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ABSTRACT

In this paper, we present a formal verification tool for the Ethereum
Virtual Machine (EVM) bytecode. To precisely reason about all
possible behaviors of the EVM bytecode, we adopted KEVM, a
complete formal semantics of the EVM, and instantiated the K-
framework’s reachability logic theorem prover to generate a correct-
by-construction deductive verifier for the EVM. We further opti-
mized the verifier by introducing EVM-specific abstractions and
lemmas to improve its scalability. Our EVM verifier has been used
to verify various high-profile smart contracts including the ERC20
token, Ethereum Casper, and DappHub MakerDAO contracts.
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1 INTRODUCTION

Smart contract failures have caused millions of dollars of lost funds,
and rigorous formal methods are required to ensure the correctness
and security of contract implementations.” The smart contract is

!https://blog.ethereum.org/2016/06/19/thinking-smart-contract-security/
Zhttps://blog.ethereum.org/2016/09/01/formal-methods-roadmap/
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usually written in a high-level language such as Solidity® or Vyper?,
and then it is compiled down to the Ethereum Virtual Machine
(EVM) bytecode® that actually runs on the blockchain.

In this paper, we present a formal verification tool for the EVM
bytecode. We chose the EVM bytecode as the verification target
language so that we can directly verify what is actually executed
without the need to trust the correctness of the compiler. To pre-
cisely reason about the EVM bytecode without missing any EVM
quirks, we adopted KEVM [4], a complete formal semantics of the
EVM, and instantiated the K-framework’s reachability logic the-
orem prover [10] to generate a correct-by-construction deductive
program verifier for the EVM. While it is sound, the initial out-
of-box EVM verifier was relatively slow and failed to prove many
correct programs. We further optimized the verifier by introducing
custom abstractions and lemmas specific to EVM that expedite proof
searching in the underlying theorem prover. We have been using the
EVM verifier to verify the full functional correctness of high-profile
smart contracts including multiple ERC20 token contracts [13],
Ethereum’s Casper® contract, and DappHub’s MakerDAO’ con-
tract. Our verification tool and artifact is publicly available at [11].

Contributions. We describe our primary contributions:

e We present a formal verification tool for the EVM bytecode
that is capable and scalable enough to verify various high-
profile, safe-critical smart contracts. Moreover, our verifier
is the first tool, to the best of our knowledge, that adopts a
complete formal semantics of EVM, being able to completely
reason about all possible corner-case behaviors of the EVM
bytecode. See Section 5 for comparison to other tools.

e We enumerate important, concrete challenges in verifying
the EVM bytecode, and propose EVM-specific abstractions
and lemmas to mitigate the challenges. (Section 2 & 3)

e We present a case study of completely verifying high-profile
ERC20 token contracts. We enumerate divergent behaviors
we found across these tokens, illuminating potential secu-
rity vulnerabilities for any API clients assuming consistent
behavior across ERC20 implementations. (Section 4)

3http://solidity.readthedocs.io/en/v0.4.24/
4https://vyper.readthedocs.io/en/latest/index.html
Shttp://yellowpaper.io/
Chttps://eips.ethereum.org/EIPS/eip-1011
"https://makerdao.com/


https://youtu.be/4XBcAclq0Vk
https://doi.org/10.1145/3236024.3264591
https://blog.ethereum.org/2016/06/19/thinking-smart-contract-security/
https://blog.ethereum.org/2016/09/01/formal-methods-roadmap/
https://doi.org/10.1145/3236024.3264591
http://solidity.readthedocs.io/en/v0.4.24/
https://vyper.readthedocs.io/en/latest/index.html
http://yellowpaper.io/
https://eips.ethereum.org/EIPS/eip-1011
https://makerdao.com/

ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

2 EVM VERIFICATION CHALLENGES

Verifying the EVM bytecode is challenging, especially due to the
internal byte-manipulation operations that require non-linear inte-
ger arithmetic reasoning, which is undecidable in general [7]. Here
we provide a few examples of the challenges.

