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Abstract—Matching logic is a logic for specifying and reasoning
about structure by means of patterns and pattern matching. This
paper makes two contributions. First, it proposes a sound and
complete proof system for matching logic in its full generality.
Previously, sound and complete deduction for matching logic
was known only for particular theories providing equality and
membership. Second, it proposes matching µ-logic, an extension
of matching logic with a least fixpoint µ-binder. It is shown that
matching µ-logic captures as special instances many important
logics in mathematics and computer science, including first-order
logic with least fixpoints, modal µ-logic as well as dynamic
logic and various temporal logics such as infinite/finite-trace
linear temporal logic and computation tree logic, and notably
reachability logic, the underlying logic of the K framework for
programming language semantics and formal analysis. Matching
µ-logic therefore serves as a unifying foundation for specifying
and reasoning about fixpoints and induction, programming
languages and program specification and verification.

I. Introduction
Matching logic [1] (shortened as ML) is a first-order logic

(FOL) variant for specifying and reasoning about structure by
means of patterns and pattern matching. In the practice of
program verification, ML is used to specify static properties
of programs in reachability logic [2] (shortened as RL), which
takes an operational semantics of a programming language as
axioms and yields a program verifier that can prove any reach-
ability properties of any programs written in that language. As
a successful implementation of ML and RL, the K framework
(http://kframework.org) has been used to define the formal
semantics of various real languages such as C [3], Java [4],
JavaScript [5], and to verify complex program properties [6].

A sound and complete Hilbert-style proof system P of
ML is given in [1], whose proof of completeness is by a
reduction to pure predicate logic. However, the proof system P
is only applicable to theories where a set of special definedness
symbols are given together with appropriate axioms, which can
be used to define both equality and membership as derived
constructs. This leaves the question of whether there is any
proof system of ML that is applicable to all theories, open.
Our first contribution is to answer this question by proposing
a new proof system H of ML, and show that it is (locally)
complete without requiring definedness or any other symbols.

Our second and main contribution was stimulated by limita-
tions of RL itself as a logic to reason about dynamic behavior
of programs. Specifically, as its name suggests, RL can only
define and reason about reachability claims. In particular, it

is not capable of expressing liveness or many other interest-
ing properties that temporal or dynamic logics can naturally
express. Therefore, we propose matching µ-logic (shortened
as MmL), which extends ML with a least fixpoint µ-binder.
It turns out that MmL subsumes not only RL, but also a
variety of common logics/calculi that are used to reason about
fixpoints and induction, especially for program verification and
model checking, including first-order logic with least fixpoints
(LFP) [7], modal µ-logic [8] (as well as various temporal
logics [9], [10] and dynamic logic (DL) [11]–[13]). For each of
these logics/calculi, we prove a conservative extension result,
showing that our definitions are faithful.
We organize the rest of the paper as follows. We start with

a quick but comprehensive overview of ML in Section II,
and then present the new proof system H in Section III. We
present MmL in Section IV, and show how to define recursive
symbols as syntactic sugar in Section V. Then we discuss how
MmL subsumes all the following: first-order logic with least
fixpoints (Section VI); modal µ-logic and its fragment logics
(Section VIII); reachability logic (Section IX). We compare
with related work and conclude the paper with a proposal of
future work in Sections X and XI, respectively.

All proof details can be found in appendix.

II. Matching Logic Preliminaries

Matching logic (ML) [1] is a variant of many-sorted FOL
that makes no distinction between function and predicate
symbols, allowing them to uniformly build patterns. Patterns
define both structural and logical constraints, and are inter-
preted in models as sets of elements (those that match them).

A. Matching logic syntax
Definition 1. A matching logic signature or simply a signature
� = (S,Var,Σ) is a triple with a nonempty set S of sorts, an
S-indexed set Var = {Vars}s∈S of countably infinitely many
sorted variables denoted x:s, y:s, etc., and an (S∗ × S)-indexed
set Σ = {Σs1...sn ,s}s1 ,...,sn ,s∈S of countably many many-sorted
symbols. When n = 0, we write σ ∈ Σλ,s and say σ is a
constant. Matching logic �-patterns or simply (�-)patterns are
defined inductively for all sorts s, s′, s1, . . . , sn ∈ S as follows:

ϕs F x:s ∈ Vars | ϕs ∧ ϕs | ¬ϕs | ∃x:s′ . ϕs
| σ(ϕs1, . . . , ϕsn ) if σ ∈ Σs1...sn ,s

http://kframework.org


We use PatternML(�) = {PatternML
s (�)}s∈S to denote the

S-indexed set of �-patterns generated by the above grammar
(modulo α-equivalence, see later). We feel free to drop the
signature � and simply write PatternML = {PatternML

s }s∈S .

Intuitively speaking, patterns evaluate to the sets of elements
that match them. A variable x:s is a pattern that is matched by
exactly one element; ϕ1∧ϕ2 is matched by elements matching
both ϕ1 and ϕ2; ¬ϕ is matched by elements not matching ϕ;
∃x:s′ . ϕ is a pattern that allows us to abstract away irrelevant
parts (i.e., x:s′) of the structures, which can match patterns
σ(ϕs1, . . . , ϕsn ). This intuition is formalized in Definition 4.
We often abbreviate � = (S,Var,Σ) as (S,Σ) or just Σ.

When we write a pattern, we assume it is well-formed without
explicitly specifying the necessary conditions. When σ ∈ Σλ,s
is a constant, we write σ to mean the pattern σ(). We adopt
the following derived constructs as syntactic sugar:
ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2) ∀x:s . ϕ ≡ ¬∃x:s .¬ϕ
ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2 >s ≡ ∃x:s . x:s
ϕ1 ↔ ϕ2 ≡ (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1) ⊥s ≡ ¬>s

Intuitively, ϕ1 ∨ ϕ2 is matched by elements matching ϕ1 or
ϕ2; >s is matched by all elements (in the sort universe s);
and ⊥s is matched by no elements. The formal semantics of
these derived constructs is given in Proposition 5. Standard
precedences are adopted to avoid parentheses. The scope of
“∀” and “∃” goes as far as possible to the right. We drop sort
s whenever possible, so we write x,>,⊥ instead of x:s,>s,⊥s .
Like in FOL, “∀” and “∃” are binders, and we adopt the

standard notions of free variables, α-renaming, and capture-
avoiding substitution. We let FV(ϕ) denote the set of free
variables in ϕ. When FV(ϕ) = ∅, we say ϕ is closed. We regard
α-equivalent patterns ϕ and ϕ′ as the same, and write ϕ ≡ ϕ′.
We let ϕ[ψ/x] be the result of substituting ψ for every free
occurrence of x in ϕ, where α-renaming happens implicitly
to prevent variable capture. We let ϕ[ψ1/x1, . . . ,ψn/xn] be the
result of simultaneously substituting ψ1, . . . ,ψn for x1, . . . , xn.
B. Matching logic semantics

ML symbols are interpreted as relations, and thus ML
patterns evaluate to sets of elements (those “matching” them).
Definition 2. Given � = (S,Σ), a matching logic �-model
M = ({Ms}s∈S, {σM }σ∈Σ), or simply a (�)-model, contains
• a nonempty carrier set Ms for each sort s ∈ S;
• an interpretation σM : Ms1 × · · · ×Msn → P(Ms) for each
σ ∈ Σs1...sn ,s , where P(Ms) is the powerset of Ms .

We overload the letter M to also mean the S-indexed set
{Ms}s∈S . The usual FOL models are special cases of ML
models, where |σM (a1, . . . ,an)| = 1 for all a1 ∈ Ms1, . . . ,an ∈
Msn . Partial FOL models [14] are also special cases with
|σM (a1, . . . ,an)| ≤ 1, as we can capture the undefinedness of
the partial function σM on a1, . . . ,an by σM (a1, . . . ,an) = ∅.

We tacitly use the same letter σM to mean its pointwise
extension, σM : P(Ms1 ) × · · · × P(Msn ) → P(Ms), defined as:
σM (A1, . . . , An) =

⋃
{σM (a1, . . . ,an) | a1 ∈ A1, . . . ,an ∈ An}

for all A1 ⊆ Ms1, . . . , An ⊆ Msn .

Proposition 3. For all Ai, A′i ⊆ Msi , 1 ≤ i ≤ n, the pointwise
extension σM has the following property of propagation:
σM (A1, . . . , An) = ∅ if Ai = ∅ for some 1 ≤ i ≤ n,

σM (A1 ∪ A′1, . . . , An ∪ A′n) =
⋃

1≤i≤n,Bi ∈{Ai ,A
′
i }
σM (B1, . . . ,Bn),

σ(A1, . . . , An) ⊆ σ(A′1, . . . , A
′
n) if Ai ⊆ A′i for all 1 ≤ i ≤ n.

Definition 4. Let � = (S,Var,Σ) and let M be a �-model.
Given a function ρ : Var→ M , called an M-valuation, let its
extension ρ̄ : PatternML → P(M) be inductively defined as:
• ρ̄(x) = {ρ(x)}, for all x ∈ Vars;
• ρ̄(ϕ1 ∧ ϕ2) = ρ̄(ϕ1) ∩ ρ̄(ϕ2), for ϕ1, ϕ2 ∈ Patterns;
• ρ̄(¬ϕ) = Ms \ ρ̄(ϕ), for all ϕ ∈ Patterns;
• ρ̄(∃x . ϕ) =

⋃
a∈Ms′

ρ[a/x](ϕ), for all x ∈ Vars′ ;
• ρ̄(σ(ϕ1, ..., ϕn)) = σM (ρ̄(ϕ1), ..., ρ̄(ϕn)), for σ ∈ Σs1...sn ,s;

where “\” is set difference and ρ[a/x] denotes the M-valuation
ρ′ with ρ′(x) = a and ρ′(y) = ρ(y) for all y . x.

Proposition 5. The following propositions hold:
• ρ̄(>s) = Ms and ρ̄(⊥s) = ∅;
• ρ̄(ϕ1 ∨ ϕ2) = ρ̄(ϕ1) ∪ ρ̄(ϕ2);
• ρ̄(ϕ1→ ϕ2) = Ms \(ρ̄(ϕ1)\ ρ̄(ϕ2)), for ϕ1, ϕ2 ∈ Patterns;
• ρ̄(ϕ1↔ ϕ2) = Ms\(ρ̄(ϕ1)4 ρ̄(ϕ2)), for ϕ1, ϕ2 ∈ Patterns;
• ρ̄(∀x . ϕ) =

⋂
a∈Ms′

ρ[a/x](ϕ), for all x ∈ Vars′;
where “4” is set symmetric difference.

Definition 6. We say pattern ϕ is valid in M , written M �ML ϕ,
iff ρ̄(ϕ) = M for all ρ : Var→ M . Let Γ be a set of patterns
called axioms. We write M �ML Γ iff M �ML ψ for all ψ ∈ Γ.
We write Γ �ML ϕ and say that ϕ is valid in Γ iff M �ML ϕ
for all M �ML Γ. We abbreviate ∅ �ML ϕ as �ML ϕ. We call the
pair (�,Γ) a matching logic �-theory, or simply a (�-)theory.
We say that M is a model of the theory (�,Γ) iff M �ML Γ.
C. Important notations
Several mathematical instruments of practical importance,

such as definedness, totality, equality, membership, set con-
tainment, functions and partial functions, and constructors, can
all be defined using patterns. We give a compact summary of
the definitions and notations that are needed in this paper.

Definition 7. For any (not necessarily distinct) sorts s, s′, let us
consider a unary symbol d_es′s ∈ Σs,s′ , called the definedness
symbol, and the pattern/axiom dx:ses′s , called (Definedness).
We define totality “b_cs′s ”, equality “=s′s ”, membership “∈s′s ”,
and set containment “⊆s′s ” as derived constructs:

bϕcs
′

s ≡ ¬d¬ϕe
s′

s ϕ1 =
s′

s ϕ2 ≡ bϕ1 ↔ ϕ2c
s′

s

x ∈s
′

s ϕ ≡ dx ∧ ϕes
′

s ϕ1 ⊆
s′

s ϕ2 ≡ bϕ1 → ϕ2c
s′

s

and feel free to drop the (not necessarily distinct) sorts s, s′.

For all M satisfying (Definedness), (d_es′s )M (a) = Ms′ for
all a ∈ Ms [1, Proposition 5.2]. Thus, for all ρ, we have
ρ̄(dϕes

′

s ) = Ms′ if ρ̄(ϕ) , ∅, and ρ̄(dϕes
′

s ) = ∅ otherwise; i.e.,
dϕes

′

s says, in sort universe s′, if ϕ is defined in universe s. Def-
inition 7 constructs have expected semantics: ρ̄(bϕcs′s ) = Ms′

if ρ̄(ϕ) = Ms , and ρ̄(bϕcs
′

s ) = ∅ otherwise; ρ̄(ϕ1 =
s′
s ϕ2) = Ms′

if ρ̄(ϕ1) = ρ̄(ϕ2), and ρ̄(ϕ1 =
s′
s ϕ2) = ∅ otherwise; etc.



Functions and partial functions can be defined by axioms:
(Function) ∃y . σ(x1, . . . , xn) = y

(Partial Function) ∃y . σ(x1, . . . , xn) ⊆ y

(Function) requires σ(x1, . . . , xn) to contain exactly one ele-
ment and (Partial Function) requires it to contain at most
one element (recall that y evaluates to a singleton set). For
brevity, we use the function notation σ : s1 × · · · × sn → s to
mean we automatically assume the (Function) axiom of σ.
Similarly, partial functions are written as σ : s1× · · · × sn ⇀ s.

Constructors are extensively used in building programs and
data, as well as semantic structures to define and reason about
languages and programs. They can be characterized in the “no
junk, no confusion” spirit [15]. Let � = (S,Σ) be a signature
and C = {ci ∈ Σs1

i ...s
mi
i ,si

| 1 ≤ i ≤ n} ⊆ Σ be a set of symbols
called constructors. Consider the following axioms/patterns:

(No Junk) for all sorts s ∈ S:∨
ci ∈C with si=s

∃x1
i :s1

i . . . ∃xmi

i :smi

i . ci(x1
i , . . . , x

mi

i )

(No Confusion I) for all i , j and si = sj :
¬(ci(x1

i , . . . , x
mi

i ) ∧ cj(x1
j , . . . , x

m j

j ))

(No Confusion II) for all 1 ≤ i ≤ n:
(ci(x1

i , ..., x
mi

i ) ∧ ci(y1
i , ..., y

mi

i )) → ci(x1
i ∧ y1

i , ..., x
mi

i ∧ ymi

i )

Intuitively, (No Junk) says everything is constructed; (No
Confusion I) says different constructs build different things;
and (No Confusion II) says constructors are injective. We
refer to the the last two axioms as (No Confusion).

D. Defining first-order logic in matching logic
Given a FOL signature (S,Σ,Π) with function symbols Σ

and predicate symbols Π, the syntax of FOL is given by:
ts F x ∈ Vars | f (ts1, . . . , tsn ) with f ∈ Σs1...sn ,s

ϕ F π(ts1, . . . , tsn ) with π ∈ Πs1...sn | ϕ→ ϕ | ¬ϕ | ∀x . ϕ
To subsume the syntax, we define a ML signature �FOL =

(SFOL,ΣFOL), where SFOL = S∪{Pred} contains a distinguished
sort Pred for FOL formulas and ΣFOL = { f : s1×· · ·× sn → s |
f ∈ Σs1...sn ,s} ∪ {π ∈ Σ

FOL
s1...sn ,Pred | π ∈ Πs1...sn } contains FOL

function symbols as ML functions and FOL predicate symbols
as ML symbols that return Pred. Let ΓFOL be the resulting
�FOL-theory. Notice that we use the function notations so ΓFOL

contains the (Function) axioms for all f ∈ ΣFOL.

Proposition 8. All FOL formulas ϕ are �FOL-patterns of sort
Pred, and we have �FOL ϕ iff ΓFOL �ML ϕ (see [1]).

E. Matching logic proof system P with definedness symbols
ML has a conditional sound and complete Hilbert-style

proof system [1, Fig. 5], here referred to as P. We let Γ `P ϕ
denote its provability relation. P can prove all patterns ϕ that
are valid in Γ under the condition that Γ contains definedness
symbols and (Definedness) axioms. In fact, P proof rules use
equality “=” and membership “∈”, both requiring definedness
symbols. This means that P is not applicable at all to any
theories that do not contain definedness symbols.

We wrap up this section by reviewing the soundness and
completeness theorem of P. In Section III, we propose a
new ML proof system H that is sound and (locally) complete
without requiring the theories to contain definedness symbols.

Theorem 9 (Soundness and completeness of P, see [1]). For
all theories Γ containing the definedness symbols and axioms
(Definition 7) and all patterns ϕ, we have Γ �ML ϕ iff Γ `P ϕ.

III. A New Proof System of Matching Logic
Our first main contribution is a new ML proof systemH that

is sound and (locally) complete without requiring definedness
symbols and axioms, and thus extends the completeness result
in [1], re-stated in Theorem 9. We first need the following:

Definition 10. A context C is a pattern with a distinguished
placeholder variable �. We write C[ϕ] to mean the result of
replacing � with ϕ without any α-renaming, so free variables
in ϕ may become bound in C[ϕ], different from capture-
avoiding substitution. A single symbol context has the form
Cσ ≡ σ(ϕ1, . . . , ϕi−1,�, ϕi+1, . . . , ϕn) where σ ∈ Σs1...sn ,s and
ϕ1, . . . , ϕi−1, ϕi+1, . . . , ϕn are patterns of appropriate sorts. A
nested symbol context is inductively defined as follows:
• � is a nested symbol context, called the identity context;
• if Cσ is a single symbol context, and C is a nested symbol
context, then Cσ[C[�]] is a nested symbol context.

Intuitively, a context C is a nested symbol context iff the path
to � in C contains only symbols and no logic connectives.

The proof system H (Fig. 1, above the double line) has four
categories of proof rules. The first consists of all propositional
tautologies as axioms and (Modus Ponens). The second com-
pletes the (complete) axiomatization of pure predicate logic
(two rules); see, e.g., [16]. The third category contains four
rules that capture the property of propagation (Proposition 3).
The fourth category contains two technical proof rules that are
needed for the completeness result of H . Note that unlike P,
all proof rules of H are general rules and do not depend on
any special symbols such as the definedness symbols.

Definition 11. For an axiom set Γ and a pattern ϕ, we write
Γ `H ϕ iff ϕ can be proved by H with the patterns in Γ as
additional axioms. We abbreviate ∅ `H ϕ as `H ϕ.

There are two interesting observations about H . First,
(Framing) allows us to lift local reasoning through symbol
contexts, and thus supports compositional reasoning in ML.
Second, the propagation axioms plus (Framing) inspire a close
relationship between ML and modal logics, where the ML
symbols and the modal logic modalities are dual:

Proposition 12. Let σ ∈ Σs1...sn ,s and define its “dual” as
σ̄(ϕ1, . . . , ϕn) ≡ ¬σ(¬ϕ1, . . . ,¬ϕn). Then we have:
• (K): `H σ̄(ϕ1 → ϕ′1, . . . , ϕn → ϕ′n)

→ (σ̄(ϕ1, . . . , ϕn) → σ̄(ϕ′1, . . . , ϕ
′
n));

• (N): `H ϕi implies `H σ̄(ϕ1, . . . , ϕi, . . . , ϕn).
These rules also appear in [17], [18] as proof rules of
polyadic modal logic. When n = 1, we obtain the standard
(K) rule and (N) rule of normal modal logic [19].
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(Propositional Tautology) ϕ if ϕ is a propositional tautology over patterns of the same sort

(Modus Ponens)
ϕ1 ϕ1 → ϕ2

ϕ2
(∃-Quantifier) ϕ[y/x] → ∃x . ϕ

(∃-Generalization)
ϕ1 → ϕ2 if x < FV(ϕ2)

(∃x.ϕ1) → ϕ2
(Propagation⊥) Cσ[⊥] → ⊥
(Propagation∨) Cσ[ϕ1 ∨ ϕ2] → Cσ[ϕ1] ∨ Cσ[ϕ2]
(Propagation∃) Cσ[∃x.ϕ] → ∃x.Cσ[ϕ] if x < FV(Cσ[∃x.ϕ])

(Framing)
ϕ1 → ϕ2

Cσ[ϕ1] → Cσ[ϕ2]

(Existence) ∃x. x
(Singleton Variable) ¬(C1[x ∧ ϕ] ∧ C2[x ∧ ¬ϕ])

where C1 and C2 are nested symbol contexts.

(Set Variable Substitution)
ϕ

ϕ[ψ/X]
(Pre-Fixpoint) ϕ[µX . ϕ/X] → µX . ϕ

(Knaster-Tarski)
ϕ[ψ/X] → ψ

µX . ϕ→ ψ

Fig. 1. Sound and complete proof system H of matching logic (above the double line) and the proof system Hµ of matching µ-logic

We present three important properties about H . All proof
details can be found in appendix. The first property is the
soundness theorem of H .

Theorem 13 (Soundness of H ). Γ `H ϕ implies Γ �ML ϕ.

The second property is a version of deduction theorem of
H which requires definedness symbols and axioms.

Theorem 14 (Deduction theorem). For all axiom sets Γ con-
taining (Definedness) axioms (see Definition 7) and patterns
ψ, ϕ with ψ closed, we have Γ∪{ψ} `H ϕ iff Γ∪ `H bψc → ϕ.

The proof is standard, by induction on the proof length
of Γ ∪ {ψ} `H ϕ. Here, we give it an intuitive semantic
explanation. Suppose Γ ∪ {ψ} �ML ϕ. Then for all models
M �ML Γ, if ψ holds then ϕ also holds (we ignore valuations
as ψ is closed). This means M �ML bψc → ϕ, as bψc evaluates
to ∅ iff ψ does not hold in M . Note that M �ML ψ → ϕ is too
strong as a conclusion, for it requires the evaluation of ψ is
always contained in ϕ, even in models where ψ does not hold.
The third property is that we can prove all proof rules of
P using H with (Definedness) as axioms. This immediately
gives us the following (global) completeness result of H :

Theorem 15. For all axiom sets Γ containing (Definedness)
axioms and all patterns ϕ, we have Γ �ML ϕ implies Γ `H ϕ.

Finally, we state our main completeness result for H :

Theorem 16 (Local completeness of H ). �ML ϕ implies `H ϕ.

Here, “local” means the theory is empty (i.e., no additional
axioms); in comparison, Theorem 15 holds for non-empty
theories. The proof of Theorem 16 is rather complex (see
Appendix D). We drew inspiration from [20], where a similar
result is proved for hybrid modal logic, using a mixture of
modal and first-order techniques: the ideas of canonical models

from modal logic and witnessed sets from first-order logic.
Theorem 16 can be seen as a nontrivial generalization. Specif-
ically, we extend hybrid modal logic with ∀-binder [20] in
two directions. First, we consider multiple sorts, each coming
with its own universe of worlds and logical infrastructure; the
approach in [20] has only one sort, that of “formulas”. Second,
we allow arbitrarily many modalities of arbitrary arities (see
Proposition 12); the approach in [20] only considers the usual,
unary “necessity” modality “�” (and its dual “^”). Polyadic,
non-hybrid (i.e., without ∀-binder) variants of modal logic are
known (see, e.g., [17]), but at our knowledge our work in this
paper is the first to combine polyadic modalities and FOL
quantifiers.
The full global completeness of H is left as future work.

See Section X-B for more discussion.

IV. From Matching Logic to Matching µ-Logic
We extend ML with the least fixpoint µ-binder. We call the

extended logic matching µ-logic (MmL), and study its syntax,
semantics, and proof system. Many definitions, notations, and
properties of ML that are introduced in Section II and III also
work for MmL, so we only focus on parts where they differ.

A. Matching µ-logic syntax
Definition 17. A matching µ-logic signature � = (S,Var,Σ)
or simply a signature is the same as a matching logic signature
except that Var = EVar ∪ SVar is now a disjoint union of
two S-indexed sets of variables: the element variables denoted
as x:s, y:s, etc. in EVar, and the set variables denoted as
X:s,Y :s, etc in SVar. Matching µ-logic �-patterns, or simply
(�)-patterns, are defined inductively for all sorts s, s′ ∈ S as:

ϕs F x:s ∈ EVars | X:s ∈ SVars | · · ·
| µX:s . ϕs if ϕs is positive in X:s,



where the “. . . ” part is the same as in ML. Note that we only
quantify over element variables, not set variables. We say ϕs is
positive in X:s if every free occurrence of X:s is under an even
number of negations. We let Pattern(�) = {Patterns}s∈S
denote the set of all matching µ-logic �-patterns and feel free
to drop the signature �.

From now on, we tacitly assume we are talking about MmL
unless we explicitly say otherwise. Intuitively, element vari-
ables are like ML variables in that they evaluate to elements,
while set variables evaluate to sets. The least fixpoint pattern
µX:s . ϕs gives the least solution (under set containment) of
the equation X:s = ϕs of set variable X:s (this should be taken
as merely intuition at this stage, because we may not have
equality in the theories). The condition of positive occurrence
guarantees the existence of such a least solution. The notion of
free variables, α-renaming, and capture-avoiding substitution
are extended to set variables and the µ-binder. The dual version
of the least fixpoint µ-binder is the greatest fixpoint ν-binder,
defined as νX:s . ϕs ≡ ¬µX:s .¬ϕs[¬X:s/X:s], given that ϕs
is positive in X:s, (which implies that ¬ϕs[¬X:s/X:s] is also
positive in X:s, justifying the definition).

B. Matching µ-logic semantics
We first review a variant of the Knaster-Tarski theorem [21]:

Theorem 18 (Knaster-Tarski). Let M be a nonempty set and
F : P(M) → P(M) be a monotone function, i.e., F (A) ⊆
F (B) for all subsets A ⊆ B of M . Then F has a unique least
fixpoint µF and a unique greatest fixpoint νF , given as:

µF =
⋂
{A ∈ P(M) | F (A) ⊆ A},

νF =
⋃
{A ∈ P(M) | A ⊆ F (A)}.

We call A a pre-fixpoint of F whenever F (A) ⊆ A, and a
post-fixpoint of F whenever A ⊆ F (A).

MmL models are exactly ML models where sorts are associ-
ated with their carrier sets and symbols are interpreted as rela-
tions. Valuations are extended such that element variables are
mapped to elements and set variables are mapped to subsets.
Patterns are evaluated in the same way for the ML constructs,
but extended with the evaluation of least fixpoint patterns
µX:s . ϕ as the true least fixpoints in models. Formally:

Definition 19. Let � = (S,Var,Σ) be a signature with Var =
EVar ∪ SVar, and M = ({Ms}s∈S, {σM }σ∈Σ) be a �-model.
A valuation ρ : Var → (M ∪ P(M)) is a function such that
ρ(x) ∈ Ms for all x ∈ EVars and ρ(X) ∈ P(Ms) for all
X ∈ SVars . Its extension ρ̄ : Pattern → P(M) is defined as
in Definition 4, extended with:
• ρ̄(x) = {ρ(x)} for all x ∈ EVars;
• ρ̄(X) = ρ(X) for all X ∈ SVars;
• ρ̄(µX . ϕ) = µF

ρ
ϕ,X for all X ∈ SVars , where F ρϕ,X (A) =

ρ[A/X](ϕ) for all A ⊆ Ms .
Here ρ[A/X] is the ρ′ with ρ′(X) = A and ρ′(Y ) = ρ(Y ) for
all Y . X . Note F ρϕ,X is monotone, since ϕ is positive in X .
The notions M � ϕ, M � Γ, and Γ � ϕ are defined as expected.

Proposition 20. For all axiom sets Γ of matching logic
patterns (without µ) and all matching logic patterns ϕ (without
µ), we have Γ �ML ϕ if and only if Γ � ϕ.

C. Example: capturing precisely term algebras
Many approaches to specifying formal semantics of pro-

gramming languages are applications of initial algebra se-
mantics [22]. In this subsection, we show how term algebras,
a special case of initial algebras, can be precisely captured
using MmL patterns as axioms. For simplicity, we discuss only
monosorted term algebras, but the result can be extended to the
many-sorted settings without any major technical difficulties
using the techniques introduced in Section V.

Definition 21. Let � = ({Term},Σ) be a signature with one
sort Term and at least one constant. �-terms are defined as:

t F c ∈ Σλ,Term | c(t1, . . . , tn) for c ∈ ΣTerm...Term,Term

The �-term algebra T� = ({T�
Term}, {cT� }c∈Σ) consists of:

• a carrier set T�
Term of all �-terms;

• a function cT� : T�
Term × · · · × T�

Term → T�
Term for all c ∈

ΣTerm...Term,Term defined as cT� (t1, . . . , tn) = c(t1, . . . , tn).

