
Matching Logic Explained

Xiaohong Chen1, Dorel Lucanu2, and Grigore Roşu1

1University of Illinois at Urbana-Champaign, Champaign, USA
2Alexandru Ioan Cuza University, Iaşi, Romania

xc3@illinois, dlucanu@info.uaic.ro, grosu@illinois.edu

July 28, 2020

Abstract

Matching logic was recently proposed as a unifying logic for specifying and reasoning about static
structure and dynamic behavior of programs. In matching logic, patterns and specifications are used
to uniformly represent mathematical domains (such as numbers and Boolean values), datatypes, and
transition systems, whose properties can be reasoned about using one fixed matching logic proof system.
In this paper we give a tutorial to matching logic. We use a suite of examples to explain the basic concepts
of matching logic and show how to capture many important mathematical domains, datatypes, and
transition systems using patterns and specifications. We put special emphasis on the general principles
of induction and coinduction in matching logic and show how to do inductive and coinductive reasoning
about datatypes and codatatypes. To encourage the development of the future tools for matching logic,
we propose and use throughout the paper a human-readable formal syntax to write specifications in a
modular and compact way.

Keywords— matching logic, program logics, (co)inductive data types, dependent types, specification of transi-
tion systems, (co)monad specification

1 Introduction
Matching logic is a unifying logic for specifying and reasoning about static structure and dynamic behavior
of programs. It was recently proposed in [1] and further developed in [2, 3]. There exist several equivalent
variants of matching logic. In this paper we consider the variant that has a minimal presentation, called
the applicative matching logic. For simplicity, we will refer to this variant simply as matching logic and
abbreviate it as ML.

The key concept of ML is its patterns, which are formulas built from variables, constant symbols, one
binary construct called application, the standard FOL constructs ¬, ∧, ∃, and a least fixpoint construct
µ. Semantically, patterns are interpreted as sets of elements that match them, which gives ML a pattern
matching semantics. For example, 0 is a pattern matched by the natural number 0; 1 is a pattern matched
by 1; 0 ∨ 1 is a (disjunctive) pattern matched by 0 and 1, or, to put it another way, an element a matches
0∨ 1 iff a matches 0 or a matches 1. Complex patterns can be built this way to match elements that are of
particular structure, have certain dynamic behavior, or satisfy certain logic constraints. We discuss examples
in Sections 3-9.

Patterns constrain models, by enforcing them to match a set of given patterns, called axioms. This set of
axioms yields a specification. In this paper we will define a variety of specifications, some of them capturing
relevant mathematical domains, others datatypes, and others capturing transition systems. We will also
show how to build a complex specification in a modular way, by importing existing simpler specifications.
To present ML specifications rigorously and compactly, we propose a specification syntax in Section 3 that

1

xc3@illinois
dlucanu@info.uaic.ro
grosu@illinois.edu

allows us to write specifications in a compact and human-readable way. All ML specifications presented in
this paper are written using this syntax.

Our main technical contribution is a collection of complete ML specifications of important datatypes
and data structures (including parameterized types, function types, and dependent types), a basic process
algebra and its dynamic reduction relation, and the higher-order reasoning about functors and monads in
category theory. For each specification, we derive several nontrivial properties using the matching logic proof
system; some of these properties require inductive/coinductive reasoning, also supported by ML.

We organize the rest of the paper as follows:

– In Section 2 we define the syntax and semantics of ML;
– In Section 3 we introduce the specification syntax and define the specifications of several important

mathematical instruments such as equality, membership, sorts, and functions;
– In Section 4 we review the Hilbert-style proof system of ML and its soundness theorem;
– In Section 5 we explain how patterns are interpreted in ML models;
– In Section 6 we discuss the general principle of induction and coinduction in ML and compare it with

the classical principle of (co)induction in complete lattices;
– In Section 7 we give specifications for examples of main data types used in programming languages: sim-

ple datatypes (booleans and naturals), parametric types (product, sum, functions, lists, and streams),
dependent types (vectors, dependent product, and dependent sum). For each example we present and
prove illustrative (co)inductive properties;

– In Section 8 we define a basic process algebra in ML;
– In Section 9 we use ML for higher-order reasoning in category theory and define functors, monads, and

comonads as ML specifications;
– In Section 10 we conclude the paper.

2 Matching Logic Syntax and Semantics
We introduce the syntax and semantics of matching logic (ML). We refer the reader to [1, 2, 5, 6] for full
technical details.

2.1 Matching Logic Syntax
ML is an unsorted logic whose formulas, called patterns, are built with variables, constant symbols, a binary
construct called application, the standard FOL constructs ⊥, →, ∃, and a least fixpoint construct µ.

Definition 2.1. Amatching logic signature � = (EV ,SV ,Σ) contains a set EV of element variables denoted
x, y, . . . , a set SV of set variables denoted X,Y, . . . , and a set Σ of constant symbols (or simply symbols)
denoted σ, σ1, σ2, We require that EV and SV are countably infinite sets.

Definition 2.2. Given � = (EV ,SV ,Σ), the set Pattern(�) of �-patterns (or simply patterns) is inductive
defined by the following grammar:

ϕ ::= x | X | σ | ϕ1 ϕ2 | ⊥ | ϕ1 → ϕ2 | ∃x. ϕ | µX.ϕ

where in µX.ϕ we require that ϕ is positive in X; that is, X is not nested in an odd number of times on
the left-hand side of an implication ϕ1 → ϕ2.

We assume that application ϕ1 ϕ2 binds the tightest and is left-associative. Both ∃ and µ are binders.
While ∃ only binds element variables, µ only binds set variables. The scope of binders goes as far as
possible to the right. We assume the standard notions of free variables, α-equivalence, and capture-avoiding
substitution. Specifically, we use FV (ϕ) ⊆ EV sup SV to denote the set of (element and set) variables that
are free in ϕ. We regard α-equivalent patterns as syntactically identical. We write ϕ[ψ/x] (resp. ϕ[ψ/X])

2

for the result of substituting ψ for x (resp. X) in ϕ, where bound variables are implicitly renamed to prevent
variable capture. We define the following logical constructs as syntactic sugar in the usual way:

¬ϕ ≡ ⊥ → ϕ ϕ1 ∨ ϕ2 ≡ ¬ϕ1 → ϕ2 ϕ1 ∧ ϕ2 ≡ ¬(¬ϕ1 ∨ ¬ϕ2)

> ≡ ¬⊥ ∀x. ϕ ≡ ¬∃x.¬ϕ νX.ϕ ≡ ¬µX.¬ϕ[¬X/X]

We assume the standard precedence between these logical constructs.

2.2 Matching Logic Semantics
ML has a pattern matching semantics. Patterns are interpreted on a given underlying carrier set, and each
pattern is interpreted as a set of the elements that match the pattern.

Definition 2.3. Given � = (EV ,SV ,Σ), a �-model (or simply model) is a tuple (M,_•_, {Mσ}σ∈Σ), where

1. M : a carrier set, required to be nonempty;
2. _•_ : M×M → P(M) is a function, called the interpretation of application; here, P(M) is the powerset

of M ;
3. Mσ ⊆M is a subset of M , the interpretation of σ in M , for each σ ∈ Σ.

By abuse of notation, we write M to denote the above model.

For notational simplicity, we extend _•_ from over elements to over sets, pointwisely, as follows:

• : P(M)× P(M)→ P(M) A •B =
⋃

a∈A,b∈B

a • b for A,B ⊆M

Note that ∅ •A = A • ∅ = ∅ for any A ⊆M .
Next, we define variable valuations and pattern interpretations:

Definition 2.4. Given � = (EV ,SV ,Σ) and a modelM , anM -valuation (or simply valuation) is a function
ρ : (EV ∪ SV) → (M ∪ P(M)) that maps element variables to elements in M and set variables to subsets
of M ; that is, ρ(x) ∈ M for all x ∈ EV and ρ(X) ⊆ M for all X ∈ SV . We define pattern interpretation
|_|ρ : Pattern→ P(M) inductively as follows:

|x|ρ = {ρ(x)} |X|ρ = ρ(X) |σ|ρ = Mσ |⊥|ρ = ∅ |ϕ1 ϕ2|ρ = |ϕ1|ρ • |ϕ2|ρ
|ϕ1 → ϕ2|ρ = M\ (|ϕ1|ρ\|ϕ2|ρ) |∃x. ϕ|ρ =

⋃
a∈M
|ϕ|ρ[a/x] |µX.ϕ|ρ = µFρX,ϕ

where ρ[a/x] is the valuation ρ′ such that ρ′(x) = a, ρ′(y) = ρ(y) for any y ∈ EV distinct from x, and
ρ′(X) = ρ(X) for any X ∈ SV . Here, FρX,ϕ : P(M)→ P(M) is the function defined as FρX,ϕ(A) = |ϕ|ρ[A/X]

for every A ⊆ M , where ρ[A/X] is the valuation ρ′ such that ρ′(X) = A, ρ′(Y) = ρ(Y) for any Y ∈ SV
distinct from X, and ρ′(x) = ρ(x) for any x ∈ EV . By structural induction we can prove that FρX,ϕ is a
monotone function (see Exercise 2.5). Therefore, FρX,ϕ has a unique least fixpoint which we denote as µFρX,ϕ,
by the Knaster-Tarski fixpoint theorem [7] (see Exercise 2.6).

Exercise 2.5. Prove that FρX,ϕ as defined in Definition 2.4 is a monotone function for all X,ϕ, ρ; that is,
FρX,ϕ(A) ⊆ FρX,ϕ(B) whenever A ⊆ B.

Exercise 2.6. Prove that FρX,ϕ has a unique least fixpoint given as below:

µFρX,ϕ =
⋂{

A ⊆M | FρX,ϕ(A) ⊆ A
}

Hint: Use the Knaster-Tarski fixpoint theorem [7].

The following proposition shows that the interpretation of ϕ only depends on the valuations of the free
variables of ϕ.

3

Proposition 2.7. For any pattern ϕ and two valuations ρ1, ρ2, if ρ1(x) = ρ2(x) for all x ∈ FV (ϕ), then
|ϕ|ρ1 = |ϕ|ρ2 .

Explanation. Hint: By structural induction on ϕ.
In particular, given a model M and a pattern ϕ, if FV (ϕ) = ∅, then the interpretation of ϕ is the same

under all valuations. In this case, we use |ϕ| (without the subscript ρ) to denote the (unique) interpretation
of ϕ in the given model M . We call ϕ a closed pattern if FV (ϕ) = ∅.

Given a modelM , matching logic (ML) patterns are interpreted as subsets ofM . This is clearly different
from the classical first-order logic (FOL), where formulas are interpreted as either true or false. In ML, we
can use two special sets, the total set M and the empty set ∅, to represent the logical true and false. Given
M and a pattern ϕ, we call ϕ an M -predicate iff |ϕ|ρ ∈ {∅,M} for all ρ. We call ϕ a predicate iff it is an
M -predicate for all M . Intuitively, a predicate pattern makes “statement”. If the statement is a fact, then
the predicate pattern is interpreted as M . Otherwise, it is interpreted as ∅. We will see many examples of
predicate patterns in Section 3.

Definition 2.8. For M and ϕ, we say that M validates ϕ or ϕ holds in M , written M � ϕ, iff |ϕ|ρ = M
for all ρ. Let Γ ⊆ Pattern be a pattern set. We say that M validates Γ, written M � Γ, iff M � ψ for all
ψ ∈ Γ. We say that Γ validates ϕ, written Γ � ϕ, iff M � Γ implies M � ϕ, for all M .

Definition 2.9. A matching logic specification SPEC = (EV ,SV ,Σ,Γ) is a tuple, where (EV ,SV ,Σ) is a
signature and Γ is a set of patterns called axioms. We write SPEC � ϕ to mean Γ � ϕ for a pattern ϕ. We
write M � SPEC to mean M � Γ for a model M .

For simplicity, we often do not explicitly mention EV and SV when we define a specification SPEC.

3 Specification Examples: Important Mathematical Instruments
We define several important mathematical instruments such as equality, membership, sorts, functions, pred-
icates, and constructors, as matching logic specifications.

3.1 Definedness Symbol and Related Instruments
Recall that a pattern ϕ is interpreted as the set of elements that match it. When ϕ can be matched by at
least one element, we say that ϕ is defined. In this section, we will construct from a given ϕ, a new pattern
dϕe called the definedness pattern, which is a predicate pattern stating that ϕ is defined.

Definition 3.1. Let d_e be a (constant) symbol, which we call the definedness symbol. We write dϕe as
syntactic sugar of d_eϕ, obtained by applying d_e to ϕ, for any ϕ. We define the following axiom

(Definedness) dxe

It is more compact and readable if we write the above definition as a matching logic specification as
follows:

spec DEFINEDNESS
Metavariable: pattern ϕ, element variable x
Symbol: d_e
Notation:
dϕe ≡ d_eϕ

Axiom:
(Definedness) dxe

endspec

4

Here, keyword “Metavariable” introduces the metavariables used in the specification. Keyword “Symbol”
enumerates the symbols declared in the specification. Keyword “Notation” introduces notations (syntactic
sugar). Keyword “Axiom” lists all axioms (schemas). For readability, some axioms are named. For example,
here we name the axiom dxe by (Definedness). For simplicity, we feel free to omit Metavariable when they
are understood. Therefore, DEFINEDNESS can be presented in the following more compact form:

spec DEFINEDNESS
Symbol: d_e
Notation:
dϕe ≡ d_eϕ

Axiom:
(Definedness) dxe

endspec

The following proposition explains why d_e is called definedness symbol.