Byte-Manipulation Operations. The EVM provides three types of
storage structures: a local memory, a local stack, and the global stor-
age. Of these, only the local memory is byte-addressable (i.e., repre-
sented as an array of bytes), while the others are word-addressable
(i.e., each represented as an array of 32-byte words). Thus, a 32-byte
(i.e., 256-bit) word needs to be split into 32 chunks of bytes to be
stored in the local memory, and those 32 chunks need to be merged
back to be loaded in either the local stack or the global storage.
These byte-wise splitting and merging operations can be formal-
ized using non-linear integer arithmetic operations, as follows.®
Suppose x is a 256-bit integer. Let x;, be the nth byte of x in its two’s
complement representation, where the index 0 refers to the least
significant bit (LSB), defined as follows:

def
xn = (x/256"™) mod 256
Let merge be a function that takes as input a list of bytes and re-
turns the corresponding integer value under the two’s complement
interpretation, recursively defined as:

def . .
merge(x; -+ - Xj+1xj) = merge(x;---Xj+1) * 256 + x; wheni > j

def
merge(x;) = x;j

where * and + are multiplication and addition over words (modulo
2%56). If the byte-wise operations are blindly encoded as SMT theo-
rems, then Z3, a state-of-the-art SMT solver, times out attempting
to prove “x = merge(xs; - - - x9)”. The SMT query can be simplified
to allow Z3 to efficiently terminate, for example, by omitting the
modulo reduction for multiplication and addition in merge with
additional reasoning about the soundness of the omission. Despite
these improvements, the merge operation still incurs severe perfor-
mance penalties as solving the large formula is required for every
load/store into memory, an extremely common operation.

Arithmetic Overflow. Since EVM arithmetic instructions perform
modular arithmetic (i.e., +, —, *, / mod 2256), detecting arithmetic
overflow is critical for preventing potential security holes due to an
unexpected overflow. Otherwise, for example, increasing a user’s
token balance could trigger an overflow, resulting in loss of the
funds as the balance wraps around to a lower-than-expected value.
There is no standard EVM-level overflow check, so the overflow
detection varies across compilers and libraries. For example, the
Vyper compiler inserts the following runtime check for an addition
a + b over the 256-bit unsigned integers a and b:

b==01]]la+b>a

where + represents addition modulo 22%. It seems straightforward
to show that the above formula is equivalent to a+b < 225 (where
+ is the pure addition without modulo reduction), but it is no longer

81t is also possible to formalize the byte-manipulation using the bit-vector theory,
but the formalization using the mathematical integer theory has an advantage of the
functional specifications being succinct. Indeed, the KEVM semantics adopted the
integer formalization because of the advantage.
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trivial once the above is compiled down to EVM. The compiled
EVM bytecode of the above conditional expression can be encoded
in the SMT-LIB format as follows:

(not (= (chop (+ (bool2int (= b @))

(bool2int (> (chop (+ a b)) a)))) 0))
where (chop x) denotes (x mod 22°%), and (bool2int x) is de-
fined by (ite x 1 0).However, Z3 fails (timeout) to prove that
the above SMT formula is equivalent to a + b < 22%.

Hash Collision. Precise reasoning about the SHA3 hash” is criti-
cal. Since it is not practical to consider the hash algorithm details
every time the hash function is called in the EVM bytecode, an
abstraction for the hash function is required. Designing a sound
but efficient abstraction is not trivial because while the SHA3 hash
is not cryptographically collision-free, the contract developers as-
sume collisions will not occur during normal execution of their
contracts.'” A naive way of capturing the assumption would be to
simply abstract the SHA3 hash as an injective function. However, it
is not sound simply because of the pigeonhole principle, and thus
we need to be careful when abstracting the hash function.