Proposition 22. Let � = ({Term},Σ) be a signature with one
sort Term and at least one constant. Define a �-theory Γterm�
with (Function) and (No Confusion) axioms (see Section II-C)
for all symbols in Σ, plus the following axiom:

(Inductive Domain) µD .
∨
c∈Σ

c(D, . . . ,D)

Then for all �-models M � Γterm� , M is isomorphic to T�. In
addition, for all extended signatures �+ ⊇ � and �+-models
M � Γterm� , we have M

��
� is isomorphic to T�, where M

��
� is

the reduct model of M over the sub-signature �.

(Inductive Domain) forces that for all models M , the
carrier set MTerm must be the the smallest set that is closed
under all symbols in Σ, while (Function) and (NoConfusion)
force all symbols in Σ to be interpreted as injective functions,
and different symbols construct different terms.
Proposition 22 immediately tells us that MmL cannot have a

proof system that is both sound and complete for all theories,
because one can capture precisely the model (N,+,×) of
natural numbers with addition and multiplication with a finite
number of MmL axioms, and the model (N,+,×), by Gödel’s
first incompleteness theorem [23], is not axiomatizable.

Proposition 23. Let � = ({Nat}, {0 ∈ Σλ,Nat, succ ∈ ΣNat,Nat})
and the �-theory Γterm� be defined as in Proposition 22, where
the (Inductive Domain) takes the following form:

(Inductive Domain) µD . 0 ∨ succ(D)
Let the signature �N extend � with two functions:

plus : Nat × Nat→ Nat mult : Nat × Nat→ Nat
and the �N-theory ΓN extend Γterm� with the standard axioms:

plus(0, y) = y plus(succ(x), y) = succ(plus(x, y))
mult(0, y) = 0 mult(succ(x), y) = plus(y,mult(x, y))

Then, ΓN captures precisely (N,+,×), meaning that for all
models M � ΓN, M is isomorphic to (N,+,×).



We finish this subsection by comparing Proposition 22 with
the nontrivial result that the term algebra T� has a complete
axiomatization in FOL where the only predicate symbol is
equality [24]. We refer to this complete FOL axiomatiza-
tion as ΓFOL(T�). This means that for all FOL formulas ϕ,
ΓFOL(T�) �FOL ϕ iff T� �FOL ϕ. This result is weaker than
Proposition 22, because by Löwenheim-Skolem theorem [25],
the FOL theory ΓFOL(T�) has models of arbitrarily large car-
dinalities (if � contains non-constant constructors), meaning
that there are models M �FOL ΓFOL(T�) with strictly more
elements than T�, and thus cannot be isomorphic to T�. It is
just the case that the FOL models of ΓFOL(T�) satisfy exactly
the same FOL formulas as T�. Proposition 22, on the other
hand, shows that the MmL theory Γterm� captures T� up to
isomorphism. Many automatic reasoning approaches [26], [27]
for algebraic datatypes and co-datatypes exploit this complete
axiomatization ΓFOL(T�). These approaches can be generalized
to MmL settings and provide (semi-)decision procedures for
the corresponding MmL theories. We leave this as future work.

D. Matching µ-logic proof system
Proposition 23 implies that MmL cannot have a sound and

complete proof system. The best we can do then is to aim for a
proof system that is good enough in practice. We take the ML
proof system H and extend it with three additional proof rules
(see Fig. 1). Rules (Pre-Fixpoint) and (Knaster-Tarski)
are standard proof rules about least fixpoints as in modal
µ-logic [8]; sometimes (Knaster-Tarski) is referred to as
Park induction [28]–[30]. Rule (Set Variable Substitution)
allows us to prove from ` ϕ any substitution ` ϕ[ψ/X] for
X ∈ SVar. That X is a set variable is crucial. In general,
we cannot prove from ` ϕ that ` ϕ[ψ/x] for x ∈ EVar,
because it does not hold semantically. As shown in [1], it
only holds when ψ is functional, that is, when ψ evaluates to
a singleton set. Indeed, suppose that ψ is not functional, say it
is the pattern 0∨succ(0) over the signature of natural numbers
in Proposition 23, which evaluates to a set of two elements.
Then we can pick ϕ to be the tautology ∃y . x = y, and then
ϕ[ψ/x] becomes ∃y . ψ = y, which states that ψ evaluates to
a singleton set (the valuation of y), which is a contradiction.
We let Hµ denote the extended proof system in Fig. 1, and

from here on we write Γ ` ϕ instead of Γ `Hµ ϕ.

Theorem 24 (Soundness of Hµ). Γ ` ϕ implies Γ � ϕ.
E. Instance: Peano arithmetic

We illustrate the power of (Pre-Fixpoint) and (Knaster-
Tarski) by showing that they derive the (Induction) schema
in the FOL axiomatization of Peano arithmetic [31], [32]:
(Induction) ϕ(0) ∧ ∀x . (ϕ(x) → ϕ(succ(x))) → ∀x . ϕ(x)

where ϕ(x) is a FOL formula with a distinguished variable x.
We encode the FOL syntax of Peano arithmetic following

the technique in Section II-D, that is, we define a signature
�Peano = ({Nat,Pred},ΣN) where ΣN is defined in Proposi-
tion 23 that contains the functions 0, succ,plus,mult, and let
ΓPeano contain the same equation axioms as ΓN. The �Peano-
patterns of sort Pred are those built from equalities between

two patterns of sort Nat, as well as connectives and quantifiers.
Proposition 25. Under the above notations, we have:
Γ
Peano ` ϕ(0) ∧ ∀x . (ϕ(x) → ϕ(succ(x))) → ∀x . ϕ(x).

V. Defining Recursive Symbols as Syntactic Sugar
Intuitively, the least fixpoint pattern µX . ϕ specifies a

recursive set that satisfies the equation X = ϕ, where ϕ may
contain recursive occurrences of X . For example, the pattern
µX . 3 ∨ plus(X,X) specifies the set of all nonzero multiples
of 3, which intuitively defines a recursive constant:

m3 ∈ Σλ,Nat m3 =lfp 3 ∨ plus(m3,m3).

Here, “=lfp” is merely a notation, meaning that we want m3 to
be the least set that satisfies the equation. Note that the total
set of all natural numbers is a trivial solution.
The challenge is how to generalize the above and define

recursive non-constant symbols. For example, suppose we want
to define a unary symbol collatz ∈ ΣNat,Nat as follows:

collatz(n) =lfp

n ∨ (even(n) ∧ collatz(n/2)) ∨ (odd(n) ∧ collatz(3n + 1))

with the intuition that collatz(n) gives the set of all numbers in
the Collatz sequence1 starting from n. However, the µ-binder
in MmL can only be applied on set variables, not on symbols,
so the following attempt is syntactically wrong:
collatz(n) = µσ(n) . // µ can only bind a set variable

n ∨ (even(n) ∧ σ(n/2)) ∨ (odd(n) ∧ σ(3n + 1))

One possible solution could be to extend MmL with the
above syntax and allow the µ-binder to quantify symbol
variables, not only set variables. The semantics and proof
system could be extended accordingly. This is exactly how
first-order logic with least fixpoints extends FOL [7]. But do
we really have to? After all, our proof rules (Pre-Fixpoint)
and (Knaster-Tarski) in Fig. 1 are nothing but a logical
incarnation of the Knaster-Tarski theorem, which has been
repeatedly demonstrated to serve as a solid if not the main
foundation for recursion. Therefore, we conjecture that the
H proof system in Fig. 1 is sufficient in practice, and thus
would rather resist extending MmL. That is, we conjecture
that it should be possible to define one’s desired approach to
recursion/induction/fixpoints using ordinary MmL theories; as
an analogy, in Section II-C we showed how we can define
definedness, totality, equality, membership, set containment,
functions, partial functions, constructors, etc. (see [1] for
more) as theories, without a need to extend ML.
In particular, we can solve the above recursive symbol

challenge by using the principle of currying-uncurrying to
“mimic” the unary symbol collatz ∈ ΣNat,Nat with a set variable
collatz : Nat⊗Nat, where Nat⊗Nat is the product sort (defined
later; the intuition is that Nat ⊗ Nat has the product set N×N
as its carrier set), and thus reducing the challenge of defining
a least relation in [N → P(N)] to defining a least subset of
P(N × N), which can be done with the MmL µ-binder.

1A Collatz sequence starting from n ≥ 1 is obtained by repeating the
following procedure: if n is even then return n/2; otherwise, return 3n + 1.



A. Principle of currying-uncurrying and product sorts
The principle of currying-uncurrying [33], [34] is used in

various settings (e.g., simply-typed lambda calculus [35]) as
a means to reduce the study of multi-argument functions to
the simpler single-argument functions. We here present the
principle in its adapted form that fits best with our needs.

Proposition 26. Let Ms1, . . . ,Msn ,Ms be nonempty sets. The
principle of currying-uncurring means the isomorphism
P(Ms1 × · · · × Msn × Ms)

curry
−−−−−−⇀↽−−−−−−
uncurry

[Ms1 × · · · × Msn → P(Ms)]

defined for all a1 ∈ Ms1, . . . ,an ∈ Msn , b ∈ Ms, α ⊆ Ms1 ×· · ·×

Msn × Ms, and f : Ms1 × · · · × Msn → P(Ms) as:
curry(α)(a1, . . . ,an) = {b ∈ Ms | (a1, . . . ,an, b) ∈ α}

uncurry( f ) = {(a1, . . . ,an, b) | b ∈ f (a1, . . . ,an)}.

The tuple set uncurry( f ) is also called the graph of f .

In other words, we can mimic an n-ary symbol σ ∈ Σs1...sn ,s

with a set variable of the product sort s1 ⊗ · · · ⊗ sn ⊗ s, whose
(intended) carrier set is exactly the product set Ms1 × . . . Msn ×

Ms . This inspires the following definition.

Definition 27. Let s, s′ be two sorts, not necessarily distinct.
The product sort s⊗ s′ is a sort that is different from s and s′.
Pairing 〈_,_〉s,s′ : s × s′→ s ⊗ s′ is a function and projection
_(_)s,s′ : s⊗ s′× s ⇀ s′ is a partial function, and we drop sorts
s, s′ for simplicity. Define three axioms:
(Injectivity) 〈k1, v1〉 = 〈k2, v2〉 → (k1 = k2) ∧ (v1 = v2)

(Key-Value) 〈k1, v〉(k2) = (k1 = k2) ∧ v

(Product) ∃k∃v . 〈k, v〉

that force the carrier set of s ⊗ t to be the product of the ones
of s and t and pairing/projection to be interpreted as expected.
Note that we assume definedness symbols/axioms because we
have used the function and partial function notations as well
as equality in the axioms.

The product of multiple sorts and the associated pair-
ing/projection operations can be defined as derived constructs
as follows. Given (not necessarily distinct) sorts s1, . . . , sn, s
and patterns ϕ1, . . . , ϕn, ϕ,ψ of appropriate sorts, we define:

s1 ⊗ · · · ⊗ sn ⊗ s ≡ s1 ⊗ (s2 ⊗ (· · · ⊗ (sn ⊗ s) . . . ))

〈ϕ1, . . . , ϕn, ϕ〉 ≡ 〈ϕ1, 〈. . . , 〈ϕn, ϕ〉 . . .〉〉

ψ(ϕ1, . . . , ϕn) ≡ ψ(ϕ1) . . . (ϕn).

Note that we tacitly use the same syntax _(_, . . . ,_) for both
symbol applications and projections to blur their distinction.
In particular, if σ : s1 ⊗ · · · ⊗ sn ⊗ s is a set variable of the
product sort, then σ(ϕ1, . . . , ϕn) is a well-formed pattern of
sort s iff ϕ1, . . . , ϕn have the appropriate sorts s1, . . . , sn.

B. Defining recursive symbols in matching µ-logic
Definition 28. Let � = (S,Σ) be a signature and σ ∈ Σs1...sn ,s ,
containing the product sorts and pairing/projection symbols.
We use the notation σ(x1, . . . , xn) =lfp ϕ to mean the axiom:
σ(x1, . . . , xn) =

(µσ:s1 ⊗ · · · ⊗ sn ⊗ s . ∃x1 . . . ∃xn . 〈x1, . . . , xn, ϕ〉)(x1, . . . , xn)

where ∃x1 . . . ∃xn . 〈x1, . . . , xn, ϕ〉 captures the graph of ϕ
as a function w.r.t. x1, . . . , xn. Note that in the axiom, all
occurrences of σ ∈ Σs1...sn ,s in ϕ are tacitly regarded as the
set variable σ:s1 ⊗ · · · ⊗ sn ⊗ s, which are then bound by µ-
binder. A symbol σ ∈ Σs1...sn ,s obeying this axiom is called
recursive.

Recursive symbols can be used to define various
(co)inductive data structures and relations. In Section VI, we
will see how first-order logic with least fixpoints (LFP) can be
captured as notations using recursive symbols. In Section VII,
we will show that recursive definitions in separation logic, such
as lists and trees, can also be defined as recursive symbols.
However, Definition 28 is not ideally convenient when it comes
to reasoning about recursive symbols because it is complex
and contains many details about the product sorts. Instead, we
want to reason about recursive symbols in a similar way to how
we reason about the basic least fixpoint patterns µX . ϕ, using
a generalized form of (Pre-Fixpoint) and (Knaster-Tarski).
This is achieved by the following theorem.

Theorem 29. Let σ ∈ Σs1...sn ,s be a recursive symbol defined
as σ(x1, . . . , xn) =lfp ϕ, Γ be a theory, ψ be a pattern, and

Γ ` (∃z1 . . . ∃zn . z1 ∈ ϕ1 ∧ · · · ∧ zn ∈ ϕn ∧ ψ[z1/x1, . . . , zn/xn])

→ ψ[ϕ1/x1, . . . , ϕn/xn] for all ϕ1, . . . , ϕn (†)

Then the following hold:
• Pre-Fixpoint: Γ ` ϕ→ σ(x1, . . . , xn);
• Knaster-Tarski: Γ`ϕ[ψ/σ]→ψ implies Γ`σ(x1,..., xn)→
ψ, where ϕ[ψ/σ] is the result of substituting all patterns
of the form σ(ϕ1, . . . , ϕn) in ϕ with ψ[ϕ1/x1, . . . , ϕn/xn].

Condition (†) is a logic incarnation of the property of propaga-
tion (Proposition 3) of ψ as a function w.r.t. x1, . . . , xn, which
requires, intuitively, that ψ “behaves like a symbol”.
VI. Instance: First-Order Logic with Least Fixpoints
First-order logic with least fixpoints (LFP) [7] extends the

syntax of first-order logic formulas with:

ϕ F [lfpR,x1 ,...,xnϕ](t1, . . . , tn)

where R is a predicate variable and ϕ is a formula that is
positive in R. Intuitively, “[lfpR,x1 ,...,xnϕ]” behaves as the least
fixpoint predicate of the operation that maps R to ϕ. Due to its
complexity and our limited space, we skip the formal definition
of the semantics and simply denote the validity relation in
LFP as �LFP ϕ. A comprehensive study on LFP can be found
in [36]. As an example, the following LFP formula holds iff
x is a nonzero multiple of 3:

[lfpR,z z = 3 ∨ ∃z1∃z2 . R(z1) ∧ R(z2) ∧ z = plus(z1, z2)](x)

Given the notations of recursive symbols defined in Sec-
tion V, it is straightforward to subsume LFP by extending the
theory ΓFOL defined in Section II-D with product sorts and
pairing/projection symbols, and the syntactic sugar:

[lfpR,x1 ,...,xnϕ](t1, . . . , tn) ≡

(µR : s1⊗ . . .⊗sn⊗Pred . ∃x1 . . . ∃xn . 〈x1, . . . , xn, ϕ〉)(t1, . . . , tn)



for all predicate variables R with argument sorts s1, . . . , sn.
A minor difference here is that we add one additional axiom,
∀x:Pred∀y:Pred . x = y, to constrain that the carrier set of
sort Pred is a singleton set so that all MmL models can be
regarded as FOL/LFP models. This fact is used to prove the
“only if” part in the next theorem.2 We denote the resulting
theory ΓLFP.

Theorem 30. If ϕ is an LFP formula, then �LFP ϕ iff ΓLFP � ϕ.

VII. Instance: Separation Logic with Recursive
Definitions

Separation logic [37] (shortened as SL) is a logic specifi-
cally crafted for reasoning about heap structures. Separation
logic with recursive definitions (shortened as SLRD) extends
SL with recursive predicates that give the ability of describing
precisely unbounded heap structures. Both SL and SLRD have
many variants; the formalization that we consider here is
adapted from [38]. For simplicity, we do not consider mutual
recursive definitions in this paper. We leave it as future work.

The most characteristic construct in SL is separating con-
junction, denoted ϕ1 ∗ ϕ2, which specifies a conjunctive heap
of two disjoint heaps. In addition, SL has the model of heaps
(i.e., finite maps) hard-wired in its semantics, which makes it
a logic specifically crafted for heap reasoning.

On the contrary, ML/MmL offer general facilities to define
any structures and constraints via symbols and patterns. In
addition, MmL uses the µ-binder and recursive symbols (see
Section V) to capture the recursive predicates in SLRD. As
shown in [1], SL can be precisely captured in ML by fixing the
model of finite maps. In the following, we show that SLRD
can be precisely captured in MmL in exactly the same manner.

A. Separation logic with recursive predicates: syntax and
semantics

The syntax of SLRD is parametric in a set Var of variables
and a finite set RPred = {p1, . . . , pk} of recursive predicates,
where we denote the arity of pi is ai for 1 ≤ i ≤ k. Let nil
be a distinguished constant that is different from all variables.
SLRD terms and formulas are given by the following grammar:

terms t F x ∈ Var | nil
formulas ϕ F (FOL syntax) | emp | t1 7→ t2

| ϕ1 ∗ ϕ2 | ϕ1 −∗ ϕ2 “magic wand”
| pi(t1, . . . , tai ) for pi ∈ RPred

A recursive definition set D = {ψ1, . . . ,ψk} specifies the
recursive definitions of each recursive predicates as follows:

p1(x1, . . . , xa1 ) =lfp ψ1, . . . , pk(x1, . . . , xak
) =lfp ψk,

where we require that FV(ψi) ⊆ {x1, . . . , xai }, ψi does not
contain other recursive predicates other than pi , and that pi is
positive in ψi .

2We do not need that axiom in defining FOL in ML, as seen in Section II-D,
because there the “if” part is proved via a proof theoretical approach, using
the completeness proof system of FOL and the fact that we can mimic FOL
proofs in ML (see [1]). Since LFP does not have a complete proof system,
we have to add additional axioms to further constrain on the MmL models.

SLRD formulas are interpreted over a typical RAM model
that consists of a store s : Var→ N and a heap h : N+ ⇀fin N,
where N+ denotes the set of positive natural numbers. We
extend the store s over all terms by letting s(nil) = 0. We use
dom(h) to denote the domain of h. When dom(h1)∩dom(h2) =
∅, we say that h1 and h2 are disjoint and let h1 ∗ h2 denote the
heap h′ such that dom(h′) = dom(h1) ∪ dom(h2), h′

��
dom(h1)

=

h1, and h′
��
dom(h2)

= h2.
Given a recursive definition set D, a store s, and a heap h,

SLRD semantics s, h �D ϕ is defined inductively as follows:
• s, h �D ϕ iff s �FOL ϕ, for FOL formula ϕ;
• s, h �D emp iff dom(h) = ∅;
• s, h �D t1 7→ t2 iff s(t1) , 0, dom(h) = {s(t1)}, and

h(s(t1)) = s(t2);
• s, h �D ϕ1 ∗ ϕ2 iff there exist h1, h2 such that s, h1 �D ϕ1,

s, h2 �D ϕ2, and h = h1 ∗ h2;
• s, h �D ϕ1 −∗ ϕ2 iff for all h′ such that h, h′ are disjoint
and s, h′ �D ϕ1, we have s, h ∗ h′ �D ϕ2;

• s, h �D pi(t1, . . . , tai ) iff (s(t1), . . . , s(tai ), h) ∈ JpiKD;
where the semantics JpiKD of the recursive predicate pi under
D is defined later. We say ϕ is valid, denoted �SLRD ϕ, iff
s, h �D ϕ for all s and h.
For notational simplicity, we let H = [N+ ⇀fin N] denote

the set of heaps. For 1 ≤ i ≤ k, we define Pi = P(Nai × H)
and P = P1 × · · · × Pk . We define the function F : P→ P as
follows:

©­­«
P1
...

Pk

ª®®¬
F
7−→

©­­«
{(s(x1), . . . , s(xa1 ), h) | s, h �P ψ1}

...
{(s(x1), . . . , s(xak

), h) | s, h �P ψk}

ª®®¬
where Pi ⊆ Pi for 1 ≤ i ≤ k and the relation �P is defined
the same as �D except that JpiKP = Pi . We finally define the
semantics of all recursive predicates Jp1KD×· · ·×JpkKD = µF .

As an example, the following recursive predicate list cap-
tures all singly linked lists:

list(x) =lfp (x = nil) ∧ emp ∨ ∃y . (x , nil) ∧ x 7→ y ∗ list(y)

B. Defining separation logic with recursive definitions in
matching µ-logic
To subsume the syntax of SLRD, we define an MmL

signature �SLRD = ({Nat,Heap},ΣSLRD) that contains two sorts
Nat for natural numbers and Heap for heaps. The symbol set
ΣSLRD contains the distinguished constant nil ∈ Σλ,Nat and the
following recursive predicates and heap constructors:

pi ∈ ΣSLRDNat ...Nat,Heap // recursive predicate
emp :→ Heap // empty heap
_ 7→_: Nat × Nat ⇀ Heap // singleton heap
_ ∗_: Heap × Heap ⇀ Heap // separating conjunction

Note that pi is a symbol, emp is a function, and _ 7→ _ and
_ ∗_ are partial functions. The magic wand ϕ1 −∗ ϕ2 can be
defined as a derived construct as follows (also see [1]):

ϕ1 −∗ ϕ2 ≡ ∃h . h ∧ bh ∗ ϕ1 → ϕ2c



Intuitively, the pattern ϕ1−∗ϕ2 is matched by all heaps h such
that h ∗ ϕ1 is contained in ϕ2; that is, for all heaps h1 that
matches ϕ1, we have that h ∗ h1 matches ϕ2. This intuition
matches the semantics of ϕ1 −∗ ϕ2 in SLRD.

To subsume the semantics of SLRD, we define the following
�SLRD-theory ΓSLRD that contains the basic axioms about the
heap constructors and the definitions of recursive predicates:

(Empty Heap) emp ∗ h = h ∗ emp = h

(Associativity) (h1 ∗ h2) ∗ h3 = h1 ∗ (h2 ∗ h3)

(Commutativity) h1 ∗ h2 = h2 ∗ h1

(Nil) (nil 7→ y) = ⊥Heap

(Collision) (x 7→ y) ∗ (x 7→ z) = ⊥Heap

(Recursive Predicates) pi(x1, . . . , xai ) =lfp ψi

As said in the beginning of this section, SL/SLRD have
the model of heaps hard-wired in the semantics. To capture
precisely SL/SLRD semantics, we define the �SLRD-model
Map = ({MapNat,MapHeap}, {σMap}σ∈ΣSLRD ), called the canon-
ical model of finite maps, where MapNat = N, MapHeap = H,
and all symbols in ΣSLRD are interpreted in the intended way:
nil is interpreted as 0; emp is interpreted as the empty heap;
_ 7→_ is interpreted as the corresponding singleton heap except
when the first argument is zero in which case it is undefined
(note that _ 7→ _ was declared as a partial function); _ ∗_ is
interpreted as the union of two disjoint heaps or, if they are
not disjoint, undefined; and pi is interpreted as the recursive
relation JpiKD . Map satisfies all axioms above.

Theorem 31. For all SLRD formulas ϕ, we have �SLRD ϕ iff
Map � ϕ.

VIII. Instances: Modal µ-Calculus and Temporal Logics

We have seen how MmL symbols and patterns can be
used to specify both structure and constraints, such as terms
(Section IV-C) and FOL (Section II-D), as well as various
induction, recursion and least fixpoints schemas (Sections IV-E
and V) over these. These suffice to express and prove program
assertions, including complex state abstractions (see also how
separation logic falls as a fragment of ML in [1]), in contexts
where MmL is chosen as a static state assertion formalism in
program verification frameworks based on Hoare logic [39],
dynamic logic [11], or reachability logic [2]. However, as
explained in Section I, our ultimate goal is to support not only
static state assertions, but any program properties, including
ones that are usually specified using Hoare, dynamic, or
reachability logics. We start the discussion in this section
by showing how MmL symbols and patterns can also be
used to specify dynamic transition relations, which are often
captured by modalities in modal µ-logic and dynamic logic;
in Section IX we then discuss how MmL also subsumes
reachability logic, which subsumes Hoare logic [6].

A. Modal µ-logic syntax, semantics, and proof system
The syntax of modal µ-logic [8] is parametric in a countably

infinite set PVar of propositional variables. Modal µ-logic
formulas are given by the grammar3:

ϕ F p ∈ PVar | ϕ ∧ ϕ | ¬ϕ | ◦ϕ | µX . ϕ if ϕ is positive in X

where p,X ∈ PVar are propositional variables. As a conven-
tion, p is used for free variables while X is used for bound
ones. Derived constructs are defined as usual, e.g., •ϕ ≡ ¬◦¬ϕ.
Modal µ-logic semantics is given using transition systems
S = (S,R), with S a nonempty set of states and R ⊆ S × S a
transition relation, and valuations V: PVar→P(S), as follows:
• JpKSV = V(p);
• Jϕ1 ∧ ϕ2KSV = Jϕ1KSV ∩ Jϕ2KSV ;
• J¬ϕKSV = S \ JϕKSV ;
• J◦ϕKSV = {s ∈ S | s R t implies t ∈ JϕKSV for all t ∈ S};
• JµX . ϕKSV =

⋂
{A ⊆ S | JϕKS

V [A/X]
⊆ A};

A modal µ-logic formula ϕ is valid, denoted �µ ϕ, if for all
transition systems S and all valuations V , we have JϕKSV = S.
A proof system of modal µ-logic is firstly given in [8] and
then proved to be complete in [40]. It extends the proof
system of propositional logic with the following proof rules:

(K) ◦(ϕ1 → ϕ2) → (◦ϕ1 → ◦ϕ2) (N)
ϕ

◦ϕ

(µ1) ϕ[µX . ϕ/X] → µX . ϕ (µ2)
ϕ[ψ/X] → ψ

µX . ϕ→ ψ
We denote the corresponding provability relation as `µ ϕ.
Notice that (K) and (N) are provable in MmL (Proposition 12),
and (µ1) and (µ2) are our (Pre-Fixpoint) and (Knaster-
Tarski). This means that we can easily mimic all modal
µ-logic proofs in MmL (i.e. “(2) ⇒ (3)” in Theorem 32).

B. Defining modal µ-logic in matching µ-logic
To subsume the syntax of modal µ-logic, we define a sig-

nature (of transition systems) �TS = ({State}, {• ∈ ΣTSState,State})
where symbol “•” is called one-path next. We regard proposi-
tional variables in PVar as MmL set variables. We write •ϕ
instead of •(ϕ), and define ◦ϕ ≡ ¬•¬ϕ. Then all modal µ-logic
formulas ϕ are MmL �TS-patterns of sort State. Finally, note
that no axioms are needed; let Γµ be the empty �TS-theory.
An important observation is that the �TS-models are exactly

the transition systems, where • ∈ ΣTSState,State is interpreted as
the transition relation R. Specifically, for any transition system
S = (S,R), we can regard S as a �TS-model where S is the
carrier set of State and •S(t) = {s ∈ S | s R t} contains all
R-predecessors of t. This might seem counter-intuitive at first
glance: why “one-path next” is interpreted as the predecessors
instead of the successors of R? See the following illustration:
· · · s

R
−→ s′

R
−→ s′′ · · · // states

••ϕ •ϕ ϕ // patterns
In other words, •ϕ is matched by states that have at least one
next state that satisfies ϕ, conforming to the intuition. Another

3The modal µ-logic literature often uses �ϕ and ♦ϕ instead of ◦ϕ and
•ϕ. We here use the latter to avoid confusion with the “always” �ϕ and
“eventually” ♦ϕ in LTL and CTL.



interesting observation is about •ϕ and its dual, ◦ϕ ≡ ¬•¬ϕ,
called all-path next. The difference is that ◦ϕ is matched by
s if for all states t such that s R t, we have t matches ϕ. In
particular, if s has no successor, then s matches ◦ϕ for any ϕ.
This is formally summarized in Proposition 33.