Proposition 3.2. Let M be a model such that M � DEFINEDNESS. For any ϕ and ρ, we have |dϕe|ρ = M
iff |ϕ|ρ 6= ∅, and |dϕe|ρ = ∅ iff |ϕ|ρ = ∅.

Exercise 3.3. Prove Proposition 3.2.

Using d_e, we can define important mathematical instruments as notations. Let us include these notations
also in DEFINEDNESS as shown below:

spec DEFINEDNESS
Symbol: d_e
Notation:
dϕe ≡ d_eϕ bϕc ≡ ¬d¬ϕe ϕ1 = ϕ2 ≡ bϕ1 ↔ ϕ2c
x ∈ ϕ ≡ dx ∧ ϕe ϕ1 ⊆ ϕ2 ≡ bϕ1 ↔ ϕ2c ϕ1 6= ϕ2 ≡ ¬(ϕ1 = ϕ2)
x 6∈ ϕ ≡ ¬(x ∈ ϕ) ϕ1 6⊆ ϕ2 ≡ ¬(ϕ1 ⊆ ϕ2)

Axiom:
(Definedness) dxe

endspec

The following proposition shows that the above mathematical notations have the expected semantics.

Proposition 3.4. Let M be a model such that M � DEFINEDNESS. For any x, ϕ, ϕ1, ϕ2 and ρ, we have

1. |bϕc|ρ = M if |ϕ|ρ = M ; otherwise, |bϕc|ρ = ∅;
2. |ϕ1 = ϕ2|ρ = M if |ϕ1|ρ = |ϕ2|ρ; otherwise, |ϕ1 = ϕ2|ρ = ∅;
3. |x ∈ ϕ|ρ = M if ρ(x) ∈ |ϕ|ρ; otherwise, |x ∈ ϕ|ρ = ∅;
4. |ϕ1 ⊆ ϕ2|ρ = M if |ϕ1|ρ ⊆ |ϕ2|ρ; otherwise, |ϕ1 ⊆ ϕ2|ρ = ∅; note that |x ⊆ ϕ|ρ = |x ∈ ϕ|ρ;

3.2 Inhabitant Symbol and Related Instruments
ML is an unsorted logic. There is no built-in support in ML for sorts or many-sorted functions. However,
we can define sort s as an ML symbol, and use a special symbol [[_]], called the inhabitant symbol, to build
the inhabitant pattern [[_]] s, often written as [[s]], which is a pattern matched by all the elements that have
sort s. In this way we can axiomatize sorts and their properties in ML.

Let us first define the following basic specification for sorts:

spec SORTS
Import: DEFINEDNESS
Metavariable: pattern ϕ, element variable s:Sorts
Symbol: [[_]],Sorts

5

Notation:
[[s]] ≡ [[_]] s
¬sϕ ≡ (¬ϕ) ∧ [[s]]
∀x:s. ϕ ≡ ∀x. (x ∈ [[s]])→ ϕ
∃x:s. ϕ ≡ ∃x. (x ∈ [[s]]) ∧ ϕ

endspec

Here, keyword “ Import” imports all the symbols, notations, and axioms defined in specification DEFINEDNESS.
Symbol [[_]] is called the inhabitant symbol. Symbol Sorts is used to represent the sort set. Notation ¬sϕ is
called sorted negation. Intuitively, ¬sϕ is matched by all the elements that have sort s and do not match ϕ.
Notations ∀x:s. ϕ and ∃x:s. ϕ are called sorted quantification, where x only ranges over the elements of sort
s.

3.2.1 An Example: Defining Many-Sorted Signatures in Matching Logic

Let us consider a many-sorted signature (S, F,Π) and see how to capture it as an ML specification. In
(S, F,Π), S is a set of sorts denoted s1, s2, . . . , F = {Fs1···sn,s}s1,...,sn,s∈S is a family set of many-sorted
functions denoted f ∈ Fs1···sn,s, and Π = {Πs1···sn}s1,...,sn∈S is a family set of many-sorted predicates
denoted π ∈ Πs1···sn . For f ∈ Fs1···sn,s and π ∈ Πs1···sn , we call the sorts s1, . . . , sn the argument sorts. For
f ∈ Fs1···sn,s, we call s the return sort.

Intuitively, we will define for each s ∈ S a corresponding ML symbol also denoted s, which represents
the sort name of s. The inhabitant of s is represented by the inhabitant pattern [[s]]. The symbol Sorts then
includes all sorts s ∈ S. Functions and predicates are represented as symbols, whose arities are axiomatized
by ML patterns. This is made formal in the following:

spec MANYSORTED{S, F,Π}
Import: SORTS
Metavariable: s ∈ S, f ∈ Fs1···sn,s, π ∈ Πs1···sn
Axiom:

(Sort Name) (s ∈ [[Sorts]]) ∧ (∃z. s = z)
(Nonempty Inhabitant) [[s]] 6= ⊥
(Function) ∀x1:s1 . . . ∀xn:sn.∃y:s. f x1 · · · xn = y
(Predicate) ∀x1:s1 . . . ∀xn:sn. π x1 · · · xn = > ∨ π x1 · · · xn = ⊥

endspec

We explain the above specification. Firstly, MANYSORTED{S, F,Π} is a parametric specification and
can be instantiated by different many-sorted signatures (S, F,Π). We use s, f, π as metavariables that range
over S, F,Π, respectively, and define a corresponding ML symbol for each of them.

Axiom (Sort Name) has two effects. Firstly, it specifies that s belongs to the inhabitant of Sorts.
Secondly, it specifies that s is a functional pattern, in the sense that its interpretation Ms in any model M is
a singleton. In other words, the pattern s can be matched by exactly one element, as denoted by the element
variable z. This is intended, because conceptually s denotes the sort name s, which is a single “element” in
the underlying carrier set of M .

Axiom (Nonempty Inhabitant) specifies that the inhabitant of s is nonempty. Axiom (Function)
specifies that f x1 · · · xn is matched by exactly one element y of sort s, given that x1, . . . , xn have sorts
s1, . . . , sn. In other words, f is a many-sorted function from s1, . . . , sn to s. Similarly, (Predicate)
specifies that π is a many-sorted predicate on s1, . . . , sn, because it always returns > or ⊥. For notational
simplicity, we use the function notation f : s1 × · · · × sn → s to mean (Function). When n = 0, we write
f : ε→ s.

6

3.2.2 More Instruments about Sorts

The flexibility of ML allows us to easily define various instruments and properties about sorts using ML
patterns. In this section we show two more examples: (sorted) partial functions and subsorting.

A partial function f : s1× · · · × sn ⇀ s can be undefined on one or more of its arguments. In ML partial
functions can be axiomatized by the following axiom:

(Partial Function) ∀x1:s1. . . .∀xn:sn.∃y:s. f x1 · · · xn ⊆ y

which specifies that f x1 · · · xn can be matched by at most one element. The undefinedness of f on arguments
x1, . . . , xn is captured by f x1 · · · xn returning ⊥. For notational simplicity, we use the partial function
notation f : s1× · · · × sn ⇀ s to mean the axiom (Partial Function), and when n = 0 we write f : ε ⇀ s.

Subsorting is a partial ordering ≤ on the sort set S. When s1 ≤ s2, we say s1 is a subsort of s2, and
require that the inhabitant of s1 is a subset of the inhabitant of s2. Subsorting can be axiomatized in ML
as follows:

(Subsorting) [[s1]] ⊆ [[s2]]

ML has a pattern matching semantics. Therefore, the pattern σ x1 · · · xn can be matched by zero, one,
or more elements. As we have defined above, σ is called a function iff σ x1 · · · xn is matched by one element;
it is called a partial function iff σ x1 · · · xn is matched by at most one element. However, we often do not
want to specify the number of elements that match σ x1 · · · xn, but only want to require that all elements
that match σ x1 · · · xn must have sort s, whenever x1, . . . , xn have sorts s1, . . . , sn. In this case we call σ a
sorted symbol and axiomatize it by the following axiom:

(Sorted Symbol) σ [[s1]] · · · [[sn]] ⊆ [[s]]

Notation 3.5. Let s be a sort and M be a model, the interpretation |[[s]]| is the inhabitant of s in M . For
notational simplicity, we write [[s]]M as an abbreviation of |[[s]]|.

3.3 Constructors and the Inductive Domains
Constructors are extensively used in building programs, data, and semantic structures, in order to define and
reason about languages and programs. They can be characterized in the “no junk, no confusion” spirit [8].1
Specifically, let Term be a distinguished sort for terms and C = {c1, c2, . . . } be a set of constructors. For
each ci, we associate an arity arity(ci) ∈ N. We define the following ML specification:

spec CONSTRUCTORS{C}
Import: MANYSORTED{{Term}, C, ∅}
Metavariable: c, d ∈ C
Axiom:

(No Confusion) where n = arity(c),m = arity(d)
∀x1:Term . . . ∀xn:Term.∀y1:Term . . . ∀ym:Term.

¬(c x1 · · · xn ∧ d y1 · · · ym)
∀x1:Term . . . ∀xn:Term.∀y1:Term . . . ∀yn:Term.

(c x1 · · · xn ∧ c y1 · · · yn)→ (c (x1 ∧ y1) · · · (xn ∧ yn))
(Inductive Domain)

[[Term]] = µX.
∨
c∈C cX · · · X with nc X’s, where nc = arity(c)

endspec

Note that CONSTRUCTORS{C} imports symbols and axioms from the many-sorted specification MANYSORTED{{Term}, C, ∅}.
Intuitively, axiom (No Confusion) says that different constructs build different things and that construc-
tors are injective. Axiom (Inductive Domain) says the inhabitant of Term is the smallest set that is closed
under all constructors.

1The material shown in this section answers a question asked by Jacques Carette on the mathoverflow site (https:
//mathoverflow.net/questions/16180/formalizing-no-junk-no-confusion) ten years ago: Are there logics in which these
requirements (“no junk, no confusion”) can be internalized?

7

https://mathoverflow.net/questions/16180/formalizing-no-junk-no-confusion
https://mathoverflow.net/questions/16180/formalizing-no-junk-no-confusion

Proposition 3.6. Let M be any model such that M � CONSTRUCTORS{C}. Let [[Term]]M = |[[Term]]| be
the inhabitant of Term in M (see Notation 3.5). For any c ∈ C with arity n = arity(c), we define a function

fc : [[Term]]M × · · · × [[Term]]M︸ ︷︷ ︸
n times

→ P([[Term]]M)

as follows:
fc(a1, . . . , an) = (· · · (Mc • a1) • · · · • an), for a1, . . . , an ∈ [[Term]]M

Then we have fc(a1, . . . , an) is a singleton for every a1, . . . , an ∈ [[Term]]M .

Explanation. By the axiom (Function) for c ∈ C, defined in the specification MANYSORTED{{Term}, C, ∅}.

Remark 3.7. Since fc(a1, . . . , an) is a singleton that contains exactly one element, we abuse the notation
and denote that element also as fc(a1, . . . , an). Since fc is fully determined by Mc and the interpretation of
application _•_ given by M , we abuse the notation and write Mc(a1, . . . , an) to mean fc(a1, . . . , an), when
M is given.

Proposition 3.8. Let M be any model such that M � CONSTRUCTORS{C}. Let distinct c, d ∈ C, n =
arity(c), m = arity(d). We define functions (see Remark 3.7):

Mc : [[Term]]M × · · · × [[Term]]M︸ ︷︷ ︸
n times

→ [[Term]]M

Md : [[Term]]M × · · · × [[Term]]M︸ ︷︷ ︸
m times

→ [[Term]]M

Then we have that Mc,Md are injective functions, and their ranges are disjoint.

Explanation. By axioms (No Confusion).

Proposition 3.9. Let Term be the set of terms built from constructors in C. Then for any model M �
CONSTRUCTORS{C}, we have that [[Term]]M is isomorphic to Term.

Explanation. By axiom (Inductive Domain).

4 Matching Logic Proof System
In this section we review the Hilbert-style proof system for matching logic given in [2]. The proof system is
shown in Fig. 1. We write SPEC ` ϕ to mean that ϕ can be proved by the proof system using the axioms in
SPEC. The following theorem shows that the proof system is sound.

Theorem 4.1 ([2]). SPEC ` ϕ implies SPEC � ϕ.

