |=SL ϕ2;
• (s, h) |=SL ϕ1−∗ϕ2 i� for any h1 with Dom(h1) ∩ Dom(h) = ∅, if (s, h1) |=SL ϕ1

then (s, h ∗ h1) |=SL ϕ2; i.e., the semantics of �magic wand� is de�ned as the states
whose heaps extended with a fragment satisfying ϕ1 result in ones satisfying ϕ2.

Separation logic formula ϕ is valid, written |=SL ϕ, i� (s, h) |=SL ϕ for any state (s, h).

9.2. Map Patterns. One of the most appealing aspects of separation logic is that it allows
us to de�ne compact and elegant speci�cations of heap abstractions using inductively de�ned
predicates. Such an abstraction which is quite common is the linked-list abstraction list(x, S)
stating that x points to a linked list containing an abstract sequence of natural numbers S:

list(x, ε)
def
= emp ∧ x = 0

list(x, n · S)
def
= ∃z . x 7→ [n, z] ∗ list(z, S)

Above, ε is the empty sequence, n · S is the sequence starting with natural number n and
followed by sequence S, and x 7→ [n, z] is syntactic sugar for x 7→ n ∗ (x + 1) 7→ z. So a
linked list starting with address x takes either empty heap space, in which case x must be 0
and the abstracted sequence is ε, or there is some node in the linked list at location x in the
heap that holds the head of the abstracted sequence (n) and a link (z) to another linked list
that holds the tail of the abstracted sequence (S). The implicit properties of the implicit
map model (the heap) in De�nition 9.1 ensures the well-de�nedness of this abstraction,
which essentially means that all the locations reached by unfolding a list abstraction using
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the inductive properties above are distinct. The symbol
def
= , sometimes written ≡ in the

literature, is not part of separation logic; it is a meta-logical means to de�ne inductive, or
recursive predicates, also encountered in the context of �rst-order logic: the predicate in
question is interpreted in models as the least-�xed point of its de�ning (meta-)equations.

We next show that similar heap patterns can be de�ned directly in matching logic.
Speci�cally, we pick a particular signature (for maps/heaps) together with desired axioms,
that is, a matching logic speci�cation, and show how additional patterns can be de�ned in
the context of that speci�cation. The de�nitions are as compact and elegant as those in

separation logic, and no meta-logical constructs, such as
def
= or ≡, appear to be necessary.

In what follows, we only discuss maps from natural numbers to natural numbers, but
they can be similarly de�ned over arbitrary domains as keys and as values. Consider a
matching logic speci�cation of maps like the one shown in Section 6.2, but instantiated to
natural numbers as both keys and values, with its axioms explicitly listed, and with a syntax
that deliberately resembles that of separation logic (i.e., we use �*� instead of �,�):

_ 7→ _ : Nat ×Nat ⇀ Map emp ∗H = H
emp : → Map H1 ∗H2 = H2 ∗H1

_ ∗_ : Map ×Map ⇀ Map (H1 ∗H2) ∗H3 = H1 ∗ (H2 ∗H3)
0 7→ a = ⊥ x 7→ a ∗ x 7→ b = ⊥

Recall that there are no predicates here, only patterns. When regarding the above ADT as
a matching logic speci�cation, we can prove that the bottom two pattern equations above
are equivalent to ¬(0 7→ a) and, respectively, (x 7→ a ∗ y 7→ b) → x 6= y, giving the _ 7→ _
and _ ∗ _ the feel of �predicates�. Maps, like natural numbers, do not admit �nite (or
even recursively enumberable) equational (or �rst-order) axiomatizations, so adding a �good
enough� subset of equations is the best we can do in practice. We chose ones that have been
proposed by algebraic speci�cation languages and by separation logics for several reasons.
First, they have been extensively used, so there is a good chance they are �good enough� for
many purposes. Second, we do not want to imply that we propose a novel axiomatization
of maps; our novelty is the presentation of known speci�cations of maps using the general
infrastructure of matching logic at no additional translation cost, without a need to craft a
new logic to address the particularities of maps. Third, this will ease our presentation in
Section 9.3 where the connection with such a logic speci�cally crafted for maps is discussed.

Consider the canonical model of partial maps M , where: MNat = {0, 1, 2, . . .}; MMap =
partial maps from natural numbers to natural numbers with �nite domains and unde�ned
in 0, with emp interpreted as the map unde�ned everywhere, with _ 7→ _ interpreted as the
corresponding one-element partial map except when the �rst argument is 0 in which case it
is unde�ned (note that _ 7→ _ was declared using ⇀), and with _ ∗_ interpreted as map
merge when the two maps have disjoint domains, or unde�ned otherwise (note that _ ∗ _
was also declared using ⇀). M satis�es all axioms above.

Following similar de�nitions in the context of separation logic, we next de�ne several
patterns that are commonly used when proving properties about programs that can allocate
and de-allocate data-structures in the heap. We emphasize that our matching logic speci�-
cations below look almost identical, if not identical, to their separation logic variants. Which
is, in fact, the main point we are making in this subsection. That is, that matching logic
allows us to specify the same complex heap predicates as separation logic, equally compactly
and elegantly, but without a need to devise any new heap-speci�c logic for that.
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We start with matching logic de�nitions for complete linked lists and for list fragments.
Let list ∈ ΣNat ,Map and lseg ∈ ΣNat×Nat ,Map be two symbols together with patterns

list(0) = emp lseg(x, x) = emp
list(x) ∧ x 6= 0 = ∃z . x 7→ z ∗ list(z) lseg(x, y) ∧ x 6= y = ∃z . x 7→ z ∗ lseg(z, y)

Note that list and lseg are not meant to be functions, so we did not use the functional
notation (Section 5.4) for them. Moreover, note that lseg is not even meant to be a totally
de�ned relation (Section 5.6); indeed, lseg(0,m) is ∅ (and not emp) for all m > 0.

The main di�erence between our de�nitions above and their separation logic variants
is that the latter cannot use the (FOL) equality symbol as we did. Indeed, list and lseg
are predicates there, same as equality, and predicates cannot take predicates as arguments.
To de�ne predicates like list and lseg , as seen at the beginning of this section, we have to

explicitly use the meta-logical notation
def
= or ≡ for de�ning �recursive predicates�: predicates

satisfying desired properties which have a least �xed-point interpretation in models. We
emphasized �explicitly� above to distinguish it from the implicit least �xed-point principles
used when mathematically de�ning the semantics of any logic. For example, in our context,
the extension of ρ to ρ in De�nition 2.3 uses a least-�xed point construction, similar to any
other logic with terms, but that is orthogonal to how symbols are interpreted in the given
model (symbol interpretation is given by the model, not by ρ).

There are two important questions about the matching logic speci�cation above:

(1) Does this speci�cation admit any solution in M , i.e., total relations listM : MNat →
P(MMap) and lsegM : MNat ×MNat → P(MMap) satisfying the patterns above?

(2) If yes, is the solution unique? This is particularly important because we do not
require initiality constraints on M nor smallest �xed-point constraints on solutions.