We now feel free to take any transition system S as an MmL
�TS-model. The following conservative extension theorem
shows that our definition of modal µ-logic in MmL is faithful,
both syntactically and semantically. What is insightful about
the theorem is its proof, which can be applied to other logics
discussed in this paper to obtain similar results.

Theorem 32. The following properties are equivalent for all
modal µ-logic formulas ϕ: (1) �µ ϕ; (2) `µ ϕ; (3) Γµ ` ϕ; (4)
Γµ � ϕ; (5) M � ϕ for all �TS-models M such that M � Γµ;
(6) S �µ ϕ for all transition systems S.

Proof sketch: We only need to prove “(2) ⇒ (3)” and
“(5) ⇒ (6)”, as the rest are already proved/known. “(1) ⇒
(2)” follows by the completeness of modal µ-logic, which is
nontrivial but known [40]. “(2) ⇒ (3)” follows by proving
all modal µ-logic proof rules as theorems in MmL (Propo-
sition 12). “(3) ⇒ (4)” follows by the soundness of MmL
(Theorem 24). “(4) ⇒ (5)” follows by Definition 19. “(5) ⇒
(6)” follows by proving its contrapositive statement, “2µ ϕ
implies Γµ 2 ϕ”, by taking a transition system S = (S,R) and
a valuation V such that JϕKSV , S, and showing that if we
regard S as a �TS-model and V as an S-valuation in MmL,
then S � Γµ and V(ϕ) , S, which means that Γµ 2 ϕ. Finally,
“(6) ⇒ (1)” follows by definition.
Therefore, modal µ-logic can be regarded as an empty

theory in a vanilla MmL without quantifiers, over a signature
containing only one sort and only one symbol, which is unary.
It is worth mentioning that variants of modal µ-logic with
more modal modalities have been proposed (see [41] for a
survey). At our knowledge, however, all such variants consider
only unary modal modalities and they are only required to obey
the usual (K) and (N) proof rules of modal logic. In contrast,
MmL allows polyadic symbols while still obeying the desired
(K) and (N) rules (see Proposition 12), allows arbitrary further
constraining axioms in MmL theories, and also quantification
over element variables and many-sorted universes.

C. Studying transition systems in MmL

The above suggests that MmL may offer a unifying play-
ground to specify and reason about transition systems, by
means of �TS-theories/models. We can define various tempo-
ral/dynamic operations and modalities as derived constructs
from the basic “one-path next” symbol “•” and the µ-binder,
without the need to extend the syntax and semantics of the
logic. We can constrain the models/transition systems of inter-
est using additional axioms, without the need to modify/extend
the proof system of the logic. In what follows, we show that by
defining proper constructs as syntactic sugar and adding proper
axioms, we can capture faithfully LTL (both finite- and infinite-
trace), CTL, dynamic logic (DL), and reachability logic (RL).

Let us add more temporal modalities as derived constructs
(we have seen “all-path next” ◦ϕ in Section VIII-B):

“eventually” ♦ϕ ≡ µX . ϕ ∨ •X

“always” �ϕ ≡ νX . ϕ ∧ ◦X

“(strong) until” ϕ1 U ϕ2 ≡ µX . ϕ2 ∨ (ϕ1 ∧ •X)

“well-founded” WF ≡ µX . ◦X // no infinite paths
Proposition 33. Let S = (S,R) be a transition system regarded
as a �TS-model, and let ρ be any valuation and s ∈ S. Then:
• s ∈ ρ̄(•ϕ) if there exists t ∈ S such that s R t, t ∈ ρ̄(ϕ);
in particular, s ∈ ρ̄(•>) if s has an R-successor;

• s ∈ ρ̄(◦ϕ) if for all t ∈ S such that s R t, t ∈ ρ̄(ϕ); in
particular, s ∈ ρ̄(◦⊥) if s has no R-successor;

• s ∈ ρ̄(♦ϕ) if there exists t ∈ S such that s R∗ t, t ∈ ρ̄(ϕ);
• s ∈ ρ̄(�ϕ) if for all t ∈ S such that s R∗ t, t ∈ ρ̄(ϕ);
• s ∈ ρ̄(ϕ1 U ϕ2) if there exists n ≥ 0 and t1, . . . , tn ∈ S such
that s Rt1 R · · ·Rtn, tn ∈ ρ̄(ϕ2), and s, t1, . . . , tn−1 ∈ ρ̄(ϕ1);

• s ∈ ρ̄(WF) if s is R-well-founded, meaning that there is
no infinite sequence t1, t2, · · · ∈ S with s R t1 R t2 R . . . ;

where R∗ =
⋃

i≥0 Ri is the reflexive transitive closure of R.

D. Instances: temporal logics
Since MmL can define modal µ-logic (as an empty theory

over a unary symbol), it is not surprising that it can also define
various temporal logics such as LTL and CTL as theories
whose axioms constrain the underlying transition relations.
What is interesting, in our view, is that the resulting theories
are simple, intuitive, and faithfully capture both the syntax
(provability) and the semantics of these temporal logics.
1) Instance: infinite-trace LTL: The LTL syntax, namely

ϕ F p ∈ PVar | ϕ ∧ ϕ | ¬ϕ | ◦ϕ | ϕU ϕ

is already subsumed in MmL with the derived constructs we
give in Section VIII-C. Other common LTL modalities such
as “always �ϕ” are defined from the “until U” modality in
the usual way. Infinite-trace LTL takes as models transition
systems whose transition relations are linear and infinite into
the future. We assume readers are familiar with the semantics
and proof system of infinite-trace LTL (see [10], e.g.) and skip
their formal definitions. We use “�infLTL” and “`infLTL” to denote
infinite-trace LTL validity and provability, respectively.
To capture the characteristics of both “infinite future” and

“linear future”, we add the following two patterns as axioms:
(Inf) •> (Lin) •X → ◦X

and denote the resulting �TS-theory as ΓinfLTL. Note that by
(SetVariable Substitution), we can prove from axiom (Lin)
that •ϕ → ◦ϕ for all patterns ϕ. Intuitively, (Inf) forces all
states s to have at least one successor, and thus all traces can
be extended to an infinite trace, and (Lin) forces all states s to
have only a linear future. The following theorem shows that
our definition of infinite-trace LTL is faithful both syntactically
and semantically, proved exactly as Theorem 32.

Theorem 34. The following properties are equivalent for all
infinite-trace LTL formulas ϕ: (1) `infLTL ϕ; (2) �infLTL ϕ; (3)
ΓinfLTL ` ϕ; (4) ΓinfLTL � ϕ.



Therefore, infinite-trace LTL can be regarded as a theory
containing two axioms, (Inf) and (Lin), over the same signa-
ture as the theory corresponding to modal µ-logic.
2) Instance: finite-trace LTL: Finite execution traces play

an important role in program verification and monitoring.
Finite-trace LTL considers models that are linear but have
only finite future. The following syntax of finite-trace LTL:

ϕ F p ∈ PVar | ϕ ∧ ϕ | ¬ϕ | ◦ϕ | ϕUw ϕ

differs from infinite-trace LTL in that the “until Uw” is
weak until, meaning that ϕ1 Uw ϕ2 does not force that ϕ2
holds eventually. Again, we assume readers are familiar with
the semantics and proof system of finite-trace LTL (if not,
see [10]) and use “�finLTL” and “`finLTL” to denote its validity
and provability, respectively.

To subsume the above syntax, we define in MmL:
“weak until” ϕ1 Uw ϕ2 ≡ µX . ϕ2 ∨ (ϕ1 ∧ ◦X).

To capture the characteristics of both finite future and linear
future, we add the following two patterns as axioms:

(Fin) WF ≡ µX . ◦X (Lin) •X → ◦X

and call the resulting �TS-theory ΓfinLTL. Intuitively, (Fin)
forces all states to be well-founded, meaning that there is no
infinite execution trace in the underlying transition systems.

Theorem 35. The following properties are equivalent for all
finite-trace LTL formula ϕ: (1) `finLTL ϕ; (2) �finLTL ϕ; (3)
ΓfinLTL ` ϕ; (4) ΓfinLTL � ϕ.

Therefore, finite-trace LTL can be regarded as a theory con-
taining two axioms, (Fin) and (Lin), over the same signature
as the theory corresponding to modal µ-logic.
3) Instance: CTL: CTL models are transition systems that

are infinite into the future and allow states to have a branching
future (rather than linear). The following syntax of CTL:
ϕ F p ∈ PVar | ϕ ∧ ϕ | ¬ϕ | AXϕ | EXϕ | ϕ AU ϕ | ϕ EU ϕ

is extended with the following derived constructs:
EFϕ ≡ true EU ϕ AGϕ ≡ ¬EF¬ϕ
AFϕ ≡ true AU ϕ EGϕ ≡ ¬AF¬ϕ

The names of the CTL modalities suggest their meaning: the
first letter means either “on all paths” (A) or “on one path” (E),
and the second letter means “next” (X), “until” (U), “always”
(G), or “eventually” (F). For example, “AX” is “all-path next”,
“EU” is “one-path until”, etc. We refer readers to [42] for
CTL definitions, semantics and proof system. Here we denote
its validity and provability as “�CTL” and “`CTL”, respectively.

To define CTL as an MmL theory, we add only the axiom
(Inf) for infinite future and use the following syntactic sugar:

AXϕ ≡ ◦ϕ ϕ1 AU ϕ2 ≡ µX . ϕ2 ∨ (ϕ1 ∧ ◦X)

EXϕ ≡ •ϕ ϕ1 EU ϕ2 ≡ µX . ϕ2 ∨ (ϕ1 ∧ •X)

The resulting �TS-theory is denoted as ΓCTL.

Theorem 36. For all CTL formulas ϕ, the following are
equivalent: (1) `CTL ϕ; (2) �CTL ϕ; (3) ΓCTL ` ϕ; (4) ΓCTL � ϕ.

Therefore, CTL can be regarded as a theory over the same
signature as the theory corresponding to modal µ-logic, but

containing one axiom, (Inf). It may be insightful to look at
all three temporal logics discussed in this section through the
lenses of MmL, as theories over a unary symbol signature:
modal µ-logic is the empty and thus the least constrained
theory; CTL comes immediately next with only one axiom,
(Inf), to enforce infinite traces; infinite-trace LTL further
constrains with the linearity axiom (Lin); finally, finite-trace
LTL replaces (Inf) with (Fin). We believe that MmL can serve
as a convenient and uniform framework to define and study
temporal logics. For example, finite-trace CTL can be trivially
obtained as the theory containing only the axiom (Fin), LTL
with both finite and infinite traces is the theory containing only
the axiom (Lin), and CTL with unrestricted (finite or infinite
branch) models is the empty theory (i.e., modal µ-logic).

E. Instance: dynamic logic
Dynamic logic (DL) [11]–[13], [43] is a common logic

used for program reasoning. The DL syntax is parametric
in a set PVar of propositional variables and a set APgm
of atomic programs, each belonging to a different formula
syntactic category:

ϕ F p ∈ PVar | ϕ→ ϕ | false | [α]ϕ
α F a ∈ APgm | α ; α | α ∪ α | α∗ | ϕ?

The first line defines propositional formulas. The second line
defines program formulas, which represent programs built
from atomic ones with the primitive regular expression con-
structs. Define 〈α〉ϕ ≡ ¬[α](¬ϕ). Intuitively, [α]ϕ holds if all
executions of α lead to ϕ, while 〈α〉ϕ holds if there is one
execution of α that leads to ϕ. Common program constructs
such as if-then-else, while-do, etc., can be defined as derived
constructs using the four primitive ones; see [11]–[13]. We let
“�DL” and “`DL” denote the validity and provability of DL.
It is known that DL can be embedded in the variant of modal

µ-logic with multiple modalities (see, e.g., [41]). The idea is
to define a modality [a] for every atomic program a ∈ APgm,
and then to define the four program constructs as least/greatest
fixpoints. We can easily adopt the same approach and associate
an empty MmL theory to DL, over a signature containing
as many unary symbols as atomic programs. However, MmL
allows us to propose a better embedding, unrestricted by the
limitations of modal µ-logic. Indeed, the embedding in [41]
suffers from at least two limitations that we can avoid with
MmL. First, sometimes transitions are not just labeled with
discrete programs, such as in hybrid systems [44] and cyber-
physical systems [45] where the labels are continuous values
such as elapsing time. We cannot introduce for every time
t ∈ R≥0 a modality [t], as only countably many modalities are
allowed. Instead, we may want to axiomatize the domains of
such possibly continuous values and treat them as any other
data. Second, we may want to quantify over such values, be
they discrete or continuous, and we would not be able to do
so (even in MmL) if they are encoded as modalities/symbols.

Let us instead define a signature (of labeled transition
systems) �LTS = ({State,Pgm},ΣLTSλ,Pgm ∪ {• ∈ Σ

LTS
PgmState,State})

where the “one-path next •” is a binary symbol taking an ad-



ditional Pgm argument, and for all atomic programs a ∈ APgm
we add a constant symbol a ∈ ΣLTSλ,Pgm. Just as all �

TS-models
are exactly transition systems (Section VIII-B), we have that all
�LTS-models are exactly labeled transition systems. We define
compound programs as derived constructs as follows:
〈α〉ϕ ≡ •(α, ϕ) [α]ϕ ≡ ¬〈α〉¬ϕ

(Seq) [α ; β]ϕ ≡ [α][β]ϕ (Choice) [α ∪ β]ϕ ≡ [α]ϕ ∧ [β]ϕ
(Test) [ψ?]ϕ ≡ (ψ → ϕ) (Iter) [α∗]ϕ ≡ νX . (ϕ ∧ [α]X)

Like for the embedding of modal µ-logic (Section VIII-B), no
axioms are needed. Let ΓDL denote the empty �LTS-theory.

Theorem 37. For all DL formulas ϕ, the following are
equivalent: (1) `DL ϕ; (2) �DL ϕ; (3) ΓDL ` ϕ; (4) ΓDL � ϕ.

We point out that the iterative operator [α∗]ϕ is axiomatized
with two axioms in the proof system of DL (see, e.g., [13]):

(DL-Iter1) ϕ ∧ [α][α∗]ϕ↔ [α∗]ϕ

(DL-Iter2) ϕ ∧ [α∗](ϕ→ [α]ϕ) → [α∗]ϕ

while we just regard it as syntactic sugar, via (Iter). One
may argue that (Iter) desugars to the ν-binder, though, which
obeys the proof rules (Pre-Fixpoint) and (Knaster-Tarski)
that essentially have the same appearance as (DL-Iter1) and
(DL-Iter2). We agree. And that is exactly why we think that
we should have one uniform and fixed logic, such as MmL,
where general fixpoint axioms are given to specify and reason
about any fixpoint properties of any domains and to develop
general-purpose automatic tools and provers. When it comes
to specific domains and special-purpose logics, we can define
them as theories/notations in MmL, as what we have done
in this section for modal µ-logic and all its fragment logics.
Often, these special-purpose logics are simpler than MmL
and more computationally efficient. In particular, modal µ-
logic and all its fragment logics shown in this section are
not only complete but also decidable [19], while MmL does
not have any complete proof system and thus its validity is
not semi-decidable. Therefore, the existing decision procedures
and completeness results of these special-purpose logics give
decision procedures and (global) completeness results (such as
Theorem 32) for the corresponding MmL theories.

IX. Instance: Reachability Logic
Reachability logic (RL) [2] is an approach to program ver-

ification using operational semantics. Different from other ap-
proaches such as Hoare-style verification, RL has a language-
independent proof system that offers sound and relatively
complete deduction for all programming languages. RL is the
logic underlying the K framework [46], which has been used to
define the formal semantics of various real languages such as
C [3], Java [4], and JavaScript [5], yielding program verifiers
for all these languages at no additional cost [6].

In spite of its generality w.r.t. languages, reachability logic
is unfortunately limited to specifying and deriving only reach-
ability properties. This limitation was one of the factors that
motivated the development of MmL. Fig. 8 shows a few RL
proof rules; notice that unlike Hoare logic proof rules, RL

(Axiom)
ϕ1 ⇒ ϕ2 ∈ A
A `C ϕ1 ⇒ ϕ2

(Transitivity)
A `C ϕ1 ⇒ ϕ2 A ∪ C ` ϕ2 ⇒ ϕ3

A `C ϕ1 ⇒ ϕ3

(Consequence)
Mcfg �ϕ1�ϕ′1 A `C ϕ′1 ⇒ ϕ′2 Mcfg �ϕ′2�ϕ2

A `C ϕ1 ⇒ ϕ2

(Circularity)
A `C∪{ϕ1⇒ϕ2 } ϕ1 ⇒ ϕ2

A `C ϕ1 ⇒ ϕ2

Fig. 2. Some selected proof rules in the proof system of reachability logic

proof rules are not specific to any particular programming
language. The programming language is given through its
operational semantics as a set of axiom rules, to be used via
the (Axiom) proof rule. The characteristic feature of RL is its
(Circularity) rule, which supports reasoning about circular
behavior and recursive program constructs. In this subsection,
we show how RL is faithfully defined in MmL and all its proof
rules, including (Circularity), can be proved in MmL.

A. RL syntax, semantics, and proof system

RL is parametric in a model of ML (without µ) called
the configuration model. Specifically, fix a signature (of static
program configurations) �cfg which may have various sorts
and symbols, among which there is a distinguished sort Cfg.
Fix a �cfg-model Mcfg called the configuration model, where
Mcfg

Cfg is the set of all configurations. RL formulas are called
reachability rules, or simply rules, and have the form ϕ1 ⇒ ϕ2
where ϕ1, ϕ2 are ML (without µ) �cfg-patterns. A reachability
system S is a finite set of rules, which yields a transition system
S = (Mcfg

Cfg,R) where s R t iff there exist a rule ϕ1 ⇒ ϕ2 ∈ S
and an Mcfg-valuation ρ such that s ∈ ρ̄(ϕ1) and t ∈ ρ̄(ϕ2). A
rule ψ1 ⇒ ψ2 is S-valid, denoted S �RL ψ1 ⇒ ψ2, iff for all
Mcfg

Cfg-valuations ρ and configurations s ∈ ρ̄(ψ1), either there is
an infinite trace s R t1 Rt2 R . . . in S or there is a configuration
t such that s R∗ r and t ∈ ρ̄(ψ2). Therefore, validity in RL is
defined in the spirit of partial correctness.
The sound and relatively complete proof system of RL

derives reachability logic sequents of the form A `C ϕ1 ⇒ ϕ2
where A (called axioms) and C (called circularities) are finite
sets of rules. Initially we start with A = S and C = ∅.
As the proof proceeds, more rules can be added to C via
(Circularity) and then moved to A via (Transitivity),
which can then be used via (Axiom). We write S `RL ψ1 ⇒ ψ2
to mean that S `∅ ψ1 ⇒ ψ2. Notice (Consequence) consults
the configuration model Mcfg for validity, so the completeness
result is relative to Mcfg. We recall the following result [2]:

Theorem 38. For all reachability systems S satisfying some
reasonable technical assumptions (see [2]) and all rules ψ1 ⇒
ψ2, we have S �RL ψ1 ⇒ ψ2 iff S `RL ψ1 ⇒ ψ2.

B. Defining reachability logic in matching µ-logic

We define the extended signature �RL = �cfg∪{• ∈ ΣCfg,Cfg}
where “•” is a unary symbol called one-path next. To capture



the semantics of reachability rules ϕ1 ⇒ ϕ2, we define:

“weak eventually” ♦wϕ ≡ νX . ϕ ∨ •X // equal to ¬WF ∨ ♦ϕ
“reaching star” ϕ1 ⇒

∗ ϕ2 ≡ ϕ1 → ♦wϕ2

“reaching plus” ϕ1 ⇒
+ ϕ2 ≡ ϕ1 → •♦wϕ2

Notice that the “weak eventually” ♦wϕ is defined similarly
to the “eventually” ♦ϕ ≡ µX . ϕ ∨ •X , but instead of using
least fixpoint µ-binder, we define it as a greatest fixpoint. One
can prove that ♦wϕ = ¬WF ∨ ♦ϕ, that is, a configuration γ
satisfies ♦wϕ if either it satisfies ♦ϕ, or it is not well-founded,
meaning that there exists an infinite execution path from γ.
Also notice that “reaching plus” ϕ1 ⇒

+ ϕ2 is a stronger
version of “reaching star”, requiring that ♦wϕ2 should hold
after at least one step. This progressive condition is crucial to
the soundness of RL reasoning: as shown in (Transitivity),
circularities are flushed into the axiom set only after one
reachability step is established. This leads us to the following
translation from RL sequents to MmL patterns.

Definition 39. Given a rule ϕ1 ⇒ ϕ2, define the MmL pattern
�(ϕ1 ⇒ ϕ2) ≡ �(ϕ1 ⇒

+ ϕ2) and extend it to a rule set A as
follows: �A ≡

∧
ϕ1⇒ϕ2∈A�(ϕ1 ⇒ ϕ2). Define the translation

RL2MmL from RL sequents to MmL patterns as follows:

RL2MmL(A `C ϕ1 ⇒ ϕ2) = (∀�A) ∧ (∀◦�C) → (ϕ1 ⇒
? ϕ2)

where ? = ∗ if C is empty and ? = + if C is nonempty. We
use ∀ϕ as a shorthand for ∀®x . ϕ where ®x = FV(ϕ). Recall that
the “◦” in ∀◦�C is “all-path next”.

Hence, the translation of A `C ϕ1 ⇒ ϕ2 depends on whether
C is empty or not. When C is nonempty, the RL sequent
is stronger in that it requires at least one step being made
in ϕ1 ⇒ ϕ2. Axioms (those in A) are also stronger than
circularities (those in C) in that axioms always hold, while
circularities only hold after at least one step because of the
leading all-path next “◦”; and since the “next” is an “all-
path” one, it does not matter which step is actually made,
as circularities hold on all next states.

Theorem 40. Let ΓRL = {ϕ ∈ PatternML
Cfg | Mcfg � ϕ} be the

set of all ML patterns (without µ) of sort Cfg that hold in Mcfg.
For all RL systems S and rules ϕ1 ⇒ ϕ2 satisfying the same
technical assumptions in [2], the following are equivalent: (1)
S `RL ϕ1 ⇒ ϕ2; (2) S �RL ϕ1 ⇒ ϕ2; (3) ΓRL ` RL2MmL(S `∅
ϕ1 ⇒ ϕ2); (4) ΓRL � RL2MmL(S `∅ ϕ1 ⇒ ϕ2).

Therefore, provided that an oracle for validity of ML
patterns (without µ) in Mcfg is available, the MmL proof
system is capable of deriving any reachability property that
can be derived with the RL proof system. This result makes
MmL an even more fundamental logic foundation for the K
framework and thus for programming language specification
and verification than RL, because it can express significantly
more properties than partial correctness reachability.

X. Future and Related Work

We discuss future work, open problems, and related work.

A. Relation to modal logics
Due to the duality between MmL symbols and modal logic

modalities (Section III, Proposition 12), ML can be regarded
as a nontrivial extension of modal logics. There are various
directions to extend the basic propositional modal logic in the
literature [19]. One is the hybrid extension, where first-order
quantifiers “∀” and “∃” are added to the logic, as well as
state variables/names that allow us to specify one particular
state. Another is the polyadic extension, where modalities can
take not just one argument, but any number of arguments,
and there can be multiple modalities. MmL can be seen as a
combination of both extensions, further extended with multiple
sort universes. The local completeness of H (Theorem 16)
also extends the completeness results of its fragment logics,
including hybrid modal logic [20] and many-sorted polyadic
modal logic [18].

B. Stronger completeness results of H
There are various notions of completeness for modal logics

(see, e.g., [47, Appendix B.6]). We recall three of them,
adapted to the context of ML and its proof system H , from
the strongest to the weakest:
• Global completeness: Γ �ML ϕ implies Γ `H ϕ;
• Strong local completeness: Γ �locML ϕ implies Γ `loc

H
ϕ;

• Weak local completeness: �ML ϕ implies `H ϕ;
where Γ �locML ϕ, called local semantic entailment, means
that

⋂
ψ∈Γ ρ̄(ψ) ⊆ ρ̄(ϕ) for all models M and valuations ρ;

Γ `loc
H

ϕ, called local provability, means that there exists a
finite subset Γ0 ⊆fin Γ such that `H ∧Γ0 → ϕ, where ∧Γ0 is the
conjunction of all patterns in Γ0. Theorem 16 is a weak local
completeness result for H , but the way we actually prove it is
by proving the strong local completeness theorem and then let
Γ = ∅ (see Theorem 83). What is unknown and left as future
work is global completeness. Theorem 15 shows that global
completeness holds for ML when Γ contains definedness
symbols and axioms. We conjecture global completeness holds
in general.

C. Decidability of matching µ-logic without FOL quantifiers
Modal µ-logic is known for its high expressiveness as

well as its decidability, given that it can capture the true
least/greatest fixpoints in models, As a result, modal µ-logic
stands out from other fixpoint logics, such as LFP. As seen
in Section VIII, modal µ-logic can be seen as the syntactic
fragment of MmL without FOL quantifiers (i.e., ∃-binder) or
element variables that contains only one sort and one unary
symbol. A natural question is whether the decidability result
stil holds if we consider the MmL fragment without FOL
quantifiers or element variables but containing multiple sorts
and symbols of arbitrary arities. We conjecture it holds.

D. Alternative semantics of matching µ-logic
MmL cannot have a sound and complete proof system

because we can precisely define (N,+,×) (see Proposition 23).
On the other hand, the proof systemHµ turned out to be strong
enough to prove all the proof rules of all the proof systems



of all the logics discussed in this paper. Therefore, a natural
question is whether we can find alternative models for MmL
that make Hµ complete. A promising direction towards such
an alternative semantics is to consider the so-called Henkin
semantics or general semantics, where the least fixpoint pattern
µX . ϕ does not evaluate to the true least fixpoint in models,
but to the least fixpoint that is definable in the logic.

XI. Conclusion

We made two main contributions in this paper. Firstly, we
proposed a new sound and complete proof system H for
matching logic (ML). Secondly, we extended ML with the
least fixpoint µ-binder and proposed matching µ-logic (MmL).
We showed the expressiveness of MmL by defining a variety
of common logics about induction/fixpoints/verification in
MmL. We hope that MmL may serve as a promising unify-
ing foundation for specifying and reasoning about induction,
fixpoints, as well as model checking and program verification.
Acknowledgments: We thank the anonymous reviewers for
their valuable comments on drafts of this paper. The work
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Appendix A
Matching Logic Proof System P

The proof system P of ML in [1] is shown in Fig. 3.

Appendix B
Proof of Theorem 13

We prove the soundness theorem of H (Theorem 13). We
only discuss ML (without µ) in this section, so we drop all
unnecessary annotations. Specifically, we abbreviate “�ML” as
“�” and “`H” as “`”.

Lemma 41 (ML substitution lemma). For all models M and
M-valuations ρ, we have ρ̄(ϕ[y/x]) = ρ[ρ(y)/x](ϕ).

Proof: The proof is standard as in FOL. We conduct
structural induction on ϕ. If ϕ ≡ z . x, we have ρ̄(z[y/x]) =
ρ̄(z) = {ρ(z)} and ρ[ρ(y)/x](z) = {ρ(z)}. If ϕ ≡ x, we have
ρ̄(x[y/x]) = ρ̄(y) = {ρ(y)} and ρ[ρ(y)/x](x) = {ρ(y)}. If ϕ ≡
ϕ1 ∧ ϕ2, we have ρ̄((ϕ1 ∧ ϕ2)[y/x]) = ρ̄(ϕ1[y/x] ∧ ϕ2[y/x]) =
ρ̄(ϕ1[y/x]) ∩ ρ̄(ϕ2[y/x]) = ρ[ρ(y)/x](ϕ1) ∩ ρ[ρ(y)/x](ϕ2) =
ρ[ρ(y)/x](ϕ1 ∧ ϕ2). If ϕ ≡ ¬ϕ1, we have ρ̄((¬ϕ1)[y/x]) =
ρ̄(¬(ϕ1[y/x])) = M \ ρ̄(ϕ1[y/x]) = M \ ρ[ρ(y)/x](ϕ1) =
ρ[ρ(y)/x](¬ϕ1).
If ϕ ≡ ∃z . ϕ1, by α-renaming, we can safely assume that z

is distinct from both x and y without loss of generality. Then
we have

ρ̄((∃z . ϕ1)[y/x]) = ρ̄(∃z . (ϕ1[y/x]))

=
⋃
a

ρ[a/z](ϕ1[y/x])

=
⋃
a

ρ[a/z][ρ[a/z](y)/x](ϕ1)

=
⋃
a

ρ[a/z][ρ(y)/x](ϕ1)

=
⋃
a

ρ[ρ(y)/x][a/z](ϕ1)

= ρ[ρ(y)/x](∃z . ϕ1).