In this paper we will use the proof system to simplify our reasoning about ML validity and semantics.
The following derived rules are useful for coinductive reasoning:

(Post-Fixpoint) ` νX.ϕ→ ϕ[νX.ϕ/X]

(Knaster-Tarski)
` ψ → ϕ[ψ/X]

` ψ → νX.ϕ

8

FO
L

R
ea
so
ni
ng


T
ec
hn

ic
al

R
ul
es



R
ea
so
ni
ng

Fr
am

e



R
ea
so
ni
ng

F
ix
po

in
t



(Tautology) ϕ if ϕ is a propositional
tautology over patterns

(Modus Ponens)
ϕ1 ϕ1 → ϕ2

ϕ2

(∃-Quantifier) ϕ[y/x]→ ∃x. ϕ

(∃-Generalization)
ϕ1 → ϕ2 if x 6∈ FV (ϕ2)

(∃x.ϕ1)→ ϕ2

(Existence) ∃x. x
(Singleton) ¬ (C1[x ∧ ϕ] ∧ C2[x ∧ ¬ϕ])

(Propagation⊥) C[⊥]→ ⊥
(Propagation∨) C[ϕ1 ∨ ϕ2]→ C[ϕ1] ∨ C[ϕ2]

(Propagation∃) C[∃x. ϕ]→ ∃x.C[ϕ] if x 6∈ FV (C)

(Framing)
ϕ1 → ϕ2

C[ϕ1]→ C[ϕ2]

(Substitution)
ϕ

ϕ[ψ/X]

(Pre-Fixpoint) ϕ[µX. ϕ/X]→ µX. ϕ

(Knaster-Tarski)
ϕ[ψ/X]→ ψ

µX. ϕ→ ψ

Figure 1: A Hilbert-style proof system of matching logic [2] (where C[ϕ], C1[ϕ], C2[ϕ] denote patterns of the
form ϕψ or ψ ϕ for some ψ)

5 Understanding Models and Interpretation of Patterns
In this section we explain, based on an example, the flexibility to define models for ML specifications and how
various patterns are interpreted in a model. Let us consider the following specification of natural numbers
(we present the complete specification for clarity):

spec BNAT
Symbol: d_e, [[_]],Sorts,Nat ,0, s, le
Axiom:

(Definedness) :
∀x. dxe

(Sort Name) :
Nat : ε→ Sorts

(Function) :
0 : ε→ Nat
s : Nat → Nat

(Predicate) :
∀x:Nat . le x = > ∨ le x = ⊥

endspec

9

5.1 Three Matching Logic Models of the Specification BNAT

We present three possible models for the specification BNAT. The first model is the canonical model of
natural numbers, the second one is related to the greatest fixpoint, and the third one is similar to the first
one but with a less conventional interpretation for s and le.

The First Matching Logic Model M1 of BNAT The first model that we will construct for the specifi-
cation BNAT is based on the standard model of natural numbers.

model M1 of BNAT
Carrier Set M includes:

def, inh,Nat, s, le
n, for n ∈ N where N is the set of natural numbers
le n, for n ∈ N, denoting partial evaluation results

Symbol Interpretation:
M1d_e = {def} M1[[_]] = {inh} M1Sorts = {Nat}
M1Nat = {Nat} M10 = {0} M1s = {s} M1le = {le}

Application Interpretation:
def • a = M, for all a ∈M
inh • Nat = N
s • n = {n+ 1}, for all n ∈ N
le • n = {le n}, for all n ∈ N
(le n) •m = M, if n ≤ m for n,m ∈ N
a • b = ∅, if none of the above applies, for a, b ∈M

endmodel

The Second Matching Logic Model M2 of BNAT This differs from M1 in that we interpret the inhab-
itant of Nat as the set of co-natural numbers N ∪ {∞}.

model M2 of BNAT
Carrier Set M includes:

def, inh,Nat, s, le
n, for n ∈ N where N is the set of natural numbers
∞, a distinguished infinity symbol
le n, for n ∈ N
le ∞

Symbol Interpretation:
M1d_e = {def} M1[[_]] = {inh} M1Sorts = {Nat}
M1Nat = {Nat} M10 = {0} M1s = {s} M1le = {le}

Application Interpretation:
def • a = M, for all a ∈M
inh • Nat = N ∪ {∞}
s • n = {n+ 1}, for all n ∈ N
s • ∞ = {∞}
le • n = {le n}, for all n ∈ N
le • ∞ = {le ∞}
(le n) •m = M, if n ≤ m for n,m ∈ N
(le n) • ∞ = M, if n ∈ N
(le ∞) • ∞ = M
a • b = ∅, if none of the above applies, for a, b ∈M

endmodel

10

The Third Matching Logic Model M3 of BNAT This is a less usual model. The purpose of showing it
is to show that we may have exotic models:

model M3 of BNAT
Carrier Set M includes:

def, inh,Nat, s, le
r, for r ∈ R≥0 where R≥0 is the set of non-negative real numbers
le r, for r ∈ R≥0

Symbol Interpretation:
M1d_e = {def} M1[[_]] = {inh} M1Sorts = {Nat}
M1Nat = {Nat} M10 = {0} M1s = {s} M1le = {le}

Application Interpretation:
def • a = M, for all a ∈M
inh • Nat = R≥0

s • r = {r + 1}, for all r ∈ R≥0

le • r = {le r}, for all r ∈ R≥0

(le r1) • r2 = M, if r1 ≤ r2 for r1, r2 ∈ R≥0

a • b = ∅, if none of the above applies, for a, b ∈M
endmodel

5.2 Explaining the Interpretation of Patterns in the Three Models
In order to understand how patterns are interpreted in a model, we consider the following four BNAT-
patterns: s 0, ¬Nat(s 0), x∧ le (s 0)x, ∃x:Nat . x∧ le (s 0)x, and we interpret them in M1,M2,M3, respectively.
Recall that ¬Nat(s 0) ≡ [[Nat]] ∧ ¬(s 0) is the sorted negation of s 0 within Nat . We shall write |ϕ|M1,ρ to
denote the interpretation of ϕ in M1. Similarly, we write |ϕ|M2,ρ and |ϕ|M3,ρ to mean the interpretation of ϕ
in M2 and M3, respectively.

Interpreting s 0 Since this is a closed pattern with no free variables, its interpretation is fully determined
by the model and does not depend on the valuations. Let ρ be any valuation. We have:

|s 0|M1,ρ = |s 0|M2,ρ = |s 0|M3,ρ = {1}

Interpreting ¬Nat(s 0) This pattern is the negation of s 0 within sort Nat :

|s 0|M1,ρ = N \ {1}
|s 0|M2,ρ = (N ∪ {∞}) \ {1}
|s 0|M3,ρ = R≥0 \ {1}

Interpreting x∧ le (s 0)x This pattern has a free variable x, so its interpretation depends on the valuation
of x. Let ρ be an valuation. Note that if ρ(x) is not in the inhabitant of Nat , then le (s 0)x is undefined
(i.e., returning ⊥), and thus x ∧ le (s 0)x returns ⊥. This is shown below:

|x ∧ le (s 0)x|M,ρ = ∅, for M ∈ {M1,M2,M3} and ρ(x) 6∈ [[Nat]]M

Recall that [[Nat]]M is the inhabitant of Nat in M, defined in Notation 3.5.
Next, we consider the case where ρ ∈ [[Nat]]M, for M ∈ {M1,M2,M3}. Let us consider two valuations as an

example: ρ0(x) = 0 and ρ3(x) = 3. Then:

|x ∧ le (s 0)x|M1,ρ0 = {ρ0(x)} ∩ |le (s 0)x|M1,ρ0 = {0} ∩ ∅ = ∅
|x ∧ le (s 0)x|M2,ρ0 = |x ∧ le (s 0)x|M3,ρ0 = ∅, for the same reason as above

11

|x ∧ le (s 0)x|M1,ρ3 = {ρ3(x)} ∩ |le (s 0)x|M1,ρ3 = {3} ∩M = {3}
|x ∧ le (s 0)x|M2,ρ3 = |x ∧ le (s 0)x|M3,ρ3 = {3}, for the same reason as above

Here, we use M to denote the carrier set of M for M ∈ {M1,M2,M3}.
As we can see from the above, the intuition of x ∧ le (s 0)x is that it equals x if s 0 is less than (or equal

to) x, and it equals ∅, otherwise. With this intuition in mind, we can interpret ∃x:Nat . x∧ le (s 0)x, as shown
below.

Interpreting ∃x:Nat . x∧ le (s 0)x This is a closed pattern. However, the quantifier ∃x.Nat requires us to
consider all valuations of x in [[Nat]]M for M ∈ {M1,M2,M3}.

Let us first consider the interpretation in M1, where [[Nat]]M1 = N:

|∃x:Nat . x ∧ le (s 0)x|M1,ρ =
⋃
n∈N

|x ∧ le (s 0)x|ρ[n/x],M1

= ({0} ∩ ∅) ∪ ({1} ∩M) ∪ ({2} ∩M) ∪ · · ·
= {1, 2, . . . }
= N \ {0}

Next, let us consider the interpretation in M2, where [[Nat]]M2 = N ∪ {∞}:

|∃x:Nat . x ∧ le (s 0)x|M2,ρ

=

(⋃
n∈N

|x ∧ le (s 0)x|ρ[n/x],M2

)
∪ |x ∧ le (s 0)x|ρ[∞/x],M2

= (N \ {0}) ∪ {∞}
= N ∪ {∞} \ {0}

Finally, let us consider the interpretation in M3, where [[Nat]]M3 = R≥0:

|∃x:Nat . x ∧ le (s 0)x|M3,ρ =
⋃

r∈R≥0

|x ∧ le (s 0)x|ρ[r/x],M3 = {r ∈ R≥0 | r ≥ 1}

Note that the above is not a countable set.

6 Explaining the General Principles of Induction and Coinduction
In this section we explain how the (Knaster-Tarski) proof rule supplies a (co)induction proof principle in
ML. The explanation is based on the well-known (co)induction principle expressed in the lattice theory.

6.1 Induction Principle in Complete Lattices and in Matching Logic
There is a clear similarity between the induction principle and the Knaster-Tarski proof rule:

Complete Lattices Matching Logic
F(X) ⊆ X
µF ⊆ X

(IndPrinc)
ϕ[ψ/X]→ ψ

µX .ϕ→ ψ
(Knaster-Tarski)

The induction principle (IndPrinc) uses a monotonic function F over a complete lattice. For instance, the
functional F for the natural numbers is given by F(X) = {0} ∪ {sx | x ∈ X}, defined over the powerset
lattice. The set of natural numbers, defined in this way, is µF = {0, s 0, s2 0, . . .}. A set X satisfying the
hypothesis of (IndPrinc) is usually called pre-fixpoint.

12

Explanation. We start by explaining first how (IndPrinc) is used to prove properties. Assume we have to
prove a property of the form ∀x:µF . φ(x), i.e., all elements in an inductive set (i.e., a set that is defined
as the least fixpoint of F) have property φ. We consider the set Xφ = {x | φ(x)} and we first show that
F(Xφ) ⊆ Xφ, then applying (IndPrinc) we obtain µF ⊆ Xφ, which is equivalent to say that ∀x:µF . φ(x)
holds. For the natural numbers, F(Xφ) ⊆ Xφ is equivalent to {0} ∪ {s(x) | x ∈ Xφ} ⊆ Xφ, i.e., we have to
check φ(0) (base case) and that φ(x) =⇒ φ(s(0)) (induction step).

Now we explain how (Knaster-Tarski) supplies an induction proof principle in ML. The least fixpoint
µF is specified by a pattern µX.ϕ and the set Xφ is specified by the pattern ψ ≡ ∃x. x∧φ(x). The inclusion
µF ⊆ Xφ is specified by the pattern µX .ϕ → ψ and the inclusion F(Xφ) ⊆ XΦ by ϕ[ψ/X] → ψ. For the
example of the natural numbers, we have that ϕ ≡ 0∨sX and ϕ[ψ/X] ≡ 0∨sψ. It follows that ϕ[ψ/X]→ ψ
is equivalent to 0→ ψ and sψ → ψ, which can be informally expressed as ψ(0) and ψ(x)→ ψ(sx).

Examples of inductive proofs for natural numbers using the proof rule (Knaster-Tarski) are included in
Sections 7.1.2 and 7.2.3. Examples about inductive reasoning for parametric lists are included in Section 7.2.4.

6.2 Coinduction Principle in Complete Lattices and in Matching Logic
The coinduction principle is dual to the induction principle:

Complete Lattices MmL
X ⊆ F(X)

X ⊆ νF
(CoindPrinc)

ψ → ϕ[ψ/X]

ψ → νX .ϕ
(Knaster-Tarski)

A set X satisfying the hypothesis of (CoindPrinc) is usually called post-fixpoint. We consider the example
of the infinite lists νF = {b0 :: b1 :: b2 :: . . . | bi = 0 ∨ bi = 1}, where F(X) = {b :: x | x ∈ X, b = 0 ∨ b = 1},
and b :: x is a sugar syntax for cons b x.
Explanation. (CoindPrinc) is used to prove thar Xφ ⊆ νF , i.e., the set of elements satisfying φ is a subset
of the coinductive set νF . For instance, if φ(x) is x = b :: x1 ∧ x1 = (1 − b) :: x2 ∧ φ(x2) ∧ b ∈ 0 ∨ 1, then
Xφ ⊆ νF says that the elments having the property φ are infinite lists. Note that this is not trivial; we can
prove it by (CoindPrinc) and showing that Xφ ⊆ F(Xφ) = {y | y = b :: x ∧ x ∈ Xφ}.