We answer these questions positively. We only discuss lsegM , because the other is similar
and simpler. A solution lsegM : MNat ×MNat → P(MMap) exists i� it satis�es the two
pattern axioms for lseg above; explicitly, that means that any solution must satisfy:

lsegM (n, n) = {empM} for all n ≥ 0
lsegM (0,m) = ∅ for all m 6= 0
lsegM (n,m) =

⋃
{({n 7→M n1} ∗M lsegM (n1,m)) | n1 ≥ 0} for all n 6= 0 and n 6= m

where _ ∗M _ is M 's merge function explained above extended to sets of maps for each
argument; recall that the map merge function is unde�ned (i.e., it yields an empty set of
maps) when the two argument maps are not merge-able. Note that we had to split the
interpretation of the second equation pattern for lseg into two equalities, re�ecting a case
analysis on whether the �rst argument is 0 or not. Note also that lseg(n,m) 6= ∅ when
n 6= 0, and that lseg(n,m) contains only non-empty maps when n 6= 0 and n 6= m.

First, we claim that the following is a solution:

lsegM (n, n) = {empM} for all n ≥ 0
lsegM (0,m) = ∅ for all m 6= 0
lsegM (n,m) = { n 7→M n1 ∗M n1 7→M n2 ∗M · · · ∗M nk−1 7→M m

| k > 0, and n0 = n, n1, n2, . . . , nk−1 > 0 all di�erent and di�erent from m}
Indeed, the �rst two equalities that need to be satis�ed by any solution vacuously hold,
while for the third all we need to note is that the �junk� maps where n is 0 or in the domain
of a map in lsegM (n1,m) are simply discarded by the map merge interpretation of _ ∗_.

Second, we claim that the above is the unique solution. Let lsegM : MNat ×MNat →
P(MMap) be some solution satisfying the three equality constraints. It su�ces to prove, by
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induction on the size k of the domain of h ∈ MMap that: h ∈ lsegM (n,m) for n,m ∈ MNat

i� either n = m and h = empM (i.e., k = 0), or otherwise n 6= 0 and n 6= m and k > 0 and
there are distinct n0 = n, n1, . . . , nk−1 distinct from m such that h = (n 7→M n1 ∗M n1 7→M

n2 ∗M · · · ∗M nk−1 7→M m). Since the maps in lsegM (n,m) when n 6= 0 and n 6= m contain
at least one binding, we conclude k = 0 can only happen i� h ∈ lsegM (n, n), and then
h = empM . Now suppose k > 0, which can only happen i� h ∈ lsegM (n,m) for n 6= 0 and
n 6= m, which can only happen i� n 6= 0 and n 6= m and h = n 7→M n1 ∗M h1 for some
n1 ≥ 0 and h1 ∈ lsegM (n1,m). It all follows now by the induction hypothesis applied to h1.

It should be clear that patterns can be speci�ed in many di�erent ways. E.g., the �rst
list pattern can also be speci�ed with a single pattern:

list(x) = (x = 0 ∧ emp ∨ ∃z . x 7→ z ∗ list(z))

We can similarly de�ne more complex patterns, such as lists with data. But �rst, we specify
a convenient operation for de�ning maps over contiguous keys, making use of a sequence
data-type. The latter can be de�ned like in Section 6.1; for notational convenience, we take
the freedom to use comma �,� instead of �·� for sequence concatenation in some places:

_ 7→ [_] : Nat × Seq → Map x 7→ [ε] = emp
x 7→ [a, S] = x 7→ a ∗ (x+ 1) 7→ [S]

In our model M , we can take MSeq to be the �nite sequences of natural numbers, with εM
and _ ·M _ interpreted as the empty sequence and, respectively, sequence concatenation.

We can now de�ne lists with data as follows:

list ∈ ΣNat×Seq,Map lseg ∈ ΣNat×Seq×Nat ,Map

list(x, ε) = (emp ∧ x = 0) lseg(x, ε, y) = (emp ∧ x = y)
list(x, n · S) = ∃z . x 7→ [n, z] ∗ list(z, S) lseg(x, n · S, y) = ∃z . x 7→ [n, z] ∗ lseg(z, S, y)

Note that, unlike in the case of lists without data, this time we have not required the side
conditions x 6= 0 and x 6= y, respectively. The side conditions were needed in the former
case because without them we can infer, e.g., list(0) = ⊥ (from the second equation of list),
which using the �rst equation would imply emp = ⊥. However, they are not needed in the
latter case because it is safe (and even desired) to infer list(0, n ·S) = ⊥ for any n and S. We
can show, using a similar approach like for lists without data, that the pattern lseg(x, S, y)
matches in M precisely the lists starting with x, exiting to y, and holding data sequence S.

We can similarly de�ne other data-type speci�cations, such as trees with data:

none : → Tree
node : Nat × Tree × Tree → Tree
tree ∈ ΣNat×Tree,Map

tree(0,none) = emp
tree(x,node(n,t1,t2)) = ∃y z . x 7→ [n, y, z] ∗ tree(y, t1) ∗ tree(z, t2))

Therefore, in the model M of partial maps described above, there is a unique way
to interpret list and lseg , namely as the expected linked lists and, respectively, linked list
fragments. Fixing the interpretations of the basic mathematical domains, such as those of
natural numbers, sequences, maps, etc., su�ces in order to de�ne interesting map patterns
that appear in veri�cation of heap properties of programs, in the sense that the axioms
themselves uniquely de�ne the desired data-types. No logic extensions (such as adding
free models with induction/recursion principles as a matching logic equivalent to �recursive
predicates�, or least �xed-point constraints, or even �xed points of any kind) were needed



48 GRIGORE RO�U

to de�ne them. The de�ning axioms were precise enough to capture the intended concept
in the intended model. Choosing the right basic mathematical domains is, however, crucial.
For example, if we allow the maps in MMap to have in�nite domains then the list patterns
without data above (the �rst ones) also include in�nite lists. The lists with data cannot
include in�nite lists, because we only allow �nite sequences. This would, of course, change
if we allow in�nite sequences, or streams, in the model. In that case, list and lseg would not
admit unique interpretations anymore, because we can interpret them to be either all the
�nite domain lists, or both the �nite and the in�nite-domain lists. Writing patterns which
admit the desired solution in the desired model su�ces in practice; our reasoning techniques
developed in the sequel allow us to derive properties that hold in all models satisfying the
axioms, so any derived property is sound also for the intended model and interpretations.

9.3. Separation Logic as an Instance of Matching Logic. Consider the FOL fragment
in Section 7, where the signature Σ includes the signature of maps in Section 9.2. Any
additional FOL constructs, background theories, and/or built-in domains that one wants to
consider in separation logic speci�cations, are handled as already explained in Sections 7
and 5.8. It is clear then that all the syntactic constructs of separation logic, except for the
magic wand, −∗ , are given by the above matching logic signature. The magic wand, on the
other hand, can be de�ned as the following derived construct:

ϕ1−∗ϕ2 ≡ ∃H :Map . H ∧ bH ∗ ϕ1 → ϕ2c
Recall from Section 5.1 that bϕc is > (it matches the entire set) i� its enclosed pattern ϕ
is >; otherwise, if ϕ does not match some elements, then bϕc is ⊥ (it matches nothing).
In words, ϕ1−∗ϕ2 matches all maps h which merged with maps matching ϕ1 yield only
maps matching ϕ2. Thanks to the notational convention that Booleans b, respectively usual
predicates p, stand for equalities b = true, respectively p = >Pred (Notation 5.27),

Any separation logic formula is a matching logic pattern of sort Map.