If ϕ ≡ σ(ϕ1, . . . , ϕn), we have

ρ̄(σ(ϕ1, . . . , ϕn)[y/x]) = ρ̄(σ(ϕ1[y/x], . . . , ϕn[y/x]))

= σM (ρ̄(ϕ1[y/x]), . . . , ρ̄(ϕn[y/x]))

= σM (ρ[ρ(y)/x](ϕ1), . . . , ρ[ρ(y)/x](ϕn))

= ρ[ρ(y)/x](σ(ϕ1, . . . , ϕn)).

Therefore, the conclusion holds by structural induction.

Lemma 42. Let C be be a nest symbol context. Then for all
models M and M-valuations ρ, we have
1) ρ̄(C[⊥]) = ∅;
2) ρ̄(C[ϕ1 ∨ ϕ2]) = ρ̄(ϕ1) ∪ ρ̄(ϕ2);
3) ρ̄(C[∃x . ϕ]) =

⋃
a ρ[a/x](C[ϕ]) if x < FV(C[∃x . ϕ]);

4) ρ̄(ϕ1) ⊆ ρ̄(ϕ2) implies ρ̄(C[ϕ1]) ⊆ ρ̄(C[ϕ2]);
5) ρ̄(C[x ∧ ϕ]) ∩ ρ̄(C[x ∧ ¬ϕ]) = ∅.

Proof: We conduct structural induction on C. The base
case is when C[�] ≡ � is the identity context. In this case, all
propositions trivially hold.



(Propositional Tautology) ϕ, if ϕ is a proposition tautology over patterns of the same sort

(Modus Ponens)
ϕ1 ϕ1 → ϕ2

ϕ2
(Functional Substitution) (∀x.ϕ) ∧ (∃y.ϕ′ = y) → ϕ[ϕ′/x] if y < FV(ϕ′)
(∀) ∀x.(ϕ1 → ϕ2) → (ϕ1 → ∀x.ϕ2) if x < FV(ϕ1)

(Universal Generalization)
ϕ

∀x . ϕ
(Equality Introduction) ϕ = ϕ
(Equality Elimination) (ϕ1 = ϕ2) ∧ ψ[ϕ1/x] → ψ[ϕ2/x]

(Membership Introduction)
ϕ

if x < FV(ϕ)
∀x . (x ∈ ϕ)

(Membership Elimination)
∀x . (x ∈ ϕ)

if x < FV(ϕ)
ϕ

(Membership Variable) (x ∈ y) = (x = y)

(Membership¬) (x ∈ ¬ϕ) = ¬(x ∈ ϕ)
(Membership∧) (x ∈ ϕ1 ∧ ϕ2) = (x ∈ ϕ1) ∧ (x ∈ ϕ2)
(Membership∃) (x ∈ ∃y.ϕ) = ∃y.(x ∈ ϕ), where x and y distinct.
(Membership Symbol) x ∈ Cσ[ϕ] = ∃y.(y ∈ ϕ) ∧ (x ∈ Cσ[y]) if y < FV(Cσ[ϕ])

Fig. 3. Sound and complete matching logic proof system P with definedness symbols [1]

The inductive case is when C[�] ≡ Cσ[C1[�]] where Cσ is
a single symbol context and C1 is a nested symbol context.
By inductive hypothesis, all propositions hold for C1. Let
us assume that Cσ[�] ≡ σ(ψ1, . . . ,ψi−1,�,ψi+1, . . . ,ψn). For
notational simplicity, we define

σi
M (A) = σM (ρ̄(ψ1), . . . , ρ̄(ψi−1), A, ρ̄(ψi+1), . . . , ρ̄(ψn)))

for A ⊆ M . Then, ρ̄(Cσ[ϕ]) = σi
M (ρ̄(ϕ)) for all ϕ.

We now prove propositions (1)-(5) using the inductive
hypothesis and the property of propagation (Proposition 3).

(1). We have ρ̄(Cσ[C1[⊥]]) = σ
i
M (ρ̄(C1[⊥])) = σ

i
M (∅) = ∅.

(2). We have ρ̄(Cσ[C1[ϕ1 ∨ ϕ2]]) = σ
i
M (ρ̄(C1[ϕ1 ∨ ϕ2])) =

σi
M (ρ̄(C1[ϕ1])∪ ρ̄(C1[ϕ2])) = σ

i
M (ρ̄(C1[ϕ1]))∪σ

i
M (ρ̄(C1[ϕ1]))

= ρ̄(Cσ[C1[ϕ1]]) ∪ ρ̄(Cσ[C1[ϕ2]]).
(3). We have ρ̄(Cσ[C1[∃x . ϕ]]) = σi

M (ρ̄(C1[∃x . ϕ])) =
σi
M (

⋃
a ρ[a/x](C1[ϕ])). Since x < FV(Cσ[C1[∃x . ϕ]]), we

have σi
M (

⋃
a ρ[a/x](C1[ϕ])) =

⋃
a σ

i
M (ρ[a/x](C1[ϕ])) =⋃

a ρ[a/x](Cσ[C1[ϕ]]).
(4). We need to prove that ρ̄(Cσ[C1[ϕ1]]) ⊆ ρ̄(Cσ[C1[ϕ2]]),

that is, σi
M (ρ̄(C1[ϕ1])) ⊆ σi

M (ρ̄(C1[ϕ2])). By the prop-
erty of propagation (Proposition 3), it suffices to show that
ρ̄(C1[ϕ1]) ⊆ ρ̄(C1[ϕ2]), which holds, by the inductive hypoth-
esis and the assumption ρ̄(ϕ1) ⊆ ρ̄(ϕ2).

(5). This can be proved from proposition (1). If ρ(x) ∈ ρ̄(ϕ),
we have ρ̄(x ∧ ϕ) = ∅, and thus ρ̄(C[x ∧ ϕ]) = ∅. Otherwise,
we have ρ̄(x ∧ ¬ϕ) = ∅, and thus ρ̄(C[x ∧ ¬ϕ]) = ∅.

Therefore, all propositions hold by structural induction.

Lemma 43. For all models M , the following propositions hold
1) M � ϕ for propositional tautology ϕ over patterns of the

same sort;
2) M � ϕ1 and M � ϕ1 → ϕ2 imply M � ϕ2;
3) M � ϕ[y/x] → ∃x . ϕ;
4) M � ϕ1 → ϕ2 implies M � (∃x . ϕ1) → ϕ2 if x<FV(ϕ2);

5) M � Cσ[⊥] → ⊥;
6) M � Cσ[ϕ1 ∨ ϕ2] → Cσ[ϕ1] ∨ Cσ[ϕ2];
7) M � Cσ[∃x.ϕ] → ∃x.Cσ[ϕ] if x < FV(Cσ[∃x.ϕ]);
8) M � ϕ1 → ϕ2 implies M � Cσ[ϕ1] → Cσ[ϕ2]
9) M � ∃x . x
10) M � ¬(C1[x ∧ ϕ] ∧ C2[x ∧ ¬ϕ])

where ϕ, ϕ1, ϕ2, ϕ3 are patterns, x and y are variables, σ is
a symbol, Cσ is a single symbol context, and C1 and C2 are
nested symbol contexts.

Proof: Propositions (1) and (2) are proved in [1, Propo-
sition 2.8]. Note that M � ϕ1 → ϕ2 iff ρ̄(ϕ1) ⊆ ρ̄(ϕ2) for all ρ
(see [1, Proposition 2.6]). We will use this property to prove
propositions (3)-(8). In the following, let ρ be any valuation.
(3). By ML Substitution Lemma (Lemma 41), ρ̄(ϕ[y/x]) =

ρ[ρ(y)/x](ϕ) ⊆
⋃

a ρ[a/x](ϕ) = ρ̄(∃x . ϕ).
(4). We need to prove that ρ̄(∃x . ϕ1) ⊆ ρ̄(ϕ2), that is,⋃
a ρ[a/x](ϕ1) ⊆ ρ̄(ϕ2). It suffices to prove that ρ[a/x](ϕ1) ⊆

ρ̄(ϕ2) for all a ∈ M . Note that x < FV(ϕ1), so the evaluation
of ϕ1 is independent from the evaluation of x (see [1,
Proposition 2.6]). Therefore, ρ[a/x](ϕ1) = ρ̄(ϕ1). Finally, we
have ρ̄(ϕ1) ⊆ ρ̄(ϕ2) by assumption.
(5)-(8),(10). All these propositions are a direct consequence

of Lemma 42.
(9). We have ρ̄(∃x . x) =

⋃
a ρ[a/x](x) =

⋃
a{a} = M .

Now, we restate Theorem 13 and prove it. Recall that within
this section we abbreviate Γ `H ϕ as Γ ` ϕ and abbreviate
Γ �ML ϕ as Γ � ϕ.

Theorem 13 (Soundness of H ). Γ `H ϕ implies Γ �ML ϕ.

Proof: The proof is standard as in FOL. We conduct
induction on the length of the formal proof Γ ` ϕ of the
Hilbert-style proof system H . The base case is when the proof
length is 1. This means that ϕ is either an axiom of H or



ϕ ∈ Γ. If ϕ is an axiom, then we have Γ � ϕ by Lemma 43.
If ϕ ∈ Γ, then we have Γ � ϕ by Definition 6.
Now we consider the inductive case. Suppose the proof

length is n + 1 for some n ≥ 1, as illustrated in the following:

ϕ1, . . . , ϕn, ϕn+1 where ϕn+1 ≡ ϕ.

If ϕn+1 is an axiom of H or ϕn+1 ∈ Γ, then we have Γ � ϕn+1,
for the same reason as in the base case. If ϕn+1 is by an
application of one of (Modus Ponens), (∃-Generalization),
or (Framing), then we have Γ � ϕ by Lemma 43 as well as the
inductive hypothesis, which states that Γ � ϕi for all 1 ≤ i ≤ n.

Appendix C
Properties of Proof SystemH of Matching Logic

We present and prove some important properties of the proof
system H of ML. In particular, we prove Proposition 12 and
Theorem 14.

We only discuss ML (without µ) in this section, so we drop
all unnecessary annotations. Specifically, we abbreviate “�ML”
as “�” and “`H” as “`”. We call a nested symbol context (see
Definition 10) also as just a symbol context.
We assume readers are familiar with FOL and its formal

proofs. Note that the proof system H of ML consists of the
complete axiomatization of FOL. This leads us to the following
proposition.

Proposition 44. FOL reasoning is sound for ML.

Proof: The proof rules (Tautology), (Modus Ponens),
(∃-Quantifier), and (∃-Generalization) form a complete
axiomatization of FOL (without function symbols). Therefore,
any FOL reasoning is a combination of these rules, which are
sound for ML as shown in Theorem 13.

Proposition 45. Frame reasoning is sound for ML. Specifi-
cally,

1) If Γ ` ϕi → ϕ′i for 1 ≤ i ≤ n, then we have Γ `
σ(ϕ1, . . . , ϕn) → σ(ϕ′1, . . . , ϕ

′
n);

2) If Γ ` ϕ → ϕ′, then we have Γ ` C[ϕ] → C[ϕ′i], where
C is a symbol context.

Proof: We first prove (1). It suffices to prove all the
following propositions:

Γ ` σ(ϕ1, ϕ2, . . . , ϕn−1, ϕn) → σ(ϕ′1, ϕ2, . . . , ϕn−1, ϕn)
Γ ` σ(ϕ′1, ϕ2, . . . , ϕn−1, ϕn) → σ(ϕ′1, ϕ

′
2, . . . , ϕn−1, ϕn)

· · ·

Γ ` σ(ϕ′1, ϕ
′
2, . . . , ϕ

′
n−1, ϕn) → σ(ϕ′1, ϕ

′
2, . . . , ϕ

′
n−1, ϕ

′
n)

These propositions can be directly proved by (Framing).
We then prove (2) by a structural induction on C. If C[�] ≡
� is the identity context, the conclusion trivial holds. If C[�] ≡
Cσ[C1[�]] where C1 is a symbol context, we have

Γ ` ϕ→ ϕ′ // assumption
Γ ` C1[ϕ] → C1[ϕ

′] // inductive hypothesis
Γ ` Cσ[C1[ϕ]] → Cσ[C1[ϕ

′]] // (Framing)

Therefore, both conclusions hold.

Proposition 46. For all symbol contexts C and patterns
ϕ1, ϕ2, ϕ, the following propositions hold:
1) Γ ` C[⊥] ↔ ⊥;
2) Γ ` C[ϕ1 ∨ ϕ2] ↔ C[ϕ1] ∨ C[ϕ2];
3) Γ ` C[∃x.ϕ] ↔ ∃x.C[ϕ], if x < FV(C[∃x.ϕ]);
4) Γ ` C[ϕ1 ∨ ϕ2] iff Γ ` C[ϕ1] ∨ C[ϕ2];
5) Γ ` C[∃x.ϕ] iff Γ ` ∃x.C[ϕ], if x < FV(C[∃x.ϕ]).

Proof:We conduct structural induction on C. If C[�] ≡ �,
all propositions trivially hold, so we consider the inductive
case when C[�] ≡ Cσ[C1[�]] where Cσ is a single symbol
context and C1 is a symbol context.
(1,“→”). By inductive hypothesis, we have Γ ` C1[⊥] →
⊥. By (Framing), we have Γ ` Cσ[C1[⊥]] → Cσ[⊥], i.e.,
Γ ` C[⊥] → Cσ[⊥]. Finally, we have Γ ` Cσ[⊥] → ⊥ by
(Propagation⊥).
(1,“←”). Trivial, by FOL reasoning.
(2,“→”). Similar to (1,“→”) except that we use

(Propagation∨) in the last step.
(2,“←”). It suffices to prove Γ ` C[ϕi] → C[ϕ1∨ϕ2] for i ∈
{1,2}. This can be proved by frame reasoning (Proposition 45)
on Γ ` ϕi → ϕ1 ∨ ϕ2.
(3,“→”). Similar to (1,“→”) except that we use

(Propagation∃) in the last step.
(3,“←”). It suffices to prove Γ ` (∃x .C[ϕ]) → C[∃x . ϕ].

By (∃-Generalization), it suffices to prove Γ ` C[ϕ] →
C[∃x . ϕ], which can be proved by frame reasoning (Propo-
sition 45) on Γ ` ϕ→ ∃x . ϕ.
Finally, both (4) and (5) are direct consequences of (1)-(3).

Proposition 47. For any context C (not just symbol context),
we have Γ ` ϕ1 ↔ ϕ2 implies Γ ` C[ϕ1] ↔ C[ϕ2].

Proof: We conduct structural induction on C. Recall that
a context is simply a pattern with a distinguished placeholder
variable � (see Definition 10). The base case is when C is the
identity context. In this case, the conclusion trivially holds. In
the following, we consider the inductive cases.
When C takes one of the forms: ¬C ′, ψ ∧ C ′, C ′ ∧ ψ, or
∃x .C where C ′ is a context and ψ is a pattern without the
placeholder variable �, the conclusion holds by simple FOL
reasoning. When C has the form Cσ[C ′], the conclusion holds
by Proposition 45.
Proposition 47 allows us to replace in-place ϕ1 by ϕ2 under

any context, if Γ ` ϕ1 ↔ ϕ2.

Lemma 48. For symbol contexts C, we have Γ ` ϕ implies
Γ ` ¬C[¬ϕ].

Proof:
1 ϕ hypothesis
2 ¬ϕ→ ⊥ by 1, FOL reasoning
3 C[¬ϕ] → C[⊥] by 2, (Framing)
4 C[⊥] → ⊥ by (Propagation)
5 C[¬ϕ] → ⊥ by 3 and 4, FOL reasoning
6 ¬C[¬ϕ] by 5, FOL reasoning



Now, we restate Proposition 12 and prove it. Recall that we
abbreviate “`H” as “`” within this section.

Proposition 12. Let σ ∈ Σs1...sn ,s and define its “dual” as
σ̄(ϕ1, . . . , ϕn) ≡ ¬σ(¬ϕ1, . . . ,¬ϕn). Then we have:
• (K): `H σ̄(ϕ1 → ϕ′1, . . . , ϕn → ϕ′n)

→ (σ̄(ϕ1, . . . , ϕn) → σ̄(ϕ′1, . . . , ϕ
′
n));

• (N): `H ϕi implies `H σ̄(ϕ1, . . . , ϕi, . . . , ϕn).
These rules also appear in [17], [18] as proof rules of
polyadic modal logic. When n = 1, we obtain the standard
(K) rule and (N) rule of normal modal logic [19].

Proof: Define Cσ[�] = σ(ϕ1, . . . , ϕi−1,�, ϕi+1, . . . , ϕn) for
some 1 ≤ i ≤ n.

(K). By FOL reasoning, we just need to prove the case
of one argument, that is, to prove ` ¬Cσ[¬(ϕ → ϕ′)] →
(¬Cσ[¬ϕ] → ¬Cσ[¬ϕ′]). By FOL reasoning, it suffices to
prove ` Cσ[ϕ∧ ϕ′] ∨Cσ[¬ϕ] ∨¬Cσ[¬ϕ′]. By Proposition 46,
it suffices to prove ` Cσ[(ϕ ∧ ϕ′) ∨ ¬ϕ] ∨ ¬Cσ[¬ϕ′], i.e.,
` Cσ[ϕ′ ∨ ¬ϕ] ∨ ¬Cσ[¬ϕ′]. By Proposition 46, it suffices to
prove ` Cσ[ϕ′] ∨ Cσ[¬ϕ] ∨ ¬Cσ[¬ϕ′], which holds by FOL
reasoning.

(N). It is a direct consequence of Lemma 48, where we let
C ≡ Cσ .

Lemma 49. Γ ` ϕ1 ↔ ϕ2 implies Γ ` ϕ1 = ϕ2.

Proof:

1 ϕ1 ↔ ϕ2 hypothesis
2 ¬d¬(ϕ1 ↔ ϕ2)e by 1, Lemma 48
3 ϕ1 = ϕ2 by 2, definition of equality

Lemma 50. (Equality Introduction) can be proved in H .

Proof:

1 ϕ↔ ϕ propositional tautology
2 ϕ = ϕ by 1, Lemma 49

Lemma 51. (Membership Introduction) can be proved in H .

Proof:

1 ϕ hypothesis
2 ϕ→ (x → ϕ) (Proposition1)
3 x → ϕ by 1 and 2, (Modus Ponens)
4 x → x propositional tautology
5 x → x ∧ ϕ by 3 and 4, FOL reasoning
6 dxe → dx ∧ ϕe by 5, (Framing)
7 dxe definedness axiom
8 dx ∧ ϕe by 6 and 7, (Modus Ponens)
9 x ∈ ϕ by 8, definition of membership
10 ∀x.(x ∈ ϕ) by 9, (Universal Generalization)

Lemma 52. (Membership Elimination) can be proved in H .

Proof:

1 ∀x.(x ∈ ϕ) hypothesis
2 (∀x.(x ∈ ϕ)) (Variable Substitution)

→ x ∈ ϕ
3 x ∈ ϕ by 1 and 2, (Modus Ponens)
4 dx ∧ ϕe by 3, definition of membership
5 ¬(dx ∧ ϕe (Singleton Variable)

∧(x ∧ ¬ϕ))
6 dx ∧ ϕe by 5, FOL reasoning

→ (x → ϕ)
7 x → ϕ by 4 and 6, (Modus Ponens)
8 ∀x.(x → ϕ) by 7, (Universal Generalization)
9 (∃x.x) → ϕ by 8, FOL reasoning
10 ∃x.x (Existence)
11 ϕ by 10 and 9, (Modus Ponens)

Lemma 53. (Membership Variable) can be proved in H .

Proof: By Lemma 49, we just need to prove both ` (x ∈
y) → (x = y) and ` (x = y) → (x ∈ y). We first prove
` (x = y) → (x ∈ y).

1 dxe definedness axiom
2 dxe ∨ dye by 1, FOL reasoning
3 dx ∨ ye by 2, Proposition 46
4 d¬(x ↔ y) ∨ (x ∧ y)e by 3, FOL reasoning
5 d¬(x ↔ y)e ∨ dx ∧ ye by 4, Proposition 46
6 ¬d¬(x ↔ y)e → dx ∧ ye by 5, FOL reasoning
7 (x = y) → (x ∈ y) by 6, definition

We then prove ` (x ∈ y) → (x = y).

1 ¬(dx ∧ ye ∧ dx ∧ ¬ye) by (Singleton Variable)
2 ¬(dx ∧ ye ∧ d¬x ∧ ye) by (Singleton Variable)
3 dx ∧ ye → ¬dx ∧ ¬ye by 1, FOL reasoning
4 dx ∧ ye → ¬d¬x ∧ ye by 2, FOL reasoning
5 dx ∧ ye by 3, 4, FOL reasoning
→ ¬dx ∧ ¬ye ∧ ¬d¬x ∧ ye

6 dx ∧ ye by 5, FOL reasoning
→ ¬(dx ∧ ¬ye ∨ d¬x ∧ ye)

7 dx ∧ ye by 6, Proposition 46
→ ¬d(x ∧ ¬y) ∨ (¬x ∧ y)e

8 dx ∧ ye → ¬d¬(x ↔ y)e by 7, FOL reasoning
9 (x ∈ y) → (x = y) by 8, definition

Lemma 54. (Membership¬) can be proved in H .

Proof: We first prove ` (x ∈ ¬ϕ) → ¬(x ∈ ϕ).

1 ¬(dx ∧ ϕe ∧ dx ∧ ¬ϕe) by (Singleton Variable)
2 dx ∧ ¬ϕe → ¬dx ∧ ϕe by 1, FOL reasoning
3 (x ∈ ¬ϕ) → ¬(x ∈ ϕ) by 2, definition

We then prove ` ¬(x ∈ ϕ) → (x ∈ ¬ϕ).



1 dxe definedness axiom
2 d(x ∧ ϕ) ∨ (x ∧ ¬ϕ)e by 1, FOL reasoning
3 dx ∧ ϕe ∨ dx ∧ ¬ϕe by 2, Proposition 46
4 ¬dx ∧ ϕe → dx ∧ ¬ϕe by 3, FOL reasoning
5 ¬(x ∈ ϕ) → (x ∈ ¬ϕ) by 4, definition

Lemma 55. ` (x ∈ (ϕ1 ∨ ϕ2)) ↔ (x ∈ ϕ1) ∨ (x ∈ ϕ2).

Proof: Use (Propagation∨) and FOL reasoning.

Lemma 56. (Membership∧) can be proved in H .

Proof: Use Lemma 54 and 55, and the fact that ` ϕ1 ∧
ϕ2 ↔ ¬(¬ϕ1 ∨ ¬ϕ2).

Lemma 57. (Membership∃) can be proved in H .

Proof: Use (Propagation∃) and FOL reasoning.
The following is a useful lemma about definedness symbols.

Lemma 58. ` C[ϕ] → dϕe for any symbol context C.

Proof: Let x be a fresh variable in the following proof.

1 dxe definedness axiom
2 dxe ∨ dϕe by 1, FOL reasoning
3 dx ∨ ϕe by 2, Proposition 46
4 dx ∧ ¬ϕ ∨ ϕe by 3, FOL reasoning
5 dx ∧ ¬ϕe ∨ dϕe by 4, Proposition 46
6 C[x ∧ ϕ] → ¬dx ∧ ¬ϕe by (Singleton Variable)
7 ¬dx ∧ ¬ϕe → dϕe by 5, FOL reasoning
8 C[x ∧ ϕ] → dϕe by 6 and 7, FOL reasoning
9 ∀x.(C[x ∧ ϕ] → dϕe) by 8, FOL reasoning
10 (∃x.C[x ∧ ϕ]) → dϕe by 9, FOL reasoning
11 ϕ→ (∃x.x) ∧ ϕ by (Existence)
12 ϕ→ ∃x.(x ∧ ϕ) by 11, FOL reasoning
13 C[ϕ] → C[∃x.(x ∧ ϕ)] by 12, (Framing)
14 C[∃x.(x ∧ ϕ)] → dϕe by 10, Proposition 46
15 C[ϕ] → dϕe by 13, 14, FOL reasoning

Corollary 59. ` Cσ[ϕ] → dϕe and ` bϕc → ¬Cσ[¬ϕ] for all
symbols σ. In particular, ` ϕ→ dϕe and ` bϕc → ϕ.

We are now ready to prove the deduction theorem (Theo-
rem 14).

Proof of Theorem 14: Carry out induction on the length
of the proof Γ ∪ {ψ} ` ϕ.

(Base Case). Suppose the length is one, then either ϕ is an
axiom in H or ϕ ∈ Γ ∪ {ψ}. In either case, it is obvious that
Γ ` bψc → ϕ (noticing Corollary 59 for the case ϕ is ψ).
(Induction Step). Suppose the proof Γ ∪ {ψ} ` ϕ has n + 1

steps:
ϕ1, . . . , ϕn, ϕ.

If ϕ is an axiom in H or ϕ ∈ Γ ∪ {ψ}, then Γ ` bψc → ϕ
for the same reason as (Base Case). If the last step is (Modus
Ponens) on ϕi and ϕj for some 1 ≤ i, j ≤ n such that ϕj has
the form ϕi → ϕ, by induction hypothesis, Γ ` bψc → ϕi and
Γ ` bψc → (ϕi → ϕ). By FOL reasoning, Γ ` bψc → ϕ. If

the last step is (Universal Generalization) on ϕi for some
1 ≤ i ≤ n, then ϕ must have the form ∀x.ϕi where x does not
occur free in ψ. By induction hypothesis, Γ ` bψc → ϕi . By
FOL reasoning, Γ ` bψc → ∀x.ϕi .
If the last step is (Framing) on ϕi for some 1 ≤ i ≤ n,

then ϕi must have the form ϕ′i → ϕ′′i , and ϕ must have the
form Cσ[ϕ′i] → Cσ[ϕ′′i ] for some symbol σ. By induction
hypothesis, Γ ` bψc → (ϕ′i → ϕ′′i ). We now prove Γ ` bψc →
(Cσ[ϕ′i] → Cσ[ϕ′′i ]).

1 bψc → (ϕ′i → ϕ′′i ) hypothesis
2 ϕ′i → ϕ′′i ∨ d¬ψe by 1, FOL reasoning
3 Cσ[d¬ψe] → d¬ψe Corollary 59
4 Cσ[ϕ′i] by 2, (Framing)
→ Cσ[ϕ′′i ∨ d¬ψe]

5 Cσ[ϕ′i] by 4, Proposition 46
→ Cσ[ϕ′′i ] ∨ Cσ[d¬ψe]

6 Cσ[ϕ′′i ] ∨ Cσ[d¬ψe] by 3, FOL reasoning
→ Cσ[ϕ′′i ] ∨ d¬ψe

7 Cσ[ϕ′i] → Cσ[ϕ′′i ] ∨ d¬ψe by 5, 6, FOL reasoning
8 bψc → (Cσ[ϕ′i] → Cσ[ϕ′′i ]) by 7, FOL reasoning

Lemma 60. (Equality Elimination) can be proved in H .

Proof: Recall the definition of equality (ϕ1 = ϕ2) ≡
bϕ1 ↔ ϕ2c. Theorem 14 together with Proposition 47 give
us a nice way to deal with equality premises. To prove
` (ϕ1 = ϕ2) → (ψ[ϕ1/x] → ψ[ϕ2/x]), we apply Theorem 14
and prove {ϕ1 ↔ ϕ2} ` ψ[ϕ1/x] → ψ[ϕ2/x], which is
proved by Proposition 47. Note that the (formal) proof given
in Proposition 47 does not use (Universal Generalization)
at all, so the conditions of Theorem 14 are satisfied.

Lemma 61. (Functional Substitution) can be proved in H .

Proof: Let z be a fresh variable that does not occur free
in ϕ and ϕ′, and is distinct from x. Notice the side condition
that y does not occur free in ϕ′.

1 ϕ′ = z ↔ z = ϕ′ definition
2 z = ϕ′→ (ϕ[z/x] → ϕ[ϕ′/x]) Lemma 60
3 (∀x.ϕ) → ϕ[z/x] by axiom
4 ϕ′ = z → ((∀x.ϕ) → ϕ[z/x]) FOL reasoning
5 ϕ′ = z → (ϕ[z/x] → ϕ[ϕ′/x]) FOL reasoning
6 ϕ′ = z → ((∀x.ϕ) → ϕ[ϕ′/x]) FOL reasoning
7 ∀z.(ϕ′ = z → ((∀x.ϕ) → ϕ[ϕ′/x])) by 6
8 (∃z.ϕ′ = z) → ((∀x.ϕ) → ϕ[ϕ′/x]) FOL reasoning
9 (∀x.ϕ) ∧ (∃z.ϕ′ = z) → ϕ[ϕ′/x] FOL reasoning
10 (∀x.ϕ) ∧ (∃y.ϕ′ = y) → ϕ[ϕ′/x] FOL reasoning

Lemma 62. ` Cσ[ϕ1 ∧ (x ∈ ϕ2)] = Cσ[ϕ1] ∧ (x ∈ ϕ2).