Let us explain the above reasoning in ML terms. The coinductive set νF is specified by the pattern νY . ϕ,
where ϕ ≡ (0 :: Y ∨ 1 :: Y), and Xφ is expressed by a pattern ψ defined in the same way as for inductive
case: ψ ≡ ∃x. x ∧ φ(x). The inclusion Xφ ⊆ νF is expressed by ψ → νY . ϕ, and the inclusion Xφ ⊆ F(Xφ)
is expressed by ψ → ϕ[ψ/X]. For the example of infinite lists, this means that ψ → 0 :: ψ ∨ 1 :: ψ.

The usual coinduction proof rule is explained in plain English as follows: In order to prove that Xφ ⊆ νF ,

1. find a subset X;
2. show that X is a post-fixed point: X ⊆ F(X);
3. show that Xφ ⊆ X.

The same coinduction proof rule is expressed in ML terms as follows: In inorder to prove that F |= ψ →
νX.ϕ,

1. find a suitable pattern ψ′;
2. show that ψ′ is a “post-fixed point”: F |= ψ′ → ϕ[ψ′/X];
3. show that F |= ψ → ψ′.

Examples of coinductive proofs are given in Section 7.2.5 and Section 8.

7 Defining Dependent Types as Matching Logic Specifications
Dependent types (sorts) are types whose definitions depend on a value. In this section, we show how to
define dependent types as ML specifications.

13

7.1 Simple Types
We start with the basic types such as Boolean values and natural numbers.

7.1.1 Booleans

spec BOOL
Import: SORTS
Symbol: Bool , tt ,ff , !,&
Metavariable: ϕ1, ϕ2 patterns
Notation: ϕ1 & ϕ2 ≡ &ϕ1 ϕ2

Axiom:
(Sort Name) : Bool ∈ [[Sorts]]
(Function) :

ff : ε→ Bool tt : ε→ Bool
! : Bool → Bool & : Bool × Bool → Bool

(Inductive Domain) : [[Bool]] = tt ∨ ff
(No Confusion) : ¬(tt ∧ ff)
(Definition) :

! tt = ff ! ff = tt
∀x:Bool . x& tt = x ∀x:Bool . x& ff = ff
∀x:Bool . tt &x = x ∀x:Bool .ff &x = ff

endspec

Explanation. The type/sort Bool has two constant constructors tt and ff , which are specified as functional
constants. Therefore, in any model M � BOOL, the inhabitant of Bool in M must be a set consisting of
exactly two elements: the interpretation of tt and the interpretation of ff . The axioms that define ! and &
are usual.

7.1.2 Natural Numbers

spec NAT
Import: SORTS
Symbol: Nat ,0, s
Axiom:

(Sort Name) : Nat ∈ [[Sorts]]
(Function) :

0 : ε→ Nat s : Nat → Nat
(Inductive Domain) : [[Nat]] = µX. 0 ∨ sX
(No Confusion) :
∀x:Nat .¬(0 ∧ sx)
∀x, y:Nat . sx ∧ s y → s(x ∧ y)

endspec

Therefore, Nat is the smallest set built from 0 and s, which are the only two constructs of Nat .

Proposition 7.1. The following propositions hold:

1. NAT |= 0 ∈ [[Nat]]
2. NAT |= suc [[Nat]] ⊆ [[Nat]]
3. NAT |= ∀x:Nat .0 6= sx
4. NAT |= ∀x:Nat . y:Nat . sx 6= y → x 6= s y

14

Explanation. We prove Item 1 as an example and leave the rest as exercises. Let M be any model such that
M � NAT. Recall that the axiom (Function) 0 : ε→ Nat is a shortcut of ∃z. z ∈ [[Nat]]∧ z = 0. Therefore,
for some (irrelevant) valuation ρ we have |∃z. z ∈ [[Nat]] ∧ z = 0|ρ =

⋃
a∈M |z ∈ [[Nat]] ∧ z = 0|ρ[a/z] = M .

Note that |z ∈ [[Nat]] ∧ z = 0|ρ[a/z] ∈ {0,M} for all a. Therefore, there exists a0 ∈ M such that |z ∈
[[Nat]] ∧ z = 0|ρ[a0/z] = M . Note that |z ∈ [[Nat]] ∧ z = 0|ρ[a0/z] = |z ∈ [[Nat]]|ρ[a0/z] ∩ |z = 0|ρ[a0/z] = M
implies that a0 ∈ [[Nat]]M and {a0} = M0. Therefore, |0 ∧ [[Nat]]|ρ = |0|ρ ∩ |[[Nat]]|ρ = M0 ∩ [[Nat]]M 6= ∅,
and thus, |0 ∈ [[Nat]]|ρ = |d0 ∧ [[Nat]]e|ρ = M . Since M is any model with M � NAT, we conclude that
NAT � 0 ∈ [[Nat]].

Exercise 7.2. Prove Items 2-4 in Proposition 7.1.

Proposition 7.3. For any M � NAT, let [[Nat]]M = |[[Nat]]|M be the inhabitant of Nat in M . Then we have
that [[Nat]]M is isomorphic to N, where N is the set of natural numbers.

Explanation. LetM0 andMs be the interpretations of 0 and s inM , respectively. By the axiom (Function)
for 0, we know that M0 is a singleton, whose element we denote (by abuse of notation) as 0. By the axiom
(Function) for s, we know that for for any n ∈ [[Nat]]M , Ms •n is a singleton, whose element we denote (by
abuse of notation) as s(0). By the axiom (No Confusion), we have that the elements 0, s(0), s(s(0)), . . .
are all distinct. Clearly, the set {0, s(0), s(s(0)), . . . } is isomorphic to N, and by abuse of notation we use N
to denote the set. Next, we prove that [[Nat]]M is isomorphic to N. By the axiom (Inductive Domain),
[[Nat]]M = |µX. 0∨sX|ρ = µF , where F : P(M)→ P(M) is defined as F(A) = |0∨sX|ρ[A/X] = {0}∪{s(n) |
n ∈ A}. Then F(N) = {0} ∪ {s(n) | n ∈ N} = N, so N is a fixpoint of F . On the other hand, we can prove
by induction that any fixpoint of F includes s(· · · (s(0)) · · ·) with any number of s. Therefore, N is indeed
the least fixpoint of F , and thus [[Nat]]M is isomorphic to N.

Proposition 7.4 (Successor Prefixpoint). Let P be a set variable. Then we have

1. NAT |= (sP → P)↔ (∀x. x ∈ P → sx ∈ P);
2. NAT |= P ⊆ [[Nat]]→ ((sP → P)↔ (∀x:Nat . x ∈ P → sx ∈ P)).

We call both equivalences (PrefixSucc). Note that in Item 1 we use the unsorted quantification ∀x while
in Item 2 we use the sorted quantification ∀x:Nat .

Explanation. We only explain Item 1 as an example. Let us assume a model M � NAT and a valuation ρ.
Note that ∀x. x ∈ P → sx ∈ P is a predicate pattern. Then we have that

|sP → P |ρ = M

iff |sP |ρ ⊆ |P |ρ
iff Ms • |P |ρ ⊆ |P |ρ
iff Ms • n ∈ |P |ρ for all n ∈ |P |ρ
iff |∀x. x ∈ P → sx ∈ P |ρ = M

The similar reasoning holds for |sP → P |ρ = ∅.
Proposition 7.5 (Peano Induction). Let P be a set variable.

NAT |= P ⊆ [[Nat]]→ ((0 ∈ P ∧ (sP → P))→ ∀x:Nat . x ∈ P) (IndNat)

Explanation. Let M � NAT and ρ by any valuation. If ρ(P) 6⊆ [[Nat]]M , then |P ⊆ [[Nat]]|ρ = ∅, and thus
|P ⊆ [[Nat]] → ((0 ∈ P ∧ (sP → P)) → ∀x:Nat . x ∈ P)|ρ = M . Therefore, we assume ρ(P) ⊆ [[Nat]]M , and
our goal is to prove that |(0 ∈ P ∧ (sP → P))→ ∀x:Nat . x ∈ P |ρ = M .

If |0 ∈ P |ρ = ∅ or |s P → P |ρ = ∅, we have |(0 ∈ P ∧ (sP → P)) → ∀x:Nat . x ∈ P |ρ = M . Therefore,
we assume that |0 ∈ P |ρ = |s P → P |ρ = M ; that is, 0 ∈ ρ(P), and by Proposition 7.1, for all [[Nat]]M ∈ N,
s(n) ∈ ρ(P). By Proposition 7.3, we have ρ(P) = [[Nat]]M , and thus |∀x:Nat . x ∈ P |ρ = M .
Remark 7.6. Let ϕ(x) be a FOL formula with a distinguished variable x. Let set variable P be matched by
exactly the elements x such that ϕ(x) holds. Then clearly, we have that ϕ(x) holds if and only if x ∈ P .
Based on this observation, we can rewrite (IndNat) in the following more familiar form:

Γ |= ϕ(0) ∧ (∀y:Nat . ϕ(y)→ ϕ(s y))→ ∀x:Nat . ϕ(x)

15

7.2 Parameterized Types
A parameterized type (sort) is a type that depends on other type values. In this section we define five
parameterized types: product types, sum (co-product) types, function types, parametric (finite) lists, and
parametric streams (infinite-lists). The key observation is that since ML is an unsorted logic and sorts are
definable concepts, it is natural and straightforward to define parameterized types by defining proper sorts
axioms.

7.2.1 Product Types

Given two sorts s1 and s2 we define a new sort s1⊗s2, called the product (sort) of s1 and s2, as follows:

spec PROD{s1, s2}
Import: SORTS
Symbol: ⊗, 〈_,_〉, π1, π2

Notation:
s1 ⊗ s2 ≡ ⊗ s1 s2

〈_,_〉x y ≡ 〈x, y〉
Axiom:

(Product Sort)
s1 ∈ [[Sorts]] ∧ s2 ∈ [[Sorts]]→ s1⊗s2 ∈ [[Sorts]]

(Pair)
〈_,_〉 : s1 × s2 → s1⊗s2

(Project Left)
π1 : s1⊗s2 → s1

(Project Right)
π2 : s1⊗s2 → s2

(Injection)
〈x1, x2〉 = 〈y1, y2〉 → x1 = x2 ∧ y1 = y2

(Inverse PairProj1)
∀x1:s1.∀x2:s2. πi 〈x1, x2〉 = xi, i = 1, 2

(Inverse PairProj2)
∀y:s1⊗s2. 〈π1 y, π2 y〉 = y

endspec

Explanation. Axioms (Pair), (Project Left), and (Project Right) are instances of the axiom schema
(Function). Axioms (Inverse PairProj1) and (Inverse PairProj2) express the fact that the pair
function and the projections are inverse with respect to each other.

Fact 7.7. The following hold:

1. ∀y:s1⊗s2.∃x1:s1.∃x2:s2. y = 〈x1, x2〉.
2. [[s1⊗s2]] = [[s1]]× [[s2]].

Explanation. (Item 1). Consider xi = πi y, i = 1, 2. We obtain xi ∈ [[si]], i = 1, 2, by the coresponding
(Project _) axiom. The equality y = 〈x1, x2〉 follows by (Inverse PairProj2).
(Item 2). The pair function 〈_,_〉 is a bijection by (Injection) and Item 1.

7.2.2 Sum (Coproduct) Types

Given two sorts s1 and s2 we define a new sort s1⊕s2, called the sum (coproduct) of s1 and s2, as follows:

spec SUM{s1, s2}
Import: SORTS
Symbol: ⊕, ι1, ι2, ε1, ε2

16

Notation: s1⊕s2 ≡ ⊕ s1 s2

Axiom:
(Inject Left)
s1⊕s2 ∈ [[Sorts]]ι1 : s1 → s1⊕s2

(Inject Right)
ι2 : s2 → s1⊕s2

(Eject Left)
ε1 : s1⊕s2 ⇀ s1

(Eject Right)
ε2 : s1⊕s2 ⇀ s2

(Inverse InjEj1)
∀x:si. εi (ιi x) = x, i = 1, 2

(Inverse InjEj2)
∀x:s3−i. εi (ι3−i x) = ⊥, i = 1, 2

(CoProduct)
∀s1, s2:Sorts. [[s1⊕s2]] ⊆ (ι1 [[s1]]) ∨ (ι2 [[s2]])

(Disj)
∀s1, s2:Sorts. (ι1 [[s1]]) ∧ (ι2 [[s2]]) = ⊥

endspec

Explanation. (Inject _) and (Eject _) are instances of (Function) and (Partial Function), respec-
tively.

