Matching p-Logic: Foundation of K Framework

Xijaohong Chen

University of Illinois at Urbana-Champaign, USA
http://fsl.cs.illinois.edu/~xchen
xc3@illinois.edu

Grigore Rosu

University of Illinois at Urbana-Champaign, USA
http://fsl.cs.illinois.edu/~grosu
grosu@illinois.edu

—— Abstract

K framework is an effort in realizing the ideal language framework where programming languages

must have formal semantics and all languages tools are automatically generated from the formal
semantics in a correct-by-construction manner at no additional costs. In this extended abstract,
we present matching p-logic as the foundation of K and discuss some of its applications in defining
constructors, transition systems, modal pu-logic and temporal logic variants, and reachability logic.

2012 ACM Subject Classification Theory of computation — Logic
Keywords and phrases Matching p-logic, Program verification, Reachability logic

Digital Object Identifier 10.4230/LIPIcs.CALCO.2019.1

Category Invited Paper

1 Introduction

In an ideal language framework, all programming languages must have formal semantics
and all language tools are automatically generated from the formal semantics in a correct-
by-construction manner at no additional costs. K framework (www.kframework.org) is an
almost 20-year continuous effort in realizing the ideal language framework. Many real-world
languages such as C [5], Java [1], JavaScript [9] as well as the emerging blockchain languages
such as EVM [6], have had their formal semantics successfully defined in K and language tools
such as parsers, interpreters, and deductive verifiers have been automatically generated by K.

In terms of program verification, K adopts a language-independent approach that is
different from the classic language-specific approaches such as Hoare-style verification [7],
where different languages have different program logics and thus different verifiers. Instead,
the current K implementation uses matching logic [10] to specify static structures of programs
and reachability logic [11] to reason about dynamic reachability properties for all languages.
Formal semantics are given as theories in these logics, so their fixed and thus language-
independent proof systems achieve semantic-based program verification for all languages [4].

As its name suggests, reachability logic can only express reachability properties, which
limits K to verifying, for instance, liveness properties, which are beyond reachability logic
but can naturally be expressed in temporal logics such as linear temporal logic (LTL) or
computation tree logic (CTL). To overcome this limitation, we recently proposed matching
p-logic [2], which is a powerful logic that subsumes not only matching logic and reachability
logic, but also first-order logic with least fixpoints, modal p-logic, many variants of temporal
logics, dynamic logic, and others (see Fig. 1). This demonstrates that matching p-logic can
serve as the uniform foundation of an ideal language framework.

Here we only present matching u-logic by examples and show its application in specifying
and reasoning about constructors, transition systems, and reachability. For more details
see [2, 3].

? Xiaohong Chen anfi Grigore R0§u;.

5v icensed under Creative Commons License CC-BY
8th Conference on Algebra and Coalgebra in Computer Science (CALCO 2019).
Editors: Markus Roggenbach and Ana Sokolova; Article No. 1; pp. 1:1-1:4

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://fsl.cs.illinois.edu/~xchen
mailto:xc3@illinois.edu
http://fsl.cs.illinois.edu/~grosu
mailto:grosu@illinois.edu
https://doi.org/10.4230/LIPIcs.CALCO.2019.1
www.kframework.org
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2

Matching p-Logic: Foundation of K Framework

Matching mu-Logic
Reachability Logic

First-Order Logic with
Least Fixpoints

Seperation Logic with
Recursive Definitions

Modal mu-Logic

Temporal Logics
(LTL,CTL,CTL*....)

Hoare Logic

Dynamic Logic

Matching Logic

Polyadic and/or
Hybrid Modal Logic

Normal Modal Logic

Separatlon Logic

First-Order Logic

Propositional Logic

Figure 1 Many popular logics can be defined in matching p-logic as theories and notations [2]; the
current K implementation (denoted as the node labeled “K”) is so far the best effort in implementing
reachability logic reasoning and will eventually be lifted to the same level as matching p-logic.