Proof:We first prove ` Cσ[ϕ1∧(x ∈ ϕ2)] → Cσ[ϕ1]∧(x ∈
ϕ2). By FOL reasoning, it suffices to show both ` Cσ[ϕ1∧(x ∈
ϕ2)] → Cσ[ϕ1] and ` Cσ[ϕ1 ∧ (x ∈ ϕ2)] → (x ∈ ϕ2). The first
follows immediately by (Framing) and FOL reasoning. The
second can be proved as:



1 dxe
2 d(x ∧ ¬ϕ2) ∨ (x ∧ ϕ2)e
3 dx ∧ ¬ϕ2e ∨ dx ∧ ϕ2e
4 ¬dx ∧ ¬ϕ2e → dx ∧ ϕ2e
5 Cσ[dx ∧ ϕ2e] → ¬dx ∧ ¬ϕ2e
6 Cσ[dx ∧ ϕ2e] → dx ∧ ϕ2e
7 Cσ[ϕ1 ∧ dx ∧ ϕ2e] → Cσ[dx ∧ ϕ2e]
8 Cσ[ϕ1 ∧ dx ∧ ϕ2e] → dx ∧ ϕ2e
9 Cσ[ϕ1 ∧ (x ∈ ϕ2)] → (x ∈ ϕ2)

Lemma 63. ` ∃y.((x = y) ∧ ϕ) = ϕ[x/y] where x, y distinct.

Proof: The proof is by induction on the structural of
ϕ and Lemma 62.

Lemma 64. ` ϕ = ∃y.(dy ∧ ϕe ∧ y) if y < FV(ϕ).

Proof: We first prove ` ∃y.(dy ∧ ϕe ∧ y) → ϕ.

1 ¬(dy ∧ ϕe ∧ (y ∧ ¬ϕ)) (Singleton Variable)
2 dy ∧ ϕe ∧ y → ϕ by 1, FOL reasoning
3 ∀y.(dy ∧ ϕe ∧ y → ϕ) by 2, axiom
4 ∃y.(dy ∧ ϕe ∧ y) → ϕ by 3, FOL reasoning

We then prove ` ϕ → ∃y.(dy ∧ ϕe ∧ y). Let x be a fresh
variable distinct from y.

1 x ∈ ϕ→ x ∈ ϕ
2 x ∈ ϕ→ dx ∧ ϕe
3 x ∈ ϕ→ dx ∧ dx ∧ ϕee
4 x ∈ ϕ→ x ∈ dx ∧ ϕe
5 x ∈ ϕ→ ∃y.(x = y ∧ x ∈ dy ∧ ϕe)
6 x ∈ ϕ→ ∃y.(x ∈ y ∧ x ∈ dy ∧ ϕe)
7 x ∈ ϕ→ ∃y.(x ∈ (y ∧ dy ∧ ϕe))
8 x ∈ ϕ→ x ∈ ∃y.(y ∧ dy ∧ ϕe)
9 x ∈ (ϕ→ ∃y.(y ∧ dy ∧ ϕe))
10 ∀x.(x ∈ (ϕ→ ∃y.(y ∧ dy ∧ ϕe)))
11 ϕ→ ∃y.(y ∧ dy ∧ ϕe)

Lemma 65. (Membership Symbol) is provable in H .

Proof: We first prove ` x ∈ Cσ[ϕ] → ∃y.(y ∈ ϕ ∧ x ∈
Cσ[y]). Let Ψ ≡ ∃y.(y ∈ ϕ ∧ x ∈ Cσ[y]).

1 ∃y.(y ∈ ϕ ∧ x ∈ Cσ[y]) → Ψ
2 ∃y.(dy ∧ ϕe ∧ x ∈ Cσ[y]) → Ψ
3 ∃y.(dx ∧ dy ∧ ϕee ∧ x ∈ Cσ[y]) → Ψ
4 ∃y.(x ∈ dy ∧ ϕe ∧ x ∈ Cσ[y]) → Ψ
5 ∃y.(x ∈ (dy ∧ ϕe ∧ Cσ[y])) → Ψ
6 x ∈ ∃y.(dy ∧ ϕe ∧ Cσ[y]) → Ψ
7 x ∈ ∃y.Cσ[dy ∧ ϕe ∧ y] → Ψ

8 x ∈ Cσ[∃y.dy ∧ ϕe ∧ y] → Ψ

9 x ∈ Cσ[ϕ] → Ψ

We then prove ` ∃y.(y ∈ ϕ ∧ x ∈ C[y]) → x ∈ C[ϕ]. In
fact, we just need to apply the same derivation as above on
` Ψ→ ∃y.(y ∈ ϕ ∧ x ∈ C[y]).

We are now ready to prove Theorem 15.

Proof of Theorem 15: By the completeness of P (Theo-
rem 9), we have Γ `P ϕ. We have shown that all proof rules in
P are provable in H with (Definedness) axioms, so Γ `H ϕ.

Appendix D
Proof of Theorem 16

We prove the completeness theorem of H (Theorem 16).
We only discuss ML (without µ) in this section, so we drop
all unnecessary annotations. Specifically, we abbreviate “�ML”
as “�”; “`H” as “`”; “PatternML” as “Pattern”, etc.
For simplicity of some technical proofs, we assume that
{∧,¬,∃} is our set of primitives, instead of {→,¬,∀}. This is
justified by Proposition 47.
Our proof technique was mainly inspired by [20].

Lemma 66 (Substitution Lemma). ρ̄(ϕ[y/x]) = ρ[ρ(y)/x](ϕ).

Proof: Carry out induction on the structure of ϕ. The only
nontrivial case is when ϕ ≡ ∃z.ψ. Without loss of generality,
let us assume z is distinct from x and y. If not, apply α-
renaming to make them different. Then

ρ̄((∃z.ψ)[y/x])
≡ ρ̄(∃z.(ψ[y/x]))
≡

⋃
{ρ1(ψ[y/x]) | ρ1

z
∼ ρ}

≡
⋃
{ρ′1(ψ) | ρ1

z
∼ ρ and ρ′1 = ρ1[ρ1(y)/x]}

≡
⋃
{ρ′1(ψ) | ρ1

z
∼ ρ and ρ′1 = ρ1[ρ(y)/x]}

≡
⋃
{ρ′1(ψ) | ρ1

z
∼ ρ[ρ(y)/x]}

≡
⋃
{ρ′1(ψ) | ρ1

z
∼ ρ′}

≡ ρ′(∃z.ψ)

Definition 67 (Local Provability). Let s be a sort, Hs ⊆

Patterns be a pattern set, and ϕs be a pattern of sort s. We
write Hs 
s ϕs , if there exists a finite subset ∆s ⊆fin Hs such
that ∅ `

∧
∆s → ϕs , where

∧
∆s is the conjunction of all

patterns in ∆s . When ∆s is the empty set,
∧
∆s is >s . Let

H = {Hs}s∈S be a family set of patterns. We write H 
s ϕs if
Hs 
s ϕs . We drop sort subscripts when there is no confusion.

Definition 68 (Consistent Sets). Let Γs be a pattern set of
sort s. We say Γs is consistent, if Γs 1 ⊥s . Γs is a maximal
consistent set (MCS) if any strict extension of it is inconsistent.
By abuse of language, we say Γ = {Γs}s∈S is consistent if
every Γs is consistent, and Γ is an MCS if every Γs is an
MCS.

Like the local provability relation, consistency is also a local
property. Whether a pattern set Γs is consistent or whether
it is an MCS depends only on itself and has nothing to
do with the pattern sets of other sorts. A useful intuition
about consistent sets is that they provide consistent “views” of
patterns. Recall that patterns in matching logic match elements
in domain. Intuitively speaking, a pattern set Γs is inconsistent
if it contains patterns that cannot match common elements in
any models and valuations. In other words, if Γs is consistent,
then there exist a model M and a valuation ρ, and an element



a in the model, such that all patterns in Γs match a, i.e.,
a ∈ ρ̄(ϕ) for all pattern ϕ ∈ Γs . If Γs is in addition an
MCS, adding any pattern ψ < Γs will lead to inconsistency,
and thus a < ρ̄(ψs). Therefore, we can think of the MCS Γs
representing that particular element a, with all patterns in Γs
matching it while patterns outside Γs not. This useful intuition
motivates the definition of canonical models that consist MCSs
as elements (see Definition 72), and the Truth Lemma that
says “Matching = Membership in MCSs”, connecting syntax
and semantics, (see Lemma 81). They play an important role
in proving the completeness result, including both local and
global completeness theorems. The rest of the section is all
about making this intuition work.

Before we move on, we emphasize that consistency is a
local property and is defined via the local provability relation
“
” given in Definition 67. In particular, a pattern set Γ
is consistent does not imply that Γ 0 ⊥. As an example,
consider Γ = {¬x} where x is a variable. We will argue
that Γ is consistent, but Γ ` ⊥. For the consistency, assume
that Γ is inconsistent, meaning that ∅ ` ¬x → ⊥. By
soundness of H (Theorem 13), we have ∅ � ¬x → ⊥, which
is not true, because (for the sake of contradiction) we can
construct a model M whose carrier set contains two elements,
say {0,1}, and a valuation ρ such that ρ(x) = 0, and that
ρ̄(¬x → ⊥) = {0} , {0,1}. This contradiction shows that
Γ must be consistent. On the other hand, we can show that
Γ ` ⊥, because by (UniversalGeneralization) we can prove
Γ ` ∀x .¬x, and by FOL reasoning we can prove Γ ` ¬∃x . x,
which contradicts with the axiom (Existence) ∃x . x.

In conclusion, consistency is a local property, and one
cannot apply proof rules in H on patterns in a consistent set
Γ, and assume the derived patterns can be safely added to Γ
without breaking the consistency. In Lemma 71, we will see
how we can carefully extend a consistent set Γ to a maximal
consistent set while remain its consistency.

Proposition 69 (MCS Properties). Given an MCS Γ and
patterns ϕ, ϕ1, ϕ2 of the same sort s. The following propositions
hold.

1) ϕ ∈ Γ if and only if Γ 
 ϕ; In particular, if ` ϕ then
ϕ ∈ Γ;

2) ¬ϕ ∈ Γ if and only if ϕ < Γ;
3) ϕ1∧ϕ2 ∈ Γ if and only if ϕ1 ∈ Γ and ϕ2 ∈ Γ; In general,

for any finite pattern set ∆,
∧
∆ ∈ Γ if and only if ∆ ⊆ Γ;

4) ϕ1 ∨ ϕ2 ∈ Γ if and only if ϕ1 ∈ Γ or ϕ2 ∈ Γ; In general,
for any finite pattern set ∆,

∨
∆ ∈ Γ if and only if ∆∩Γ ,

∅; As a convention, when ∆ = ∅,
∨
∆ is ⊥;

5) ϕ1, ϕ1 → ϕ2 ∈ Γ implies ϕ2 ∈ Γ; In particular, if `
ϕ1 → ϕ2, then ϕ1 ∈ Γ implies ϕ2 ∈ Γ.

Proof: Standard propositional reasoning.

Definition 70 (Witnessed MCSs). Let Γ be an MCS of sort
s. Γ is a witnessed MCS, if for any pattern ∃x.ϕ ∈ Γ, there
is a variable y such that (∃x.ϕ) → ϕ[y/x] ∈ Γ. By abuse of
language, we say the family set Γ = {Γs}s∈S is a witnessed
MCS if every Γs is a witnessed MCS.

In the following, we show any consistent set Γ can be
extended to a witnessed MCS Γ+. The extension, however,
requires an extension of the set of variables. To see why
such an extension is needed, consider the following example.
Let � = (S,Var,Σ) be a signature, s ∈ S be a sort, and
Γ = {¬x | x ∈ Vars} be a pattern set containing all
variable negations. We leave it for the readers to show that
Γ is consistent. Here, we claim the consistent set Γ cannot be
extended to a witnessed MCS Γ+ in the signature �. The proof
is by contradiction. Assume Γ+ exists. By Proposition 69 and
(Existence), ∃x.x ∈ Γ+. Because Γ+ is a witnessed MCS,
there is a variable y such that (∃x.x) → y ∈ Γ+, and by
Proposition 69, y ∈ Γ+. On the other hand, ¬y ∈ Γ ⊆ Γ+. This
contradicts the consistency of Γ+.

Lemma 71 (Extension Lemma). Let � = (S,Var,Σ) be a
signature and Γ be a consistent set of sort s ∈ S. Extend
the variable set Var to Var+ with countably infinitely many
new variables, and denoted the extended signature as �+ =
(Var+,S,Σ). There exists a pattern set Γ+ in the extended
signature �+ such that Γ ⊆ Γ+ and Γ+ is a witnessed MCS.

Proof: We use Patterns and Pattern+s denote the set of
all patterns of sort s in the original and extended signatures,
respectively. Enumerate all patterns ϕ1, ϕ2, · · · ∈ Pattern+s . For
every sort s, enumerate all variables x1:s,x2:s, . . . in Var+s \
Vars . We will construct a non-decreasing sequence of pattern
sets Γ0 ⊆ Γ1 ⊆ Γ2 · · · ⊆ Pattern+s , with Γ0 = Γ. Notice
that Γ0 contains variables only in Var. Eventually, we will let
Γ+ =

⋃
i≥0 Γi and prove it has the intended properties.

For every n ≥ 1, we define Γn as follows. If Γn−1 ∪ {ϕn} is
inconsistent, then Γn = Γn−1. Otherwise,

if ϕn is not of the form ∃x:s′.ψ:
Γn = Γn−1 ∪ {ϕn}

if ϕn ≡ ∃x:s′.ψ and xi:s′ is the first variable in Var+s′ \ Vars′
that does not occur free in Γn−1 and ψ:

Γn = Γn−1 ∪ {ϕn} ∪ {ψ[xi:s′/x:s′]}

Notice that in the second case, we can always pick a variable
xi:s′ that satisfies the conditions because by construction,
Γn−1∪{ϕn} uses at most finitely many variables in Var+\Var.
We show that Γn is consistent for every n ≥ 0 by induction.

The base case is to show Γ0 is consistent in the extended
signature. Assume it is not. Then there exists a finite subset
∆0 ⊆fin Γ0 such that `

∧
∆0 → ⊥. The proof of

∧
∆0 → ⊥

is a finite sequence of patterns in Pattern+. We can replace
every occurrence of the variable y ∈ Var+ \ Var (y can have
any sort) with a variable y ∈ Var that has the same sort as y
and does not occur (no matter bound or free) in the proof. By
induction on the length of the proof, the resulting sequence is
also a proof of

∧
∆0 → ⊥, and it consists of only patterns in

Pattern. This contradicts the consistency of Γ0 as a subset
of Patterns , and this contradiction finishes our proof of the
base case.

Now assume Γn−1 is consistent for n ≥ 1. We will show
Γn is also consistent. If Γn−1 ∪ {ϕn} is inconsistent or ϕn



does not have the form ∃x:s′.ψ, Γn is consistent by con-
struction. Assume Γn−1 ∪ {ϕn} is consistent, ϕn ≡ ∃x:s′.ψ,
but Γn = Γn−1 ∪ {ϕn} ∪ {ψ[xi:s′/x:s′]} is not consistent.
Then there exists a finite subset ∆ ⊆fin Γn−1 ∪ {ϕn} such
that `

∧
∆ → ¬ψ[xi:s′/x:s′]. By (Universal Generaliza-

tion), ` ∀xi:s′.(
∧
∆ → ¬ψ[xi:s′/x:s′]). Notice that xi:s′ <

FV(
∧
∆) by construction, so by FOL reasoning `

∧
∆ →

¬∃xi:s′.(ψ[xi:s′/x:s′]). Since xi:s′ < FV(ψ), by α-renaming,
∃xi:s′.(ψ[xi:s′/x:s′]) ≡ ∃x:s′.ψ ≡ ϕn, and thus `

∧
∆→ ¬ϕn.

This contradicts the assumption that Γn−1∪{ϕn} is consistent.
Since Γn is consistent for any n ≥ 0, Γ+ =

⋃
n Γn is also

consistent. This is because the derivation that shows inconsis-
tency would use only finitely many patterns in Γ+. In addition,
we know Γ+ is maximal and witnessed by construction.

We will prove that for every witnessed MCS Γ = {Γs}s∈S ,
there exists a model M and a valuation ρ such that for every
ϕ ∈ Γs , ρ̄(ϕ) , ∅. The next definition defines the canonical
model which contains all witnessed MCSs as its elements.
We will construct our intended model M as a submodel of the
canonical model.

Definition 72 (Canonical Model). Given a signature � =
(S,Σ). The canonical model W = ({Ws}s∈S,_W ) consists of
• a carrier set Ws = {Γ | Γ is a witnessed MCS of sort s}
for every sort s ∈ S;

• an interpretation σW : Ws1 ×· · ·×Wsn → P(Ws) for every
symbol σ ∈ Σs1...sn ,s , defined as Γ ∈ σW (Γ1, . . . ,Γn) if
and only if for any ϕi ∈ Γi , 1 ≤ i ≤ n, σ(ϕ1, . . . , ϕn) ∈
Γ; In particular, the interpretation for a constant symbol
σ ∈ Σλ,s is σW = {Γ ∈ Ws | σ ∈ Γ}.

The carrier set W is not empty, thanks to Lemma 71.

The canonical model has a nontrivial property stated as the
next lemma. The proof of the lemma is difficult, so we leave
it to the end of the subsection.

Theorem 73 (Existence Lemma). Let � = (S,Σ) be a
signature and Γ be a witnessed MCS of sort s ∈ S. Given
a symbol σ ∈ Σs1...sn ,s and patterns ϕ1, . . . , ϕn of appropriate
sorts. If σ(ϕ1, . . . , ϕn) ∈ Γ, then there exist n witnessed MCSs
Γ1, . . . ,Γn of appropriate sorts such that ϕi ∈ Γi for every
1 ≤ i ≤ n, and Γ ∈ σW (Γ1, . . . ,Γn).

Definition 74 (Generated Models). Let � = (S,Σ) be a
signature and W = ({Ws}s∈S,_W ) be the canonical model.
Given a witnessed MCS Γ = {Γs}s∈S . Define Y = {Ys}s∈S be
the smallest sets such that Ys ⊆ Ws for every sort s, and the
following inductive properties are satisfied:
• Γs ∈ Ys for every sort s;
• If ∆ ∈ Ys and there exist a symbol σ ∈ Σs1...sn ,s and
witnessed MCSs ∆1, . . . ,∆n of appropriate sorts such that
∆ ∈ σW (∆1, . . . ,∆n), then ∆1 ∈ Ys1, . . . ,∆n ∈ Ysn .

Let Y = (Y,_Y ) be the model generated from Γ, where

σY (∆1, . . . ,∆n) = Ys ∩ σW (∆1, . . . ,∆n) for every
σ ∈ Σs1...sn ,s and ∆1 ∈ Ys1, . . . ,∆n ∈ Ysn .

We give some intuition about the generated model Y =
(Y,_Y ). The interpretation σY is just the restriction of the

interpretation σM on Y . The carrier set Y is defined induc-
tively. Firstly, Y contains Γ. Given a set ∆ ∈ Y . If sets
∆1, . . . ,∆n are “generated” from ∆ by a symbol σ, meaning
that ∆ ∈ σW (∆1, , . . . ,∆n), then they are also in Y . Of course,
a set ∆ is in Y maybe because it is generated from a set ∆′
by a symbol σ′, while ∆′ is generated from a set ∆′′ by a
symbol σ′′, and so on. This generating path keeps going and
eventually ends at Γ in finite number of steps. By definition,
every member of Y has at least one such generating path, which
we formally define as follows.

Definition 75 (Generating Paths). Let Γ = {Γs}s∈S be a
witnessed MCS and Y be the model generated from Γ. A
generating path π is either the empty path ε , or a sequence
of pairs 〈(σ1, p1), . . . , (σk, pk)〉 where σ1, . . . ,σk are symbols
(not necessarily distinct) and p1, . . . , pk are natural numbers
representing positions. The generating path relation, denoted
as GP, is a binary relation between witnessed MCSs in Y and
generating paths, defined as the smallest relation that satisfies
the following conditions:
• GP(Γs, ε) holds for every sort s;
• If GP(∆, π) holds for a set ∆ ∈ Ys and a generating path
π, and there exist a symbol σ ∈ Σs1...sn ,s and witnessed
MCSs ∆1, . . . ,∆n such that ∆ ∈ σW (∆1, . . . ,∆n), then
GP(∆i, 〈π, (σ, i)〉) holds for every 1 ≤ i ≤ n.

We say that ∆ has a generating path π in the generated model
if GP(∆, π) holds. It is easy to see that every witnessed MCS
in Y has at least one generating path, and if a witnessed MCS
of sort s has the empty path ε as its generating path, it must
be Γs itself.

Definition 76 (Symbol Contexts for Generating Paths). Given
a generating path π. Define the symbol context Cπ inductively
as follows. If π = ε , then Cπ is the identity context �. If
π = 〈π0, (σ, i)〉 where σ ∈ Σs1...sn ,s and 1 ≤ i ≤ n, then
Cπ = Cπ0 [σ(>s1, . . . ,>si−1,�,>si+1, . . . ,>sn )].

A good intuition about Definition 76 is given as the next
lemma.

Lemma 77. Let Γ be a witnessed MCS and Y be the model
generated from Γ. Let ∆ ∈ Y . If ∆ has a generating path π,
then Cπ[ϕ] ∈ Γ for any pattern ϕ ∈ ∆.

Proof: The proof is by induction on the length of the
generating path π. If π is the empty path ε , then ∆ must be
Γ and Cπ is the identity context, and Cπ[ϕ] = ϕ ∈ Γ for any
ϕ ∈ ∆. Now assume ∆ has a generating path π = 〈π0, (σ, i)〉
with σ ∈ Σs1...sn ,s . By Definition 75, there exist witnessed
MCSs ∆s1, . . . ,∆sn ,∆s ∈ Y and 1 ≤ i ≤ n such that ∆ = ∆si ,
∆s ∈ σW (∆s1, . . . ,∆sn ), and ∆s has π0 as its generating path.
For every ϕ ∈ ∆ = ∆i , since >sj ∈ ∆sj for any j , i, by Defini-
tion 72, σ(>s1, . . . ,>si−1, ϕ,>si+1, . . . ,>sn ) ∈ ∆s . By induction
hypothesis, Cπ0 [σ(>s1, . . . ,>si−1, ϕ,>si+1, . . . ,>sn )] ∈ Γ, while
the latter is exactly Cπ[ϕ].

Lemma 78 (Singleton Variables). Let Γ be a witnessed MCS
and Y be the model generated from Γ. For every Γ1,Γ2 ∈ Y



of the same sort and every variable x, if x ∈ Γ1 ∩ Γ2 then
Γ1 = Γ2.

Proof: Let πi be a generating path of Γi for i = 1,2.
Assume Γ1 , Γ2. Then there exists a pattern ϕ such that ϕ ∈ Γ1
and ¬ϕ ∈ Γ2. Because x ∈ Γ1 ∩ Γ2, we know x ∧ ϕ ∈ Γ1 and
x ∧ ¬ϕ ∈ Γ2. By Lemma 77, Cπ1 [x ∧ ϕ],Cπ2 [x ∧ ¬ϕ] ∈ Γ,
and thus Cπ1 [x ∧ ϕ] ∧ Cπ2 [x ∧ ¬ϕ] ∈ Γ. On the other hand,
¬(Cπ1 [x ∧ ϕ] ∧ Cπ2 [x ∧ ¬ϕ]) is an instance of (Singleton
Variable) and thus it is included in Γ. This contradicts the
consistency of Γ.
We will establish an important result about generated mod-

els in Lemma 81 (the Truth Lemma), which links the semantics
and syntax and is essential to the completeness result. Roughly
speaking, the lemma says that for any generated model Y and
any witnessed MCS ∆ ∈ Y , a pattern ϕ is in ∆ if and only if
the interpretation of ϕ in Y contains ∆. To prove the lemma,
it is important to show that every variable is interpreted to a
singleton. Lemma 78 ensures that every variable belongs to
at most one witnessed MCS. To make sure it is interpreted to
exactly one MCS, we complete our model by adding a dummy
element ? to the carrier set, and interpreting all variables
which are interpreted to none of the MCSs to the dummy
element. This motivates the next definition.

Definition 79 (Completed Models and Completed Valuations).
Let Γ = {Γs}s∈S be a witnessed MCS and Y be the Γ-generated
model. Γ-completed model, denoted as M = ({Ms}s∈S,_M ), is
inductively defined as follows for all sorts s ∈ S:

• Ms = Ys , if every x:s belongs at least one MCS in Ys;
• Ms = Ys ∪ {?s}, otherwise.

We assume ?s is an entity that is different from any MCSs,
and ?s1 , ?s2 if s1 , s2. For every σ ∈ Σs1...sn ,s , define its
interpretation

σM (∆1, . . . ,∆n) =


∅ if some ∆i = ?si

σY (∆1, . . . ,∆n) ∪ {?s} if all ∆j , ?sj

and some ∆i = Γsi
σYΓ0 (∆1, . . . ,∆n) otherwise

The completed valuation ρ : Var→ M is defined as

ρ(x:s) =

{
∆ if x:s ∈ ∆
?s otherwise

The valuation ρ is a well-defined function, because by
Lemma 78, if there are two witnessed MCSs ∆1 and ∆2 such
that x ∈ ∆1 and x ∈ ∆2, then ∆1 = ∆2.

Now we come back to prove Lemma 73. We need the
following technical lemma.

Lemma 80. Let σ ∈ Σs1...sn ,s be a symbol, Φ1, . . . ,Φn, φ be
patterns of appropriate sorts, and y1, . . . , yn, x be variables

of appropriate sorts such that y1, . . . , yn are distinct, and
y1, . . . , yn < FV(φ) ∪

⋃
1≤i≤n FV(Φi). Then

` σ(Φ1, . . . ,Φn)

→ ∃y1, . . . ,∃yn.

σ(Φ1 ∧ (∃x.φ→ φ[y1/x]), . . . ,Φn ∧ (∃x.φ→ φ[yn/x]))

Proof: Notice that for every 1 ≤ i ≤ n,

` ∃x.φ→ ∃yi .(φ[yi/x]).

By easy matching logic reasoning,

` σ(Φ1, . . . ,Φn)

→ σ(Φ1 ∧ (∃x.φ→ ∃y1.(φ[y1/x])),

. . . ,

Φn ∧ (∃x.φ→ ∃yn.(φ[yn/x])))

Then use Proposition 46 to move the quantifiers ∃y1, . . . ,∃yn
to the top.
Now we are ready to prove Lemma 80.

Proof of Lemma 80: Recall that Γ ∈ σW (Γ1, . . . ,Γn)
means for every φi ∈ Γi , 1 ≤ i ≤ n, σ(φ1, . . . , φn) ∈ Γ.
The main technique that we will be using here is similar to
Lemma 71. We start with the singleton sets {ϕi} for every
1 ≤ i ≤ n and extend them to witnessed MCSs Γi , while this
time we also need to make sure the results Γ1, . . . ,Γn satisfy
the desired property Γ ∈ σW (Γ1, . . . ,Γn). Another difference
compared to Lemma 71 is that this time we do not extend our
set of variables, because our starting point, {ϕi}, contains just
one pattern and uses only finitely many variables. Readers will
see how these conditions play a role in the upcoming proof.
Enumerate all patterns of sorts s1, . . . , sn as follows

ψ0,ψ1,ψ2, · · · ∈
⋃

1≤i≤n Patternsi . Notice that s1, . . . , sn do
not need to be all distinct. To ease our notation, we define a
“choice” operator, denoted as [ϕs]s′ , as follows

[ϕs]s′ =

{
ϕs if s = s′

nothing otherwise

For example, ϕs ∧ [ψ]s means ϕs ∧ ψ if ψ also has sort s.
Otherwise, it means ϕs . The choice operator propagates with
all logic connectives in the natural way. For example, [¬ψ]s =
¬[ψ]s .
In the following, we will define a non-decreasing sequence

of pattern sets Γ(0)i ⊆ Γ
(1)
i ⊆ Γ

(2)
i ⊆ · · · ⊆ Patternsi for each

1 ≤ i ≤ n, such that the following conditions are true for all
1 ≤ i ≤ n and k ≥ 0:

1) If ψk has sort si , then either ψk or ¬ψk belongs to Γ(k+1)
i .