Fact 7.8. The following hold:

1. ι1 and ι2 are injective functions.
2. [[s1⊕s2]] = (ι1 [[s1]]) ∨ (ι2 [[s2]]).

Explanation. 1. Take ι1 as an example. Suppose ι1 x = ι1 y, then we have ε1(ι1 x) = ε1(ι1 y); by
(InverseInjEj1), we have x = y.
2. We have to show that [[s1⊕s2]] ⊇ (ι1 [[s1]]) ∨ (ι2 [[s2]]), which follows by (Inject _).

Fact 7.9. [[s1⊕s2]] = [[s1]]] [[s2]], where] denotes set disjoint union, defined as [[s1]]] [[s2]] = ([[s1]]× {1}) ∪
([[s2]]× {2}).
Explanation. Formally, we need to establish the following bijection:

ι : [[s1⊕s2]]→ [[s1]]] [[s2]]

ε : [[s1]]] [[s2]]→ [[s1⊕s2]]

Note that by (CoProduct), for every b ∈ [[s1 ⊕ s2]], there exists i ∈ {1, 2}, such that b ∈ ιi([[si]]); by the
injectivity of ιi, we know there exists a unique ab ∈ [[si]] such that b = ιi(ab). Then, we define ι as follows:

ι(b) =

{
(ab, 1) if ab ∈ [[s1]] such that b = ιi(ab)

(ab, 2) if ab ∈ [[s2]] such that b = ιi(ab)

Then, we define ε as follows:

ε((a, i)) = ιi(a)

It is straightforward to see that ι and ε are inverse to each other. This proves that [[s1⊕s2]] = [[s1]]] [[s2]].

17

7.2.3 Function Types

Given two sorts s1 and s2 we define a new sort s1→○s2, called the function sort from s1 to s2, as follows:

spec FUN{s1, s2}
Import: SORTS
Symbol: →○
Notation:
s1→○s2 ≡ →○ s1 s2

(f =s1
ext g) ≡ (∀x:s1. f x = g x)

Axiom:
s1→○s2 ∈ [[Sorts]]

[[s1→○s2]] = ∃f. f ∧ ∀x:s1.∃ y:s2. f x = y
endspec

Fact 7.10. The following hold:

1. ∀f. (∀x:s1.∃y:s2. f x = y)→ f ∈ [[s1→○s2]].
2. ∀f :s1→○s2. (∀x:s1.∃y:s2. f x = y).

Remark 7.11. Even if strong related, there is a difference between f :s1→○s2 and f : s1 → s2. The former
says that f ∈ [[s1→○s2]] and the later is a sugar syntax for the axiom

∀x:s1.∃ y:s2. f x = y

that is equivalent to

∀x. x ∈ [[s1]]→ ∃ y. y ∈ [[s2]] ∧ f x = y .

The relationship between the two notations is easy to see if we note that the definition of [[s1→○s2]] can be
written as ∃f. f ∧ f : s1 → s2. However, f ∈ [[s1→○s2]] says further that f is a functional pattern.

Since we have axiomatic definitions for the product and respectively function sorts, we may use them to
formalize the iteration and recursion principles for the type of natural numbers.

Proposition 7.12 (Natural Numbers Iteration Principle).

∀h.∀c:s.∀f :s→○s. (h0 = c ∧ ∀n:Nat . h (sn) = f (hn))→
(∀n:Nat .∃ y:s. h n = y) (ItNat)

Explanation. (ItNat) is equivalent to

∀h.∀c:s.∀f :s→○s. (h0 = c ∧ ∀n:Nat . h (sn) = f (hn))→
([[Nat]] ⊆ ∃x. ∃ y:s. x ∧ hx = y)

and we apply then the induction principle:

c:s h 0 = c

NAT |= 0 ∈ ∃x.∃ y:s. x ∧ hx = y
Hyp

f :s→○s

NAT |= ∃x.∃ y:s. x ∧ hx = y
→ (∃x.∃ y:s. sx ∧ f (hx) = y)

Hyp

NAT |= ∃x.∃ y:s. x ∧ hx = y
→ (∃x.∃ y:s. sx ∧ h (sx) = y)

Hyp

NAT |= ∃x.∃ y:s. x ∧ hx = y
→ s (∃x. ∃ y:s. x ∧ hx = y)

Def s

NAT |= [[Nat]] ⊆ ∃x.∃ y:s. x ∧ hx = y
IndNat

Example 7.13. The following ML specification defines two functions plus and mult on natural numbers in
the usual way:

18

spec PLUS&MULT
Import: NAT
Symbol: plus,mult
Metavariable: element variables x:Nat , y:Nat
Axiom:

plus x0 = x
plus x (s y) = s (plus x y)
mult x0 = 0
mult x (s y) = plus (mult x y)x

endspec

The fact that plus and mult are well-defined follows by applying (ItNat). For instance, for plus we consider
h = plus x, c = 0, and = s.

Proposition 7.14 (Natural Numbers (Primitive) Recursion Principle).

∀h.∀c:s.∀g:(s⊗Nat)→○s. (h0 = c ∧ ∀n:Nat . h (sn) = g (hn)n)→
(∀n:Nat .∃ y:s. h n = y) (PrRecNat)

Explanation. (PrRecNat) is equivalent to

∀h.∀c:s.∀g:(s⊗Nat)→○s. (h0 = c ∧ ∀n:Nat . h (sn) = g ((hn)n))→
([[Nat]] ⊆ ∃x. ∃ y:s. x ∧ hx = y)

and we apply then the induction principle:

c:s h 0 = c

NAT |= 0 ∈ ∃x.∃ y:s. x ∧ hx = y
Hyp

g:s⊗Nat→○s

NAT |=
∃x.∃ y:s. x ∧ hx = y
→
(∃x.∃ y:s. sx ∧ g (hx)x = y)

Hyp

NAT |=
∃x.∃ y:s. x ∧ hx = y
→
(∃x.∃ y:s. sx ∧ h (sx) = y)

Hyp

NAT |=
∃x. ∃ y:s. x ∧ hx = y
→
s (∃x.∃ y:s. x ∧ hx = y)

Def s

NAT |= [[Nat]] ⊆ ∃x.∃ y:s. x ∧ hx = y
IndNat

Example 7.15. The following ML specification defines the factorial function fact in the usual way:

spec FACT
Import: NAT
Symbol: fact
Metavariable: element variables x:Nat , y:Nat
Axiom:

fact 0 = s 0
fact (sx) = mult (fact x)x

endspec

The fact that fact is well-defined follows by applying (PrRecNat) with h = fact , c = s 0, and g = mult .

7.2.4 Parameterized (Finite) Lists

Parametric lists is a canonical example of polymorphic datatype, i.e., a datatype parametrized by another
type. Polymorphic datatypes are included in almost programming languages (Java, C++, Haskell, etc.),

19

known also as generic types. For instance, in C++ were introduced in 1987, but without rigorously taking
into account a logical foundation for their semantics [9]; now generic programming in C++ is redesigned using
the semantic notion of concept, which is a predicate on template arguments [10]. In this section we present
a complete specification for the parametric lists, which can be used as a foundation for any implementation.

Datatype Specification of Lists The most usual way to define the parametric lists is using a BNF-like
notation:

List〈Elt〉 ::= nil | cons(Elt ,List〈Elt〉)

A reader familiar with a functional programming perhaps prefer a Haskell-like notation:

data List a = Nil | Cons a (List a)

This specification is sufficient for someone who wants to use the datatype, but, for sure, is not sufficient for
implementing the datatype.

Matching Logic Specification of Lists The following ML specification of the parametric lists shows
how much semantical information is missing from the above specification.

spec LIST{s}
Import: SORTS
Symbol: List
Metavariable: x:s, x′:s, `:List〈s〉, `′:List〈s〉 element variables
Notation: List〈s〉 ≡ List s
Axiom:

(Sort Name) : s ∈ [[Sorts]]→ List〈s〉 ∈ [[Sorts]]
(Function) :
∃y.List = y
∃y:List〈s〉.nil = y
∃y:List〈s〉. cons x ` = y

(Inductive Domain) :
[[List〈s〉]] = µX.nil ∨ cons [[s]]X

(No Confusion) :
nil 6= cons x `
cons x ` = cons x′ `′ → cons (x ∧ x′) (` ∧ `′)

endspec

Explanation. From (Sort Name) we infer that List〈s〉 is a functional constant, i.e., ∃y.List〈s〉 = y. Some
programming languages may have constraints on polymorphic datatypes. For instance, in Java s cannot be
a primitive type. Then the axiom (Sort Name) is replaced by ∃y.List〈s〉 ⊆ y, List〈s〉 ⊆ [[Sorts]], and s ∈
PrimitiveSorts → List〈s〉 = ⊥. The first axiom (Function) says that the generic name List is a function con-
stant; the next two constraint cons and nil to functional intyerpretation. The axiom (Inductive Domain)
says that the set of the inhabitants of List〈s〉 contains exactly those elements that we obtain by repeatedly
using of finitely times the constructors nil and cons.

The next results show how many interesting properties can be formally derived from the above specifi-
cation and internally expressed in ML.

Proposition 7.16 (List Induction Principle).

LIST{s} |= (nil ∈ P ∧ cons [[s]]P ⊆ P)→ [[List s]] ⊆ P (IndList)

20

Explanation.
LIST |= nil ∈ P
LIST |= nil → P

LIST |= cons [[s]]P ⊆ P
LIST |= cons([[s]], P)→ P

LIST |= nil ∨ cons([[s]], P)→ P
PropTaut

LIST |= (nil ∨ cons([[s]], L))[P/L]→ P
Replace

LIST |= µL:List .nil ∨ cons([[s]], L)→ P
K-T

LIST |= [[List s]] ⊆ P
Def.⊆

Remark 7.17. Using a notation similar to that from 7.6, (IndList) can be rewritten in the next more familiar
form:

LIST{s} |= ϕ(nil) ∧ (∀`:List s. ϕ(`)→ ∀x:s. ϕ(cons x `))→ ∀`:List s. ϕ(`)

Proposition 7.18 (List Iteration Principle).

LIST{s} |=∀h.∀c:s′.∀f :s⊗s′→○s′.

(hnil = c ∧ ∀x:s.∀`:List〈s〉. h (cons x y) = f (x, h `))→
(∀`:List〈s〉.∃ y:s′. h ` = y) (ItList)

Explanation. (ItList) is equivalent to

LIST{s} |=∀h.∀c:s′.∀f :s⊗s′→○s′.

(hnil = c ∧ ∀x:s.∀`:List〈s〉. h (cons x y) = f (x, h `))→
([[List〈s〉]] ⊆ ∃x. ∃ y:s′. x ∧ hx = y)

which allows to use the induction principle for list to derive a justification:

c:s′ hnil = c

LIST |=nil ∈
∃x. ∃ y:s. x
∧

hx = y

Hyp

f :s⊗s′→○s′

LIST |=
∃x.∃ y:s′. x ∧ hx = y
→
∃x.∃ y:s′.∃a:s. cons a x ∧

f a (hx) = y

Hyp

LIST |=
∃x.∃ y:s′. x ∧ hx = y
→
∃x.∃ y:s′. ∃a:s. cons a x ∧

h (cons a x) = y

Hyp

LIST |=
∃x. ∃ y:s′. x ∧ hx = y
→
cons [[s]] (∃x. ∃ y:s′. x ∧ hx = y)

Def cons

LIST |= [[List〈s〉]] ⊆ ∃x.∃ y:s′. x ∧ hx = y
IndList

A direct use of (ItList) is given by the definition of map:

Example 7.19. Let MAP be the following ML specification:

spec MAP
Import: LIST{s}
Symbol: map
Metavariable: element variables x:s, `:List〈s〉, g:s→○s′

Axiom:
map g nil = nil
map g (cons x `) = cons (g x) (map g `)

endspec

21

Then we obtain

MAP |= map ∈ [[((s→○s′)⊗ List〈s〉)→○List〈s′〉]]
MAP |= map g ∈ [[List〈s〉→○List〈s′〉]]

by applying the List Iteration Principle with c = nil , h = map g, f x `′ = cons (g x) `′, where x is of sort s
and `′ of sort List〈s′〉.

Proposition 7.20 (Lists (Primitive) Recursion Principle).

LIST |=∀h.∀c:s′.∀g:(s⊗List〈s〉)→○s′.

(hnil = c ∧ ∀x:s.∀`:List〈s〉. h (cons x `) = g (h `)x `)→
(∀`:List〈s〉.∃ y:s′. h `′ = y) (PrRecList)

Explanation. We write (PrRecList) in the equivalent form

LIST |=∀h.∀c:s′.∀g:(s⊗List〈s〉)→○s′.