3 EVM-SPECIFIC ABSTRACTIONS

K’s reachability logic theorem prover can be seen as a symbolic
model checker equipped with coinductive reasoning about loops
and recursions (refer to [10] for details of the underlying theory
and implementation). The prover, in its current form, often dele-
gates domain reasoning to SMT solvers. The performance of the
underlying SMT solvers is critical for the overall performance. The
domain reasoning involved in the EVM bytecode verification is not
tractable in many cases, especially due to non-linear integer arith-
metic. We had to design custom abstractions and lemmas to avoid
the non-tractable domain reasoning and improve the scalability.

Abstraction for Local Memory. We present an abstraction for the
EVM local memory to allow word-level reasoning. As mentioned
in Section 2, since the local memory is byte-addressable, the load
and store operations involve the conversion between a word and
a list of bytes, which is not tractable to reason about in general.
Our abstraction helps to make the reasoning easier by abstracting
away the byte-manipulation details of the conversion. Specifically,
we introduce uninterpreted function abstractions and lemmas for
word-level reasoning as follows.

The term nthByteOf(v, i, n) represents the i byte of the two’s
complement representation of v in n bytes (0 being the most signif-
icant bit), with discarding high-order bytes when v does not fit in
n bytes. Precisely, it is defined as follows:

nthByteOf(v, i, n) = nthByteOf(|v/256],i,n —1) whenn >i+1

nthByteOf(v,i,n) = v mod 256 whenn=i+1

However, we want to keep it uninterpreted (i.e., do not unfold the
definition) when the arguments are symbolic, to avoid the expensive
non-linear arithmetic reasoning.

We introduce lemmas over the uninterpreted functional terms.
The following lemmas are used for symbolic reasoning about MLOAD

“https://keccak.team/index.html
10The assumption is not unreasonable, as virtually all blockchains rely heavily on the
collision-resistance of hash functions.
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and MSTORE instructions. They capture the essential mechanisms
used by the two instructions: splitting a word into a list of bytes
and merging it back into the word. First, we have the bound of
nthByteOf(v, i, n) by definition: 0 < nthByteOf(v,i,n) < 256.
Then we have the following lemma for the merging operation:

merge(nthByteOf(v, 0, n) - - - nthByteOf(v,n — 1,n)) = v
ifo<v<2and1<n<32
Refer to [11] for the other lemmas of the memory abstraction.

Abstraction for Hash. We do not model the hash function as an
injective function simply because it is not true due to the pigeonhole
principle. Instead, we abstract it as an uninterpreted function, hash,
that takes as input a list of bytes and returns an (unsigned) integer:

hash : {0,---,255}* - N

Note that this abstraction allows the possibility of hash collision.
However, one can avoid reasoning about the potential collision
by assuming all the hashed values appearing in each execution
trace are collision-free. This can be achieved by instantiating the
injectivity property only for the terms appearing in the symbolic
execution, in a way analogous to universal quantifier instantiation.

Arithmetic Simplification Rules. We introduce simplification rules,
specific to EVM, that capture arithmetic properties, which reduce a
given term into a smaller one. These rules help to improve the per-
formance of the underlying theorem prover’s symbolic reasoning.
For example, we have the following simplification rule:

(xxy)/y=x ify+#0

where / is the integer division.!! We also have a rule for the masking
operation, Oxff - - - f & n, as follows:

m&n=n ifm+1=2"8Mando<n<m

where & is the bitwise AND operator, and m denotes a bitmask
Oxff-.-f.Refer to [11] for other simplification rules.

4 CASE STUDY: ERC20 VERIFICATION

We present a case study of completely verifying high-profile, prac-
tically deployed implementations of the ERC20 token contract [13],
one of the most popular Ethereum smart contracts that provides
the essential functionality of maintaining and exchanging tokens.