2 Matching pu-Logic Examples

Preliminaries and basic examples

Matching logic (the version without) is a variant of many-sorted first-order logic (FOL)
which makes no distinction between functions and predicates but uses symbols to uniformly
build patterns that can represent static structures, dynamic properties, and logic constraints.
Matching p-logic extends matching logic with the least fixpoint p-binder as in modal u-
logic [8], which can build inductive patterns to represent inductive and co-inductive data
structures and recursive properties and logical constraints.

Intuitively speaking, a pattern evaluates to the set of elements matching it. For example:

z, called an element variable, is matched by exactly one element x;

X, called a set variable, is matched by any set X of elements;

succ(z) is matched by the successor(s) of z; here succ is a symbol that builds structures;

Jz. succ(x) is matched by the successor of some z, i.e., all successors;

zero V 3x. succ(zx) is matched by either zero or successors;

T = Ja.x is matched by x for some z, i.e., everything; | = =T is matched by nothing;

list(x) is matched by all linked lists in the heap starting at pointer x; list is also a symbol;

list(x) A prime(x), same as above but with prime z;

uN . zero V succ(N) is matched by all natural numbers zero, succ(zero), succ(succ(zero)),

; this is because the p-binder denotes the least set N w.r.t. set containment such that
N = zero V succ(N); in other words, N is the least set closed under zero and succ.

Constructors

The last example above uN . zero V succ(N) that is matched by all natural numbers can be
easily generalized to deal with any constructor set C' = {¢; | ¢; is a constructor of arity n;},
where the pattern uD.\/ - ci(D,..., D) evaluates to the least set that is closed under all
o W—’

n; times
constructors in C, yielding the set of all terms generated by C.

X. Chen and G. Rosu

Transition systems and temporal logics

A transition system (S, R) is a pair of a state set .S and a transition relation R C S x S. In
matching p-logic, transition systems can be captured by one unary symbol e called one-path
next (we write ep instead of e(p)) with the intended interpretation that ey is matched by
all predecessors of those matching :

s 5oy &g // states

e °p ® // patterns

In other words, a state matches ey iff it has one next state that matches . Its dual all-path
next op = —e—p is matched by those states whose next states all match ¢ (see Fig. 2).
We can define patterns that represent more complex dynamic properties. For example,
o T is matched by all non-terminal states;
ol is matched by all terminal states;
Op = uX.pVeX is matched by all states that eventually reach ¢ on some path;
Up = v X .pAoX is matched by all states that always stay in ¢ on all paths; v-binder is the
dual of p-binder that builds greatest fixpoints instead of least fixpoints, defined as usual:
vX.p=-puX.-p[-X/X] where_[/_]is the standard capture-avoiding substitution;
WF = X .0X is matched by all states that are well-founded, i.e., have no infinite paths.

oy

oy

Figure 2 One/All-path next.

We point out that the above definitions are standard definitions in modal u-logic. Since,
as is well known, modal p-logic subsumes many variants of temporal logic such as LTL and
CTL and that matching p-logic subsumes modal p-logic (see [2, Section VII]), there is no
surprise that matching p-logic also subsumes LTL and CTL. What is interesting is that
it only requires a few natural and intuitive axioms to faithfully capture LTL and CTL in
matching p-logic, as summarized below:

Target logic Assumption on traces Axioms required in matching p-logic
Modal p-logic Any traces, no assumptions No axioms

Infinite-trace LTL Infinite and linear traces (InF) + (LIN)

Finite-trace LTL Finite and linear traces (FIN) + (LIN)

CTL Infinite traces (INF)

where (INF) is the pattern/axiom eT stating that all states are non-terminal states, (FIN) is
the pattern/axiom WF = pX .oX stating that all states are well-founded, and (LIN) is the
pattern/axiom X — oX enforcing the linear paths: X holds on one next state implies X
holds on all next states.