Semantically, note that separation logic hard-wires a particular model of maps. That
is, its satisfaction relation |=SL ϕ is de�ned using a pre-de�ned universe of maps, which is
conceptually the same as our model of maps in Section 9.2. Since separation logic extends
FOL, its models are still allowed to instantiate the FOL part of its syntax in the usual FOL
way, but the maps are rigid and the models cannot touch them. It is therefore not surprising
that we also have to �x the maps in our matching logic models corresponding to the syntax
described so far in order to faithfully capture separation logic semantically. For the rest of
this section, we only consider models M for the matching logic speci�cation above whose
reduct to the syntax of maps is precisely the map domain in Section 9.2. We let Map |= ϕ
denote the resulting satisfaction relation: Map |= ϕ i� M |= ϕ for any model M like above.

In separation logic formulae, variables range only over the domains of data (e.g., natural
numbers), but not over heaps/maps; for example, �∃H : Map . 1 7→ 2 ∗ H� is not a proper
separation logic formula (although it is one in matching logic). Also, stores s are mappings of
variables to particular values. In matching logic, variables range over all syntactic categories,
including over heaps in our case, and valuations ρ can map such variables to any values in
the model; for example, the variable H of sort Map in the pattern de�ning −∗ above is a
heap variable. Since separation logic formulae ϕ contain no heap variables, we can regard
separation logic stores s as M -valuations with the property that s(ϕ) contains precisely the
heaps which together with s satisfy the original separation logic formula ϕ. We prove this
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in the next proposition showing that separation logic is not only syntactically an instance
of matching logic (modulo notations in Section 5), but also semantically:

Proposition 9.2. If ϕ is a separation logic formula, then |=SL ϕ i� Map |= ϕ.

Proof. Like in the proofs of Propositions 4.1, 6.1, and 7.1, there is a bijection between the
models of separation logic and the matching logic Map-models. The bijection works as
described in the aforementioned propositions for the FOL part, and adds the map model in
Section 9.2 to the resulting matching logic models. To keep the notation simple, we use the
same name, M , to refer both to a separation logic model and to its corresponding matching
logic model, remembering from the proofs of Propositions 4.1 and 6.1 that the latter's carrier
of sort Pred is a singleton {?}. The context makes it clear which one we are referring to.

We show by structural induction on the separation logic formula ϕ the more general
result that for any store s and any heap h, we have (s, h) |=SL ϕ i� h ∈ s(ϕ).

If ϕ is a FOL formula then its desugared matching logic correspondent is ϕ =Map
Pred >Pred

(Notation 7.2). Then (s, h) |=SL ϕ i� s |=FOL ϕ (De�nition 9.1), i� s(ϕ) = {?} (see proof of
Proposition 7.1), i� s(ϕ) = s(>Pred), i� s(ϕ =Map

Pred >Pred) = MMap (by Proposition 5.9), i�

h ∈ s(ϕ =Map
Pred >Pred) (Proposition 5.9 again: equality is interpreted as either MMap or ∅).

Conjunction and negation are trivial. Existential quanti�cation: (s, h) |=SL ∃x . ϕ i�
there exists some a ∈ M of appropriate (non-heap) sort such that (s[a/x], h) |= ϕ, i�

h ∈ s[a/x](ϕ) (induction hypothesis), i� h ∈
⋃
{s′(ϕ) | s′ : Var→M, s′�Var\{x}= s�Var\{x}},

i� h ∈ s(∃x . ϕ). We next discuss the heap-related constructs of separation logic.
If ϕ ≡ emp then (s, h) |=SL emp i� h = empM , i� h ∈ {empM}, i� h ∈ s(emp).
If ϕ ≡ e1 7→ e2 then (s, h) |=SL e1 7→ e2 i� Dom(h) = s(e1) 6= 0 and h(s(e1)) = s(e2)

(De�nition 9.1), i� h is the partial-domain map s(e1) 7→M s(e2) (which is unde�ned when
s(e1) = 0�see Section 9.2), i� h ∈ s(e1 7→ e2).

If ϕ ≡ ϕ1 ∗ ϕ2 then (s, h) |=SL ϕ1 ∗ ϕ2 i� there exist h1 and h2 of disjoint domains
such that h = h1 ∗M h2 (the merge of h1 and h2, which is a partial function on maps�see
De�nition 9.1 and Section 9.2) and (s, h1) |=SL ϕ1 and (s, h2) |=SL ϕ2, i� h = h1 ∗M h2 and
h1 ∈ s(ϕ1) and h2 ∈ s(ϕ2) (induction hypothesis), i� h ∈ s(ϕ1) ∗M s(ϕ2), i� h ∈ s(ϕ1 ∗ϕ2).

The only case left is the �magic wand�, ϕ ≡ ϕ1−∗ϕ2:

h ∈ s(ϕ1−∗ϕ2)
i� h ∈ s(∃H .H ∧ bH ∗ ϕ1 → ϕ2c)
i� {h} ∗M s(ϕ1) ⊆ s(ϕ2)
i� h ∗ h1 ∈ s(ϕ2) for any h1 ∈ s(ϕ1) compatible with h
i� (s, h ∗ h1) |=SL ϕ2 for any h1 compatible with h such that (s, h1) |=SL ϕ1

(previous step followed by the induction hypothesis)
i� (s, h) |=SL ϕ1−∗ϕ2

The proof is complete.

Although matching logic is complete (Section 11), so its validity |= is semi-decidable,
while results in [21, 1] state that the validity problem in separation logics is not semi-
decidable, note that there is no con�ict here because we restricted matching logic validity
to Map-models. As an analogy, it is well-known that the validity of predicate logic formulae
can be arbitrarily hard when particular (and not all) models are concerned. All the above
says is that the results in [21, 1] carry over to the particular matching logic theory restricted
to Map-models discussed in this section. Most likely one can obtain even more general
instances of the results [21, 1] for matching logic, but that is beyond the scope of this paper.
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The loose-model approach of matching logic is in sharp technical, but not conceptual,
contrast to separation logic. In separation logic, the syntax of maps and separation con-
structs is part of the syntax of the logic itself, and the model of maps is intrinsically integrated
within the semantics of the logic: its satisfaction relation is de�ned in terms of a �xed syntax
and the �xed model of the basic domains (maps, sequences, etc.). Then specialized proof
rules and theorem provers need to be devised. If any changes to the syntax or semantics are
desired, for example adding a new stack, or an I/O bu�er, etc., then a new logic is obtained.
Proof rules and theorem provers may need to change as the logic changes. In matching logic,
the basic ingredients of separation logic form one particular speci�cation, with its particular
signature and pattern axioms, together with particular but carefully chosen models. This
enables us to use generic �rst-order reasoning in matching logic (Section 11), as well as
theorem provers or SMT solvers for reasoning about the intended models. Nevertheless,
several high performance automated provers for separation logics have been developed, e.g.
[8, 2, 15, 64, 9, 65, 72, 75, 73], while there are no automated provers available for matching
logic yet. A technical challenge, left for future work, is to investigate the techniques and
algorithms underlying the existing separation logic provers and to generalize them if possible
to work with matching logic in general or at least with common fragments of it.

Like for modal logic (Section 8), the result above in combination with the reduction of
matching logic to predicate logic with equality in Section 10 yields a translation from sepa-
ration logic to predicate logic with equality. Note that many of the separation logic provers
above are implicitly or explicitly based on translations to FOL, and speci�c translations to
FOL or fragments of it have been already studied [20, 22, 12]. Like for modal logic (Sec-
tion 8), our goal in this section was not to propose yet another translation. Our goal was to
show how separation logic can be framed as a matching logic speci�cation both syntactically
and semantically, without any translation (but only with syntactic sugar notations). Such
results can help us better understand both logics, as well as their strengths and limitations.