(hnil = c ∧ ∀x:s.∀`:List〈s〉. h (cons x `) = g (h `)x)`→
([[List〈s〉]] ⊆ ∃x. ∃ y:s′. x ∧ hx = y)

and apply the inuction principle for lists:

c:s h 0 = c

LIST |= nil ∈ ∃x.∃ y:s′. x ∧ hx = y
Hyp

g:(s′⊗s⊗List〈s〉)→○s′

LIST |=
∃x.∃ y:s′. x ∧ hx = y
→
∃x.∃ y:s′. ∃a:s. cons a x ∧

g (hx) a x = y

Hyp

LIST |=
∃x.∃ y:s′. x ∧ hx = y
→
∃x.∃ y:s′. ∃a:s. cons a x ∧

h (cons a x) = y

Hyp

LIST |=
∃x. ∃ y:s′. x ∧ hx = y
→
cons [[s]] (∃x. ∃ y:s′. x ∧ hx = y)

Defcons

LIST |= [[List〈s〉]] ⊆ ∃x.∃ y:s′. x ∧ hx = y
IndList

Here is a direct use of the primitive recursive principle for lists:

Example 7.21. Let FOLDR be he following ML specification:

spec FOLDR
Import: LIST{s}
Symbol: foldr
Metavariable: element variables x:s, z:s′, `:List〈s〉, f :s⊗s′→○s′

Axiom:
foldr f z nil = z
foldr f z (cons x `) = f x (foldr f z `)

endspec

Then we obtain

FOLDR |= foldr :((s→○s′)⊗s′⊗List〈s〉)→○s′

FOLDR |= foldr f z:List〈s〉→○s′

by applying the List Primitive Recursion Principle with c = z′, h = foldr f z, g y x ` = f x y, where x is of
sort s, y of sort s′, and ` of sort List〈s〉.

22

7.2.5 Parameterized (Infinite) Streams

Streams (infinite lists) is a canonical example of coinductive type and coinductive reasoning. Infinite
datatypes are used in programming languages, e.g., Haskell, together with lazy evaluation, which allows
to bypass the undefined values (e.g., the result of an infinite execution of a program).

Infinite Datatype (Codatatype) Specification of Streams Streams can be specified using a BNF-like
notation

Stream〈Elt〉 ::= cons(Elt ,Stream〈Elt〉)

or a Haskell-like notation:

data InfList a
a ::: (InfList a)

where the constructor x ::: ` corresponds to cons(x, `). The constructors of infinite datatypes are useful
to define the set of its inhabitants, but useless in practice when we do not need or want runtime pattern-
matches on a data constructor which will never occur. Therefore, the equivalent definition with destructors
is used in practice. For the case of streams, the destructors are hd and tl defined by hd(cons(x, `)) = x and
tl(cons(x, `)) = `.

Matching Logic Specification of Streams The following ML specification includes both the construc-
tors and the destructors. The constructors are used to define the set of inhabitants as the greatest fixpoint
and the destructors are defined axiomatically.

spec STREAM{s}
Element Variables:
Symbol: Stream, cons, hd , tl ,≈Stream

Metavariable: element variables x, x′:s; `, `1, `2:Stream〈s〉
Notation:

Stream〈s〉 ≡ Stream s
`1 ≈Stream `2 ≡ 〈`1, `2〉 ∈ ≈Stream

cons x 〈`1, `2〉 ≡ 〈cons x `1, cons x `2〉
α(X) ≡ ∃`. ` ∧ hd ` ∈ [[s]] ∧ tl ` ∈ X
β(R) ≡ ∃`, `′:Stream〈s〉. 〈`, `′〉 ∧ hd ` = hd `′ ∧ 〈tl `, tl `′〉 ∈ R

Axiom:
(Sort Name) ∀s:Sorts.Stream〈s〉 ∈ [[Sorts]]
(Function)
∃y.Stream = y
∀x. ∀y.∃z. cons x y = z

(Coinductive Domain) ∀s:Sorts. [[Stream〈s〉]] = νX. cons [[s]]X
(No Confusion)

cons x ` = cons x′ `′ → cons (x ∧ x′) (` ∧ `′)
(destructors)

hd(cons x `) = x
tl(cons x `) = `

(Bisimilarity)
≈Stream = νR:Stream〈s〉⊗Stream〈s〉. cons [[s]]R
∀`1, `2:Stream〈s〉〈s〉. (`1 ≈Stream `2) = (`1 = `2)

endspec

Explanation. The axioms for sorts and constructors are similar to those from finite lists. The notations
α(X) and β(R) are used to show that we can obtain an equivalent specification using destructors (see

23

below). In order to understand the coinductive definition of the domain, we recall that, given a model M ,
|νX. cons [[s]]X|ρ = νFρX,ϕ, where ϕ ≡ cons [[s]]X. Since FρX,ϕ is cocontinuous, we have

νFρX,ϕ = M ∩ FρX,ϕ(M) ∩ FρX,ϕ(FρX,ϕ(M)) ∩ · · ·
= M ∩ |cons [[s]]X|ρ[M/X] ∩ |cons [[s]]X|ρ[|cons [[s]]X|ρ[M/X]/X] ∩ · · ·
= M ∩ [[s]]M ::: M ∩ [[s]]M ::: [[s]]M ::: M ∩ · · ·
= [[s]]M ::: [[s]]M ::: [[s]]M ::: · · ·
= {a0 ::: a1 ::: a2 ::: · · · | ai ∈ [[s]]M , i = 0, 1, 2, . . .}

where A ::: B ≡ (|cons|ρ •A) •B and [[s]]M ≡ |[[s]]|ρ. We also have a0 ::: a1 ::: a2 ::: · · · 6= b0 ::: b1 ::: b2 ::: · · · if
there is i such thar ai 6= bi, by applying (No Confusion) i+ 1 times.. It is easy to see now the similarity
with the Haskel definition of the infinite trees. Note that the definition does not depends on ρ since X is the
only variable in ϕ. Let [[s]]∞M denote this greatest fixpoint.

Another novelty is the inclusion of the bisimilarity in the specification. It is defined similarly to the set
of inhabitants, but over pairs of elements. Since we have the additional constraint R:Stream〈s〉⊗Stream〈s〉,
the greatest fixpoint can be computed starting from [[s]]∞M × [[s]]∞M :

νFρR,ϕ = [[s]]∞M × [[s]]∞M ∩ F
ρ
R,ϕ([[s]]∞M × [[s]]∞M) ∩ FρR,ϕ(FρR,ϕ([[s]]∞M × [[s]]∞M)) ∩ · · ·

= [[s]]∞M × [[s]]∞M ∩ |cons [[s]]X|ρ[[[s]]∞M×[[s]]∞M/R] ∩ · · ·
= [[s]]∞M × [[s]]∞M ∩ [[s]]M ::: [[s]]∞M × [[s]]∞M ∩ [[s]]M ::: [[s]]M ::: [[s]]∞M × [[s]]∞M ∩ · · ·
= [[s]]∞M × [[s]]∞M ∩ {〈a0 :: `, a0 :: `′〉 | a0 ∈ [[s]]M , 〈`, `′〉 ∈ [[s]]∞M × [[s]]∞M} ∩ · · ·
= {〈a0 ::: a1 ::: a2 ::: · · ·, a0 ::: a1 ::: a2 ::: · · ·〉 | ai ∈ [[s]]M , i = 0, 1, 2, . . .}

where ϕ is now cons [[s]]R. Norte that [[s]]M ::: R = {a ::: R | a ∈ [[s]]M} = {〈a ::: `, a ::: `′〉 | a ∈
[[s]]M , 〈`, `′〉 ∈ R}, according to the notation from the specification.
Fact 7.22. The following results show that the streams can be equivalently specified using destructors.

1. STREAM{s} |= ∀`:Stream. cons(hd `) (tl `) = `.
2. STREAM{s} |= [[Stream]] = νx. α(X).
3. STREAM{s} |= ∀`, `′:Stream. cons ((hd `) ∧ (hd `′)) ((tl `) ∧ (tl `′))→ ` ∧ `′.
4. STREAM{s} |= ≈Stream = νR:Stream〈s〉⊗Stream〈s〉. β(R)

Explanation. Item 1 shows that destructors and constructors are inverse for each other. Item 2 shows that
the inhabitant of streams is the biggest set closed under the destructors. Item 3 shows that the constructor
cons is injective. The name of constructor for cons is a bit misused here, because it cannot construct alone
streams (there is no a nil -like constructor). But it can reconstruct a stream from its components given by
the destructors. The notation β(R) say that R is a bisimulation (see, e.g., [11]) or a behavioral equivalence
(see, e.g., [12]). Then Item 4 specifies that ≈Stream is the largest bisimulation (behavioral equivalence).

Proposition 7.23 (Stream Coinduction Principle I).

STREAM{s} |= (P ⊆ P ′ ∧ P ′ ⊆ cons [[s]]P ′)→ (P ⊆ [[Stream〈s〉]]) (CoindStream)
STREAM{s} |= (R ⊆ R′ ∧R′ ⊆ cons [[s]]R′)→ (R ⊆ ≈Stream) (CoindStreamEqC)

where P :Stream and R : Stream〈s〉⊗Stream〈s〉.

Explanation. Both are special instances of the coinduction proof rule as discussed at the end of Section 6.
For example, there is the proof for STREAM{s} |= P ′ → [[Stream〈s〉]], which is equivalent to STREAM{s} |=
P ′ ⊆ [[Stream〈s〉]]:

P ′ → cons [[s]]P

P ′ → νX. cons [[s]]X
Knaster-Tarski

P ′ → [[Stream〈s〉]]
Coind Dom

Then we obtain STREAM{s} |= P → [[Stream〈s〉]] by FOL reasoning.

24

Corollary 7.24 (Stream Coinduction Principle II).

STREAM{s} |= (R ⊆ R′ ∧R′ ⊆ β(R′))→ (R ⊆ ≈Stream) (CoindStreamEqD)

where R : Stream〈s〉⊗Stream〈s〉.

Explanation. This coinductive principle is an instance of the coinduction proof rule discussed at the end of
Section 6, by observing Item 4 in Fact 7.22.

Proposition 7.25 (Stream Coiteration Principle).

STREAM{s} |= ∃h.∃x:s′.∃c:s′→○s.∃g:s′→○s′. h(x) ∧

∀y:s′.
hd (h y) = c y ∧
tl(h y) = h (g y)

⊆ [[Stream〈s〉]] (CoitStream)

Explanation. Note the use of the existential quantifier, comparing with the dual universal quantifier used in
Proposition 7.18. This is due to the fact that c, g, and h are used now to “produce” a set of streams. Let P ′
denote the pattern

h(x) ∧ ∀y:s′. hd (h y) = c y ∧ tl(h y) = h (g y)

and let P denote

∃h.∃x:s′.∃c:s′→○s.∃g:s′→○s′. P ′.

We have:
c ∈ [[s′→○s]]

c yß[[s]]
Fol

g ∈ [[s′→○s′]]

h (g y) ∈ P
Fol

P ′ → α(P)
Fol

P → α(P)
∃-Generalization

P → νX. α(X)
Knaster-Tarski

P → [[Stream〈s〉]]
Fact 7.22 Item 2

Example 7.26. Given the following ML specification:

spec CNST&FROM
Import: NAT + STREAM{Nat}
Symbol: cnst , from
Metavariable: element variables n:Nat
Axiom:

hd (cnst n) = n hd (from n) = n
tl (cnst n) = cnst n tl (from n) = from (sn)

endspec

we obtain
CNST&FROM � ∃n:Nat . cnst n ∨ from n ⊆ [[Stream〈s〉]]

by applying CoitStream. For instance, for from we take c n = n and g n = sn.

7.3 Fixed-Length Vector Types
A vector type (sort) Vec s n is a dependent type taking two parameters, where s is the base sort and n
denotes the size of the vectors. In this section we will define two versions of vectors. In the first version,
vectors of size n+ 1 are built by pairing one element and a vector of size n. In the second version, a vector
of size n+ 1 is obtained by constructing a list whose head is an element and whose tail is a vector of size n.
In both versions we require that there is only one vector, the empty vector null , whose size is zero.

25

The First Definition of Vectors Let us first show the first version.

spec VEC1
Import: NAT
Symbol: Vec,null
Metavariable: element variables s:Sorts, n:Nat
Axiom:

(Sort Name) : ∀n:Nat .∀s:Sorts.Vec s n ∈ [[Sorts]]
(Function) :
∃y.Vec = y
∃y.null = y

(Inductive Domain) :
[[Vec s0]] = null
[[Vec s (sn)]] = [[s⊗Vec s n]]

endspec

Explanation. (Sort Name) and (Function) are similar to the specifications of lists discussed in Sec-
tion 7.2.4. The first (Inductive Domain) axiom specifies that there is only one vector null whose size is
zero. The second (Inductive Domain) axiom specifies that the vector type Vec s (sn) is an alias for the
product type of s and the vector type Vec s n. In other words, a vector type is a nested product type.