4.1 Formal Specification

The ERC20 standard [13] informally specifies the correctness prop-
erties that ERC20 token contracts must satisfy. Unfortunately, how-
ever, it leaves several corner cases unspecified, which makes it less
than ideal to use in the formal verification of token contracts.

We specified ERC20-K [9], a complete formalization of the high-
level business logic of the ERC20 standard, in the K framework.
ERC20-K clarifies what data (e.g., balances and allowances) are
handled by the various ERC20 functions and the precise meaning of
those functions on such data. ERC20-K also clarifies the meaning of
all the corner cases that the ERC20 standard omits to discuss, such
as transfers to itself or transfers that result in arithmetic overflows,
Note that Z3 fails to prove this seemingly trivial formula at the time of this writing.

Indeed, this issue has been fixed in the develop branch, once reported by the authors
of this paper: https://github.com/Z3Prover/z3/issues/1683
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[transfer-success]
callData: #abiCallData("transfer", #address(T0), #uint256(VALUE))
statusCode: _ => EVMC_SUCCESS
output: _ => #asByteStackInWidth(1, 32)
log: ... (. => #abiEventLog(FROM, "Transfer",
#indexed (#address(FROM)), #indexed(#address(T0)), #uint256(VALUE))))

storage:

#hashedLocation({BALANCES}, FROM) |-> (BAL_FROM => BAL_FROM -Int VALUE)

#hashedLocation({BALANCES}, TO) |-> (BAL_TO => BAL_TO +Int VALUE)

requires:
andBool FROM =/=Int TO
andBool VALUE <=Int BAL_FROM
andBool BAL_TO +Int VALUE <Int (2 *Int 256)

[transfer-failure]

callData: #abiCallData("transfer", #address(TO), #uint256(VALUE))

statusCode: _ => EVMC_REVERT

output: _ => _

log: ...

storage:
#hashedLocation ({BALANCES}, FROM) |-> BAL_FROM
#hashedLocation({BALANCES}, TO)  |-> BAL_TO

requires:
andBool FROM =/=Int TO
andBool ( VALUE >Int BAL_FROM
orBool  BAL_TO +Int VALUE >=Int (2 *Int 256) )

Figure 1: Formal specification of transfer function

following the most natural implementations that aim at minimizing
gas consumption. The complete specifications are available at [9].

Figure 1, for example, shows part of the (simplified) specifi-
cation of transfer. It specifies two possible behaviors: success
and failure.'? For each case, it specifies the function parameters
(callData), the return value (output), whether an exception oc-
curred (statusCode), the log generated (1og), the storage update
(storage), and the path-condition (requires). Specifically, the suc-
cess case (denoted by [transfer-success]) specifies that the func-
tion succeeds in transferring the VALUE tokens from the FROM ac-
count to the TO account, with generating the corresponding log mes-
sage, and returns 1 (i.e., true), if no overflow occurs (i.e., the FROM ac-
count has a sufficient balance, and the TO account has enough room
to receive the tokens). The failure case ([ transfer-failure]) spec-
ifies that the function throws an exception without modifying the
account balances, if an overflow occurs.

4.2 Formal Verification

For this case study, we consider three ERC20 token implementations:
the Vyper ERC20 token'?, the HackerGold (HKG) ERC20 token'?,
and OpenZeppelin’s ERC20 token'”. Of these, the Vyper ERC20
token is written in Vyper, and the others are written in Solidity.
We compiled the source code down to the EVM bytecode using
each language compiler, and executed our verifier to verify that the
compiled EVM bytecode satisfies the aforementioned specification.