10. Matching Logic: Reduction to Predicate Logic with Equality

It is known that FOL formulae can be translated into equivalent predicate logic with equality
formulae (i.e., no function or constant symbols�see Section 4), by replacing all functions
with their graph relations (see, e.g., [56]). Speci�cally, function symbols σ : s1×· · ·×sn → s
are replaced with predicate symbols πσ : s1×· · ·×sn×s, and then terms are transformed into
formulae by adding existential quanti�ers for subterms. Let us de�ne such a translation, say
PL. It takes each FOL predicate π(t1, . . . , tn) into a pure predicate logic formula as follows:

PL(π(t1, . . . , tn)) = ∃r1 · · · rn .PL2(t1, r1) ∧ · · · ∧ PL2(tn, rn) ∧ π(r1, . . . , rn)

where PL2(t, r) is a translation of term t into a predicate stating that t equals variable r:

PL2(x, r) = (x = r)
PL2(σ(t1, . . . , tn), r) = ∃r1 · · · ∃rn .PL2(t1, r1) ∧ · · · ∧ PL2(tn, rn) ∧ πσ(r1, . . . , rn, r)

Axioms stating that the predicate symbols πσ : s1 × · · · × sn × s associated to function
symbols σ : s1 × · · · × sn → s are interpreted as total function relations are also needed:

∀x1 : s1, . . . , xn : sn . ∃y : s .∀z : s . (πσ(x1, . . . , xn, z)↔ y = z)

We can similarly translate matching logic patterns into equivalent predicate logic for-
mulae. Consider predicate logic with equality (and no function or constant symbols) whose
satisfaction relation is |==

PL. For matching logic signature (S,Σ), let (S,ΠΣ) be the predicate
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logic signature with ΠΣ = {πσ : s1× · · · × sn× s | σ ∈ Σs1...sn,s}, like above but without the
axioms stating that these predicates have a functional interpretation in models (because the
matching logic symbols need not be interpreted as functions). We de�ne the translation PL
of matching logic (S,Σ)-patterns into predicate logic (S,ΠΣ)-formulae inductively:

PL(ϕ) = ∀r .PL2(ϕ, r)

PL2(x, r) = (x = r)
PL2(σ(ϕ1, . . . , ϕn), r) = ∃r1 · · · ∃rn .PL2(ϕ1, r1) ∧ · · · ∧ PL2(ϕn, rn) ∧ πσ(r1, . . . , rn, r)

PL2(¬ϕ, r) = ¬PL2(ϕ, r)
PL2(ϕ1 ∧ ϕ2, r) = PL2(ϕ1, r) ∧ PL2(ϕ2, r)

PL2(∃x . ϕ, r) = ∃x .PL2(ϕ, r)

PL({ϕ1, . . . , ϕn}) = {PL(ϕ1), . . . ,PL(ϕn)}
The predicate logic formula PL2(ϕ, r) captures the intuition that �r matches ϕ�. The top
transformation above, PL(ϕ) = ∀r .PL2(ϕ, r), is di�erent from (and simpler than) the cor-
responding translation of predicates from FOL to predicate logic. It captures the intuition
that the pattern ϕ is valid i� it is matched by all values r. Then the following result holds:

Proposition 10.1. If F is a set of patterns and ϕ is a pattern, F |= ϕ i� PL(F ) |==
PL PL(ϕ).

Proof. It su�ces to show that there is a bijective correspondence between matching logic
(S,Σ)-modelsM and predicate logic (S,ΠΣ)-modelsM ′, such thatM |= ϕ i�M ′ |==

PL PL(ϕ)
for any (S,Σ)-pattern ϕ. The bijection is de�ned as follows:

• M ′s = Ms for each sort s ∈ S;
• πσM ′ ⊆Ms1×· · ·×Msn×Ms with (a1, . . . , an, a) ∈ πσM ′ i� σM : Ms1×· · ·×Msn →
P(Ms) with a ∈ σM (a1, . . . , an).

To show M |= ϕ i� M ′ |==
PL PL(ϕ), it su�ces to show a ∈ ρ(ϕ) i� ρ[a/r] |==

PL PL2(ϕ, r) for
any ρ : Var→M , which follows easily by structural induction on ϕ.

It is informative to translate the de�nedness and equality patterns in Sections 5.1 and
Section 5.2 using the above, and especially to sanity check that the equality pattern of
matching logic indeed translates to the equality predicate of predicate logic with equality.
Recall that the de�nedness symbols were axiomatized with pattern axioms dxe, and that we
assumed them always available (Assumption 5.1). Then PL(dxe) is ∀r . πd_e(x, r). We can
drop the universal quanti�er and therefore assume πd_e(x, r) as an axiom formula in the
translated predicate logic speci�cation. Let us now show that the matching logic equality
x = y, which is syntactic sugar for ¬d¬(x↔ y)e, translates to the equality x = y in predicate
logic. Applying the translation above, we get PL(x = y) is ∀r .¬(∃r1 .¬(x = r1 ↔ y =
r1)∧πd_e(r1, r)), which is equivalent, in predicate logic with equality, to ∀r . ∀r1 . (x = r1 ↔
y = r1), which is further equivalent to x = y. Similarly, we can show that the translation of
the equational pattern stating that σ is functional, namely ∀x1 . . . xn .∃y . σ(x1, . . . , xn) = y,
indeed corresponds to the predicate logic formula ∀x1, . . . , xn .∃y .∀z . (πσ(x1, . . . , xn, z) ↔
y = z), as expected. We leave this as an exercise to the interested reader.

Proposition 10.1 gives us a sound and complete procedure for matching logic reasoning:
translate the speci�cation (S,Σ, F ) and pattern to prove ϕ into the predicate logic speci�-
cation (S,ΠΣ,PL(F )) and formula PL(ϕ), respectively, and then derive it using the sound
and complete proof system of predicate logic. However, translating patterns to predicate
logic formulae makes reasoning harder not only for humans, but also for computers, since
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new quanti�ers are introduced. For example,

(1 7→ 5 ∗ 2 7→ 0 ∗ 7 7→ 9 ∗ 8 7→ 1)→ list(7, 9 · 5)

discussed and proved in a few steps in Section 11, translates into the following formula (to
keep it small, we do not translate the numbers), which takes dozens, if not hundreds of steps
to prove using the predicate logic proof system:

∀r . (∃r1 . ∃r2 . π7→(1, 5, r1) ∧ (∃r3 . ∃r4 . π7→(2, 0, r3) ∧ (∃r5 . ∃r6 . π7→(7, 9, r5) ∧ π 7→(8, 1, r6)
∧ π∗(r5, r6, r4)) ∧ π∗(r3, r4, r2)) ∧ π∗(r1, r2, r))→ ∃r7 . π·(9, 5, r7) ∧ πlist(7, r7, r))

What we would like is to reason directly with matching logic patterns, the same way we
reason directly with terms in FOL without translating them to predicate logic.

11. Matching Logic: Sound and Complete Deduction

In Figure 5, we propose a sound and complete proof system for matching logic (under As-
sumption 5.1). The �rst group of rules/axioms are those of FOL with equality, discussed
and proved sound in Section 2 (predicate logic: Proposition 2.8), Section 5.2 (equational:
Proposition 5.9), and Section 5.4 (FOL Substitution, called Term Substitution there: Corol-
lary 5.23), with a slightly generalized Substitution axiom that we call Functional Substitution
(discussed below), which requires another axiom (shown sound by Corollary 5.19), called
Functional Variable, stating that variables are functional. The second group of rules/axioms
are about membership and were proved sound in Section 5.3 (Proposition 5.14).