The Second Definition of Vectors Now we define the second version of vectors using finite lists.

spec VEC2
imports : NAT
Symbol: Vec,null , cons
Metavariable: element variables s:Sorts, n:Nat
Axiom:

(Sort Name) : ∀n:Nat .∀s:Sorts.Vec s n ∈ [[Sorts]]
(Function) :
∃y.Vec = y
∃y.null = y

(Inductive Domain) :
[[Vec s0]] = null
[[Vec s (sn)]] = cons [[s]] [[Vec s n]]

(No Confusion)
∀x:s.∀y:Vec s n.null 6= cons x y
∀x, x′:s. .∀y, y′:Vec s n. cons x y = cons x′ y′ → cons (x ∧ x′) (y ∧ y′)

endspec

Explanation. (Sort Name), (Function), and the first (Inductive Domain) axioms are similar to the
first definition version. The second (Inductive Domain) axiom specifies that the vector type Vec s (sn)
contains all the finite lists of length sn where the base sort is s.

7.4 Dependent Product Types
A dependent product type Πx:s1. s2 is an extension of the function type s1→○s2. Let us assume s2 is an
expression where x occurs free. If a function f has the function type s1→○s2, then for an element a of sort
s1, the term f a has sort s2 no matter what a is. However, if a function f has the dependent product type
Πx:s1. s2, then for an element a of sort s1, the term f a has sort s2[a/x], which is dependent on the argument
a. Clearly, if s2 has no free occurrences of x, then Πx:s1. s2 reduces to s1→○s2.

26

It is straightforward to specify the inhabitant of Πx:s1. s2 following the similar definition of the inhabitant
of s1→○s2. However, it is (surprisingly) not a trivial task to capture the binding behavior of Πx:s1. s2, in
which x in bound in s2. We shall leave this as an open problem. In this paper we only show how to specify
the inhabitant of Πx:s1. s2.

spec DPROD
Notation:

[[Πx:s1. s2(x)]] ≡ ∃f. f ∧ ∀x:s1.∃y:s2(x). f x = y
endspec

Explanation. In the above notation definition we write s2(x) to emphasize that x may occur free in s2. The
reader can verify that when x 6∈ FV (s2), the above notation reduces to the definition of the inhabitant of
the function type s1→○s2.

Fact 7.27. The following hold:

1. ∀f. (∀x:s1.∃y:s2(x). f x = y)→ f ∈ [[Πx:s1. s2(x)]].
2. ∀f :(Πx:s1. s2(x)). x ∈ [[s1]]→ f x ∈ [[s2(x)]].

7.5 Dependent Sum Types
A dependent sum type Σx:s1. s2 is an extension of the product type s1 ⊗ s2. Let us assume that s2 is an
expression where x occurs free. If a pair 〈a, b〉 has the product type s1⊗s2, then a has type s1 and b has type
s2. If a pair 〈a, b〉 has the product type Σx:s1. s2 and a has type s1, then b has type s2[b/x]. In other words,
the type of b depends on a. Clearly, if s2 has no free occurrences of x, then Σx:s1. s2 reduces to s1 ⊗ s2.

Similar to the dependent type Πx:s1. s2, the dependent sum type Σx:s1. s2 also has binding behavior: it
binds x to s2. Therefore, in the following specification we only define the inhabitant of Σx:s1. s2 directly as
a notation.

spec DSUM
Symbol: 〈_,_〉
Notation:

[[Σx:s1. s2(x)]] ≡ ∃x:s1.∃y:s2(x). 〈x, y〉
Axiom:

(No Confusion) :
∀x, x′:s1.∀y:s2(x).∀y′:s2(x′). 〈x, y〉 ∧ 〈x′, y′〉 → 〈x ∧ x′, y ∧ y′〉

endspec

Fact 7.28. The following hold:

1. DSUM |= ∀p:(Σx:s1. s2(x)).∃x:s1.∃y:s2(x). p = 〈x, y〉.
2. DSUM |= ∀x:s1.∀y:s2(x). 〈x, y〉 ∈ [[Σx:s1. s2(x)]].

8 Defining Basic Process Algebra as Matching Logic Specifications

8.1 Basic Process Algebra Preliminaries
Process algebra is the field where the behavior of distributed or parallel systems is studied by algebraic
means. The most known theories include calculus of communicating systems [13], communicating sequential
process [14], π-calculus [15], and algebra of communicating processes [16, 17]. In this paper we consider
a simple fragment of algebra of communicating processes called the basic process algebra (BPA). BPA
introduces simple operators together with their axioms that enable to describe finite processes. Infinite
process can be specified using guarded recursive specifications.

The main ingredients of BPA include:

27

1. a finite set Atom of atomic actions: Atom ::= a | b | c | d | · · · ;
2. a set PTerm of process terms denoted p, q, . . . :

PTerm ::= Atom | PTerm + PTerm | PTerm ; PTerm

3. a predicate p u−→
√

that represents the successful execution of an atomic action u ∈ Atom of process p;
4. a set of axioms defining the transition relation between process terms:

u
u−→
√

x
u−→
√

x+ y
u−→
√

x
u−→ x′

x+ y
u−→ x′

y
u−→
√

x+ y
u−→
√

y
u−→ y′

x+ y
u−→ y′

x
u−→
√

x ; y
u−→ y

x
u−→ x′

x ; y
u−→ x′ ; y

8.2 Matching Logic Specification of the Basic Process Algebra

spec BPA
Symbol: Atom,PTerm,

√
, a, b, c, d, . . . ,_+_,_;_, •,≈BPA

Metavariable: element variables x, x′, y, y′:PTerm, u:Atom
Notation:
•u x ≡ •ux
p+ q ≡ _+_ p q
p ; q ≡ _;_ p q
x ≈BPA y ≡ 〈x, y〉 ∈ ≈BPA

β(R) ≡ 〈
√
,
√
〉 ∨

∃p,q:PTerm. 〈p, q〉 ∧ ∀p′:PTerm.∀u:Atom. (p→ •u p′)→
(∃q′:PTerm. q → •u q′ ∧ 〈p′, q′〉 ∈ R))
∧ ∀q′:PTerm.∀u:Atom. (q → •u q′)→

(∃p′:PTerm. p→ •u p′ ∧ 〈p′, q′〉 ∈ R))
Axiom:

(Sort Name) :
Atom ∈ [[Sorts]] PTerm ∈ [[Sorts]]

(Function) :
∃y.Atom = y ∃y.PTerm = y
∃y._+_ = y ∃y._;_ = y
+ : PTerm × PTerm → PTerm
; : PTerm × PTerm → PTerm

(Domain) :
[[Atom]] = a ∨ b ∨ c ∨ d ∨ · · ·
[[PTerm]] = µX.Atom ∨ (X +X) ∨ (X;X)

(No Confusion) :
x+ y ∧ x′ + y′ → (x ∧ x′) + (y ∧ y′)
x ; y ∧ x′ ; y′ → (x ∧ x′) ; (y ∧ y′)

(Transition) :
•u[[PTerm]] ⊆ [[PTerm]] ∨

√

•u
√

= µU. u ∨ U + [[PTerm]] ∨ [[PTerm]] + U
•uy = µY . (•u

√
) ; y ∨ Y + [[PTerm]] ∨ [[PTerm]] + Y ∨

∃x, x′, y′:PTerm. x ; y′ ∧ y = x′ ; y′ ∧ x ∈ •u x′
(Bisimulation)
≈BPA = νR. β(R)
∀x, y:PTerm. x ≈BPA y ↔ x = y

endspec

28

Explanation. The first axiom is equivalent to •[[Atom]] [[PTerm]]) ⊆ [[PTerm]]∨
√

and specifies the signature
of the transition relation. The second axiom is the definition of the predicate

√
. The third axiom defines

the u-predecessors w.r.t. transition relation of a process term y; the correspondence with the axioms is
transparent. However, the ML specification is more precise since it defines the exact set of transitions as the
least fixpoint. Later it is extended to the greatest fixpoint in order to allow infinite processes.

Proposition 8.1 (BPA Coinduction Principle).

BPA |= (R ⊆ R′ ∧R′ ⊆ β(R′))→ (R ⊆ ≈BPA) (CoindBPA)

where R : PTerm⊗PTerm.

Explanation. The notation β(R′) says that R′ is a bismulation and ≈BPA is the largest bisimulation. The
proof is similar to that for streams specified with destructors.

Fact 8.2. The following hold:

1. BPA � (∃p:PTerm. 〈p+ p, p〉) ⊆ ≈BPA.
2. BPA � (∃p, q:PTerm. 〈(p+ q, q + p〉) ⊆ ≈BPA.
3. BPA � (∃p, p′, q:PTerm. 〈(p+ p′) ; q, p ; q + p′ ; q〉) ⊆ ≈BPA.

Explanation. We show the proof trees of Item 1 and leave the rest as exercises. For notational simplicity let
us define Φ ≡ ∃p:PTerm. 〈p+ p, p〉.

BPA � 〈p′ + p
′
, p
′〉 ∈ Φ

FOL
BPA � (p→ •up′ ∧ (p+ p)→ •u(p

′
+ p
′
))→ p→ •up′ ∧ 〈p′ + p

′
, p
′〉 ∈ Φ · · ·

•up′
BPA � ∀p′:PTerm. ∀u:Atom. ((p+ p)→ •u p′)→ (∃q′:PTerm. p→ •u q′ ∧ 〈p′, q′〉 ∈ Φ))

∧ ∀q′:PTerm. ∀u:Atom. (p→ •u q′)→ (∃p′:PTerm. (p+ p)→ •u p′ ∧ 〈p′, q′〉 ∈ Φ))
FOL

BPA � 〈p+ p, p〉 → β(Φ)
∃-Gen

BPA � (∃p:PTerm. 〈p+ p, p〉)→ β(Φ)
KT

BPA � Φ ⊆ ≈BPA

8.3 Guarded Recursive Specifications
The infinite processed are specified using guarded recursive specifications. Here is a very simple example:

x = a ; y

y = b ;x
a b

First we extend the definition of terms to describe infinite processes: [[PTerm]] = νX.Atom ∨X+X ∨X;X.
Then the two processes are specified together using the product sort PTerm⊗PTerm:

〈px, py〉 = νP :PTerm⊗PTerm. 〈a ;π2(P), b ;π1(P)〉

9 Functors and (Co)Monads as Matching Logic Specifications
In this section we show how the higher-order reasoning in category theory can be internalized in ML. We give
specifications for functors, monads, and comonads as they are defined in functional languages, like Haskell
(see, e.g., [18, 19]).

29

9.1 Functors
We first enrich [[Sorts]] with a “category structure”:

spec CAT
Symbol: id , ◦
Metavariable: element variables s, s1, s2, s3:Sorts
Notation:
g ◦ h ≡ ◦ g h

Axiom:
(Function) :
∃y. id = y
∃y. ◦ = y

(Identity and Composition Laws) :
(id s):s→○s
∀x:s. (id s)x = x
∀g1:s1→○s2.∀g2:s2→○s3. (g2 ◦ g1):s1→○s3

∀x:s1.∀g1:s1→○s2.∀g2:s2→○s3. (g2 ◦ g1)x = g2 (g1 x)
endspec

Explanation. The objects of the category are given by sorts, and the arrows by the inhabitants of function
sorts s→○s′. The axioms of the category are self-explaining. Recall that g : s1→○s2 ≡ g ∈ [[s1→○s2]].

Fact 9.1.

CAT |= ∀g:s1→○s2. (g ◦ (id s1)) =s1
ext g

CAT |= ∀g:s1→○s2. ((id s2) ◦ g) =s1
ext g (◦Idl)

CAT |= ∀g1:s1→○s2 .∀g2:s2→○s3 .∀g3:s3→○s4 .(g3 ◦ (g2 ◦ g1)) =s1
ext ((g3 ◦ g2) ◦ g1) (◦Assoc)

The explanation for the above fact is quite simple and is left as an exercise to the reader.

Matching Logic specification of a functor It is given by the mean of two symbols f and map as
follows:

spec FNCTR
Import: CAT
Symbol: f,map
Metavariable: element variables s, s1, s2:Sorts
Axiom:

(Function) :
∃y. f = y
∃y.map = y

(Functor Laws) :
f : Sorts → Sorts
∀g:s1→○s2. (map g):(f s1)→○(f s2)
(map (id s)) = id s
∀h:s1→○s2.∀g:s2→○s3.map (g ◦ h) =ms1

ext (map g) ◦ (map h) (MDist)
endspec

Explanation. The objects mapping is given by the first (Functor Laws) axiom and the arrows mapping is
given the second one. The last two axioms say that a functor preserves the identities and the composition.

30

9.2 Monads
9.2.1 Monads Categorically

Recall that in the category theory, a monad consists of a functor (m,map) and two natural transformations:
µ : m2 → m (join, multiplication), and η : 1m → m (unit) satisfying the following equations:

µ ◦ (ηm) = 1m

µ ◦ (mη) = 1m

µ ◦ (mµ) = µ ◦ (µm)

where 1m : m→ m is the identity natural transformation. The natural transformation µ associates an arrow
µs : m2 s → ms for each s:Sorts. Similarly, η associates an arrow ηs : s → ms for each s:Sorts. Not that
the above equalities express the commutativity of diagrams in term of the category theory.