2) If ψk has the form ∃x.φk and it belongs to Γ(k+1)
i , then

there exists a variable z such that (∃x.φk) → φk[z/x]
also belongs to Γ(k+1)

i .
3) Γ(k)i is finite.
4) Let π

(k)
i =

∧
Γ
(k)
i for every 1 ≤ i ≤ n. Then

σ(π
(k)
1 , . . . , π

(k)
n ) ∈ Γ.

5) Γ(k)i is consistent.



Among the above five conditions, condition (2)–(5) are like
“safety” properties while condition (1) is like a “liveness”
properties. We will eventually let Γi =

⋃
k≥0 Γ

(k)
i and prove

that Γi has the desired property. Before we present the actual
construction, we give some hints on how to prove these
conditions hold. Conditions (1)–(3) will be satisfied directly by
construction, although we will put a notable effort in satisfying
condition (2). Condition (4) will be proved hold by induction
on k. Condition (5) is in fact a consequence of condition (4)
as shown below. Assume condition (4) holds but condition (5)
fails. This means that Γ(k)i is not consistent for some 1 ≤ i ≤ n,
so ` π(k)i → ⊥. By (Framing)

` σ(π
(k)
1 , . . . , π

(k)
i , . . . , π

(k)
n ) → σ(π

(k)
1 , . . . ,⊥, . . . , π

(k)
n )

Then by Proposition 46 and FOL reasoning,

` σ(π
(k)
1 , . . . , π

(k)
i , . . . , π

(k)
n ) → ⊥

Since σ(π(k)1 , . . . , π
(k)
i , . . . , π

(k)
n ) ∈ Γ by condition (4), we know

⊥ ∈ Γ by Proposition 69. And this contradicts the fact that Γ
is consistent.

Now we are ready to construct the sequence Γ(0)i ⊆ Γ
(1)
i ⊆

Γ
(2)
i ⊆ . . . for 1 ≤ i ≤ n. Let Γ(0)i = {ϕi} for 1 ≤ i ≤ n.

Obviously, Γ(0)i satisfies conditions (3) and (4). Condition (5)
follows as a consequence of condition (4). Conditions (1) and
(2) are not applicable.

Suppose we have already constructed sets Γ(k)i for every
1 ≤ i ≤ n and k ≥ 0, which satisfy the conditions (1)–(5). We
show how to construct Γ(k+1)

i . In order to satisfy condition (1),
we should add either ψk or ¬ψk to Γ(k)i , if Γ(k)i has the same
sort as ψk . Otherwise, we simply let Γ(k+1)

i be the same as
Γ
(k)
i . The question here is: if Γ(k)i has the same sort as ψk ,

which pattern should we add to Γ(k)i , ψk or ¬ψk? Obviously,
condition (3) will still hold no matter which one we choose
to add, so we just need to make sure that we do not break
conditions (2) and (4).

Let us start by satisfying condition (4). Consider pattern
σ(π

(k)
1 , . . . , π

(k)
n ), which, by condition (4), is in Γ. This tells us

that the pattern

σ(π
(k)
1 ∧ [ψk ∨ ¬ψk]s1, . . . , π

(k)
n ∧ [ψk ∨ ¬ψk]sn )

is also in Γ. Recall that [_]s is the choice operator, so if ψk has
sort si , then π(k)i ∧[ψk∨¬ψk]si is π

(k)
i ∧(ψk∨¬ψk). Otherwise,

it is π(k)i . Use Proposition 46 and FOL reasoning, and notice
that the choice operator propagates with the disjunction ∨ and
the negation ¬, we get

σ((π
(k)
1 ∧ [ψk]s1 ) ∨ (π

(k)
1 ∧ ¬[ψk]s1 ),

. . . , ∈ Γ

(π
(k)
n ∧ [ψk]sn ) ∨ (π

(k)
n ∧ ¬[ψk]sn ))

Then we use Proposition 46 again and move all the disjunc-
tions to the top, and we end up with a disjunction of 2n
patterns:∨

σ(π
(k)
1 ∧ [¬]

(k)
1 [ψk]s1, . . . , π

(k)
n ∧ [¬]

(k)
n [ψk]sn ) ∈ Γ

where [¬] means either nothing or ¬. Notice that some [ψk]si ’s
might be nothing, so some of these 2n patterns may be the
same.

Notice that Γ is an MCS. By proposition 69, among these 2n
patterns there must exists one pattern that is in Γ. We denote
that pattern as

σ(π
(k)
1 ∧ [¬]

(k)
1 [ψk]s1, . . . , π

(k)
n ∧ [¬]

(k)
n [ψk]sn )

For any 1 ≤ i ≤ n, if [¬](k)i [ψk]si does not have the form
∃x.φ, we simply define Γ(k+1)

i = Γ
(k)
i ∪ {[¬]

(k)
i [ψk]si }. If

[¬]
(k)
i [ψk]si does have the form ∃x.φ, we need special effort

to satisfy condition (2). Without loss of generality and to ease
our notation, let us assume that for every 1 ≤ i ≤ n, the pattern
[¬]
(k)
i [ψk]si has the same form ∃x.φ. We are going to find for

each index i a variable zi such that

σ(π
(k)
1 ∧ ∃x.φ ∧ (∃x.φ→ φ[z1/x]),

. . . , ∈ Γ

π
(k)
n ∧ ∃x.φ ∧ (∃x.φ→ φ[zn/x]))

This will allow us to define Γ(k+1)
i = Γ

(k)
i ∪ {∃x.φ} ∪ {∃x.φ→

φ[zi/x]} which satisfies conditions (2) and (4).
We find these variables zi’s by Lemma 80 and the fact that
Γ is a witnessed set. Let Φi ≡ π

(k)
i ∧ ∃x.φ for 1 ≤ i ≤ n. By

construction, σ(Φ1, . . . ,Φn) ∈ Γ. Hence, by Lemma 80 and
Proposition 69, for any distinct variables y1, . . . , yn < FV(φ) ∪⋃

1≤i≤n FV(Φi),

∃y1 . . . ∃yn.

σ(Φ1 ∧ (∃x.φ→ φ[y1/x]), . . . ,Φn ∧ (∃n.φ→ φ[yn/x])) ∈ Γ

The set Γ is a witnessed set, so there exist variables z1, . . . , zn
such that

σ(Φ1 ∧ (∃x.φ→ φ[z1/x]), . . . ,Φn ∧ (∃x.φ→ φ[zn/x])) ∈ Γ

This justifies our construction Γ(k+1)
i = Γ

(k)
i ∪ {∃x.φ} ∪

{∃x.φ→ φ[zi/x]}.
So far we have proved our construction of the sequences
Γ
(0)
i ⊆ Γ

(1)
i ⊆ Γ

(2)
i ⊆ . . . for 1 ≤ i ≤ n satisfy the

conditions (1)–(5). Let Γi =
⋃

k≥0 Γ
(k)
i for 1 ≤ i ≤ n. By

construction, Γi is a witnessed MCS. It remains to prove
that Γ ∈ σW (Γ1, . . . ,Γn). To prove it, assume φi ∈ Γi for
1 ≤ i ≤ n. By construction, there exists K > 0 such that
φi ∈ Γ

(K)
i for all 1 ≤ i ≤ n. Therefore, ` π(K)i → φi . By

condition (4), σ(π(K)1 , . . . , π
(K)
n ) ∈ Γ, and thus by (Framing)

and Proposition 69, σ(φ1, . . . , φn) ∈ Γ.

Lemma 81 (Truth Lemma). Let Γ be a witnessed MCS, M be
its completed model, and ρ be the completed valuation. For
any witnessed MCS ∆ ∈ M and any pattern ϕ such that ∆ and
ϕ have the same sort,

ϕ ∈ ∆ if and only if ∆ ∈ ρ̄(ϕ)

Proof: The proof is by induction on the structure of ϕ.
If ϕ is a variable the conclusion follows by Definition 72. If
ϕ has the form ψ1 ∧ ψ2 or ¬ψ1, the conclusion follows from



Proposition 69. If ϕ has the form σ(ϕ1, . . . , ϕn), the conclusion
from left to right is given by Lemma 73. The conclusion from
right to left follows from Definition 72.
Now assume ϕ has the form ∃x.ψ. If ∃x.ψ ∈ ∆, since ∆

is a witnessed set, there is a variable y such that ∃x.ψ →
ψ[y/x] ∈ ∆, and thus ψ[y/x] ∈ ∆. By induction hypothesis,
∆ ∈ ρ̄(ψ[y/x]), and thus by the semantics of the logic, ∆ ∈
ρ̄(∃x.ψ).
Consider the other direction. Assume ∆ ∈ ρ̄(∃x.ψ). By

definition there exists a witnessed set ∆′ ∈ M such that
∆ ∈ ρ[∆′/x](ψ). By Definition 79, every element in M
(no matter if it is an MCS or ?) has a variable that is
assigned to it by the completed valuation ρ. Let us assume that
variable y is assigned to ∆′, i.e., ρ(y) = ∆′. By Lemma 66,
∆ ∈ ρ̄′(ψ) = ρ̄(ψ[y/x]). By induction hypothesis, ψ[y/x] ∈ ∆.
Finally notice that ` ψ[y/x] → ∃y.ψ[y/x]. By Proposition 69,
∃y.ψ[y/x] ∈ ∆, i.e., ∃x.ψ ∈ ∆.

Theorem 82. For any consistent set Γ, there is a model M
and a valuation ρ such that for all patterns ϕ ∈ Γ, ρ̄(ϕ) , ∅.

Proof: Use Lemma 71 and extend Γ to a witnessed MCS
Γ+. Let M and ρ be the completed model and valuation
generated by Γ+ respectively. By Lemma 81, for all patterns
ϕ ∈ Γ ⊆ Γ+, we have Γ+ ∈ ρ̄(ϕ), so ρ̄(ϕ) , ∅.
Now we are ready to prove Theorem 16.
Proof of Theorem 16: Assume the opposite. If ∅ 0 ϕ, then

{¬ϕ} is consistent by Definition 68. Then there is a model M
and an valuation ρ such that ρ̄(¬ϕ) , ∅, i.e., ρ̄(ϕ) , M . This
contradicts the fact that ∅ � ϕ.
We point out that Lemma 81 in fact gives us the following

stronger completeness result of H . In literature, Theorem 16
is called weak local completeness theorem while Theorem 83
is called strong local completeness theorem.

Theorem 83. For any set Γ and any pattern ϕ, Γ �loc ϕ
implies Γ 
 ϕ, where Γ �loc ϕ means that for all models M ,
all valuations ρ, and all elements a ∈ M , if a ∈ ρ̄(ψ) for all
ψ ∈ Γ then a ∈ ρ̄(ϕ).

Proof: Assume the opposite that Γ 1 ϕ, which implies
that Γ∪ {¬ϕ} is consistent. Extend it to a witnessed MCS Γ+
and let M, ρ be the completed model and completed valuation
generated by Γ+. By Lemma 81, Γ+ ∈ ρ̄(ψ) for all ψ ∈ Γ, and
Γ+ ∈ ρ̄(¬ϕ), i.e., Γ+ < ρ̄(ϕ). This contradicts with Γ �loc ϕ.

Appendix E
Proof of Proposition 20

Proof of Proposition 20: Trivial. Note that MmL coin-
cides with ML on the fragment without µ.

Appendix F
Proof of Proposition 22 and 23

We prove that the theory Γterm� captures precisely term
algebras, up to isomorphism. The proof is mainly a feast of
inductive reasoning.

Proof: Let us fix a �+-model M such that M � Γterm� .
By axiom (Function), the interpretation cM : M × · · · ×M →

P(M) must be a function, where c ∈ ΣTerm...TermTerm, meaning
that for all a1, . . . ,an ∈ M , cM (a1, . . . ,an) contains exactly
one element. By abuse of language, we denote that element
as cM (a1, . . . ,an) and regard cM : M × · · · ×M → M as really
a function.
To prove the proposition, it suffices to establish an

isomorphism between the two algebras (M, {cM }c∈Σ) and
(T�

Term, {cT� }c∈Σ).
Let us define a subset M0 ⊆ M inductively as follows (in

which we separate the cases of constant constructs from non-
constant constructors for clarity):
• cM ∈ M0, if c ∈ Σλ,Term;
• cM (a1, . . . ,an), if c ∈ ΣTerm...Term,Term and a1, . . . ,an ∈

M0.
We claim that for all valuation ρ,

ρ̄(µD .
∨
c∈Σ

c(D, . . . ,D)) = M0.

We prove the equation by proving set containment for both
directions. Notice that by definition,

ρ̄(µD .
∨
c∈Σ

c(D, . . . ,D)) =
⋂
{A ⊆ M |

⋃
c∈Σ

cM (A, . . . , A) ⊆ A}.

Denote the above set M1 and we prove M0 = M1.
(Case M0 ⊆ M1). Notice that M0 is defined inductively,

so we carry out induction. The base case is c ∈ Σλ,Term and
cM ∈ M0. We aim to prove cM ∈ M1. For that purpose, assume
a set A ⊆ M such that

⋃
c∈Σ cM (A, . . . , A) ⊆ A and try to

prove cM ∈ A. This is trivial, because cM is in the big-union
set on the left. The induction case is c ∈ ΣTerm...Term,Term and
a1, . . . ,an ∈ M0 and cM (a1, . . . ,an) ∈ M0. We aim to prove
cM (a1, . . . ,an) ∈ M1. Similarly, we assume a set A ⊆ M such
that

⋃
c∈Σ cM (A, . . . , A) ⊆ A and try to prove cM (a1, . . . ,an) ∈

M0. By induction hypothesis, a1, . . . ,an ∈ M1, which implies
that cM (a1, . . . ,an) is in the big-union on the left, and thus in
A. Done.
(Case M1 ⊆ M0). We just need to prove that M1 satisfies

the condition that
⋃

c∈Σ cM (M0, . . . ,M0) ⊆ M0, which follows
directly by the construction of M0.
Hence we conclude that M0 = M1. By axiom (Inductive

Domain), M1 = M is the total set, and thus M = M0. Note that
(Inductive Domain) forces the model M to be an inductive
one (i.e., M0), and thus admits inductive reasoning.
We now define the isomorphism:

(M, {cM }c∈Σ)
i
−⇀↽−
j
(T�, {cT� }c∈Σ)

inductively as follows:
• i(cM ) = c, for c ∈ Σλ,Term;
• i(cM (a1, . . . ,an)) = c(i(a1), . . . , i(an)), for c ∈

ΣTerm...Term,Term;
• j(c) = cM , for c ∈ Σλ,Term;
• j(c(t1, . . . , tn)) = cM ( j(t1), . . . , j(tn)), for

c ∈ ΣTerm...Term,Term.
It is then straightforward to verify that i ◦ j and j ◦ i

are both identity function, by induction. In addition, they are
isomorphic to each other.



Proposition 23 is a direct corollary of Theorem 22.
Proof of Theorem 23: Let us fix a model M � ΓN. By

Theorem 22, the reduct of M over the sub-signature {0 ∈
Σλ,Nat, succ ∈ ΣNat,Nat} is isomorphic to natural numbers N,
under the isomorphism:

(M, {0M , succM })
i
−⇀↽−
j
(N, {0, s})

where s(n) = n + 1 is the successor function on N.
Our aim is to show that the four axioms about plus and

mult force a unique interpretation in M . In particular, + and
× obviously give two valid interpretations under the above
(i, j)-isomorphism, as they clearly satisfies the axioms. But the
uniqueness of the interpretations of plus and mult is trivial, as
the four axioms form a valid inductive definition in M .

Appendix G
Properties about Proof SystemHµ

We present and proof some important properties about Hµ.
First of all, we can generalized Lemma 66 to the setting with
set variables and µ-binder.

Lemma 84. ρ̄(ϕ[ψ/X]) = ρ[ρ(ψ)/X](ϕ) for all X ∈ SVar.

Proof: Carry out induction on the structure of ϕ. The only
interesting case is when ϕ ≡ µZ . ϕ1. By α-renaming, we can
safely assume Z < FV(ψ). We have:

ρ̄((µZ . ϕ1)[ψ/X])

= ρ̄(µZ . (ϕ1[ψ/X]))

=
⋂
{A | ρ[A/Z](ϕ1[ψ/X]) ⊆ A}

=
⋂
{A | ρ[A/Z][ρ[A/Z](ψ)/X](ϕ1) ⊆ A}

=
⋂
{A | ρ[A/Z][ρ̄(ψ)/X](ϕ1) ⊆ A}

=
⋂
{A | ρ[ρ̄(ψ)/X][A/Z](ϕ1) ⊆ A}

= ρ[ρ̄(ψ)/X](µZ . ϕ1)

= ρ[ρ̄(ψ)/X](ϕ).

Done.
We prove the soundness theorem.
Proof of Theorem 24: The soundness of all proof rules

in H are proved as in Theorem 13. We just need to prove the
soundness of (Set Variable Substitution), (Pre-Fixpoint),
and (Knaster-Tarski). Let M be a model.

(Set Variable Substitution). Assume M � ϕ. By defini-
tion, ρ̄(ϕ) = M for all ρ. Our goal is to show M � ϕ[ψ/X]. Let
ρ be any valuation. We have ρ̄(ϕ[ψ/X]) = ρ[ρ̄(ψ)/X](ϕ). Note
that ρ[ρ̄(ψ)/X] is just another valuation, so ρ[ρ̄(ψ)/X](ϕ) = M
by assumption.

(Pre-Fixpoint). Let ρ be any valuation. Our goal is
to prove ρ̄(ϕ[µX . ϕ/X] → µX . ϕ) = M . By defini-
tion, ρ̄(ϕ[µX . ϕ/X]) = ρ[ρ̄(µX . ϕ)/X](ϕ), and ρ̄(µX . ϕ) =⋂
{A | ρ[A/X](ϕ) ⊆ A}. By Knaster-Tarski theorem,

ρ̄(µX . ϕ) itself is a fixpoint of ρ[A/X](ϕ) = A. Therefore,
ρ[ρ̄(µX . ϕ)/X](ϕ) = ρ̄(µX . ϕ). Done.

(Knaster-Tarski). Assume M � ϕ[ψ/X] → ψ. Our goal is
to prove M � µX . ϕ→ ψ. Let ρ be any valuation. We need to
prove ρ̄(µX . ϕ) ⊆ ρ̄(ψ). Note that ρ̄(µX . ϕ) is defined as the
least fixpoint of ρ[A/X](ϕ) = A. By Knaster-Tarski theorem,
it suffices to prove ρ̄(ψ) is a pre-fixpoint, i.e., ρ[ρ̄(ψ)/X](ϕ) ⊆
ρ̄(ψ). This is given by our assumption, M � ϕ[ψ/X] → ψ. This
implies that ρ̄(ϕ[ψ/X]) ⊆ ρ̄(ψ), i.e., ρ[ρ̄(ψ)/X](ϕ) ⊆ ρ̄(ψ).
Done.

Lemma 85. ` µX . ϕ↔ ϕ[µX . ϕ/X].

Proof: We prove both directions.
(Case “→”). Apply (Knaster-Tarski), and we prove `

ϕ[(ϕ[µX . ϕ/X])/X] → ϕ[µX . ϕ/X]. By Lemma 89, and
the fact that ϕ is positive in X , we just need to prove
` ϕ[µX . ϕ/X] → ϕ, which is proved by (Pre-Fixpoint).
(Case “←”) is exactly (Pre-Fixpoint).

Lemma 86. The following propositions hold:
• Pre-Fixpoint: ` νX . ϕ→ ϕ[νX . ϕ/X];
• Knaster-Tarski: ` ψ → ϕ[ψ/X] implies ` ψ → νX . ϕ.

Proof: These are standard proofs as in modal µ-logic.

Lemma 87. Γ ` ϕ1 → ϕ2 implies Γ ` µX . ϕ1 → µX . ϕ2.

Proof: Use (Knaster-Tarski), and then (Set Variable
Substitution).

Lemma 88. For any context C, we have Γ ` ϕ1 ↔ ϕ2 if and
onlyf if Γ ` C[ϕ1] ↔ C[ϕ2].

Proof: Carry out induction on the structure of C. Except
the case C ≡ µX .C1, all other cases have been proved in
Proposition 47. While the µ-case is proved by Lemma 87.
Note that Lemma 88 along with Lemma 85 allow us to

“unfold” a least fixpoint pattern µX . ϕ and replace it, in-place
in any context, by ϕ[µX . ϕ/X].

Lemma 89. A context C is positive if it is positive in �;
otherwise, it is negative. Let Γ ` ϕ1 → ϕ2. We have

Γ ` C[ϕ1] → C[ϕ2] if C is positive,
Γ ` C[ϕ2] → C[ϕ1] if C is negative.

Proof: Carry out induction on the structure of C. The
cases when C is a propositional/FOL context are trivial. The
case when C is a symbol application is proved by (Framing).
The case when C is a µ-binder is proved by Lemma 87.

Lemma 90. Let ψ be a predicate pattern and C be a context
where � is not under any µ-binder. We have ` ψ ∧ C[ϕ] ↔
ψ ∧ C[ψ ∧ ϕ] for all ϕ.

Proof: Carry out induction on the structure of C. The
cases when C is a propositional/FOL context are trivial. The
case when C is a symbol application is proved using the fact
that predicate patterns propagate through symbols. Since �
does not occur under any µ-binder, that is all cases.

Lemma 91. Let ψ be a predicate pattern and ϕ be a pattern.
Let X be a set variable that does not occur under any µ-binder
in ϕ, and X < FV(ψ). We have ` ψ ∧ µX . ϕ↔ µX . (ψ ∧ ϕ).



Proof: Note that “←” is proved by Lemma 87. We only
need to prove “→”. By propositional reasoning, the goal
becomes ` µX . ϕ → ψ → µX . (ψ ∧ ϕ) and we apply
(Knaster-Tarski). We obtain ` ψ∧ϕ[ψ → µX . (ψ∧ϕ)/X] →
µX . (ψ ∧ ϕ). By (Pre-Fixpoint), we just need to prove
` ψ ∧ ϕ[ψ → µX . (ψ ∧ ϕ)/X] → ψ ∧ ϕ[µX . (ψ ∧ ϕ)/X]. By
Lemma 91, we just need to prove ` ψ ∧ ϕ[ψ ∧ (ψ → µX . (ψ ∧
ϕ))/X] → ψ ∧ ϕ[µX . (ψ ∧ ϕ)/X], which then by Lemma 89
becomes ` ψ∧ϕ[ψ∧(µX . (ψ∧ϕ))/X] → ψ∧ϕ[µX . (ψ∧ϕ)/X],
which then follows by Lemma 91.
We now obtain a version of deduction theorem for Hµ,

which we believe is not in its strongest form, but it is good
enough to prove other theorems in this paper.

Theorem 92 (Deduction Theorem of Hµ). Let Γ be an axiom
set containing definedness axioms and ϕ,ψ be two patterns.
If Γ ∪ {ψ} ` ϕ and the proof (1) does not use (Universal
Generalization) on free element variables in ψ; (2) does not
use (Knaster-Tarski), unless set variable X does not occur
under any µ-binder in ϕ and X < FV(ψ); (3) does not use
(Set Variable Substitution) on free set variables in ψ, then
Γ ` bψc → ϕ.

Proof: Carry out induction on the length of the proof
Γ ∪ {ψ} ` ϕ. (Base Case) and (Induction Case) for (Modus
Ponens) and (Universal Generalization) are proved as in
Theorem 92. We only need to prove (Induction Case) for
(Knaster-Tarski) and (Set Variable Substitution).
(Knaster-Tarski). Suppose ϕ ≡ µX . ϕ1 → ϕ2. We should

prove that Γ ` bψc → (µX . ϕ1 → ϕ2), i.e., Γ ` bψc ∧
µX . ϕ1 → ϕ2. Note that bψc is a predicate pattern. By
Lemma 91, our goal becomes Γ ` µX . (bψc ∧ ϕ1) → ϕ2. By
(Knaster-Tarski), we need to prove Γ ` (bψc ∧ϕ1)[ϕ2/X] →
ϕ2. Note that X < FV(bψc), so the above becomes Γ `
bψc ∧ ϕ1[ϕ2/X] → ϕ2, i.e., Γ ` bψc → ϕ1[ϕ2/X] → ϕ2,
which is our induction hypothesis.

(Set Variable Substitution). Trivial. Note that X <
FV(ψ).

Appendix H
Proofs of Proposition 25

Proof of Proposition 25: We refer readers to [1] for
some of the proof techniques that we use. Notice that ϕ(x)
as well as other formulas are patterns of sort Pred. How-
ever, the (Inductive Domain) axiom is about the sort Nat.
Therefore, our first step is to lift ϕ from Pred to Nat, using
the definedness symbols. In fact, we will use the membership
and equality constructs that are defined from the definedness
symbols. We define N = ∃x . x ∧ dϕ(x)eNat

Pred, which captures
the set of all numbers in which ϕ holds. One can prove that
x ∈ N = dϕ(x)eNat

Pred.
Since all patterns of sort Pred are predicate patterns, we

may use the deduction theorem (Theorem 92) and assume ϕ(0)
and ∀x . (ϕ(x) → ϕ(succ(x))), and to prove ∀x . ϕ(x). Using the
equality x ∈ N = dϕ(x)eNat

Pred, this means that we assume 0 ∈ N
and ∀x . (x ∈ N → succ(x) ∈ N) and prove ∀x . x ∈ N , which
implies N by (Membership Elimination).

By (Knaster-Tarski), it suffices to prove only 0 ∨
succ(N) → N , which requires to prove 0→ N and succ(N) →
N . The first is proved by the assumption that 0 ∈ N . The
second is proved by considering y ∈ succ(N) → y ∈ N , which
then becomes (∃x . y ∈ succ(x) ∧ x ∈ N) → y ∈ N . By the
fact that succ is a function, it becomes x ∈ N → succ(x) ∈ N ,
which is then proved by our second assumption. Done.

Appendix I
Notations and Proofs about Recursive Symbols

Even though we tactically blur the distinction between
constant symbol σ ∈ Σλ,s1⊗···⊗sn⊗s and n-ary symbol σ ∈
Σs1...sn ,s , doing so will cause us a lot of trouble in this section,
when our aim is to prove such as blur of syntax actually works.
Therefore, within this section, we introduce and use a more
distinct syntax that distinguishes the two.
We use the following notations (and their meaning):

σ ∈ Σs1 ,...,sn ,s

ασ ∈ Σλ,s1⊗···⊗sn⊗s

σ(ϕ1, . . . , ϕn) symbol application
ασ[ϕ1, . . . , ϕn] projections
σ(x1, . . . , xn) = ασ[x1, . . . , xn] recursive symbol
ασ = µα . ∃®x〈®x, ϕ[α/σ]〉 definition of ασ

Before we prove Theorem 29, we introduce a useful lemma
that allows us to prove properties about least fixpoint patterns.
Recall that rule (Knaster-Tarski) allows us to prove theorems
of the form Γ ` µX . ϕ → ψ. However, in practice, the least
fixpoint pattern µX . ϕ is not always the only components on
the left hand side, but rather stay within some contexts. The
following lemma is particularly useful in practice, as it allows
us to “plug out” the least fixpoint pattern from its context,
so that we can apply (Knaster-Tarski). After that, we may
“plug it back” into the context.

Lemma 93. Let C[�] be a context such that � does not occur
under any µ-binder, and
• C[ϕ∧ψ] = C[ϕ] ∧ψ, for all patterns ϕ and all predicate
patterns ψ;

• C[∃x . ϕ] = ∃x .C[ϕ], for all ϕ and x < FV(C[�]).
Then we have that Γ ` C[ϕ] → ψ if and only if Γ ` ϕ →
∃x . x ∧ bC[x] → ψc.

Proof:We prove both directions simultaneously. Note that
it is easy to prove that Γ ` ϕ = ∃x . (x ∧ (x ∈ ϕ)) using rules
(Membership) in the proof system P (see Fig. 3).

We start with Γ ` C[ϕ] → ψ. By the mentioned equality,
we get Γ ` C[∃x . (x ∧ (x ∈ ϕ))] → ψ. By the properties
of C, it becomes Γ ` (∃x .C[x] ∧ x ∈ ϕ) → ψ, which, by
FOL reasoning, becomes Γ ` x ∈ ϕ → (C[x] → ψ). Note
that x ∈ ϕ is a predicate pattern, so the goal is equivalent to
Γ ` x ∈ ϕ→ bC[x] → ψc.
Now we are almost done. To show the “if” part, we apply

(Membership Introduction) on Γ ` ϕ → ∃x . x ∧ bC[x] →
ψc and obtain Γ ` y ∈ ϕ → ∃x . (y ∈ x) ∧ bC[x] → ψc.