Substitution must be used with care. Recall FOL's Substitution: (∀x . ϕ) → ϕ[t/x].
Since matching logic makes no syntactic distinction between terms and predicates, we would
like to have a proof system that does not make such a distinction either. Ideally, since terms
and predicates are particular patterns, we would like to take the proof system of FOL with
equality and turn it into a proof system for matching logic by simply replacing �predicate�
and �term� with �pattern�. This actually worked for all the rules and axioms, except for
Substitution: (∀x . ϕ)→ ϕ[t/x]. Unfortunately, Substitution is not sound if we replace t with
any pattern. For example, let ϕ be ∃y . x = y (Corollary 5.19). If FOL's Substitution were
sound for arbitrary patterns ϕ′ instead of t, then the formula ∃y . ϕ′ = y, stating that ϕ′ is a
functional pattern (i.e., it evaluates to a unique element for any valuation: De�nition 5.16),
would be valid for any pattern ϕ′. That is, any pattern would be functional, which is neither
true nor desired (e.g., > evaluates to the total set, ⊥ to the empty set, etc.).

Nevertheless, as proved in Corollary 5.23, Substitution stays sound if t is a term pat-
tern (De�nition 5.21), that is, a pattern build with only functional symbols (interpreted
as functions in all models) and no other constructs: |= (∀x . ϕ) → ϕ[t/x] holds if ϕ is any
pattern but t is a term pattern. It turns out that the fact that t is built with only functional
symbols is irrelevant, and all that matters is that t is a functional pattern (all term patterns
are functional: Corollary 5.22). We therefore generalize the Term Substitution axiom:

Functional Substitution: ` (∀x . ϕ) ∧ (∃y . ϕ′ = y)→ ϕ[ϕ′/x]

This is more general than the original Substitution in FOL (which allowed only predicates
for ϕ) and than Term Substitution (Corollary 5.23): it can also apply when ϕ′ is not a
term pattern but can be proved to be functional. It is interesting to note that a similar
modi�cation of Substitution was needed in the context of partial FOL (PFOL) [35], where
the interpretations of functional symbols are partial functions, so terms may be unde�ned;
axiom PFOL5 in [35] requires ϕ′ to be de�ned in the Substitution rule, and several rules
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FOL axioms and rules:

1. ` propositional tautologies
2. Modus Ponens: ` ϕ1 and ` ϕ1 → ϕ2 imply ` ϕ2

3. ` (∀x . ϕ1 → ϕ2)→ (ϕ1 → ∀x . ϕ2) when x 6∈ FV (ϕ1)
4. Universal Generalization: ` ϕ implies ` ∀x . ϕ
5. Functional Substitution: ` (∀x . ϕ) ∧ (∃y . ϕ′ = y)→ ϕ[ϕ′/x]
5'. Functional Variable: ` ∃ y. x = y
6. Equality Introduction: ` ϕ = ϕ
7. Equality Elimination: ` ϕ1 = ϕ2 ∧ ϕ[ϕ1/x]→ ϕ[ϕ2/x]

Membership axioms and rules:

8. ` ∀x . x ∈ ϕ i� ` ϕ
9. ` x ∈ y = (x = y) when x, y ∈ Var
10. ` x ∈ ¬ϕ = ¬(x ∈ ϕ)
11. ` x ∈ ϕ1 ∧ ϕ2 = (x ∈ ϕ1) ∧ (x ∈ ϕ2)
12. ` (x ∈ ∃y.ϕ) = ∃y.(x ∈ ϕ), with x and y distinct
13. ` x∈σ(ϕ1,.., ϕi−1, ϕi, ϕi+1,.., ϕn) = ∃y.(y∈ϕi ∧ x∈σ(ϕ1,.., ϕi−1, y, ϕi+1,.., ϕn))

Figure 5: Sound and complete proof system of matching logic.

for proving de�nedness are provided. Note that our condition ∃y . ϕ′ = y is equivalent to
de�nedness in the special case of PFOL, and that, thanks to the de�nability of equality in
matching logic, we do not need any special axiomatic or rule support for proving de�nedness.

We have made no e�ort to minimize the number of rules and axioms in our proof system
in Figure 5. On the contrary, our approach was to include all the rules and axioms that
turned out to be useful in proof derivations, especially if they already existed in FOL. More-
over, we preferred to frame �unexpected� properties of matching logic as axioms or proof
rules, so that users of the proof system are fully aware of them. For example, we could have
merged the Functional Substitution and Functional Variable axioms into the conventional
predicate logic Substitution ((5) in Proposition 2.8) or the FOL Term Substitution (Corol-
lary 5.23), but we preferred not to, because we want the user of our proof system to be fully
aware of the fact that they cannot substitute arbitrary patterns for variables; they should
�rst prove that the pattern is functional. Additionally, our Functional Substitution is more
general, in that it applies in more instances, so proof derivations are shorter.

Proposition 11.1. With the proof system in Figure 5, the following are derivable:

(1) Predicate Logic Substitution ((5) in Proposition 2.8): ` (∀x . ϕ)→ ϕ[y/x]
(2) Term patterns are functional (Corollary 5.22): ` ∃y . t = y for any term pattern t
(3) Term Substitution (Corollary 5.23): ` (∀x . ϕ)→ ϕ[t/x]

Proof. By propositional calculus reasoning, which is subsumed by our proof system (1. and
2. in Figure 5), for any patterns A, B, and C, if ` A ∧B → C and ` B then ` A→ C. To
prove (1), pick A as ∀x . ϕ, B as ∃z . y = z, C as ϕ[y/x]. Then ` A ∧B → C by Functional
Substitution and ` B by Functional Variable, so ` A→ C, i.e., ` (∀x . ϕ)→ ϕ[y/x].

We prove (2) and (3) together, by structural induction on t. If t is a variable then
they follow by Functional Variable and, respectively, by (1). Suppose that t is σ(t1, . . . , tn)
for some functional symbol σ, i.e., one for which we have an axiom ∃y . σ(x1, . . . , xn) = y
(De�nition 5.21), and for some appropriate term patterns t1, . . . , tn. By the induction
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hypothesis of (2), we have ` ∃y1 . t1 = y1, . . . , ` ∃yn . tn = yn. By the induction hypothesis
on (3) with x as x1 and ϕ as ∃y . σ(x1, . . . , xn) = y, we derive

` (∀x1 . ∃y . σ(x1, . . . , xn) = y)→ ∃y . σ(t1, . . . , xn) = y

Since ` ∀x1 . ∃y . σ(x1, . . . , xn) = y by the functionality axiom of σ and Universal Gener-
alization, we derive ` ∃y . σ(t1, x2, . . . , xn) = y. By the induction hypothesis on (3) with
x as x2 and ϕ as ∃y . σ(t1, x2, . . . , xn) = y, we derive ` (∀x2 . ∃y . σ(t1, x2, . . . , xn) = y) →
∃y . σ(t1, t2, . . . , xn) = y. Since ` ∀x2 .∃y . σ(t1, x2, . . . , xn) = y by the previous derivation
and Universal Generalization, we derive ` ∃y . σ(t1, t2, x3, . . . , xn) = y. Iterating this process
for all the arguments of σ, we eventually derive ` ∃y . σ(t1, . . . , tn) = y, that is, ` ∃y . t = y.
The only thing left is to prove (3). We prove it similarly to (1), using (2): in the propo-
sitional calculus property at the beginning of the proof, pick A as ∀x . ϕ, B as ∃y . t = y,
and C as ϕ[t/x]. Then ` A ∧ B → C by Functional Substitution and ` B by (2) above, so
` A→ C, i.e., ` (∀x . ϕ)→ ϕ[t/x].