In conclusion, modal p-logic is the empty theory over a unary symbol e that contains no
axioms. Adding (INF) yields precisely CTL. Adding (INF) yields precisely infinite-trace LTL
and replacing (INF) with (FIN) yields finite-trace LTL. Therefore, matching p-logic over the
one-path next symbol e gives a playground for defining variants of temporal logics.

1:3

CALCO 2019

1:4

Matching p-Logic: Foundation of K Framework

Reachability logic

Our last example is to define reachability properties ¢ = ¢/, called reachability rules [11], in
matching p-logic using the one-path next symbol. Here, ¢ and ¢’ are matching logic patterns
not containing u that are matched by program configurations. The semantics of ¢ = ¢’ is
that for every configuration v that matches ¢, either it reaches some configuration v’ that
matches ¢’ in finitely many steps, or it is not well-founded. In other words, reachability is
like a “weak” eventuality statement that applies to only well-founded states. This suggests to
define the derived construct “weak eventually” (.,,% = v X .9V eX, which is like the definition
of the normal eventually {1 but replacing p by v, and define p = ¢’ = v — O,,¢'. We can
prove that Q,,% = O¢p V -WF, i.e., it indeed captures the semantics of (partial correctness)
reachability, and thus our definition of reachability logic is faithful.

3 Conclusion

In this extended abstract, we presented matching p-logic as the foundation of K and discussed
some of its applications to defining constructors, transition systems, modal pu-logic and
temporal logic variants, and finally reachability logic.

—— References

1 Denis Bogdanas and Grigore Rosu. K-Java: A complete semantics of Java. In Proceedings
of the 42" Symposium on Principles of Programming Languages (POPL’15), pages 445-456.
ACM, 2015.

2 Xiaohong Chen and Grigore Rosu. Matching u-logic. In Proceedings of the 34™ Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS’19), 2019.

3 Xiaohong Chen and Grigore Rosu. Matching p-logic. Technical report, University of Illinois
at Urbana-Champaign, 2019. URL: http://hdl.handle.net/2142/102281.

4 Andrei Stefanescu, Daejun Park, Shijiao Yuwen, Yilong Li, and Grigore Rogu. Semantics-based
program verifiers for all languages. In Proceedings of the 2016 ACM SIGPLAN Interna-
tional Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA’16), pages 74-91. ACM, 2016.

5 Chris Hathhorn, Chucky Ellison, and Grigore Rogu. Defining the undefinedness of C. In
Proceedings of the 86" annual ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI’15), pages 336-345. ACM, 2015.

6 Everett Hildenbrandt, Manasvi Saxena, Xiaoran Zhu, Nishant Rodrigues, Philip Daian,
Dwight Guth, Brandon Moore, Yi Zhang, Daejun Park, Andrei Stefinescu, and Grigore
Rosu. KEVM: A complete semantics of the Ethereum virtual machine. In Proceedings of
the 2018 IEEE Computer Security Foundations Symposium (CSF’18). IEEE, 2018. URL:
http://jellopaper.org.

7 C. A.R. Hoare. An axiomatic basis for computer programming. Communications of the ACM,
12(10):576-580, 1969.

8 Dexter Kozen. Results on the propositional p-calculus. In Proceedings of the 9™ International
Colloquium on Automata, Languages and Programming (ICALP’82), pages 348-359. Springer,
1982.

9 Daejun Park, Andrei Stefanescu, and Grigore Rosu. KJS: A complete formal semantics of
JavaScript. In Proceedings of the 36" annual ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’15), pages 346-356. ACM, 2015.

10 Grigore Rogu. Matching logic. Logical Methods in Computer Science, 13(4):1-61, 2017.

11 Grigore Rosu, Andrei Stefanescu, Stefan Ciobaca, and Brandon M. Moore. One-path reachab-
ility logic. In Proceedings of the 28™ Symposium on Logic in Computer Science (LICS’13),
pages 358-367. IEEE, 2013.

http://hdl.handle.net/2142/102281
http://jellopaper.org

	Introduction
	Matching mu-Logic Examples
	Conclusion