Note that y is a fresh variable and y < FV(C[x]) ∪ FV(ψ), so
y ∈ bC[x] → ψc = bC[x] → ψc. Notice that y ∈ x = (y = x).
And we obtain Γ ` y ∈ ϕ→ bC[y] → ψc. Done.
To show the “only if” part, we apply some simple FOL

reasoning on Γ ` x ∈ ϕ → bC[x] → ψc and conclude that
Γ ` (∃x . (x ∧ x ∈ ϕ)) → ∃x . (x ∧ bC[x] → ψc). Then by the
equality ϕ = ∃x . (x ∧ x ∈ ϕ), we are done.

Note the conditions about the context C in Lemma 93 are
important. Many contexts that arise in practice satisfy the
conditions. In particular, (nested) symbol contexts satisfy the
conditions automatically.

Under the above new notation and the lemma, we are ready
to prove Theorem 29.

Proof of Theorem 29: (Pre-Fixpoint). This is proved by
simply unfolding ασ following its definition.
(Knaster-Tarski). We give the following proof that goes

backward from conclusion to their sufficient conditions.

σ(x1, . . . , xn) → ψ

⇐= ασ[x1, . . . , xn] → ψ

⇐= α→ ∃α . (α ∧ bα[x1, . . . , xn] → ψc)

⇐= ασ → ∀®x . ∃α . (α ∧ bα[x1, . . . , xn] → ψc)︸                                   ︷︷                                   ︸
α0

⇐= ∃®x . 〈®x, ϕ[∀®x . α0/σ]〉 → ∀®x . α0

⇐= 〈®x, ϕ[∀®x . α0/σ]〉 → α0[z1/x1 . . . zn/xn]

⇐= 〈®x, ϕ[∀®x . α0/σ]〉

→ ∃α . (α ∧ bα[z1, . . . , zn] → ψ[z1/x1 . . . zn/xn]c)

⇐= 〈®x, ϕ[∀®x . α0/σ]〉[x1, . . . , xn] → ψ

⇐= ϕ[∀®x . α0/σ] → ψ

⇐= ϕ[∀®x . α0/σ] → ϕ[ψ/σ]

Notice that the last step is by Γ ` ϕ[ψ/σ] → ψ.
By the positiveness of ϕ in σ (see Lemma 89), we just need

to prove that for all ϕ1, . . . , ϕn:

Γ ` (∀®x . α0)[ϕ1, . . . , ϕn] → ψ[ϕ1/x1 . . . ϕn/xn]

By (Key-Value) and definition of α0, the above becomes

Γ `z1 ∈ ϕ1 ∧ · · · ∧ zn ∈ ϕn ∧ ψ[z1/x1 . . . zn/xn]

→ ψ[ϕ1/x1 . . . ϕn/xn],

which holds by assumption. Done.
What is interesting in the above proof is that we used only

(Key-Value) and did not use (Injectivity) and (Product
Domain). The last two axioms are used in the proof of
Theorem 30, where we need to establish an isomorphism
between models of LFP and MmL. In there, the two axioms
are needed to constrain MmL models.

Appendix J
Proof of Theorem 30

We first show that the theory of products (see Definition 27)
capture precisely the product set Ms × Mt . We denote the
theory of products as Γproduct, consisting of the three axioms
(Injectivity), (Key-Value), and (Product Domain).

Lemma 94. For any signature � consisting two sorts s, t and
their product sort s ⊗ t, there exists an isomorphism

Ms⊗t

i
−⇀↽−
j

Ms × Mt .

Under the above isomorphism, we adopt the following abbre-
viations for all a ∈ Ms, b ∈ Ms, p ∈ Ms × Mt :

〈a, b〉 ≡ (〈_,_〉s,t )M (a, b) p(v) ≡ (_(_)s,t )M (p, v)

Then for all f : Ms → P(Mt ) and α ⊆ P(Ms × Mt ), we have

f (a) = uncurry( f )(a) curry(α)(a) = α(a).

Proof: By (ProductDomain), Ms⊗t = ρ̄(∃k∃v . 〈k, v〉) =
∪a∈Ms ,b∈Mt 〈a, b〉. Define the (i, j)-isomorphism such that
i(〈a, b〉) = (a, b) and j((a, b)) = 〈a, b〉. Note that i is well-
defined because of (Injectivity). Clearly, i, j form an isomor-
phism between Ms×t and Ms × Mt .
Now we prove the two equations. They are straightforward.

Note that uncurry( f )(a) = {(a, b) | b ∈ f (a)}(a) = {b | b ∈
f (a)} = f (a). Similarly, curry(α)(a) = {b | (a, b) ∈ α} = α(a)
by definition. Done.

Corollary 95. For any signature � containing sorts
s1, . . . , sn, t and their product sorts s1⊗ · · ·⊗ sn⊗ t, there exists
an isomorphism between Ms1⊗···⊗sn⊗t and Ms1×· · ·×Msn×Mt .
And for any function f : Ms1 × · · · × Msn → P(Mt ) and sets
α ⊆ Ms1 × · · · × Msn × Mt , we have

f (a1, . . . ,an) = uncurry( f )(α)
curry(α)(a1, . . . ,an) = α(a1, . . . ,an)

where we abbreviate α(a1, . . . ,an) ≡ α(a1) . . . (an) is a com-
position of projections.

We now review the syntax and semantics of LFP, slightly
adapted to fit the best with our setting.

Definition 96. Let (S,Σ,Π) be a FOL signature. LFP extends
FOL formulas by the following additional rule:

ϕ F · · · | [lfpR, ®xϕ](t1, . . . , tn)

where R is an n-ary predicate variable and ϕ is positive in
R. LFP valuations also extend FOL that map every n-ary
predicate variable R to and n-ary relation ρ(R) ⊆ P(Mn).4
Given a FOL model M and a valuation ρ, LFP extends the

4This is where we are different from the classic LFP. In classic LFP,
formulas cannot contain predicate variables that occur free. And the semantics
of predicate variables, which is needed when we define the semantics of
[lfpR ,x1 , . . . ,xn ], are given by an extended model M′ that takes R as an n-ary
predicate symbol and interprets it as a relation α ⊆ Ms1×· · ·×Msn . Here, we
allow predicate variables to occur free in a formula, and we extend valuations
to give them semantics, instead of modifying the model. This slightly modified
presentation is obviously the same as the classic one, but fits better in our
setting and looks more similar and uniform to MmL.



semantics of FOL by adding the following valuation rule for
least fixpoint formulas:

M, ρ �LFP [lfpR, ®xϕ](t1, . . . , tn),
if (ρ(t1), . . . , ρ(tn)) ∈⋂

{α ⊆ Ms1 × · · · × Msn | for all ai ∈ Msi ,1 ≤ i ≤ n,

M, ρ[α/R, ®a/®x] �LFP ϕ implies (a1, . . . ,an) ∈ α}

LFP formula ϕ is valid, denoted �LFP ϕ, if M, ρ �LFP ϕ for all
M and ρ.

Proof of Theorem 30: The proof is mainly based
on the isomorphism between LFP models and MmL ΓLFP-
models. Notice that the (Function) axioms forces symbols
in all ΓLFP-models are functions. In addition, the axiom
∀x:Pred∀y:Pred . x = y forces the carrier set of Pred must
be a singleton set, say, {?}.
(The “if” direction). We follow the same idea as we prove

that ML captures faithfully FOL (see [1]), we construct
from an LFP model ({MLFP

s }s∈S,Σ
LFP,ΠLFP) a corresponding

MmL ΓLFP model, denoted ({MMmL
s }s∈S∪{MMmL

Pred },Σ
MmL) with

MMmL
s = MLFP

s , MMmL
Pred = {?}, and ΣMmL defined as in

Section II-D consisting of symbols that are all functions. An
LFP valuation ρLFP derives a corresponding MmL valuation
ρMmL such that ρMmL(x) = ρLFP(x) for all LFP (element)
variables x and ρMmL(R) = ρLFP(R)×{?}. Our goal is to prove
that for all LFP formulas ϕ, we have MLFP, ρLFP �LFP ϕ if and
only if ρMmL(ϕ) = {?}. Firstly, notice that as shown in [1],
ρMmL(t) = {ρLFP(t)} for all terms t. Therefore, to simplify
our notation we uniformly use ρ(t) in both LFP and MmL
settings. Carry out induction on the structure of ϕ. The only
additional cases (compared with FOL) are ϕ ≡ R(t1, . . . , tn)
and ϕ ≡ [lfpR,x1 ,...,xnψ](t1, . . . , tn). The first case is easy, as
shown in the following reasoning: MLFP, ρLFP � R(t1, . . . , tn) iff
(ρ(t1), . . . , ρ(tn)) ∈ ρLFP(R) iff (ρ(t1), . . . , ρ(tn),?) ∈ ρMmL(R)
iff ρMmL(R(t1, . . . , tn)) = {?}. The second case when ϕ ≡
[lfpR,x1 ,...,xnψ](t1, . . . , tn) is shown as the following reasoning:

MLFP, ρLFP �LFP [lfpR,x1 ,...,xnψ](t1, . . . , tn)

iff (ρ(t1), . . . , ρ(tn)) ∈⋂
{α ⊆ MLFP

s1 × · · · × MLFP
sn
| for all ai ∈ MLFP

si
,1 ≤ i ≤ n,

MLFP, ρLFP[α/R, ®a/®x] �LFP ψ implies (a1, . . . ,an) ∈ α}

iff (by induction hypothesis)
(ρ(t1), . . . , ρ(tn)) ∈⋂
{α ⊆ MMmL

s1 × · · · × MMmL
sn
| for all ai ∈ MMmL

si
,1 ≤ i ≤ n,

(ρ[α/R, ®a/®x])MmL(ψ) = {?} implies (a1, . . . ,an) ∈ α}

iff (by definition of (ρ[α/R, ®a/®x])MmL)
(ρ(t1), . . . , ρ(tn)) ∈⋂
{α+ ⊆ MMmL

s1 × · · · × MMmL
sn
× {?} |

for all ai ∈ MMmL
si

,1 ≤ i ≤ n,

ρMmL[α+/R, ®a/®x](ψ) = {?} implies (a1, . . . ,an,?) ∈ α+}

iff (by reasoning about sets)
(ρ(t1), . . . , ρ(tn)) ∈⋂
{α+ ⊆ MMmL

s1 × · · · × MMmL
sn
× {?} |⋃

ai ∈M
MmL
si

(a1, . . . ,an, ρMmL[α+/R, ®a/®x](ψ)) ⊆ α+}

iff (by MmL semantics)
(ρ(t1), . . . , ρ(tn)) ∈

ρMmL((µR : s1⊗ . . .⊗sn⊗Pred . ∃x1 . . . ∃xn . 〈x1, . . . , xn,ψ〉)),

and the last statement, by MmL semantics, is equivalent to
ρMmL([lfpR,x1 ,...,xnψ](t1, . . . , tn)), Done. And now we conclude
that ΓLFP � ϕ then �LFP ϕ. Otherwise, there exists an LFP
model MLFP and valuation ρLFP such that MLFP, ρLFP 2LFP ϕ,
and this implies that in the ΓLFP-model MMmL, we have
ρMmL(ϕ) , {?}, meaning that ΓLFP 2 ϕ.
(The “only if” part). Notice the axiom ∀x:Pred∀y:Pred . x =

y forces that MPred = {?} must be a singleton set, which
ensures that the above translation from an LFP model MLFP

to an MmL model MMmL can go backward. Specifically, for
every MmL (function) symbol f ∈ ΣMmL

s1...sn ,s , we construct
from its interpretation fMMmL : Ms1 × · · · × Msn → P(Ms), the
corresponding LFP function fMLFP : Ms1×· · ·×Msn → Ms such
that fMMmL (a1, . . . ,an) = { fMLFP (a1, . . . ,an)}. Similarly, for
every MmL (function) symbol π ∈ ΣMmL

s1...sn ,Pred, we construct
from its interpretation πMMmL : Ms1 ×· · ·×Msn → {∅, {?}}, the
corresponding LFP predicate πMLFP ⊆ Ms1×· · ·×Msn , such that
πMLFP ⊆ Ms1 × · · · ×Msn = {(a1, . . . ,an) | πMMmL (a1, . . . ,an) =
{?}}. Then we carry out the same reasoning as in the “if”
part, and we are done.

Appendix K
Proof of Theorem 31

Proof: We conduct structural induction on ϕ. The case
when ϕ ≡ p(ϕ1, . . . , ϕn) where p is a recursive predicate is
proved directly by the definition of the canonical model Map.
The other cases have been proved in [1, Proposition 9.2].

Appendix L
Proof of Theorem 32

Theorem 32 shows that our definition of modal µ-logic in
MmL is faithful. We have shown a proof sketch in the main
paper. We give the complete detailed proof in this subsection.
The main purpose is to give an example, as the proofs of the
corresponding theorems for LTL/CTL/DL have similar forms.

Lemma 97. `µ ϕ implies Γµ ` ϕ.

Proof: We need to prove that all modal µ-logic
proof rules are provable in matching µ-logic. Recall
that modal µ-logic contains all propositional tautologies
and (Modus Ponens), plus the following four rules:

(K) ◦(ϕ1 → ϕ2) → (◦ϕ1 → ◦ϕ2) (N)
ϕ

◦ϕ

(µ1) ϕ[(µX .ϕ)/X] → µX .ϕ (µ2)
ϕ[ψ/X] → ψ

µX .ϕ→ ψ



Notice that (K) and (N) are proved by Proposition 12, and (µ1)
and (µ2) are exactly (Pre-Fixpoint) and (Knaster-Tarski).

Lemma 98. For all S = (S,R) and all valuations V : PVar→
P(S), we have s ∈ JϕKSV if and only if s ∈ V̄(ϕ).

Proof: Carry out structural induction on ϕ.
(Case ϕ ≡ X). We have JXKSV = V(X) = V̄(X). Proved.
(Case ϕ ≡ ϕ1∧ϕ2). We have Jϕ1∧ϕ2KSV = Jϕ1KSV ∩ Jϕ2KSV =

V̄(ϕ1) ∧ V̄(ϕ2) = V̄(ϕ1 ∧ ϕ2). Proved.
(Case ϕ ≡ ¬ϕ1). We have J¬ϕ1KSV = S\Jϕ1KSV = S\V̄(ϕ1) =

S \ (S \ V̄(¬ϕ1)) = V̄(¬ϕ1). Proved.
(Case ϕ ≡ ◦ϕ1). By Proposition 33, we have J◦ϕ1KSV = {s ∈

S | s R t implies t ∈ Jϕ1KSV for all t ∈ S} = {s ∈ S | s ∈
V̄(◦ϕ1)} = V̄(◦ϕ1). Proved.

(Case ϕ ≡ µX . ϕ1). We have JµX . ϕ1KSV =
⋂
{A ⊆ S |

Jϕ1KSV [A/X] ⊆ A} = V̄(µX . ϕ1). Proved.
Induction is finished and lemma is proved.

Corollary 99. Γµ � ϕ implies �µ ϕ.

Proof: Assume the opposite. Then there exist S = (S,R),
ρ : PVar → P(S), and s ∈ S such that s < JϕKSV . By
Lemma 98, s < V̄(ϕ). Since S � Γµ, we have Γµ 2 ϕ.
Contradiction.

Now we have completed the proof of Theorem 32, where
(2) =⇒ (3) is given by Lemma 97, and (5) =⇒ (6) is given
by Corollary 99.

Appendix M
Proof of Proposition 33

Proof of Proposition 33: We simply apply definition.
Recall that s ∈ •S(t) iff s R t.
(Case “•”). s ∈ ρ̄(•ϕ) iff there exists t ∈ ρ̄(ϕ) such that

s ∈ •S(t) iff there exists t such that s R t and t ∈ ρ̄(ϕ).
(Case “◦”). s ∈ ρ̄(◦ϕ) iff s ∈ ρ̄(¬•¬ϕ) iff s < ρ̄(•¬ϕ) iff

(use (Case “•”)) for all t, t ∈ ρ̄(¬ϕ) implies s < •S(t) iff for all
t, s ∈ •S(t) implies t ∈ ρ̄(ϕ) iff for all t, s R t implies t ∈ ρ̄(ϕ).

(Case “♦”). Note that ρ̄(♦ϕ) =
⋂
{A ⊆ S | ρ[A/X](ϕ∨•X) ⊆

A} =
⋂
{A ⊆ S | ρ̄(ϕ) ∪ •S(A) ⊆ A}. On the other hand,

{s ∈ S | ∃t ∈ S such that t ∈ ρ̄(ϕ) and s R∗ t} = {s ∈ S |
∃t ∈ S,∃n ≥ 0 such that t ∈ ρ̄(ϕ) and s Rn t} = {s ∈ S |
∃n ≥ 0 such that s ∈ •nS(ρ̄(ϕ))} =

⋃
n≥0 •

n
S(ρ̄(ϕ)). Therefore,

we just need to prove the two sets:

(η) ≡
⋂
{A ⊆ S | ρ̄(ϕ) ∪ •S(A) ⊆ A}

(ξ) ≡
⋃
n≥0
•nS(ρ̄(ϕ))

are equal. This can be directly proved by Knaster-Tarski
theorem.

(Case “�”). Similar to (Case “♦”).
(Case “ϕ1 U ϕ2”). As in (Case “♦”), we define two sets:

(η) ≡ ρ̄(ϕ1 U ϕ2) =
⋂
{A ⊆ S | ρ̄(ϕ2) ∪ (ρ̄(ϕ1 ∩ •S(A))) ⊆ A}

(ξ) ≡ {s ∈ S | exist n ≥ 0 and t1, . . . , tn ∈ S such that
s R t1 R . . . R tn, and s, t1, . . . , tn−1 ∈ ρ̄(ϕ1), tn ∈ ρ̄(ϕ2)}

(Taut) ϕ, if ϕ is a propositional tautology

(MP)
ϕ1 ϕ1 → ϕ2

ϕ2
(K◦) ◦(ϕ1 → ϕ2) → (◦ϕ1 → ◦ϕ2)

(N◦)
ϕ

◦ϕ
(K�) �(ϕ1 → ϕ2) → (�ϕ1 → �ϕ2)

(N�)
ϕ

�ϕ
(Fun) ◦ϕ↔ ¬(◦¬ϕ)
(U1) (ϕ1 U ϕ2) → ♦ϕ2
(U2) (ϕ1 U ϕ2) ↔ (ϕ2 ∨ (ϕ1 ∧ ◦(ϕ1 U ϕ2)))
(Ind) �(ϕ→ ◦ϕ) → (ϕ→ �ϕ)

Fig. 4. Infinite-trace LTL proof system

and then use Knaster-Tarski theorem to prove them equal.
(Case “WF”). Again, we define two sets:

(η) ≡ ρ̄(µX . ◦X) =
⋂
{A ⊆ S | (S \ A) ⊆ •S(S \ A)}

(ξ) ≡ {s ∈ S | s has no infintie path}

and then use Knaster-Tarski theorem to prove them equal.

Appendix N
Proof of Theorem 34

As a review, we formally define the semantics of infinite-
trace LTL and present in Fig. 4 its sound and complete proof
system. There are different notions of semantics of infinite-
trace LTL. We here review the one that fits best in our setting.
Let us first formally define some characteristic subclasses

of transition systems.

Definition 100. A transition system S = (S,R) is:
• well-founded if for all s ∈ S, there is no infinite path from

s;
• non-terminating, if for all s ∈ S there is t ∈ S such that

s R t.
• linear, if for all s ∈ S and t1, t2 ∈ S such that s R t1 and

s R t2, then t1 = t2.

Definition 101. Infinite-trace LTL formulas ϕ is interpreted
over a transition system S = (S,R) that is non-terminating
and linear. We use sk to denote the unique state such that
sRs1 Rs2 R. . .Rsk , for k ≥ 0. When k = 0, we let s0 = s. Given
a valuation V : PVar→ P(S), semantics of infinite-trace LTL
is inductively defined for all s ∈ S and ϕ as follows:
• s �infLTL X if s ∈ V(X);
• s �infLTL ϕ1 ∧ ϕ2 if s �infLTL ϕ1 and s �infLTL ϕ2;
• s �infLTL ¬ϕ if s 2infLTL ϕ;
• s �infLTL ◦ϕ if s1 �infLTL ϕ;
• s �infLTL ϕ1 U ϕ2 if exists k ≥ 0 such that sk �infLTL ϕ2 and
for all 0 ≤ i < k, si �infLTL ϕ1.

Lemma 102. `infLTL ϕ implies ΓinfLTL ` ϕ.

Proof: We just need to prove that all proof rules in Fig. 4
can be proved in ΓinfLTL.



(Taut) and (MP). Trivial.
(K◦) and (N◦). By Proposition 12.
(K�) and (N�). Proved by applying (Knaster-Tarski) first,

followed by simple propositional and modal logic reasoning.
(Fun, “→”). Proved from axiom (Inf) •> and simple modal

logic reasoning.
(Fun, “←”). Exactly axiom (Lin).
(U1). By (Knaster-Tarski) followed by propositional rea-

soning.
(U2). By definition of ϕ1 U ϕ2 as a least fixpoint and (Fun).
(Ind). By (Knaster-Tarski).

Lemma 103. s �infLTL ϕ if and only if s ∈ V̄(ϕ).

Proof: We make two interesting observations. Firstly, it
suffices to prove merely the “only if” part. The “if” part follows
by considering the “only if” part on ¬ϕ.
Secondly, the definition of “s �infLTL ϕ” is an inductive one,

meaning that “�infLTL” is the least relation that satisfies the five
conditions in Definition 101. To show that “s �infLTL ϕ implies
s ∈ V̄(ϕ)”, it suffices to show that s ∈ V̄(ϕ) satisfies the same
conditions. This is easily followed by Proposition 33.

Note how interesting that this lemma is proved by applying
Knaster-Tarski theorem in the meta-level.

Corollary 104. ΓinfLTL � ϕ implies �infLTL ϕ.

Proof: Assume the opposite and there exists a transition
system S = (S,R) that is linear and non-terminating, a
valuation V , and a state s ∈ S such that s 2infLTL ϕ. By
Lemma 103, s < V̄(ϕ), meaning that S 2 ϕ. Since S is non-
terminating and linear, the axioms (Inf) and (Lin) hold in S,
and thus ΓinfLTL 2 ϕ. Contradiction.

Now we are ready to prove Theorem 34.
Proof of Theorem 34: Use Lemma 102 and Corol-

lary 104, as well as the soundness of MmL proof system and
the completeness of infinite-trace LTL proof system.

Appendix O
Proof of Theorem 35

We review the semantics of finite-trace LTL as well as its
sound and complete proof system presented in Fig. 5.

The following definition is adapted from [10] to fit best in
our setting.

Definition 105. Finite-trace LTL formulas ϕ is interpreted
over a transition system S = (S,R) that is well-founded and
linear. One can show that S = {s1, . . . , sn} must be finite,
and the transition relation of S must be of the linear structure
s1 R . . . R sn. Given a valuation V : PVar→ P(S), semantics
of infinite-trace LTL is inductively defined for all si ∈ S and
ϕ as follows:
• si �finLTL X if si ∈ V(X);
• si �finLTL ϕ1 ∧ ϕ2 if si �finLTL ϕ1 and si �finLTL ϕ2;
• si �finLTL ¬ϕ if si 2finLTL ϕ;
• si �finLTL ◦ϕ if si = sn or si+1 �finLTL ϕ;
• si �finLTL ϕ1 Uw ϕ2 if either sj �finLTL ϕ1 for all j ≥ i, or
there exists i ≤ k ≤ n such that sk �finLTL ϕ2 and for all
i ≤ j < k, sj �finLTL ϕ1.

(Taut) ϕ, if ϕ is a propositional tautology

(MP)
ϕ1 ϕ1 → ϕ2

ϕ2
(K◦) ◦(ϕ1 → ϕ2) → (◦ϕ1 → ◦ϕ2)

(N◦)
ϕ

◦ϕ
(K�) �(ϕ1 → ϕ2) → (�ϕ1 → �ϕ2)

(N�)
ϕ

�ϕ
(¬◦) ¬◦ϕ→ ◦¬ϕ

(coInd)
◦ϕ→ ϕ

ϕ
(Fix) (ϕ1 Uw ϕ2) ↔ (ϕ2 ∨ (ϕ1 ∧ ◦(ϕ1 Uw ϕ2)))

Fig. 5. Finite-trace LTL proof system

Lemma 106. `finLTL ϕ implies ΓfinLTL ` ϕ.

Proof: We just need to prove all proof rules in Fig. 5 can
be proved by axioms (Fin) and (Lin) in MmL. We skip the
ones that have shown in Lemma 102.
(¬◦). Proved by axiom (Lin).
(coInd). Use axiom (Fin) µX . ◦X and to prove ΓfinLTL `

µX . ◦X → ϕ by (Knaster-Tarski).
(Fix). By definition of ϕ1 Uw ϕ2 as a least fixpoint.

Lemma 107. s �finLTL ϕ if and only if s ∈ V̄(ϕ).

Proof: As in Lemma 103, we just need to prove the “only
if” part, by showing that s ∈ V̄(ϕ) satisfies the five conditions
in Definition 105. This is easily followed by Proposition 33.
The case ϕ1 Uw ϕ2 shall be proved by directly applying MmL
semantics.

Corollary 108. ΓfinLTL � ϕ implies �finLTL ϕ.

Proof: Assume the opposite and use Lemma 107.
Now we can prove Theorem 35.

Proof of Theorem 35: Use Lemma 106 and Corol-
lary 108, as well as the soundness of MmL proof system and
the completeness of finite-trace LTL proof system.

Appendix P
Proof of Theorem 36

We review the semantics of CTL as well as its sound and
complete proof system presented in Fig. 6.

Definition 109. CTL formulas are interpreted on a transition
system S = (S,R) that is non-terminating, and a valuation
V : PVar → P(S). We call an (infinite) sequence of states
s0s1 . . . a path if si R si+1 for all i ≥ 0. CTL semantics is
defined inductively for all s0 ∈ S and ϕ as follows:
• s0 �CTL X if s0 ∈ V(X);
• s0 �CTL ϕ1 ∧ ϕ2 if s0 �CTL ϕ1 and s0 �CTL ϕ2;
• s0 �CTL ¬ϕ if s0 2CTL ϕ;
• s0 �CTL EXϕ if there exists s1 such that s0 R s1, s1 �CTL ϕ;
• s0 �CTL AXϕ if for all s1 such that s0 R s1, s1 �CTL ϕ;
• s0 �CTL ϕ1 EU ϕ2 if there exists a path s0s1 . . . and k ≥ 0
such that sk �CTL ϕ2, and s0, . . . , sk−1 �CTL ϕ1;



(Taut) ϕ, if ϕ is a propositional tautology

(MP)
ϕ1 ϕ1 → ϕ2

ϕ2
(CTL1) EX(ϕ1 ∨ ϕ2) ↔ EXϕ1 ∨ EXϕ2
(CTL2) AXϕ↔ ¬(EX¬ϕ)
(CTL3) ϕ1 EU ϕ2 ↔ ϕ2 ∨ (ϕ1 ∧ EX(ϕ1 EU ϕ2))
(CTL4) ϕ1 AU ϕ2 ↔ ϕ2 ∨ (ϕ1 ∧ AX(ϕ1 AU ϕ2))
(CTL5) EXtrue ∧ AXtrue
(CTL6) AG(ϕ3 → (¬ϕ2 ∧ EXϕ3)) → (ϕ3 → ¬(ϕ1 AU ϕ2))
(CTL7) AG(ϕ3 → (¬ϕ2 ∧ (ϕ1 → AXϕ3)))

→ (ϕ3 → ¬(ϕ1 EU ϕ2))
(CTL8) AG(ϕ1 → ϕ2) → (EXϕ1 → EXϕ2)

Fig. 6. CTL proof system

• s0 �CTL ϕ1AUϕ2 if for all paths s0s1 . . . there exists k ≥ 0
such that sk �CTL ϕ2, and s0, . . . , sk−1 �CTL ϕ1;.

We write �CTL ϕ if for all S = (S,R), all valuations ρ, and all
s ∈ S, s �CTL ϕ.

Lemma 110. `CTL ϕ implies ΓCTL ` ϕ.

Proof: We just need to prove all CTL rules from the
axiom (Inf) in MmL. We skip the first 7 rules as they are
simple. The rest 3 rules can be proved by applying (Knaster-
Tarski) and use properties in Properties 117.

Lemma 111. s �CTL ϕ if and only if s ∈ V̄(ϕ).