Our approach to obtain a sound and complete proof system for matching logic is to
build upon its reduction to predicate logic with equality in Section 10. Speci�cally, to use
Proposition 10.1 and the complete proof system of predicate logic with equality. Given a
matching logic signature (S,Σ), let (S,ΠΣ) be the predicate logic (with equality) signature
obtained like in Section 10. Besides the PL translation there, we also de�ne a backwards
translation ML of predicate logic with equality (S,ΠΣ)-formulae into (S,Σ)-patterns:

ML(x = r) = x = r
ML(πσ(r1, . . . , rn, r)) = r ∈ σ(r1, . . . , rn)

ML(¬ψ) = ¬ML(ψ)
ML(ψ1 ∧ ψ2) = ML(ψ1) ∧ML(ψ2)

ML(∃x . ψ) = ∃x .ML(ψ)

ML({ψ1, . . . , ψn}) = {ML(ψ1), . . . ,ML(ψn)}
Recall from Section 5.2 that we assume equality and membership in all speci�cations.

Theorem 11.2. The proof system in Figure 5 is sound and complete: F |= ϕ i� F ` ϕ.

Proof. Propositions 2.8 and 5.10 showed the soundness of all rules except for Substitu-
tion. Corollary 5.23 showed the soundness of the stronger Term Substitution. To show
the soundness of Functional Substitution, we show ρ((∀x . ϕ) ∧ (∃y . ϕ′ = y)) ⊆ ρ(ϕ[ϕ′/x])
for any model M and valuation ρ : Var → M . Let s be the sort of ϕ and s′ be the sort
of ϕ′. We have ρ((∀x . ϕ) ∧ (∃y . ϕ′ = y)) =

⋂
{ρ′(ϕ) | ρ′ �Var\{x}= ρ�Var\{x}} ∩

⋃
{Ms |

ρ′�Var\{x}= ρ�Var\{x}, ρ′(ϕ
′) = {ρ′(y)}}. Since y 6∈ FV (ϕ′), it follows that ρ′(ϕ′) = ρ(ϕ′).

Therefore, all we have to show is the following: if ρ(ϕ′) = {a} for some a ∈ Ms′ then⋂
{ρ′(ϕ) | ρ′�Var\{x}= ρ�Var\{x}} ⊆ ρ(ϕ[ϕ′/x]). This holds because ρ(ϕ[ϕ′/x]) = ρ[a/x](ϕ).
We now show the completeness. First, note that Proposition 10.1 and the complete-

ness of predicate logic imply that F |= ϕ i� PL(F ) `=
PL PL(ϕ). Second, note that

PL(F ) `=
PL PL(ϕ) implies ML(PL(F )) ` ML(PL(ϕ)), because the ML translation only

replaces predicates πσ(r1, . . . , rn, r) with r ∈ σ(r1, . . . , rn) and the proof rules of predi-
cate logic, except for Substitution, are a subset of the proof rules in Figure 5, while the
predicate logic Substitution is derivable in matching logic ((1) in Proposition 11.1). Third,
notice that the completeness result holds if we can show F ` ϕ i� F ` ML(PL(ϕ)) for
any pattern ϕ: indeed, if that is the case then F ` ML(PL(F )), which together with
ML(PL(F )) ` ML(PL(ϕ)) implies F ` ML(PL(ϕ)), which further implies F ` ϕ.
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Let us now prove that F ` ϕ i� F ` ML(PL(ϕ)) for any pattern ϕ. We �rst show
` r ∈ ϕ = ML(PL2(ϕ, r)) by induction on ϕ. The cases ϕ ≡ x, ϕ ≡ ¬ϕ′, ϕ ≡ ϕ1 ∧ ϕ2, and
ϕ ≡ ∃y.ϕ′ are immediate consequences of the axioms 9-12 in Figure 5, using the induction
hypothesis and Equality Elimination (rule 7). For the case ϕ ≡ σ(ϕ1, . . . , ϕn), we can �rst
derive ` ML(PL2(ϕ, r)) = ∃r1 · · · ∃rn . r1 ∈ ϕ1 ∧ · · · ∧ rn ∈ ϕn ∧ r ∈ σ(r1, . . . , rn) using
the induction hypothesis and Equality Elimination, and then ` r ∈ ϕ = ∃r1 · · · ∃rn . r1 ∈
ϕ1 ∧ · · · ∧ rn ∈ ϕn ∧ r ∈ σ(r1, . . . , rn) using axiom 13 in Figure 5 and conventional FOL
reasoning. Therefore, ` r ∈ ϕ = ML(PL2(ϕ, r)). Our result now follows by proof rules 8 in
Figure 5, since ML(PL(ϕ)) ≡ ∀r .ML(PL2(ϕ, r)).

As an example, let us informally use the proof system in Figure 5 together with the
axiom patterns in Section 9.2, to derive (1 7→ 5 ∗ 2 7→ 0 ∗ 7 7→ 9 ∗ 8 7→ 1) → list(7, 9 · 5).
For simplicity, like in separation logic, let us assume that the axioms of commutativity,
associativity and idempotence of _ ∗_ are axiom schemas, so we do not need to explicitly
use the substitution rule to instantiate them; in a mechanical veri�cation setting, their
soundness as schemas can be proved separately from the basic axioms.

Recall the following axiom patterns about linked lists with data from Section 9.2:

x 7→ [ε] = emp list(x, ε) = (emp ∧ x = 0)
x 7→ [a, S] = x 7→ a ∗ (x+ 1) 7→ [S] list(x, n · S) = ∃z . x 7→ [n, z] ∗ list(z, S)

Using the left axioms, axioms for sequences in Section 6.1, and axioms of maps, by Functional
Substitution and Equality Elimination (Figure 5) we derive ` 1 7→ 5 ∗ 2 7→ 0 = 1 7→ [5, 0]
and ` 7 7→ 9 ∗ 8 7→ 1 = 7 7→ [9, 1], respectively. By the �rst axiom for list above, `
list(0, ε) = emp. Note that Functional Substitution is equivalent to ` ϕ[ϕ′/y] ∧ (∃y . ϕ′ =
y) → (∃x . ϕ) (by propositional reasoning, e.g., A → B = ¬B → ¬A), so we get ` 1 7→
[5, 0] ∗ list(0, ε)→ (∃z . 1 7→ [5, z] ∗ list(z, ε)), which by the second axiom of list above yields
` 1 7→ [5, 0]∗ list(0, ε)→ list(1, 5). Following similar reasoning for the other binding, we can
construct the following (informal) proof derivation:

1 7→ 5 ∗ 2 7→ 0 ∗ 7 7→ 9 ∗ 8 7→ 1
= 1 7→ [5, 0] ∗ 7 7→ [9, 1]
= 1 7→ [5, 0] ∗ list(0, ε) ∗ 7 7→ [9, 1] (structural framing�Proposition 2.10)
→ (∃z . 1 7→ [5, z] ∗ list(z, ε)) ∗ 7 7→ [9, 1]
= list(1, 5 · ε) ∗ 7 7→ [9, 1]
= list(1, 5) ∗ 7 7→ [9, 1]
→ ∃z . 7 7→ [9, z] ∧ list(z, 5)
= list(7, 9 · 5)

When applying structural framing (Proposition 2.10) above, we assumed the completeness
of the matching logic proof system (Theorem 11.2). It is an insightful exercise to directly
prove Proposition 2.10 with ` instead of |=, without using the completeness theorem but
only the proof rules in Figure 5 (hint: use the membership rules).