Matching Logic Specification

spec MONAD
Import: FNCTR
Symbol: µ, η
Metavariable: element variables s, s1, s2:Sorts
Notation:
µs ≡ µ s

Axiom:
(Natural Transformations) :
µs:((m ◦m) s)→○(ms)
νs:s→○(ms)
∀ g:s1→○s2. ηs2 ◦ g =s1

ext (map g) ◦ ηs1 (ηNt)
∀ g:s1→○s2. (µs2 ◦ (map map g)) =mms1

ext (map g) ◦ µs1 (µNt)
(Diagram Commutativity)
µs ◦ η(ms) =s

ext id (ms) (ηIdr)
µs ◦ (map ηs) =s

ext id (ms) (ηIdl)
µms =mmms

ext map µs (µmComm)
endspec

Explanation. We preferred to use the axiom (µmComm) instead of (µAssoc) (see below), which is proved
as semantic consequence. We use the axiom (1) later.

Fact 9.2.

MONAD |= ∀s:Sorts. µs ◦ (map µs) =mms
ext µs ◦ µ(ms) (µAssoc)

MONAD |= ∀ g:s1→○ms2.map (µs2 ◦ (map g)) =mms1
ext (map g) ◦ µs1 (µNt2)

Explanation. (µAssoc) follows by applying (1). (µNt2) is explained as follows:

map (µs2 ◦ (map g)) =mms1
ext (map µs2) ◦ (map map g) (by (MDist))

=mms1
ext (µms2) ◦ (map map g) (by (µmComm))

=mms1
ext (map g) ◦ µs1 (by (µNt))

31

9.2.2 Monads in Functional Programming Languages

In programming languages and semantics the Kleisli alternative definition for monads is used (see, e.g., [20]).
Roughly speaking, this consists of considering a symbol bind (denoted also by »=) instead of µ defined by
the following axiom, which we add to MONAD:

∀ g:s1→○ms2. bind g =ms1
ext µs2 ◦map g

A common name for the unit η in programming languages is that of return. We prove now the properties of
bind , which characterize it in Kleisli categories and programming languages:

Fact 9.3. The following hold:

1. MONAD |= (bind g) ◦ ηs1 =s1
ext g

2. MONAD |= bind ηs =ms
ext idms

3. MONAD |= ∀ g:s1→○ms2.∀h:s2→○ms3. bind((bind h) ◦ g) =ms3
ext bind h ◦ bind g

Explanation. We have the following reasoning.
(Item 1).

(bind g) ◦ ηs1 =ms1
ext (µs2 ◦ (map g)) ◦ ηs1 (by definition of bind)

=ms1
ext µs2 ◦ ((map g) ◦ ηs1) (by (◦Assoc))

=ms1
ext µs2 ◦ (ηms2 ◦ g) (by (ηNt)

=ms1
ext (µs2 ◦ ηms2) ◦ g (by (◦Assoc))

=ms1
ext idms2 ◦ g (by (ηIdr))

=ms1
ext g (by (◦Idl))

(Item 2).

bind ηs =ms
ext µs ◦ (map ηs) (by definition of bind)

=ms
ext idms (by (ηIdl))

(Item 3).

bind((bind h) ◦ g)

=ms3
ext bind((µs3 ◦ (map h)) ◦ g) (by definition of bind)

=ms1
ext µs3 ◦map ((µs3 ◦ (map h)) ◦ g) (by definition of bind)

=ms1
ext µs3 ◦map (µs3 ◦ (map h)) ◦ (map g) (by (MDist),(◦Assoc))

=ms1
ext µs3 ◦ ((map h) ◦ µs2) ◦ (map g) (by (µNt2))

=ms1
ext (µs3 ◦ (map h)) ◦ (µs2 ◦ (map g)) (by (◦Assoc))

=ms1
ext bind h ◦ bind g (by definition of bind)

9.3 Comonads
9.3.1 Comonads Categorically

In the category theory, the notion of comonad is defined as the dual of that of monad. Consequently, a comand
consists of a functor (w,map) and two natural transformations: δ : w → w2 (duplication, comultiplication),
and ε : w → 1w satisfying the following equations:

(εw) ◦ δ = 1w

32

(w ε) ◦ δ = 1w

w δ ◦ δ = δ w ◦ δ

where 1w : m→ m is the identity natural transformation. The natural transformation δ associates an arrow
δs : w s→ w2 s for each s:Sorts. Similarly, ε associates an arrow εs : w s→ s for each s:Sorts. Not that the
above equalities express the commutativity of diagrams in term of the category theory.

Matching Logic Specification

spec COMONAD
Import: FNCTR
Symbol: δ, ε
Notation:
δs ≡ δ s
εs ≡ ε s

Axiom:
(Natural Transformations) :
∀s:Sorts. δs:(w ◦ w s)→○(w s)
∀s:Sorts. εs:(w s)→○s
∀ g:s1→○s2. g ◦ εs1 =w s1

ext εs2 ◦ (map g) (εNt)
∀ g:s1→○s2. δs2 ◦ (map g) =ww s1

ext (map map g) ◦ δs1 (δNt)
(Diagram Commutativity)
∀s:Sorts. εw s ◦ δs =s

ext idw s (εIdr)
∀s:Sorts. (map εs) ◦ δs =s

ext idw s (εIdl)
∀s:Sorts.map δs =w s

ext δw s (wδComm)
endspec

Fact 9.4.

COMONAD |= ∀s:Sorts. (map δs) ◦ δs =w s
ext δw s ◦ δs (δAssoc)

COMONAD |= ∀ g:w s1→○s2.map ((map g) ◦ δs1) =ww s1
ext δs2 ◦ (map g) (δNt2)

Explanation. Similar to that of Fact 9.2.

9.3.2 Comonads in Functional Programming Languages

Similar to monads, a comonad is defined in programming languages using a symbol cobind (extend) defined
by the following axiom, which we add to COMONAD:

∀ g:w s1→○s2. cobind g =w s2
ext map g ◦ δs1

We prove now the properties of cobind , which characterize it in coKleisli categories and programming lan-
guages:

Fact 9.5. The following hold:

1. COMONAD |= εs2 ◦ (cobind g) =w s1
ext g

2. COMONAD |= cobind εs =ms
ext idw s

3. COMONAD |= ∀ g:w s1→○s2.∀h:w s2→○s3. cobind(h ◦ (cobind g)) =ms1
ext cobind h ◦ cobind g

Explanation. Similar to that of Fact 9.3.

33

10 Conclusion
In this paper we gave an example-driven, yet comprehensive introduction to matching logic. We showed
how to use matching logic specifications to capture various mathematical domains and data types, and
we proposed matching logic notations to define domain-specific languages. We explained technical details
when writing matching logic specifications and reasoning about matching logic semantics. In particular we
discussed how to carry out inductive and coinductive reasoning using matching logic.

References
[1] G. Roşu, Matching logic, Logical Methods in Computer Science 13 (4) (2017) 1–61. doi:10.23638/

LMCS-13(4:28)2017.

[2] X. Chen, G. Rosu, Matching µ-logic, in: Proceedings of the 34th Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS 2019), IEEE, Vancouver, Canada, 2019, pp. 1–13. doi:10.1109/
LICS.2019.8785675.

[3] X. Chen, G. Roşu, Applicative matching logic, Tech. Rep. http://hdl.handle.net/2142/104616,
University of Illinois at Urbana-Champaign (July 2019).

[4] A. Arusoaie, D. Lucanu, Unification in matching logic, in: Proceedings of the 3rd World Congress on
Formal Methods (FM 2019), 2019, pp. 502–518. doi:10.1007/978-3-030-30942-8_30.

[5] X. Chen, G. Roşu, A general approach to define binders using matching logic, Tech. Rep. http://hdl.
handle.net/2142/106608, University of Illinois at Urbana-Champaign (2020).

[6] X. Chen, D. Lucanu, G. Roşu, Initial algebra semantics in matching logic, Tech. Rep. http://hdl.
handle.net/2142/107781, University of Illinois at Urbana-Champaign and Alexandru Ioan Cuza Uni-
versity (2020).

[7] A. Tarski, A lattice-theoretical fixpoint theorem and its applications., Pacific J. Math. 5 (2) (1955)
285–309.

[8] J. A. Goguen, An initial algebra approach to the specification, correctness and implementation of
abstract data types, IBM Research Report 6487 (1976).

[9] B. Stroustrup, Concepts: the future of generic programming or how to design good concepts and use
them well (2017).
URL https://www.stroustrup.com/good_concepts.pdf

[10] A. Sutton, Defining concepts, Overload Journal (131) (2016).
URL https://accu.org/index.php/journals/2198

[11] M. Niqui, J. J. M. M. Rutten, Stream processing coalgebraically, Sci. Comput. Program. 78 (11) (2013)
2192–2215. doi:10.1016/j.scico.2012.07.013.

[12] G. Roşu, D. Lucanu, Circular coinduction – a proof theoretical foundation, in: Proceedings of the 3rd

International Conference on Algebra and Coalgebra in Computer Science (CALCO 2009), Springer,
Udine, Italy, 2009, pp. 127–144. doi:10.1007/978-3-642-03741-2_10.

[13] R. Milner (Ed.), A calculus of communicating systems, Springer, 1980. doi:10.1007/3-540-10235-3.

[14] C. A. R. Hoare, Communicating sequential processes, Prentice-Hall, 1985.

[15] R. Milner, Communicating and mobile systems - the Pi-calculus, Cambridge University Press, 1999.

[16] J. C. M. Baeten, W. P. Weijland, Process algebra, Cambridge University Press, 1990.

34

https://doi.org/10.23638/LMCS-13(4:28)2017
https://doi.org/10.23638/LMCS-13(4:28)2017
https://doi.org/10.1109/LICS.2019.8785675
https://doi.org/10.1109/LICS.2019.8785675
http://hdl.handle.net/2142/104616
https://doi.org/10.1007/978-3-030-30942-8_30
http://hdl.handle.net/2142/106608
http://hdl.handle.net/2142/106608
http://hdl.handle.net/2142/107781
http://hdl.handle.net/2142/107781
https://www.stroustrup.com/good_concepts.pdf
https://www.stroustrup.com/good_concepts.pdf
https://www.stroustrup.com/good_concepts.pdf
https://accu.org/index.php/journals/2198
https://accu.org/index.php/journals/2198
https://doi.org/10.1016/j.scico.2012.07.013
https://doi.org/10.1007/978-3-642-03741-2_10
https://doi.org/10.1007/3-540-10235-3

[17] W. Fokkink, Introduction to process algebra, Springer, 2000. doi:10.1007/978-3-662-04293-9.

[18] T. Uustalu, V. Vene, Comonadic notions of computation, Electr. Notes Theor. Comput. Sci. 203 (5)
(2008) 263–284. doi:10.1016/j.entcs.2008.05.029.

[19] D. Orchard, Should I use a monad or a comonad?, draft work (2012).
URL https://www.cs.kent.ac.uk/people/staff/dao7/drafts/monad-or-comonad-orchard11-draft.
pdf

[20] Haskell monads, last visit December 2019.
URL https://wiki.haskell.org/Monad

35

https://doi.org/10.1007/978-3-662-04293-9
https://doi.org/10.1016/j.entcs.2008.05.029
https://www.cs.kent.ac.uk/people/staff/dao7/drafts/monad-or-comonad-orchard11-draft.pdf
https://www.cs.kent.ac.uk/people/staff/dao7/drafts/monad-or-comonad-orchard11-draft.pdf
https://www.cs.kent.ac.uk/people/staff/dao7/drafts/monad-or-comonad-orchard11-draft.pdf
https://wiki.haskell.org/Monad
https://wiki.haskell.org/Monad

	Introduction
	Matching Logic Syntax and Semantics
	Matching Logic Syntax
	Matching Logic Semantics

	Specification Examples: Important Mathematical Instruments
	Definedness Symbol and Related Instruments
	Inhabitant Symbol and Related Instruments
	An Example: Defining Many-Sorted Signatures in Matching Logic
	More Instruments about Sorts

	Constructors and the Inductive Domains

	Matching Logic Proof System
	Understanding Models and Interpretation of Patterns
	Three Matching Logic Models of the Specification BNAT
	Explaining the Interpretation of Patterns in the Three Models

	Explaining the General Principles of Induction and Coinduction
	Induction Principle in Complete Lattices and in Matching Logic
	Coinduction Principle in Complete Lattices and in Matching Logic

	Defining Dependent Types as Matching Logic Specifications
	Simple Types
	Booleans
	Natural Numbers

	Parameterized Types
	Product Types
	Sum (Coproduct) Types
	Function Types
	Parameterized (Finite) Lists
	Parameterized (Infinite) Streams

	Fixed-Length Vector Types
	Dependent Product Types
	Dependent Sum Types

	Defining Basic Process Algebra as Matching Logic Specifications
	Basic Process Algebra Preliminaries
	Matching Logic Specification of the Basic Process Algebra
	Guarded Recursive Specifications

	Functors and (Co)Monads as Matching Logic Specifications
	Functors
	Monads
	Monads Categorically
	Monads in Functional Programming Languages

	Comonads
	Comonads Categorically
	Comonads in Functional Programming Languages

	Conclusion