Proof: As in Lemma 103, we just need to prove the “only
if” part by showing that s ∈ V̄(ϕ) satisfies all 7 conditions in
Definition 109. The first 5 of them are simple. We show the
last two ones about “EU” and “AU”.
(Case EU). Assume there exists a path s0s1 . . . and k ≥ 0

such that sk ∈ V̄(ϕ2) and s0, . . . , sk−1 ∈ V̄(ϕ1). Our goal is to
show s0 ∈ V̄(ϕ1 EUϕ2). By semantics of MmL, V̄(ϕ1 EUϕ2) =
V̄(µX . ϕ2∨(ϕ1∧•X)) =

⋂
{A ⊆ S | V̄(ϕ2)∪(V̄(ϕ1)∩•S(A)) ⊆

A}. Therefore, it suffices to prove that s0 ∈ A for all A ⊆ S
such that V̄(ϕ2) ⊆ A and V̄(ϕ1) ∩ •S(A) ⊆ A. This is easy,
sk ∈ V̄(ϕ2) ⊆ A implies sk−1 ∈ •S(sk). Also, sk−1 ∈ V̄(ϕ1)
by assumption. Then sk−1 ∈ V̄(ϕ1) ∩ •S(sk) ⊆ A. Repeat this
procedure for k times and we obtain s0 ∈ A. Done.
(Case AU). Let us denote ◦S(A) = {s ∈ S | for all t ∈

S such that s R t, t ∈ A} to be the “interpretation” of “all-path
next ◦” in S. Prove by contradiction. Assume the opposite
statement that s0 < V̄(ϕ1 AU ϕ2) = V̄(µX . ϕ2 ∨ (ϕ1 ∧ ◦X)) =⋂
{A ⊆ S | V̄(ϕ2)∪(V̄(ϕ1)∩◦S(A)) ⊆ A}. This means that there

exists A ⊆ S such that V̄(ϕ2) ⊆ A and V̄(ϕ1) ∩ ◦S(A) ⊆ A, and
s0 < A. This is going to cause contradiction. Firstly by V̄(ϕ2) ⊆
A, s0 < V̄(ϕ2), which implies that s0 ∈ V̄(¬ϕ2). Secondly by
V̄(ϕ1)∩◦S(A) ⊆ A, we know that (S \A) ⊆ V̄(¬ϕ1)∪•S(S \A).
Since s0 < A, we know either s0 ∈ V̄(¬ϕ1) or s0 ∈ •S(S \ A).
If it is the first case, then we have a contradiction as any
path starting from s0 contradicts with the condition. If it is
the second case, then there exists a state, say s1, such that
s0 R s1 and s1 < A, which also implies s1 < V̄(ϕ2). Repeat this
process and obtain a sequence of state s0s1 . . . . If the sequence
is finite, say s0s1 . . . sn, then by construction s0, . . . , sn < V̄(ϕ2)

(Taut) ϕ, if ϕ is a propositional tautology

(MP)
ϕ1 ϕ1 → ϕ2

ϕ2
(DL1) [α](ϕ1 → ϕ2) → ([α]ϕ1 → [α]ϕ2)
(DL2) [α](ϕ1 ∧ ϕ2) ↔ ([α]ϕ1 ∧ [α]ϕ2)
(DL3) [α ∪ β]ϕ↔ [α]ϕ ∧ [β]ϕ
(DL4) [α ; β]ϕ↔ [α][β]ϕ
(DL5) [ψ?]ϕ↔ (ψ → ϕ)
(DL6) ϕ ∧ [α][α∗]ϕ↔ [α∗]ϕ
(DL7) ϕ ∧ [α∗](ϕ→ [α]ϕ) → [α∗]ϕ

(Gen)
ϕ

[α]ϕ

Fig. 7. Dynamic logic proof system

and sn ∈ V̄(¬ϕ1), which is a contradiction to the condition. If
the sequence is infinite, then by construction s0s1 . . . satisfies
that s0, s1,< V̄(ϕ2), which also contradicts to the condition.
Done.

Corollary 112. ΓCTL � ϕ implies �CTL ϕ.

Proof: Use Lemma 111 and prove by contradiction. Note
that it is easy to verify that S � ΓCTL if S is non-terminating.

Now we are ready to prove Theorem 36.
Proof of Theorem 36: Use Lemma 110 and Corol-

lary 112, as well as soundness of MmL and completeness of
CTL.

Appendix Q
Proof of Theorem 37

We review the semantics of DL as well as its sound and
complete proof system presented in Fig. 7.

Definition 113. Let S = (S, {Ra}a∈APgm) be an APgm-labeled
transition system where Ra ∈ S × S is the transition relation
for atomic program a. Let V : PVar → P(S) be a valuation.
DL semantics is inductively defined as follows where state
formulas are evaluated to subsets of S and program formulas
are evaluated to relations of S:
• JpKSV = V(p);
• Jϕ1 ∧ ϕ2KSV = Jϕ1KSV ∩ Jϕ2KSV ;
• J¬ϕKSV = S \ JϕKSV ;
• J[α]ϕKSV = {s ∈ S | for all t ∈ S such that (s, t) ∈
JαKSV ,we have t ∈ JϕKSV };

• JaK = Ra for a ∈ APgm;
• Jα1 ; α2KSV = Jα1KSV ◦ Jα2KSV ;
• Jα1 ∪ α2KSV = Jα1KSV ∪ Jϕ2KSV ;
• Jα∗KSV = (JαK

S
V )
∗;

• Jϕ?KSV = {(s, s) | s ∈ JϕK
S
V }.

where “R1 ◦ R2” is the composition of two relations R1,R2 de-
fined as R1 ◦ R2 = {(s1, s3) | there exists s2 such that (s1, s2) ∈
R1 and (s2, s3) ∈ R2}. We write �DL ϕ if JϕKSV = S for all S
and V .

Lemma 114. `DL ϕ implies ΓDL ` ϕ.



Proof: We just need to prove that all proof rules in Fig. 7
can be proved in ΓDL. First of all, rules (DL3) to (DL6) follow
from (syntactic sugar) definitions. Rules (Taut) and (MP) are
trivial, We only prove (DL1), (DL2), (DL7), and (Gen).
Notice that [α]ϕ is defined a syntactic sugar based on the

structure of α. Therefore, we carry out structure induction on
α. We should be careful to prevent circular reasoning. Our
proving strategy is to prove (Gen) first, and then prove (DL1)
and (DL2) simultaneously, and finally prove (DL7).
(Gen). Carry out induction on α. All cases are trivial. Notice

the case when α ≡ β∗ is proved by proving ΓDL ` ϕ→ [α∗]ϕ
using (Knaster-Tarski). After simplification, the goal be-
comes ΓDL ` ϕ→ [β]ϕ. This is proved by applying induction
hypothesis, which shows ΓDL ` [β]ϕ.
(DL1) and (DL2). We prove both rules simultaneously by

induction on α. We discuss only interesting cases and skip
the trivial ones. (DL1, α ≡ β1 ; β2) is proved from induction
hypothesis, by applying (Gen) on [β1]. (DL1,α ≡ β∗) is proved
by applying (Knaster-Tarski), following by applying (DL2,
“→”) on [β]. (DL2, α ≡ β∗, “→”) is proved by (Knaster-
Tarski). (DL2, α ≡ β∗, “←”) is proved by (Knaster-Tarski),
followed by (DL2) on [β].

(DL7) is proved directly by (Knaster-Tarski), followed by
(DL2, “←”) on [α].

We now connect the semantics of DL with the semantics
of MmL. First of all, we show that the transition system S =
(S, {Ra}a∈APgm) can be regarded as a �LTS-model, where S is
the carrier set of State and APgm (the set of atomic programs)
is the carrier set of Pgm. The “one-path next • ∈ ΣPgmState,State
is interpreted according to DL semantics for all t ∈ S and
a ∈ APgm:

•S(a, t) = {s ∈ S | (s, t) ∈ Ra}.

In addition, valuation V : PVar → P(S) can be regarded as
a matching µ-logic valuation (where we safely ignore the
valuations of element variables because they do not appear
in DL syntax).

Lemma 115. Under the above notations, JϕKSV = V̄(ϕ).

Proof: As in Lemma 103, we just need to prove that
JϕKSV ⊆ V̄(ϕ) by showing that V̄(ϕ) satisfies the conditions in
Definition 113. The only interesting case is to show V̄([α]ϕ) =
{s ∈ S | for all t ∈ S, (s, t) ∈ JαKSV implies t ∈ V̄(ϕ)}.
We prove it by carrying out structural induction on the DL
program formula α. The case when α ≡ a for a ∈ APgm
is easy. The cases when α ≡ β1 ; β2, α ≡ β1 ∪ β2, and
α ≡ ψ? follows directly by basic analysis about sets and
using definition of the semantics of DL program formulas.
The interesting case is when α ≡ β∗. In this case we should
prove V̄([β∗]ϕ) = V̄(νX . ϕ ∧ [β]X) =

⋃
{A | A ⊆ V̄(ϕ) ∩

V[A/X]([β]X)} =
⋃
{A | A ⊆ V̄(ϕ) ∩ {s | for all t, (s, t) ∈

JβKSV implies t ∈ S}} ?
= {s | for all t, (s, t) ∈ Jβ∗KSV implies t ∈

V̄(ϕ)} We denote the left-hand side of “ ?
=” as (η) and the

right-hand side as (ξ).

To prove (η) = (ξ), we prove containment from both
directions.

(Case (η) ⊆ (ξ)). This is proved by considering an s ∈ (η)
and show s ∈ (ξ). By construction of (η), there exists A ⊆ S
such that A ⊆ V̄(ϕ) ∩ {s | for all t, (s, t) ∈ JβKSV implies t ∈
A}, and that s ∈ A. In order to prove s ∈ (ξ), we assume
t ∈ S such that (s, t) ∈ (JβKSV )

∗ and try to prove t ∈ V̄(ϕ). By
definition, there exists k ≥ 0 and s0, . . . , sk such that s = s0,
t = sk , and (si, si+1) ∈ JβKSV for all 0 ≤ i < k. By induction
and the property of A, and that s0 ∈ A, we can prove that
s0, s1, . . . , sk ∈ V̄(ϕ), and thus t ∈ V̄(ϕ). Done.
(Case (ξ) ⊆ (η)). Notice that the set η is defined as a

greatest fixpoint, so it suffices to show that (ξ) satisfies the
condition, i.e., to prove that (ξ) ⊆ V̄(ϕ) ∩ {s | for all t, (s, t) ∈
JβKSV implies t ∈ (ξ)}. This can be easily proved by the
definition of (ξ). Done.

Corollary 116. ΓDL � ϕ implies �DL ϕ.

Proof: Use Lemma 115, and for the sake of contradiction,
assume the opposite. Suppose there exists S = (S, {Ra}a∈APgm)
and a valuation V and a state s such that s < JϕKSV . We then
know s < V̄(ϕ), which implies that S 2 ϕ. Obviously S � ΓDL

as the theory ΓDL contains no addition axioms. This means
that ΓDL 2 ϕ.
We are ready to prove Theorem 37.

Proof of Theorem 37: Use Lemma 114 and Corol-
lary 116, as well as soundness of MmL and completeness of
DL.

Appendix R
Proof of Theorem 40

As a review, we use the following notations:

“one-path next” •ϕ, where • ∈ ΣCfg,Cfg

“all-path next” ◦ϕ ≡ ¬•¬ϕ

“eventually” ♦ϕ ≡ µX . ϕ ∨ •X

“always” �ϕ ≡ νX . ϕ ∧ ◦X

“well-founded” WF ≡ µX . ◦X

“weak eventually” ♦wϕ ≡ νX . ϕ ∨ •X

Proposition 117. The following propositions hold:
1) ` •⊥ ↔ ⊥
2) ` •(ϕ1 ∨ ϕ2) ↔ •ϕ1 ∨ •ϕ2
3) ` •(∃x . ϕ) ↔ ∃x . •ϕ
4) ` ◦> ↔ >
5) ` ◦(ϕ1 ∧ ϕ2) ↔ ◦ϕ1 ∧ ◦ϕ2
6) ` ◦(∀x . ϕ) ↔ ∀x . ◦ϕ
7) ` ϕ→ ♦ϕ and ` •♦ϕ→ ♦ϕ
8) ` �ϕ→ ϕ and ` �ϕ→ ◦�ϕ
9) ` ϕ→ ♦wϕ and ` •♦wϕ→ ♦wϕ
10) Γ ` ϕ1 → ϕ2 implies Γ ` ?ϕ1 → ?ϕ2 where ? ∈
{•,◦,♦,�,♦w}

11) ` ♦⊥ ↔ ⊥
12) ` ♦(ϕ1 ∨ ϕ2) ↔ ♦ϕ1 ∨ ♦ϕ2
13) ` ♦(∃x . ϕ) ↔ ∃x . ♦ϕ



14) ` �> ↔ >
15) ` �(ϕ1 ∧ ϕ2) ↔ �ϕ1 ∧ �ϕ2
16) ` �(∀x . ϕ) ↔ ∀x .�ϕ
17) ` �ϕ↔ ¬♦¬ϕ
18) ` ◦ϕ1 ∧ •ϕ2 → •(ϕ1 ∧ ϕ2)
19) ` ◦(ϕ1 → ϕ2) ∧ •ϕ1 → •ϕ2
20) ` ♦wϕ↔ (WF→ ♦ϕ)
21) ` ♦w(ϕ1 ∨ ϕ2) ↔ ♦wϕ1 ∨ ♦wϕ2
22) ` ♦w(∃x . ϕ) ↔ ∃x . ♦wϕ
23) ` ?? ϕ↔ ?ϕ where ? ∈ {♦,�,♦w}
24) ` WF↔ µX . ◦kX when k ≥ 1
25) ` WF↔ µX . ◦�X
26) ` �ϕ1 ∧ ♦wϕ2 → ♦w(ϕ1 ∧ ϕ2)
27) ` �(ϕ1 → ϕ2) ∧ ϕ1 → ϕ2

Proof: We prove them in order.
(1–3) follows from (Propagation), and (Framing).
(4–6) are proved from (1–3) and that ◦ϕ ≡ ¬•¬ϕ.
(7) is proved by (Pre-Fixpoint) that ` ϕ ∨ •♦ϕ→ ♦ϕ.
(8) is proved by (Pre-Fixpoint) that ` �ϕ→ ϕ ∧ •�ϕ.
(9) is proved by (Knaster-Tarski) that ` ϕ∨•♦wϕ→ ♦wϕ.
(10, when ? is •) is exactly (Framing).
(10, when ? is ◦) is exactly Proposition 12.
(10, when ? is ♦) requires us to prove Γ ` ♦ϕ1 → ♦ϕ2. By

(Knaster-Tarski), it suffices to prove Γ ` ϕ1 ∨ •♦ϕ2 → ♦ϕ2,
which is proved by (7).
(10, when ? is �) requires us to prove Γ ` �ϕ1 → �ϕ2. By

(Knaster-Tarski), it suffices to prove Γ ` �ϕ1 → ϕ1 ∧ •�ϕ2,
which is proved by (8).
(10, when ? is ♦w) requires us to prove Γ ` ♦wϕ1 → ♦wϕ2.

By (Knaster-Tarski), it suffices to prove Γ ` ♦wϕ1 → ϕ1 ∨
•♦wϕ2, which is proved by (Pre-Fixpoint).
(11, “→”) is proved by (Knaster-Tarski).
(11,“←”) is trivial.
(12, “→”) is proved by (Knaster-Tarski), followed by (2)

to propagate “•” through “∨”, and finished with (7).
(12, “←”) is prove by (10, when ? is ♦).
(13, “→”) is proved by (Knaster-Tarski), followed by (3)

to propagate “•” through “∃”, and finished with (7).
(13, “←”) is proved by (10, when ? is ♦).
(14–16) are proved similar to (11–13).
(17, both directions) are proved by (Knaster-Tarski) fol-

lowed by (Pre-Fixpoint).
(18) is proved by ◦ϕ ≡ ¬•¬ϕ and (Propagation).
(19) is proved by (18) followed by (10).
(20, “→”) is proved by proving ` WF → (♦wϕ → ♦ϕ),

which is proved by (Knaster-Tarski) followed by (19).
(20, “←”) is proved by (Knaster-Tarski), followed by (2)

to propagate “•” through “∨”. After some additional proposi-
tional reasoning, we obtain two proof goals: ` ♦ϕ→ ϕ ∨ •♦ϕ
and ` ◦WF→ WF. The former is proved by (Knaster-Tarski)
and the latter is exactly (Pre-Fixpoint).
(21, “→”) is proved by applying (20) everywhere followed

by (12).
(21, “←”) is proved by (10, when ? is ♦w).
(22, “→”) is proved by applying (20) everywhere followed

by (13).

(22, “←”) is proved by (10, when ? is ♦w).
(23, when ? is ♦, “→”) is proved by (Knaster-Tarski)

followed by (7).
(23, when ? is ♦, “←”) is proved by (7) and (10).
(23, when ? is �, “→”) is proved by (8) and (10).
(23, when ? is �, “←”) is proved by (Knaster-Tarski)

followed by (8).
(23, when ? is ♦w , “→”) is proved by applying (Knaster-

Tarski) first. Then we need to prove ` ♦w♦wϕ→ ϕ∨•♦w♦wϕ.
By (Pre-Fixpoint), we know ` ♦w♦wϕ → ♦wϕ ∨ •♦w♦wϕ.
Thus, it suffices to prove ` ♦wϕ∨•♦w♦wϕ→ ϕ∨•♦w♦wϕ. By
propositional reasoning, we just need to prove ` ♦wϕ → ϕ ∨
•♦w♦wϕ. By (Knaster-Tarski), we know ` ♦wϕ→ ϕ∨•♦wϕ,
so it suffices to prove ` ϕ ∨ •♦wϕ → ϕ ∨ •♦w♦wϕ. Again by
propositional reasoning, it suffices to prove ` •♦wϕ → ϕ ∨
•♦w♦wϕ, which can be proved by proving ` •♦wϕ→ •♦w♦wϕ,
which is finally proved by (9) and (10).

(23, when ? is ♦w , “←”) is proved by (9) and (10).
Note it is sufficient to prove (24) only for the case k = 1.
(24, “→”) is proved by applying (Knaster-Tarski) and

(Pre-Fixpoint) first. Then we need to prove ` µX . ◦◦X →
◦µX . ◦◦X . Apply (Knaster-Tarski) again, and finished by
(Pre-Fixpoint).
(24, “←”) is proved by applying (Knaster-Tarski) followed

by (Pre-Fixpoint).
(25, “→”) is proved by applying (Knaster-Tarski) followed

by (Pre-Fixpoint). Then we obtain ` µX . ◦�X → �µX . ◦�X .
Apply (Knaster-Tarski) on �, and we obtain ` µX . ◦�X →
◦�µX . ◦�X , finished by (Pre-Fixpoint).

(25, “←”) is proved by (8), (10), and then apply Lemma 87.
(26) is proved by applying (Knaster-Tarski) firstly. After

propositional reasoning, we obtain two goals: ` �ϕ1∧♦wϕ2 →
ϕ1∨•(�ϕ1∧♦wϕ2) and ` �ϕ1∧♦wϕ2 → ϕ2∨•(�ϕ1∧♦wϕ2).
The first goal is easily proved by (8). The second goal is by
unfolding “♦wϕ2” and “�ϕ1”, and then use (18).
(27) is proved by (8).

Lemma 118. A `C ϕ1 ⇒ ϕ2 implies ΓRL ` RL2MmL(A `C
ϕ1 ⇒ ϕ2).

Proof: We need to prove that all reachability logic proof
rules in Fig. 8 are provable in matching µ-logic.
(Axiom). We prove for the case when C , ∅. The case

when C = ∅ is the same. Our goal, after translation, is ΓRL `
∀�A∧∀�C → (ϕ1 → •♦wϕ2). By assumption, ϕ1 ⇒ ϕ2 ∈ A,
and thus we just need to prove ΓRL ` ∀(ϕ1 → •♦wϕ2) →
(ϕ1 → •♦wϕ2), which is trivial by FOL reasoning.
(Reflexivity). Notice that C = ∅ in this rule. Our goal,

after translation, is ΓRL ` ∀�A → (ϕ → ♦wϕ), which is true
by Proposition 117.
(Transitivity, C = ∅). Our goal, after translation, is
ΓRL ` ∀�A → (ϕ1 → ♦wϕ3). Our two assumptions are
ΓRL ` ∀�A → (ϕ1 → ♦wϕ2) and ΓRL ` ∀�A → (ϕ2 →
♦wϕ3). From the latter assumption and Proposition 117, we
have ΓRL ` ∀�A → (♦wϕ2 → ♦w♦wϕ3), and then by
propositional reasoning and the former assumption we have
ΓRL ` ∀�A → (ϕ1 → ♦w♦wϕ3). Finally, by Proposition 117



Axiom:
ϕ⇒ ϕ′ ∈ A
A `C ϕ⇒ ϕ′

Reflexivity:
A `∅ ϕ⇒ ϕ
Transitivity:
A `C ϕ1 ⇒ ϕ2 A ∪ C ` ϕ2 ⇒ ϕ3

A `C ϕ1 ⇒ ϕ3
Logic Framing:
A `C ϕ⇒ ϕ′ ψ is a FOL formula

A `C ϕ ∧ ψ ⇒ ϕ′ ∧ ψ
Consequence:
Mcfg � ϕ1 → ϕ′1 A `C ϕ′1 ⇒ ϕ′2 Mcfg � ϕ′2 → ϕ2

A `C ϕ1 ⇒ ϕ2
Case Analysis:
A `C ϕ1 ⇒ ϕ A `C ϕ2 ⇒ ϕ

A `C ϕ1 ∨ ϕ2 ⇒ ϕ
Abstraction:
A `C ϕ⇒ ϕ′ X ∩ FV(ϕ′) = ∅

A `C ∃X . ϕ⇒ ϕ′

Circularity:
A `C∪{ϕ⇒ϕ′ } ϕ⇒ ϕ′

A `C ϕ⇒ ϕ′

Fig. 8. Reachability logic proof system

we have ΓRL ` ∀�A→ (ϕ1 → ♦wϕ3), which is what we want
to prove.

(Transitivity, C , ∅). Our goal, after translation, is
ΓRL ` ∀�A ∧ ∀◦�C → (ϕ1 → •♦wϕ3). Our two assumptions
are ΓRL ` ∀�A ∧ ∀◦�C → (ϕ1 → •♦wϕ2) and ΓRL `
∀�A ∧ ∀�C → (ϕ2 → ♦wϕ3). From the first assumption, we
have ΓRL ` ∀�A∧∀◦�C ∧ ϕ1 → ∀�A∧∀◦�C ∧ •♦wϕ2, and
thus by propositional reasoning, it suffices to prove that ΓRL `
∀�A∧∀◦�C∧•♦wϕ2 → •♦wϕ3. From the second assumption
and Proposition 117(10), we know that ΓRL ` •♦w(∀�A ∧
∀�C ∧ ϕ2) → •♦w♦wϕ3, which by Proposition 117(23), im-
plies ΓRL ` •♦w(∀�A∧∀�C∧ϕ2) → •♦wϕ3. Then, it suffices
to prove ΓRL ` ∀�A∧∀◦�C∧•♦wϕ2 → •♦w(∀�A∧∀�C∧ϕ2).
The rest is easy, since by Proposition 117(8), we just need to
prove ΓRL ` ∀◦�A∧∀◦�C∧•♦wϕ2 → •♦w(∀�A∧∀�C∧ϕ2),
which then by Proposition 117(18) becomes ΓRL ` •(∀�A ∧
∀�C ∧ ♦wϕ2) → •♦w(∀�A ∧ ∀�C ∧ ϕ2), and then by
Proposition 117(10) becomes ΓRL ` ∀�A ∧ ∀�C ∧ ♦wϕ2 →
♦w(∀�A∧∀�C∧ϕ2), which is proved by Proposition 117(26).
(Logic Framing). We prove for the case when C , ∅. The

case when C = ∅ is the same. Our goal, after translation,
is ΓRL ` ∀�A ∧ ∀◦�C → (ϕ1 ∧ ψ → •♦w(ϕ2 ∧ ψ)). Our
assumption is ΓRL ` ∀�A ∧ ∀◦�C → (ϕ1 → •♦wϕ2). Notice
that FOL formula ψ is a predicate pattern, so ` •♦w(ϕ2 ∧
ψ) ↔ (•♦wϕ2) ∧ψ, and the rest is by propositional reasoning.
The condition that ψ is a FOL formula (and thus a predicate
pattern) is crucial to propagate ψ throughout its context.
(Consequence). This is the only rule where axioms in ΓRL

is actually used. Again, we prove for the case C , ∅ as the
case when C = ∅ is the same. Our goal, after translation, is
ΓRL ` ∀�A∧∀◦�C → (ϕ1 → •♦wϕ2). Our three assumptions
include Mcfg � ϕ1 → ϕ′1, Mcfg � ϕ′2 → ϕ2, and ΓRL ` ∀�A ∧
∀◦�C → (ϕ′1 → •♦wϕ

′
2). Notice that by definition of ΓRL, we

know immediately that ϕ1 → ϕ′1 ∈ Γ
RL and ϕ′2 → ϕ2 ∈ Γ

RL.
The rest of the proof is simply by Proposition 117(10) and
some propositional reasoning.
(Case Analysis). Simply by some propositional reasoning.
(Abstraction). Simply by some FOL reasoning. Notice that
∀�A and ∀�C are closed patterns.

(Circularity). We prove for the case when C , ∅, as the
case when C = ∅ is the same. Our goal, after translation,
is ΓRL ` ∀�A ∧ ∀◦�C → (ϕ1 → •♦wϕ2). By FOL
reasoning and Proposition 117(20,2,25), the goal becomes
ΓRL ` µX . ◦�X → ∀�A ∧ ∀◦�C → ∀(ϕ1 → •♦wϕ2). By
(Knaster-Tarski) and some FOL reasoning, it suffices to
prove ΓRL ` ◦�(∀�A ∧ ∀◦�C → ∀(ϕ1 → •♦wϕ2)) ∧ ∀�A ∧
∀◦�C → (ϕ1 → •♦wϕ2). Our assumption, after translation, is
ΓRL ` ∀�A ∧ ∀◦�C ∧ ∀◦(ϕ1 → •♦wϕ2) → (ϕ1 → •♦wϕ2),
so it suffices to prove ΓRL◦�(∀�A ∧ ∀◦�C → ∀(ϕ1 →
•♦wϕ2)) ∧ ∀�A ∧ ∀◦�C → ∀�A ∧ ∀◦�C ∧ ∀◦(ϕ1 →
•♦wϕ2), which by some propositional reasoning becomes
ΓRL ` ◦�(∀�A∧∀◦�C → ∀(ϕ1 → •♦wϕ2))∧∀�A∧∀◦�C →
∀◦(ϕ1 → •♦wϕ2). By Proposition 117(8), it becomes ΓRL `
◦�(∀�A ∧ ∀◦�C → ∀(ϕ1 → •♦wϕ2)) ∧ ◦∀�A ∧ ◦∀◦�C →
∀◦(ϕ1 → •♦wϕ2), and by Proposition 117(5,6,10), it becomes
ΓRL ` �(∀�A∧∀◦�C → ∀(ϕ1 → •♦wϕ2)) ∧∀�A∧∀◦�C →
∀(ϕ1 → •♦wϕ2), which is proved by Proposition 117(27).

Corollary 119. S `∅ ϕ1 ⇒ ϕ2 implies ΓRL ` RL2MmL(S `∅
ϕ1 ⇒ ϕ2).

Proof: Let A = S and C = ∅ in Lemma 118.

Lemma 120. ΓRL � RL2MmL(S `∅ ϕ1 ⇒ ϕ2) implies S �RL
ϕ1 ⇒ ϕ2.

Proof: Let S = (Mcfg
Cfg,R) be the transition system that is

yielded by S. We tactically use the same letter S to mean the
extended �RL-model Mcfg with • ∈ ΣCfg,Cfg be interested as
the transition relation R. Then S � ΓRL, because all axioms
in ΓRL are about only the configuration model Mcfg and says
nothing about the transition relation R. Since Mcfg � Γcfg (by
definition), then S � Γcfg. By condition of the lemma, S �
RL2MmL(S `∅ ϕ1 ⇒ ϕ2), i.e., S � ∀�S → ϕ1 → ♦wϕ2.
By construction of S, for all rules ψ1 ⇒ ψ2 ∈ S, we have
S � ψ1 → •ψ2 (in MmL), which implies S � ∀�(ψ1 → ♦wψ2),
meaning that S � ∀�S. Therefore, S � ϕ1 → ♦wϕ2 (in MmL),
which is exactly the same meaning as S �RL ϕ1 ⇒ ϕ2 (in RL).

Finally, we are ready to prove Theorem 40.
Proof of Theorem 40: Following the same roadmap as

in the proof of Theorem 32, where (2) ⇒ (3) is given by
Corollary 119 and (5)⇒ (6) is given by Lemma 120. The rest
is by the sound and (relative) completeness of RL. Notice that
technical assumptions of [2] are needed for the completeness
result of RL.
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