The example proof above was neither di�cult nor unexpected, and it followed almost
the same steps as the corresponding separation logic proof. Indeed, in spite of matching
logic's simplicity (recall that its syntax is even simpler than that of FOL: De�nition 2.1) and
domain-independence, it has the necessary expressiveness and capability to carry out proof
derivations for particular domains given as matching logic speci�cations that are as abstract
and intuitive as in logics speci�cally crafted for those domains. Additionally, its patterns
are expressive enough to capture complex structural and logical properties about program
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con�gurations, at the same time giving us the peace of mind that any such properties are
derivable with a uniform, domain-independent proof system.

12. Additional Related Work

Matching logic builds upon intuitions from and relates to at least �ve important logical
frameworks: (1) Relation algebra (RA) (see, e.g., [89]), noticing that our interpretations of
symbols as functions to powersets are equivalent to relations; although our interpretation
of symbols captures better the intended meaning of pattern and matching, and our proof
system is quite di�erent from that of RA, like with FOL we expect a tight relationship
between matching logic and RA, which is left as future work; (2) Partial FOL (see, e.g., [35]
for a recent work and a survey), noticing that our interpretations of symbols into powersets
are more general than partial functions (Section 5.2 shows how we de�ned de�nedness); (3)
Separation logics (SL) (see, e.g.,[68]), which we discussed in Section 9; and (4) Precursors
of matching logic in [81, 84, 85, 86, 80, 27], which proposed the pattern idea by extending
FOL with particular �con�guration� terms (grayed box below is the only change to FOL):

ts ::= x ∈ Vars | σ(t1, . . . , tn) with σ ∈ Σs1...sn,s

ϕ ::= π(x1, . . . , xn) with π ∈ Πs1...sn | ¬ϕ | ϕ ∧ ϕ | ∃x.ϕ
| t ∈ TΣ,Cfg(X)

where TΣ,Cfg(X) is the set of terms of a special sort Cfg (from �con�gurations�) over variables
in set X. To avoid terminology con�icts, we here strengthen the proposal in [79] to call the
variant above topmost matching logic from here on. Topmost matching logic can trivially be
desugared into FOL with equality by regarding a particular pattern predicate t ∈ TΣ,Cfg(X)
as syntactic sugar for �(current state/con�guration is) equal to t�, i.e., � = t. One major
limitation of topmost matching logic, which motivated the generalization in [79] with full
details added in this paper, is that its restriction to patterns of sort Cfg prevented us to
de�ne local patterns (e.g., the heap list pattern) and perform local reasoning. They had to
be de�ned globally, as patterns of sort Cfg with structural frames for everything else except
their target cell (e.g., the heap), which was not only more verbose but also less modular.

The basic idea of regarding terms with variables as sentences/patterns that are satis-
�ed/matched by ground terms, goes back to [59] and it was further studied in [58, 88, 36,
74, 62]. Furthermore, terms enriched with Boolean conditions over their variables, called
constrained terms, were studied in [23], together with their relation to narrowing. These
approaches allow certain Boolean algebra operations to be applied to patterns, and study
the expressiveness of such operations w.r.t. the languages of ground terms that they de�ne,
in particular conditions under which negation can be eliminated. In addition to Boolean
algebra operations and conditions on terms with variables, matching logic also allows quan-
ti�cation over variables, as well as using the resulting patterns nested inside other patterns.
The richer syntax of patterns in matching logic is motivated by needs to specify complex
structures with mixed constraints over program con�gurations, as shown in Section 2.2.
Also, matching logic allows models with any data, not only term models, interprets symbols
as relations with the axiomatic capability to constrain them as functions, and organizes the
patterns and their models in a logic that admits a sound and complete proof system.

The idea of regarding terms as patterns is also reminiscent of pattern calculus [53],
although note that matching logic's patterns are intended to express and reason about static
properties of data-structures or program con�gurations, while pattern calculi are aimed at
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generally and compactly expressing computations and dynamic behaviors of systems. So
far we used rewriting to de�ne dynamic semantics; it would be interesting to explore the
combination of pattern calculus and matching logic for language semantics and reasoning.

13. Conclusion and Future Work

Matching logic is a sound and complete FOL variant that makes no distinction between
function and predicate symbols. Its formulae, called patterns, mix symbols, logical connec-
tives and quanti�ers, and evaluate in models to sets of values, those that �match� them,
instead of just one value as terms do or a truth value as predicates do in FOL. Equality
can be de�ned and several important variants of FOL fall as special fragments. Separation
logic can be framed as a matching logic theory within the particular model of partial �nite-
domain maps, and heap patterns can be elegantly speci�ed using equations. Matching logic
allows spatial speci�cation and reasoning anywhere in a program con�guration, and for any
language, not only in the heap or other particular and �xed semantic components.

We made no e�orts to minimize the number of rules in our proof system (Figure 5),
because our main objective in this paper was to include the proof system for FOL with
equality as part of our proof system, to indicate that conventional reasoning remains valid
and thus automated provers can be used unchanged. It is likely, however, that a minimal
proof system working directly with the de�nedness symbols d_e can be obtained such that
the equality and membership axioms and rules in Figure 5 can be proved as lemmas.

Our completeness result in Section 11 relies heavily on equality and on membership
patterns, whose de�nitions require the existence of the de�nedness symbols d_e. On the
other hand, Proposition 10.1 translates arbitrary matching logic validity to validity in pred-
icate logic with equality, even when there are no de�nedness symbols. Since predicate logic
with equality admits complete deduction, we conjecture that matching logic must admit an
alternative complete proof system which does not rely on de�nedness symbols.

We have not discussed any computationally e�ective fragments of matching logic or
heuristics to automate matching logic deduction. These are crucial for the development
of practical provers and program veri�ers. The systematic study of such fragments and
heuristics is left for future work. Also, complexity results in the style of [21, 1, 16, 51] for
separation logic can likely also be obtained for fragments of matching logic.

Many of the results related to localizing/globalizing reasoning, such as Propositions 2.10,
5.12, and 2.11, extend to monotone/positive contexts, that is, to ones without negations on
the path to the placeholder. While non-monotonic contexts do not seem to occur frequently
in program veri�cation e�orts, it would nevertheless be worthwhile investigating techniques
for the elimination of negation, likely generalizing those in [58, 88, 36], or intuitionistic
variants of matching logic where negation is not allowed at all in patterns.

Finally, the main application of matching logic so far was as a pattern language for reach-
ability logic [28, 27, 80, 85], where reachability rules, which are pairs of patterns ϕ⇒ϕ′, can
be used to specify both operational semantics rules and properties to prove about programs.
Reachability logic has its own (language independent) sound and relatively complete proof
system. We conjecture that we can capture reachability logic as an instance of matching
logic, too, in a similar vein to how we did it for modal logic in Section 8: add some new
symbols with their (axiomatized) semantics and then prove the proof rules of reachability
logic as lemmas/corollaries. For example, we can extend the world models M in Section 8
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with a Kripke transition relation wRw′ by adding a symbol ◦_ ∈ ΣWorld ,World and assum-
ing wRw′ i� w ∈ ◦M (w′), then de�ne ♦ and other CTL or even CTL∗ operators as least
�xed points, and �nally the reachability rules as sugar.
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K implements reachability logic, the same way Maude implements rewriting logic. Since
patterns allow variables and constraints on them in con�gurations, K rewriting becomes
symbolic execution with the semantic rules of the language. Its symbolic execution engine is
connected to the Z3 SMT solver [30]. We next show an example C program veri�ed with our
current implementation of reachability logic in K, mentioning that we have similarly veri�ed
various programs manipulating lists and trees, performing arithmetic and I/O operations,
and implementing sorting algorithms, binary search trees, AVL trees, and the Schorr-Waite
graph marking algorithm. The Matching Logic web page, http://matching-logic.org,
contains an online interface to run MatchC, an instance of our veri�er for C, where users
can try more than 50 existing examples (or upload their own). To simplify writing properties,
MatchC allows users to write reachability rules and invariant patterns as comments in the
C program.