12t ransfer admits four possible behaviors: success and failure of regular transfer (i.e.,
FROM # T0), and success and failure of self-transfer (i.e., FROM = T0). Here we omit the
self-transfer behaviors due to space limit. Refer to [9] for the complete specification.
Bhttps://github.com/ethereum/vyper/blob/master/examples/tokens/ERC20_
solidity _compatible/ERC20.vy
Yhttps://github.com/ether-camp/virtual-accelerator/blob/master/contracts/
StandardToken.sol
Bhttps://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/
token/ERC20/StandardToken.sol
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Table 1: Verification time (secs) of ERC20 token contracts

Vyper HKG Zeppln. Vyper HKG Zeppln.
totalSupply 36.4 N/A 343 approve 339 484 354
balanceOf 333 373 37.1 transfer 148.5 198.5 219.7
allowance 36.4 423 39.6 transferFrom 174.4 257.6 179.2

During this verification process, we found divergent behaviors
across these contracts that do not conform to the ERC20 standard.
Due to the deviation from the standard, we could not verify those
contracts against the original ERC20-K specification. In order to
show that they are “correct” w.r.t. the original specification modulo
the deviation, we modified the specification to capture the deviation
and successfully verified them against the modified specification.
Table 1 provides the performance of the verifier. Below we describe
the results.

Vyper ERC20 Token. The Vyper ERC20 token is successfully veri-
fied against the original specification, implying its full conformance
to the ERC20 standard.

HackerGold (HKG) ERC20 Token. In addition to the well-known
security vulnerability of the HKG token,!® we found that the HKG
token implementation deviates from our specification as follows:

o No totalSupply function: No totalSupply function is pro-
vided in the HKG token, which is not compliant to the ERC20
standard.

o Returning false in failure: It returns false instead of throwing
an exception in the failure cases for both transfer and
transferFrom. It does not violate the standard, as throwing
an exception is recommended but not mandatory according
to the ERC20 standard.

o Rejecting transfers of 0 values: It does not allow transferring
0 values, returning false immediately without logging any
event. It is not compliant to the standard. This is a poten-
tial security vulnerability for any API clients assuming the
ERC20-compliant behavior.

e No overflow protection: It does not check arithmetic over-
flow, resulting in the receiver’s balance wrapping around
the 256-bit unsigned integer’s maximum value in case of the
overflow. It does not violate the standard, as the standard
does not specify any requirement regarding it. However, it
is potentially vulnerable, since it will result in loss of the
funds in case of the overflow as the receiver’s balance wraps
around to a lower-than-expected value.

OpenZeppelin ERC20 Token. The OpenZeppelin ERC20 token is

a high-profile ERC20 token library developed by the security audit

consulting firm Zeppelin'”. We found that the OpenZeppelin token
deviates from the ERC20-K specification as follows:

® Rejecting transfers to address 0: It does not allow transferring

to address 0, throwing an exception immediately. It does not

violate the standard, as the standard does not specify any

requirement regarding it. However, it is questionable since

6https://www.ethnews.com/ethercamps-hkg-token-has-a-bug-and-needs-to-be-reissued

Note that the token contract had been manually audited by Zeppelin, but they failed
to find the vulnerability, which implies the need of the rigorous formal verification.
Thttps://zeppelin.solutions/security-audits
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while there are many other invalid addresses to which a
transfer should not be made, it is not clear how useful reject-
ing a single invalid address is, at the cost of the additional
gas consumption for every transfer transaction.

5 RELATED WORK

While there exist several static analysis tools [5, 6, 8, 12] tailored to
check certain predefined properties, here we consider, due to space
limit, only the verification tools backed by a full-fledged theorem
prover that allows to reason about arbitrary (full functional correct-
ness) properties. Specifically, Bhargavan et al. [2] and Grishchenko
et al. [3] presented a verification tool based on the F* proof assis-
tant, and Amani et al. [1] presented a tool based on Isabelle/HOL.
These tools, however, adopt only a partial, incomplete semantics of
EVM, and thus may miss certain critical corner-case behaviors of
the EVM bytecode, which could undermine the soundness of the
verifiers. Our EVM verifier, on the other hand, is a verification tool
derived from a complete and thoroughly tested formal semantics of
EVM [4], for the first time to the best of our knowledge.
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