Figure 6 shows the classic list reverse program, together with all the speci�cations that
the user of MatchC has to provide (grayed areas, given as code annotations). MatchC
veri�es this program for full correctness, not only memory safety, in 0.06 seconds. The user-
provided speci�cations are translated into reachability rule proof obligations by MatchC
and then attempted to be proved automatically. The �$� stands for the function body, the
�···� for structural frame variables, the variables starting with �?� are existentially quanti�ed
over the current formula, etc. We do not mean to explain the MatchC notation in detail
here; we only show this example to highlight the fact that reachability logic veri�cation, in

https://en.wikipedia.org/wiki/Abstract_data_type
http://matching-logic.org
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struct listNode { int val; struct listNode *next; };

struct listNode* reverseList(struct listNode *x)

rule 〈$⇒ return ?p; ···〉k 〈··· heap ···〉list(x)(A)⇒ list(?p)(rev(A))

{

struct listNode *p, *y;

p = NULL;

inv 〈··· heap ···〉list(p)(?B), list(x)(?C) ∧ A = rev(?B)@?C

while(x != NULL) {

y = x->next;

x->next = p;

p = x;

x = y;

}

return p;

}

Figure 6: C function reversing a singly-linked list.

spite of being based on �low-level� operational semantics, still allows a comfortable level of
abstraction.

Let A be the rewrite system giving the semantics of the C language, and let C be the set
of reachability rules corresponding to user-provided speci�cations (properties that one wants
to verify, like the grayed ones above). MatchC derives the rules in C using the proof system
in Figure 5. It begins by applying Circularity for each rule in C and reduces the task to
deriving individual sequents of the form A `C ϕ⇒ ϕ′. To prove them, MatchC rewrites ϕ
using rules in A ∪ C searching for a formula that implies ϕ′. Whenever the semantics rule
for if in A cannot apply because its condition is symbolic, a Case Analysis is applied
and formula split into a disjunction. When no rule can be applied, abstraction axioms are
attempted. If application of an abstraction axiom would result into a more concrete formula,
the veri�er applies the respective axiom (for instance, knowing the head of a linked list is
not null results in an automatic list unrolling).

Regarding from reachability logic's perspective, K consists of a collection of heuristics
and optimizations to perform proof search, that is, to derive proof derivations using the
reachability logic proof system. For example, suppose that the initial con�guration pattern
is all concrete/ground (i.e., when it contains no variables) and that K is requested to use
its rewrite engine to simply execute the program in its initial state. In terms of proof
derivation with the one-path reachability proof system in Figure 5 and its more general
variant in [80], this corresponds to a derivation of a one-path reachability rule. If K is
requested to search the entire con�guration-space to �nd all the con�gurations that can be
reached as a consequence of a non-deterministic semantics, that corresponds to a derivation
of an all-path reachability rule using the generalized proof system in [27]. Similarly, when
using K `s model-checking capabilities or when deductively verifying programs like above,
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all we do can be framed in terms of deriving proofs using a rigorously de�ned sound and
relatively complete proof system.

13.1. Structural Framing. Heap framing is a major outcome of the use of separation logic
for program veri�cation, since it enables local reasoning:

` {ϕpre} c {ϕpost} implies4 ` {ϕpre ∗ ϕ} c {ϕpost ∗ ϕ}
Matching logic can be identically used instead of separation logic in axiomatic semantics.
In particular, the heap framing rule above would stay unchanged. However, if used in
combination with reachability logic [80, 27], matching logic enables us to develop more
�exible and more general types of framing. Regarding �exibility, note that we may not
always want to automatically assume heap framing (e.g., when memory is �nite�embedded
systems, device drivers, etc.�, or when the language has functions like getTotalMemory()
returning the available memory). Regarding generality, we may want similar framing rules
for other semantic cells in the program con�guration, such as input/output bu�ers, exception
stacks, thread resources, etc.

Consider the (semantic) rewrite rule of assignment in a C-like language, whose con-
�guration contains an environment map from variables to locations and a heap map from
locations to values (say due to the �address� construct &):

〈〈x = v;R〉k 〈x 7→ l ∗ e〉env 〈l 7→ _ ∗ h〉heap c〉cfg
⇒ 〈〈 R〉k 〈x 7→ l ∗ e〉env 〈l 7→ v ∗ h〉heap c〉cfg

The variables R, e, h and c can all be thought of as structural frames: R is the code frame,
e is the environment frame, h is the heap frame, and c is the con�guration frame. The
assignment rule above says that the value at the location l of x in the heap changes to v
regardless of what the structural frames match.

The same speci�cation style extends to arbitrary reachability properties, without a need
to de�ne an axiomatic semantics. For example, the (pre-/post-condition) speci�cation of
the function in Fig. 2 can be stated as the following rule between patterns:

〈〈body;R〉k〈n 7→ l ∗ e〉env〈l 7→n ∗ h〉heap〈A, I〉in〈O〉out c〉cfg
∧ n = len(A)

⇒ ∃n′.〈〈R〉k〈n 7→ l ∗ e〉env〈l 7→n′ ∗ h〉heap〈I〉in〈O, rev(A)〉out c〉cfg
If we want to also state that n is not modi�ed, then we remove the existential quanti�er
and replace n′ with n. If we want to say, for whatever reason, that the heap must be empty
when this function is invoked, then we remove the heap frame h. If we want to state that the
size of the available memory must be larger than a certain limit, then we add the constraint
size(h) ≥ limit to the LHS pattern. Similarly for the other structural frames, O, I, and
c. It should be clear that this gives us signi�cant power in what kind of properties we can
specify. Reachability logic [80, 27] provides a language-independent sound and relatively
complete proof system to derive such reachability rules, starting with the formal operational
semantics of the language.

If a language semantics is so that structural framing in a particular semantic cell is
always sound, say in the 〈...〉heap cell, then one can prove a property �〈〈h1〉heap c1〉cfg ⇒
〈〈h2〉heap c2〉cfg implies 〈〈h1 ∗ h〉heap c1〉cfg⇒〈〈h2 ∗ h〉heap c2〉cfg when side-condition�. Such a
property can be proved, e.g., when all semantic rules use an unconstrained heap frame h (like

4Depending on the language, the rule may also have side conditions on the locations accessed by c and
ϕ, but those are irrelevant for our discussion here.
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in the assignment rule above). However, such a rule would not hold in a language providing,
e.g., a construct that returns the size of the available memory. It is worth mentioning
that although possible, such structural framing rules are unnecessary. That is because the
structural frames are plain �rst-order variables that obey the general pattern matching
principles like the other variables, so nothing special needs to be done about them. Indeed,
in MatchC, the only di�erence between a framed and an unframed variant of a property is
the use of �. . . �.

14. Others
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14.1. Binders.
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